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NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM No. 793

BENDING OF BEAMS OF THIN SECTIONS*

"By Maximilian T. Huber
1. INTRODUCTION

The tendency toward economy of material and lightness
of structure has long since led to the increased applica-
tion of beams having large ratios of moment of area W. to
crosgs~sectional area PF. According to the elementary theo-
ry of bending, within the limits of application of Hooke'ls
law, the critical value of the bending moment Msnjt. also
called briefly, though incorrectly, the breaking moment,
is proportional to W (for the same beam material). Since
the weight of each unit of length of the beam is propor-
tional to ¥, the ratio F:W 1is a measure of the light-
ness of a beam subject to any glven ‘bending moment. As
this ratio has the dimension [IL]™ it changes with change
in unit of length I.. This inconvenience ig evidently not
possessed by the ratio

FS/E. W:: B
which is nondimensional and can therefore be used for the
comparison of different forms of cross~scctional areas

with respect to lightness. For a rectangle of base b
and hcight h, for examplc,

o= .
F==>=h, w = R B=2¢6/2
8 h

that is, a beam of rectangular cross section is lighter
the smaller the ratio Db:h.

Similarly, we find for an ellipse with semiaxes D

and 1 the ratio ‘ )
' ~ /D o /D
= 4 = = —
4 /ﬁ b 7.0? B

*"Zoinanic belek prostych o przckrojach wiotkich." Insty-
tut Badan Technicznych Lotnictwa, Sprawozdanie Kwart-
alne, ¥o. 3, ppe 5-13. Warsaw, 1930. :
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and therefore for the same ratio of b to h an ellipti-
cal cross section givés a considerably heavier beam.

" These and similar sections belong to the class of
close, or compact, cross sections. If the ratio Db:h is
too small, there may occur a deformation of the beam in
the plane of the h axis. For this reason alone we can=-
not go too far in decreasing the value of this ratio. The
magnitude of the critical bending moment M,p3t would then

be decided not by the value of W Dbut by other cross—~sec-—
tional magnitudes alongside with the elasticity of the ma-
terial and the distribution of external loads. (See sec-

tion 15 of "Study of 1 Beams," Warsaw, 1223, by the auth-

or.) In this case we classify the beams as thin or slen-~

der beams.

Now the most typical forms of cross section ag well
as the most important from a practical viewpoint are the
double T, the "box" form, and the tubular (figs. 1 to 3).

Let us investigate the lightness of beams of these
cross-sectional areas, that is, compute the ratio B, as~
suming for simplicity that the thickness of the webd is
very small in comparison with the other dimensions.

a) Double T section of width b and height h meas~
ured between centers of flanges of thickness §. The web
ig of thickness §,

F

2 b8 + h 83

2
W="2D28 h + §%§E”

r\° n®
SRNOREN -

—
il

from which it ig easily found that

h
— 4+ 2
J/r—d/g - )
h 811-1-+6

b

a/z2

The same expression evidently holds for the boX cross sec~
tion with the exception that §; 1is replaced by 28§,. It

clearly shows the advantages.of these sections compared
with the rectangular. It is clear that these cross sec-
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tions, too, in the case of too large a decrease in §; and

b, and therefore B4 -undergo deformation.and.the .expres~

sions given by the usual bending theory lose their signifi-
cance unless deformation is avoided by the use of strength-
ening ribs.

b) For the tubular cross section of radius r meas-—
ured to the center of the wall of thickness §, '

F=2rm§é§, I =11 1r2§, W=m12x?§,

e 5 _ 5
p=vEn /S=n~5 /8 =700 /L

For this section the lightness ratio is, to be sure, less
than that obtained for the others, but on the other hand,
the stiffness of the curved tube wall is undoubtedly groat-
er than that of the flat plates and therefore the tudbular
section can be made much thinner.

To the question, How much thinner? we shall attempt
to provide an answer in our present paper.

2. THEORY OF "TRANSVERSE" BENDING

It is well known that the exact solution of the equa-~
tions of the mathematical theory of elasticity is not yet
sufficiently developed to explain the behavior of deflect-
ed beams for the case where the displacement of its points
is of the same order of magnitude as the least of itg di-
mensions. More accurate results are given by the classical
theory of the bending of "infinitely thin" elastic beans
leading to the well~known equation:

i_ M

p EI

Here EI 1is a measure of the stiffress of the beam in the
principal plane, M  the bending moment at the section, p
the radius of curvature of the neutral axis. (A more de-~
tailed consideration of this subject the reader will find
in the author's work, "Criterion for the Steadiness of
Equilibriunm," published by the Academy of Technical Sci-
ences, 1926, especially in paragraphs 14, 17, and 19.)

