TECHNICAL MEMORANDUMS

NATIONAL ADVISORY COMKITIEE FOR ABRONAUTICS

No. 638

TEE DANGEROUS SIDESLIP OF A STAIIED AIRPIAITE

AND ITS PREVENTION

By Richard Fuchs and Wilhelm Schmidt

```
Zeitschrjft fur Flugtechnik und Motorluftschiffahrt
    Vol. 22, No. 13, Ju.#V 14, 1931
    Verlag von R. Oldenbourg, Hunchen und Berlin
```

Washington September, 1931

To be retumed to the filiss of the National Advisery Committeo for Aeronautics Washingan, D. C,

TECHNICAL MEMORANDUM NO. 638

THE DANGEROUS SIDESLIP OF A STAIIED AIRPLINE
AND ITS PREVENTION*
By Richard Fuchs and Wilhelm Schmidt

Abstract

A large proportion of all airplane accidents occur shortly after taking off or shortly before landing. They may be of two kinds: It may happen that the airplane shows a tendency to slip over the wing without the pilot having a chance to take protective measures against it by control action. Then again, there are cases of sudden nosing over without the pilot being in a position to counteract it. This investigation covers only that phase of the problom which deals with the sideslip. We oxamine into the circumstancos under which this occurs, study the behavior of present-day airplane types (monoplane, conventional and staggered biplane) therein and endoavor to find a solution thereby this danger may bo avoided.

Occasionally the opinion is voiced that this sideslip could be prevented by using a wing whose lift maximum is at the highest possible angle of attack and by making provision, through a limitation in elevator displacement, so that an equilibrium of the moments about the lateral axis becomes impossible at the high angles of attack pertaining to those beyond the lift maximum.

But these measures are no absolute preventative, as we shall prove.

A sudden increase in angle of attack which may be altogether independent from an actuation of the elevator may be due to a straight upward directed wind squall. Thus, referring to figura l, a vertical squall of only $5 \mathrm{~m} / \mathrm{s}$ ($16.4 \mathrm{ft} . / \mathrm{sec}$), with a landing speed of $30 \mathrm{~m} / \mathrm{s}$ ($98.4 \mathrm{ft} . /$ sec.) already produces a 9.5° increase in anglo. of attack. Tven a vortical squall of merely $3 \mathrm{~m} / \mathrm{s}$ (9.8 ft. $/ \mathrm{sec}$) would raise this angle to a figuro which would be beyond that of tho maximum lift.

[^0]Again, an abrupt decrease in the relative wind velocity of an airplane can readily raise the angle of attack. For example: Let the examined low ring Junkers A 35 (references 1 and 2) monoplane land at an angle of attack $\alpha=13^{\circ}$ in a straight gilide, or, in other words, at an angle stili 4^{0} bolow that of the maximum lift of the wholo airplane. Assume a landing specd $25 \mathrm{~m} / \mathrm{s} \cdot(85.3 \mathrm{ft} / \mathrm{sec}$) , which in still air is equivalent to the volocity at mhich the air strikes the airplane. An assumedly sudden horizontal squall of $7 \mathrm{~m} / \mathrm{s}$ (23 ft./sec.) strikes the airplane from the rear, thus lowering the relative wind velocity of the airplane to $19 \mathrm{~m} / \mathrm{s}(62.3 \mathrm{ft} . / \mathrm{sec}$). We shall designate this by v^{*}. A.similar increase in angle of attack could occur when the airplane lands in the wind and the latter suddonly becalms. In order to follow the changed attitudo of the airplane duo to a change in rolativo wind velocity the torms in the difforontial oquations of motion croodying the aorodynamic forcos and momonts must be changed to road ∇^{*} instead of ∇. The rosult of the num merical intogration is graphod in Figuro 2. The angle of attack $\alpha=15^{\circ}$ pertaining to approximately the maximum wing lift is already exceeded after 0.2 s without the pilot's volition, even if the elevator displacement is restricted.

This passage near the ground of the angle of attack beyond that of the maximum lift constitutes the danger of the undamped sideslip. In Figure 3 the moments about the longitudinal axis have been plottod against.a rotation about the path axis for various angles of attack. The ensuing moments below the stalling angle are, as soon, positive; that is, active against the indicatod rotation, whilo thoso boyond the stall at first bocomo nogative, that is, accelorato an incipiont rotation.

Mow, howover, wo assume tiat the anglo of attack has oxceedod the valuo for maximum wing lift only, and subsoquently examino tho reaction of the low wing Junkers monoplane landing in a straight glide against any arbitrary disturbance.

Foremost among the disturbances are the rotational speeds $\dot{\mu}, \dot{T}$, and $\dot{\alpha}, \quad$ introduced as temporary initial rotations $\dot{\mu}_{0}, \dot{T}_{0}$, and $\dot{\alpha}_{o}$. and which may be visualized as having been set up by corresponding temporary control displacements or wind squalls temporarily acting at the end of the fusolago and the wing tip.

The result of the very accurately executed numerical integration of the fundamental equations is appended in Figures 4 to 6. The result of introducing an initial rotation $\dot{\mu}_{0}$ is not only an expected angle of bank μ in Figure 4, but an angle of yaw T as well, and tho angle of attack remains, for the present at least, practically constant.

The initiated disturbance T_{0}, in Figure 5, yields a similar result. The angle of attack cianges at first very little. Whereas an arbitrary initial disturbance, composod of say, $\dot{\mu}_{0}$ and $\dot{\alpha}_{o}$, effects a chango in angle of attack, the peculiar temporal character of the angles of bank and yaw is maintained, according to Figure 6.

The behavior of α which is examined here, is bound up with the airplane motion by great static longitudinal stability. As a matter of fact, we have here an airplane attitude with appreciably high static longitudinal stability. In this attitude the motion is split up in a slow C.G. motion by constant α (Lanchester's phugoid theory) (reference 3) and a rapid torsional vibration about the lateral axis by unchanging flight path. It is apparent that the torsional vibrations set up by asymmetrical. disturbances do not effect any essential change. As far as the change in angle of bank and yaw is concerned, it is practically immaterial whether α changes also or not, and it is seen that the asymmetric rotary motion is also nearly independent of the symmetrical motion.

Accordingly, the sideslip following an arbitrary disturbance may be conceived as a combinod rolling and yawing motion, which is practically independont of tho pitching motion, thus enabling us to separate the pitching motion from the rolling and yawing motion, to which the following is confinod exclusively.

Referring to Figure 4 , the total motion during sideslip consists primarily of a rotation Ω_{x} about the path axis and a rotation $\Omega_{y_{1}}$ around the path vertical axis placed in the symmetrical plane of the aircraft. The forces and the moment about the lateral axis change but little at the beginning of sideslip because the angle of attack remains practically constant and the sideslip as well as the total rotation is relatively small in contrast to the moments about the longitudinal and the normal axis Which undergo marked changes even if sideslip and rotation
are small. For the subsequent investigation it is advisable to introduce the practically constant angle α as parameter, and to consider the two variable nondimensional factors \underline{K} and L of the moments about the longitudinal and normal axis, respective?y, as being solely dependent on $T, \frac{b \Omega_{x}}{2 v}$ and $\frac{b \Omega_{1}}{2} \frac{v}{}$. Strictly speaking, the two moments should be considered as being simultaneously dependent on these values, but for lack of wind-tunnel data of such kind, we assume both moments as boing linearly dependent on these figures which, in this case is of no moment because the calculation is confined to short time intervals. Figures 7 and 8 afford an illustration of the $K_{F r}$ and $I_{F T}$ moments of the wing only due to sideslip plotted against the angle of yaw; the angle of attack is shown as paraineter. They are taken from a British report (reference 4) bocause there are no German exporiments available up to such high angles of attack and yaw.