But it is not difficult to show that this theory, too, is
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only approximate in all cases where p 1is not very large
in comparison witir the cross~sectional dimensions.

Let us imagine a "fiber" element of leangth ds paral-
lel to the neutral axis cut out from the beam, and choose
the Z axis as shown in figure 4 in the principal bending
plane. (The Y axis on the figure is directed toward the
observer.) Then, the unit stress o = Z of the classi-

1)

cal theory acting cn each of the fiber elements of area

dF = dy dz gives rise to two forces o0 4dF inclined to
each other at an angle da and therefore not fulfilling
the conditions of egquilibrium for this element. This
leads the neighboring elements to exert on each other
transverse forces whose resultant o dF da 1is perpendicu-
lar to the axis of the fiber element and lies in the plane
of bending.

Thig resultant is evideuntly determined by the trans-
verse stresses ¢' which are functions of =z and ¥y
and which the classical theory neglects.

The stresses J' satisfy the equation of equilibrium,
%gl dz ds dy = -0 4F do = 0 dz dy 4
7z
ds,
or substituting da = e in the above eguation,
ds
g’..g_'._ dg = O —__0
dz D
Since
+
ds — p T = = 1 + _Z_
dso . P p
! .
dz p’s P
Since the presence of the transverse stress ¢' modifies
the .longitudinal stress g, we see that we may not, in
gereral, simply put 1 = ﬁ% as given by the classical bend-
p ! .

ing theory. However, we may consider the above as a first
approximation. and assuming z/p to De small compared with
1, obtain the following expression for the transverse
stress: '

Bhn
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do! _ oM . M2 .
e e e o da EI . EI?-.‘ -
As a result of the presence of the stress ' +the fiber
element of longitudinal area dy dx - 1is subjected to a
pressure which is always directed toward the neutral layer.
The stress on each unit of length of fiber is

do! 4y = M2, M=, s
d;-—du Z—Efgdu dz—ﬁg F

The resultant of the stresses along the chord DD!' (fig.
5) exerted by the area F, on the remainder has the value

do' 12 12
P' = [ a;“ du dz = IlE{I"I—'z" S z 4dF = %i‘%
(F) (P)
Here S denotes the static moment of the area indicated
in the figure. The same dependence on S 1is shown by the
shearing stress per unit length of the beam arising from

7t = IS

the shearing stress T, namely, = T Hence the

shearing stress P! on a deflected beam subject to a bend-
ing moment ¥ has its largest value at the neutral layer
similar to the shearing stress 7T!.

The important difference in the two kinds of stresses

consists in this, that T' has the same direction over
the whole area depending on the direction of T, whereas
the stresses P' are oppositely directed on both sides of

the neutral axis, always pointing toward this axis.

It is clear that both these types of stresses play a
subordinate part in the case of compact beams and may de
neglected. In the case of slender beams, however, these
stresses may become of first importance and must be taken
into consideration to obtain a more accurate evaluation of
the strength of such beams.

%. DOUBLE T AWD BOX SEGTIONS
(Figs. 6 and 7)

If we consider the beam divided into sections by
planes at unit distance apart, then each section will act
as a uniformly loaded frame under the stresses P! (if we
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o

neglect for the present the effect of any transverse
force). The flanges will act as horizontal beams under a
uniform loading of magnitude,

12 8ohy

Po = I 27
and the web through connection with the flanges will be
exposed to longitudinal stresses and bending. The webd
will be acted upon first by the flange stresses:

M® hg
(a + a;) py = 217 5 (a + a;) 84
secondly, by the stresses:
M2
P, = -z 8
b4 EIE z

distributed continuvously along half the depth hi, and
finally, by the constant and statically undetermined mo-
ment M. ) ‘

We compute the latter, using the principle of minimum
strain energy for the whole frame, congsidering only the
energy of bending, and introduce the following notation:

By in kg cm transverse bending modulus of each sec-
tion of the flange of width, 1 cm.