The $\underline{K}_{F_{\Omega_{X}}}$ and the $\underline{I}_{F_{\Omega_{X}}}$ moments due to a rotation about the path axis are defined in the usual mannor by calculation as, for instance, for the single wing of the Junlers monoplano, and apponded in Figurcs 3 and 9 with rospoct to $\frac{b \Omega_{x}}{2 v}$ and with α as parameter. Thoir dopendence on the shape of the wing is very pronouncod. (Reforence 5.) A calculation of an individual ring of almost constant chord and section yiolds for tho $\underline{E}_{\mathrm{F}}$ and ${ }_{I_{F_{\Omega}}}$ moments, due to a rotation $\Omega_{y_{1}}$ about the lift axis the following:

$$
\underline{K}_{\Omega_{\Omega_{1}}}=\frac{b^{2}}{3 F} c_{n_{F}} \frac{b \Omega_{y_{1}}}{2 v} \quad I_{\Omega_{\Omega_{Y_{1}}}}=\frac{b^{2}}{3 F} c_{t_{F}} \frac{b \Omega_{y_{1}}}{2 v}
$$

Figures 10 and 11 shoms this offect for the low wing monoplanc.

The L* coofficient due to the moment of fusolage and vertical tail surfaces about the normal axis may be written as

$$
I^{*}=\frac{F * i^{*}}{F t_{1}} c_{n}^{*}\left(\alpha^{*}\right)
$$

Where $c_{n} *$ (α^{*}) signifies that $c_{n} *$ is dependent on the angle α^{*} at which the air strikes the end of the fusepage and the vertical tail surfaces. The validity is proctically

$$
\alpha^{*}=T+\frac{l^{*} \Omega_{\underline{y}}}{\nabla}
$$

The c_{n} * coefficient of the animal force applying at the end of the fuselage and the vertical tail group is, for lack of experimental data, replaced by the corresponding coefficient of a flat, square plate.

The curves of the moments about the longitudinal and the normal axis, treated above, with respect to T,
$\mathrm{b}_{\mathrm{s}} \mathrm{x}$
$\frac{x}{2 v}$ and $\frac{-y_{2}}{2}$ can be equated for the pertinent range by a straight line as follows:

$$
\begin{aligned}
& \underline{K}_{\mathrm{F}_{T}}=\mathrm{m}_{1} T \quad \quad \underline{I}_{\mathrm{F} T}=\mathrm{m}_{2} T \\
& \underline{K}_{F_{\Omega_{X}}}=m_{3} \frac{b \Omega_{X}}{2 V} \quad I_{F_{\Omega_{x}}}=m_{4} \frac{b \Omega_{x}}{2 v} \\
& E_{\mathrm{F}_{\Omega_{\underline{y}_{1}}}}=m_{5} \frac{b \Omega_{y_{1}}}{2 \mathrm{~V}} \quad \underline{I}_{\mathrm{F}_{\Omega_{\underline{V}_{1}}}}=m_{6} \frac{b \Omega_{\underline{y}_{1}}}{2 \mathrm{~V}}
\end{aligned}
$$

The moment about the normal axis due to the fuselage and the vertical tail surfaces may be expressed as

$$
\underline{I}^{*}:=m_{7}\left(\frac{F^{*} l^{*}}{F t_{1}} T+\frac{2 F^{*} l^{* 2}}{b F t_{1}} \cdot \frac{b \Omega_{y} \underline{I}_{1}}{2 v}\right)
$$

so as to yield

$$
\begin{align*}
& \underline{\underline{K}=} m_{1} \tau+m_{3} \frac{b \Omega_{x}}{2 v}+m_{5} \frac{b \Omega_{y}}{2 v} . \tag{I}\\
& \underline{I}=\left(m_{2}+\frac{F^{*} i^{*}}{F t_{1}} m_{7}\right) T+m_{4} \frac{b \Omega_{x}}{2 v}+ \\
& \tag{2}\\
& +\left(m_{6}+\frac{2 F^{*} l^{* 2}}{b F t_{1}} m_{7}\right) \frac{b \Omega_{V_{1}}}{2 v}
\end{align*}
$$

Now wo write equations (1) and (2) into the basic equations, replace the products of several variables by the first terms of a Taylor serios and, lastly, disregard the terms which are small compared to tho others, so that

$$
\begin{align*}
& \omega=-\frac{\gamma F V c_{a}}{2 G \cos \varphi} \mu \tag{3}\\
& \dot{\mu}=\frac{1}{\cos \alpha} \Omega_{\underline{x}} \tag{4}\\
& \dot{\dot{T}}=\frac{\underline{g} \cos \varphi}{\nabla \cos \alpha} \mu+\tan \alpha \Omega_{\underline{x}}+\Omega_{\underline{y}} \tag{5}\\
& \dot{\Omega}_{\underline{x}}=-\frac{\gamma F t_{1} v^{2}}{2 g J_{\underline{x}}}\left(m_{1} T+m_{3} \frac{b \Omega_{x}}{2 \nabla}+m_{5} \frac{b \Omega_{x_{1}}}{2 v}\right) \tag{6}\\
& \dot{\Omega}_{y}=-\frac{\gamma F t_{1} V^{2}}{2 g J_{y}}\left[\left(m_{z}+\frac{F^{*} l^{*}}{F t_{1}} m_{y}\right) T+m_{4} \frac{b \Omega_{\Psi_{1}}}{2 \nabla}+\right. \\
& \left.+\left(m_{i}+\frac{2 F^{*} i^{*}}{b F t_{1}} m_{7}\right) \frac{b \Omega_{y_{1}}}{2 v}\right] \tag{7}
\end{align*}
$$

Whereby

$$
\begin{align*}
& \Omega_{x}=\dot{\mu}-\dot{q} \sin \alpha \tag{8}\\
& \Omega_{y_{1}}=\omega \cos \varphi+\dot{T} \cos \alpha \tag{9}
\end{align*}
$$

Equations (3) to (9) may be combined as

$$
\begin{align*}
& \dot{\Omega}_{\underline{X}}=a_{1} \tau+b_{1} \dot{T}+c_{1} \mu+d_{1} \dot{\mu} \tag{10}\\
& \dot{\Omega}_{\underline{Y}}=a_{2} \tau+b_{2} \dot{T}+c_{2} \mu+d_{2} \dot{\mu} \tag{11}\\
& \dot{T}= \tag{12}\\
& \dot{\mu}=c_{3} \mu+ \tag{13}\\
& \theta_{3} \Omega_{\underline{X}}+\Omega_{\underline{Y}} \\
& \dot{\mu}=
\end{align*}
$$

Herein:

$$
\begin{align*}
& a_{1}=-\frac{\gamma F t_{1} V^{2}}{2 g J_{\underline{x}}} m_{1} \\
& b_{1}=\frac{\gamma b F t_{1} v \cos \alpha}{4 J_{X}}\left(\tan \alpha m_{3}-m_{5}\right) \\
& c_{1}=\frac{\gamma^{2} b T^{2} t_{3} \frac{v^{2} c_{a}}{8 G G J_{5}} \mathrm{~J}_{5}}{\mathrm{~J}} \\
& d_{1}=-\frac{\gamma b F t_{1} v}{4 g J_{\underline{Z}}} m_{3} \\
& a_{2}=-\frac{\gamma F t_{1} V^{2}}{2 g J_{Y}}\left(m_{2}+\frac{F^{*} \imath^{*}}{\vec{F} t_{1}} m_{7}\right) \\
& b_{2}=\frac{\gamma b \underline{t_{1}} v \cos \alpha}{4 \underline{J}}\left(\tan \alpha m_{4}-m_{6}-\frac{2 F * i^{*}}{b t_{1}} m_{7}\right) \\
& c_{2}=\frac{\gamma^{\dot{2}} b F^{2} t_{1} V^{2} c_{a}}{8 G G J_{y}}\left(m_{6}+\frac{2 F^{*} l^{2}}{b F t_{1}} m_{7}\right) \\
& \mathrm{d}_{2}=-\frac{\gamma \mathrm{b} F \mathrm{t}_{\underline{1}} \mathrm{~V}}{4 \mathrm{~g} \mathrm{~J}_{\underline{\mathrm{J}}}} \mathrm{~m}_{4} \\
& c_{3}=\frac{G \cos \varphi}{V \cos \alpha} \\
& e_{3}=\tan \alpha \\
& \theta_{4}=\frac{1}{\cos \alpha} \\
& \text { Equations (10) to (13) may be formulated as } \\
& \ddot{\mu}+p_{1} \dot{\mu}+q_{1} \mu+\quad r_{1} \dot{\tau}+s_{1} \tau=0 \tag{14}\\
& p_{2}: \dot{\mu}+q_{2} \dot{\mu}+\ddot{\tau}+r_{2} \dot{T}+s_{2} \tau=0 \tag{15}
\end{align*}
$$