B, the same for the section of the web with a view
toward eventual strengthening by stiffening ribs.

M! in kg bending moment of a section of the flange
or web of width, 1 cm.

Since the bending moments of the projecting parts of the
flanges do not depend on the magnitude of the unknown mo-
ment i, it is sufficient to express the energy for the
niddle parts of the flanges and the web, We therefore
have for the flange (fig. 8)

s

Y o= M. + & EQ X - Q'X + p, 75—
‘ 1Tz Pe 3 0 2

in which
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128, ho ~
o 2, = (py) = —E e
: . RN hg e CBIR2 i e S
=g v
. M° n, _( N ‘ ) 5+ ho.s2 v
= ey a a . ]
< BI1° 2 TR e 4
bl ’ .~ 0} : : al’f’ )
For the web M' is simply equal to M, S = 1 for both
parts and differentiating the strain energy with respect
to M,, the condition is obtained:
ho/2
¥_ ou M_ oM
————— dx + e 2 dz = 0
d/ By OM, d/ By oM:
or
a v, ho (x + a;)° n
S [, + =&~ + ———m—th— = QY x] dx + 22 M, 22 =0
) ° 2 2
Substituting the valuwes and solving for My, we find:

M® a hy 8, 2a® - 3a;?

6 BI- Bo
2a + == hg
1

It is seen that the most advantageous conditionsg for the
web are obtained when

a; = a % = 0.816 a = approximately 0.8 a

in which case the moment I, disappears and the web is
under compression only. The longitudinal force at the
ends has the wvalue

ue

= .29
Nt o= oz (e + ag) 8,

or about equal to Q!'.

Under these conditions the web must be insured against
buckling and the critical values of HN' and Q' must be
computed. We have to deal here with the general problem
of Yasinsky, introducing some very laborious calculations




8 N.A.C.A, Technical Memorandum Ne. 793

in order to obtain an exact solution. In view of the ap-
proximate nature of the whole theory, however, we may as-
sume the beam to be loaded at the end sections only to sim-
plify the probdblem.

The value of the loads can be taken simply:

or
1
= ——2% [(a + a1) 8o + 5 ho 8a]

For a given critical valuc of the principal bending
momecnt  M:

by Bl
HrE 2 nF and Q' = Fy; Ogpit

where TF; decnotes the area of cross section of a section

of the wedb of 1 cem width, taking into account eventual
strengthening by vertical ribs.

In the general case where M; * O, it is necessary to
consider the web as a rod on whose ends are acting com-
pression forces of magnitude ! and moments M,;. In that
case the coefficient for the cross section of the wed W,
taken for a width of 1 cm (taking stiffening ribs into con-
sideration) can be computed to a sufficient degree of ap-
proximation from the equation:

L =
N'_
Ocrit (1 N'E>
where
B,
Nty = T2 —
A E ho

The shearing force T on the given cross section ev-
idently does not affect the character of the transverse
bending, but only requires a decrease in the assumed value
of Oppit in the above expressions according to some suit-

able hypothesis. ILct the normal stress for an n-point
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loading computed from the expressions given above, be equal
to ©0; and the continuous stress determined by the trans-—

verse force T, be egqual to Ti. If the material is of

elastic metal, then according to the most accurate present-
day energy hypothesis, the gtrain of the material is meas-
ured by the effective stress:

- 2 2
O':z'ed“‘;\//gl + 3 Ty

A certain complication in the computation is introduced by
the circumstance that 01 1is proportional to the square

of the load and not to the first power as Ti1 1is. In

this case the effective stress will not be pr0port10nal 6i-
ther to the load or to its square.

In those cases where the load is carried in a given
manner on one of the flanges, additional normal stresses
arise in the longitudinal cross sections which for the
case of thin sections must also be taken into account. On
this matter we must refer the reader to the work already
mentioned, "Study of I Beams," pointing out, however,
that this work still follows the old hypothesis of maximum
continuous stress, which in recent years has given way to
the theory of maximum strain energy used above.

4. TUBULAR CROSS SECTION
(Figse 9 and 10)

The ring cut out by two planes separated by 1 cm dis-
tance, is subject to transverse bending by the forces per-
pendicular to the neutral axis and directed toward it.