whereby

$$
\begin{aligned}
& p_{1}=-d_{1} e_{4} \\
& q_{1}=-c_{1} e_{4}
\end{aligned}
$$

$$
\begin{aligned}
& r_{1}=-b_{1} e_{4} \\
& s_{1}=-a_{1} e_{4} \\
& p_{2}=-\left(c_{3}+d_{1} e_{3}+d_{2}\right) \\
& q_{2}=-\left(c_{1} e_{3}+c_{2}\right) \\
& r_{2}=-\left(b_{1} e_{3}+b_{2}\right) \\
& s_{2}=-\left(a_{1} e_{3}+a_{2}\right)
\end{aligned}
$$

Inserting μ and $T \underset{\sim}{\approx} e^{\lambda t}$ into (14) and (15) the interpretation of λ. is obtained by means of

$$
\left|\begin{array}{rr}
\lambda^{2}+p_{1} \lambda+q_{1} & r_{1} \lambda+s_{1} \\
p_{2} \lambda+q_{2} & \lambda^{2}+r_{2} \lambda+s_{2}
\end{array}\right|=0
$$

or

$$
\begin{equation*}
\lambda^{4}+A_{1} \lambda^{3}+A_{2} \lambda^{2}+A_{3} \lambda+A_{4}=0 \tag{16}
\end{equation*}
$$

with

$$
\begin{align*}
& A_{1}=p_{1}+r_{2} \\
& =\frac{\gamma_{b 卫 t} v \cos \alpha}{4 J_{I}}\left[m_{3}+\tan \alpha m_{5}\right. \\
& \left.-\frac{J_{X}}{J_{y}}\left(\tan \alpha m_{4}-m_{6}-\frac{2 F * l^{* 2}}{b F t_{1}} m_{7}\right)\right] \tag{17}\\
& A_{2}=p_{1} r_{2}-p_{2} r_{1}+q_{1}+s_{2} \\
& =\left(\frac{\gamma D F t_{1} v}{4 g}\right)^{2} \frac{1}{J_{\underline{X}} J_{\underline{y}}}\left[\frac{8 g J_{y} t_{\text {an } \alpha}^{\gamma b^{2}}{ }^{F} t_{1}}{} m_{1}+\left(m_{6}+\frac{2 F * q^{* 2}}{b F t_{1}} m_{7}\right) m_{3}\right. \\
& \left.-m_{4} m_{5}+\frac{8 g J_{x}}{\gamma b^{2} F t_{1}}\left(m_{2}+\frac{F^{*} l^{*}}{F t_{1}} m_{7}\right)\right] \tag{18}
\end{align*}
$$

$A_{3}=p_{1} s_{2}-p_{2} s_{1}+q_{1} r_{2}-q_{2} r_{1}$

$$
\begin{align*}
=\left(\frac{\gamma_{T} t_{1}}{2 g}\right)^{2} & \frac{b v}{2 J_{x} J_{y} \operatorname{cosa}}\left[\left(\frac{4 g^{2} J_{y} \cos \varphi}{\gamma b F t_{1} V^{2} \cos \alpha}-m_{4}\right) m_{1}\right. \\
& \left.+\left(m^{2}+\frac{F * l^{*}}{F_{1}} m_{7}\right) m_{3}+\frac{\gamma_{b F c a} \sin \alpha}{4 G} m_{4} m_{5}\right] \tag{19}
\end{align*}
$$

$A_{4}=q_{1} s_{2}-q_{2} s_{1}$

$$
\begin{align*}
=\left(\frac{\gamma t_{1} v^{2}}{4 E}\right)^{2} & \frac{\gamma b F c_{2}}{J_{\underline{X}} J_{\underline{y}} \cos \alpha}\left[\left(m_{6}+\frac{2 F^{*} i^{2}}{b F t_{1}} m_{7}\right) m_{1}\right. \\
& \left.-\left(m^{2}+\frac{2 F * l^{*}}{F t_{1}}\right) m_{5}\right] \tag{20}
\end{align*}
$$

In order to check the agreement of this solution with the numerical integration without any omissions, the exanined low-wing monoplane was used as actual example for a mathematical determination of μ and τ.