The magnitude of these forces on a fiber element of area
dF = § r 49 is given by the expression found above,
namely,

Dividing this by r 49, we evidently obtain the force per
unit area of the cross section of the ecylinder of radiwus
r, or ' ' '

M2

Py = 57z 28 =202z (kg/cem?)
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2
if we put €= E%g § (kxg/cm®). Considering half of the.

l}ing on one side of the neutral axig and replacing the
combined forces by Q and the statically undetermined mo-
ments by My, we easily find the exprcssiom for the bend-
ing moment for the section defined by the angle ¢ to be
9
M=0My -~ Qr (1= cos @)+ fCzrdyr (cos ¥ - cos @)
o)

The force Q 1is obtained from the projections

i

T
2Q = S P, T ap = / r sin @ r 49
o} o}

whence Q@ =0 r®

Putting this value into the expression for M and perform-
ing the integration, we obtain:

M=1d, - C r3 (1 - cos @) + ¢ r3 <%-+ % cos 2¢Q - cos @)
Since %%— = 1, the condition for the determination of M,
)
ig of the form
/2
/ M ae =0
o .
whence Mo = % ¢ r® and Mi= (M) = - i ¢ rd

@4-2
are the limiting values for the bending moment.

The dangerous section is evidently that which is act-

ed on by My, since the largest longitudinal force @
acpears here. Computation shows that for a sufficiently
small value of §/r, it is possible for the stress result~

ing from this transverse bending to exceed considerably

the principal bending stress. In this case the tube is re-
inforced by strengthening members fixed to the tube wall
with distances b Detween them (fig. 11). The presence

of these stiffening members causes an increase in the trans-
verse bending stiffness of the tube sections of width b,
Under the most advantageous condition where the stiffening
members are only weakly joined to the tube wall, the stiff-
ness of this section By will at least be equal to the

sum of the stiffness of the wall itself; that is,
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B b 58

(where . is Poisson's ratio)
and the stiffness of the member By = Ely

B b 83
1 - p° 12

or ' By = + By

In this case the bending moment M, b divides itself be-

tween the wall and the stiffening member in simple propor-
tion to their stiffness, and therefore the moment on the
wall will be

1
12 By, (1 - p?)
EDb S

M'y = Mg

1+

As far as the compression force Q 1is concerned, a cer-
tain part, to be sure, is supported by the strengthening
menber, but on the assumption of very loose joining this
part will be very small. We shall therefore assume in
what follows that the entire force Q 1is taken up by the
cross section of the tube wall. Under these conditions,
we compute the limiting compressive stress in the materlal
of the wall from the expression:

c M
o = LI 5
18 18
Considering that I = 17 r3 8§ and denoting the area and mo-

ment of inertia of a member by ¥, and I,, respectively,
we find on substitution of the proper values the following
expression for the limiting stress in the tube wall result-
ing from the transverse deflection caused by the principal
bending moment M:

* M®r

or

If there are no stiffening members, then obviously, «a
must be put egual to zero in the above expresslon.




12 T,4.0.A. Technical Memorandum ¥o. 793

Let us yet consider the case where the stiffening mem-
bers are perfectly Jjoined to the tube wall. In this case
he transverse stiffness may be measured exactly as for a
plate of thickness § with ribs separated as distance D.
Thig stiffness is equal to that of a cross section formed
of the plate together with the rib, having a so-called ef-
fective decreased width b;. This width b differs from

b the more, the smaller § is compared to r, and 12
compared to Db. On the basis of certain theoretical con-
gsiderations, bi may be assumed equal approximately to

%r if b >%2r, bdut by =b if b<§-r.

G0

With these assumptions, we obtain another expression
for o*, namely, - -

Here T denotes the section made up of the annular sec~

tion of the tube of width b and the section of one stiff-
ening member; I; 1is the moment of inertia of the combined

sections of cffective width ~by; finally ez 1is the dis—
tance of the remotest fiber in the section corresponding
to Igzs Substituting the values of Q and M,, we ob-

tain:
2 2
o* = %__2T_BJ§ G_+ E Ei_?;i
BI° T, 4 I, /
or .
o M b 1F, er
.g* = : (1 + 1 _?_______>
° B Ty r* 8 Iz

Translatioﬁ %f’s. Reiss,
Wational Advisory Comnmittee
for Aeronautics.
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