The following data are used as basis:

$$
\alpha=20^{\circ} \quad c_{\mathrm{a}}=1.29 \quad c_{\mathrm{w}}=0.31 \quad \varphi=-13.5^{\circ}
$$

$\gamma=1.20 \mathrm{rg} / \mathrm{m}^{3}, v=25.8 \mathrm{~m} / \mathrm{s} \quad \mu_{0}=0^{0} \tau_{0}=0^{\circ}{ }^{\circ} \tau_{0}=0$.
$\mu_{0} \neq 0, \quad a p a s s i n E$ asymnetric squall, has assumediy/ to the airplene an initial rotation about the path axis.

$$
\begin{array}{ll}
\mathrm{m}_{1}=+1.2 & \mathrm{~m}_{3}=-2.7 \\
\mathrm{~m}_{2}=+0.1 & \mathrm{~m}_{5}=+3.5 \quad \mathrm{~m}_{4}=+0.8 \quad \mathrm{~m}_{6}=+4.0
\end{array}
$$

It yields:

$$
\begin{align*}
\frac{\mu_{0}}{\mu_{0}} & =0.239 e^{5.77 t}-0.185 e^{-0.39 t} \\
& -e^{-0.59 t}(0.054 \cos 2.38 t+0.218 \sin 2.38 t) \tag{21}\\
\frac{T}{\mu_{0}} & =0.047 e^{5.77 t}-0.016 e^{-0.3 r t} \\
& -e^{-0.59 t}(0.030 \cos 2.38 t+0.166 \sin 2.38 t) \tag{22}
\end{align*}
$$

Figure 12 shoms $\frac{\mu}{\dot{\mu}_{0}}$ (bank) : and $\frac{T}{\dot{\mu}_{0}}$ (yaw) plotted against the time. Both curves are in satisfactory agreement throughout with those of the integration and disclose the characteristic behavior.

The substitution of a development according to the powers of t for the solutions of (14) and (15) reveals the decisive significance of the coefficients p_{1}, r_{1}, p_{2} and r_{3} a.t the very beginning. But because of the magnitude of p_{1} and r_{1} against p_{2} and $r_{2}, . \mu$ and μ must alwaiss be large with respect to T and T even for arbitrary disturbances, in accordance with all exact calculations. Thus the onission of T and T in first approximation in (14) results in a Paust formula for the behavior oi μ. It is

$$
\begin{equation*}
\frac{\mu}{\dot{\mu}_{0}}=\frac{I}{\lambda_{1}}\left(e^{\lambda_{2} t}-1\right) \tag{23}
\end{equation*}
$$

Whore

$$
\lambda_{i}=\frac{\gamma b F t_{1} \nabla m_{3}}{4 \cos \alpha J_{\underline{x}}}
$$

The value computed according to the Faust formula for the above example is also shown in Figure l2, where the typical behavior of the angle of bank is very much in evidence.

This brings us to the question as to what constructive measures may have some effect on sideslipping, i, e., increase in anfle of bank μ. The quantities b, F and t_{1} aro dominant factors. Area F is specified by the design; b and t do not occur save in the connection $b t_{1}$, i.e. essentially as the stated area F. F^{*} and ℓ^{*} occur only in the form of $F^{*} \ell^{*} m_{7}$. So any change of these quantities is wholly equivalent to a change in m_{7} and we cem confine ourselves to a study of the changes in J_{X} and J_{y} and riom m_{1} to m_{7}.

In accordence with the above examplo, one large positive, onc small nogative, and two complox roots occur unAor the roots of the biquadratic oquation (16), whose real part is nogative and small. In all practical changes of nornal wing design this phenomenon is typical. A change in μ and T is essentially governed by tho large positive root λ_{1}, and it is all a matter of finding in what
manner this $\boldsymbol{\lambda}_{1}$ can be inflienced.
Reverting to the original figures of the example for $J_{\underline{x}_{0}}$ and $J_{\underline{y}_{0}}$, as well as $m_{I_{0}}$ to $m_{y_{0}}$, we post $J_{\underline{x}}=\epsilon$ $J_{\underline{x}_{0}}, m_{1}=\varepsilon m_{10}$ etc. Then we plot the dependence of root. λ_{1} against ϵ for $J_{\underline{x}}=\epsilon J_{x_{0}}$ for $m_{1}=\epsilon m_{10}$ etc., for example.

Referring to Figure 13, me find that only an enlargement can lower the positive root λ_{1} with respect to.in-. ertia moments $J_{\underline{x}}$ and $J_{\underline{y}}$. But it is seen that even a doubling of J_{X}, Which already is wholly beyond the scope of practical pōsibility, can lower the root no more than to about $2 / 3$, or in other words, can have no decisive effect on the essential course of angle of bank μ. A change in m, that is, in the profile pertaining to the vertical tail surfaces or in its area has no appreciable effect on λ_{1}. The values m_{1}, m_{2}, as well as m_{5} and m_{G} characterize the moments about the longitudinal and the normal axis set up by the wings as a result of sideslip and rotation about the lift axis, respectively. Although dependent on the $\begin{aligned} & \text { ing shape they have, in themselves, no appreci- }\end{aligned}$ able effect on λ_{1}. But a change in m_{3} and m_{4} influences root λ_{1} very materially. Both values denote the moments about the lonsitudinal and normal axis, respectively, following a rotation about the path axis. They are, according to Figures 3 and 9, generally negative and positive, respectively, as soon as the stalling angle is reached. They accelerate an initiated rotation about the path axis, i.e., make autorotation possible. The smaller m_{3} and m_{4} are, the smaller root λ_{1} becomes, that is, the sinaller the accelerating moments about the longitudinal and normal axis set up by an initiated rotation about the path axis. The dominant effect of J_{X} and m_{3} is also recognized in the Faust formula (23).

A material change in inertia moments, $J_{\underline{x}}$ and $J_{\underline{y}}$ is seldor encountered in conventional types because their enlargement would offer serious constructive difficulties. The values m_{1} to m_{6} are closely bound up with one another. They all change, as a rulo, as soon as one is changed.

To bring out the pronounced effect of m_{3}. we use two examples: In the first it was assumediy possible to lower
m_{3} to nelf in a wing structure, so that,

$$
\begin{array}{lll}
m_{1}=+0.60 . & m_{4}=+0.40 & m_{5}=-0.25 \\
m_{2}=+0.05 & m_{5}=+2.75 & m_{7}=+4.00 .
\end{array}
$$

We elso raised J_{x} froil 300 to 375 and Jy from 550 to 625 in this example.

Nov we have:

$$
\begin{aligned}
\mu_{\mu_{0}} & =0.444 e^{2.41 t}-0.304 e^{-0.38 t} \\
& -e^{-0.30 t}(0.140 \cos 4.04 t+0.114 \sin 4.04 t)
\end{aligned}
$$

In the second example we visualize a wing structure in Which my has already assumed a small positive value, that is, a ving free from autorotation and in accordance with it:

$$
\begin{array}{lll}
m_{1}=+0.4 & \therefore m_{4}=0 & m_{6}=0 \\
m_{2}= & 0 & m_{5}=+1.2
\end{array} m_{7}=+4.0 .
$$

$J_{\underline{X}}$ and J_{V} remain uncinanged. Now;
$\frac{\mu}{\dot{\mu}_{0}}=0.451 e^{0.37 t}-0.371 e^{-2 \cdot 21 t}-$
$-e^{-0.5 \varepsilon t}(0.090 \cos 1.80 t+0.024 \sin 1.80 t)$.
Figure l4 shows the results of both examples for μ along $\forall i t h$ the normal behavior. It, is readily seen that the daneer of sideslipping can be effectively prevented only by the use of a wing which is proof against autorotation. (Reference 6.)

Another question thrusts itself apon one's mind Whether or not the sideslip night not be effectively influenced by appropriate control action, ad for that reason we. also exanined the eriect of the control actions on sideslipping. We assuried that the pilot notices the sideslip after one second and tiren attempts to counteract it by control djeplacements.

Aileron displacemont is practically useloss in all circumstancos. The angle of bank continues to increaso in spito of it, as Figure 15 shows. The rudder displacement
is somewhat more effective. It seems to lead, according to Figure l6, to a slight damping of the sideslip. Beth results agree with the British tests. (References 7 and 8.) The elevator (displacement downvand) is most effective. Figure 17 shows that the angle of bank ceases to increase after a time and that the sideslip is damped. But even in this case the time - only a few seconds - does not suffice to impart a profitable magnitude to the angle of bank, before reaching the ground.

Thus the successful prevention of tho dangorous sideslip resides in the above statod measures. Since any matorial change in incrtia monent is out of tho quostion, it bocomes primarily a problom of preventing tho wing from autorotating (roference 6) in the wind tunnol.

Onco autorotation has beon oliminatod, tho incrtia momonts lose thoir dangorous aspoct.

According to the proceding explanations tho whole motion of tho airplano at the boginning of sidoslip is essentially a rotation about tho path axis, during which the aingle of attack, as well as the rato of speed, may be assumod unchanged. Furthermore, it was seen that the angle of yaw remained ausolutely small. Consequently, the danger of sideslipping can be interpreted only from the autorotation as it may be obsorved by a wind-tunnel test.

In order to make it possible to comparo various typical airplanes with respect to sideslip, the autorotation process is followed mathematically.

The equilibrium of the moments about the path axis is expressed as

$$
J_{X} \dot{\Omega}_{X}=-\frac{\gamma}{2 g} \nabla^{2} F t_{1} \underline{E}_{F_{\Omega_{X}}}
$$

with $J_{X}=$ inertia moment of airplane about the path axis, and $\underline{K}^{\prime} \mathbb{I}_{\Omega_{X}}=$ coefficient of moment - essentially set up by
the wing only - about the path axis due to a rotation Ω_{x} about the path axis. Since the angles of attack in question are comparatively small, this factor may be made to equal the $\mathbb{K}_{\Omega_{X}}$ coefficicnt of the corrosponding monent about the longitudinal axis.

For reasons of intagration of the abovo differential equation, this $\underline{K}_{Y_{\Omega}}$ of the moment cbout the longitudinal axis is assimilatodto aparabola viith rospoct to $\frac{b \Omega_{X}}{2}$. Now compare the dottod line in Figure 3. We havo

$$
\underline{K}_{\Omega_{X}}=-\frac{4 r}{p^{2}} \frac{\Omega_{X}}{2}\left(\frac{b \Omega_{x}}{2 v}-p\right)
$$

With p and r as donoted in Figure 3. Mo singlod out the momont curve for tiat angio of attack at mhich tho slope of ma is greatest, because the magnitude of m_{3} is, as we have seen, the primary factor in sideslipping.

Nor we insert $\frac{b \Omega_{x}}{2 V}=U$ and the differential equation reads:

$$
\dot{U}=\frac{\gamma v b F t_{I} r}{g J_{X} p^{2}} U(U-p)
$$

With a disturbance $\triangle U$ of U magnitude in time interval $t=0$ as basis, we have:

$$
\begin{equation*}
U=\frac{p E e^{\lambda t}}{E \cdot e^{\lambda t}-I} \tag{24}
\end{equation*}
$$

whereby

$$
\begin{gathered}
\boldsymbol{Z}=\frac{\Delta \tilde{U}}{\Delta J-p} \\
\lambda=-\frac{\gamma v \dot{v} F t_{1} r}{\xi J_{X} p}
\end{gathered}
$$

No: since $\Omega_{X}=\dot{\mu}$, equation (24) yields:

$$
\begin{equation*}
\mu=\frac{2 v}{b} \frac{p}{\lambda} \ln \frac{1-\mathbb{N} e^{\lambda_{t}}}{1-\mathbb{E}} \tag{25}
\end{equation*}
$$

With $r=-0.21, p+0.330$ and $\Delta U=0.031$, our previous example shows

$$
\mu=0.168 \ln \frac{1+0.104 e^{6.36 t}}{1.104}
$$

This solution checks very closely with the numerical integration appended in Figure 13, and again shovs that the inception of sideslip is quite satisfactorily reproduced by the autorotation test in the wind tunnel.

In accordance with this oxample, ΔU is ordinarily sot at +0.031 , that is, $\mu_{0}=+0.1$. The μ values, computed according to the domonstratcd mothod, are comparod in Figuro 18 with three practical typos of airplanos. (References 9 and lo.) One could expoct that diversificd bohavior of theso typos woula become noticeablo horo with rospect to autorotation. Bat it bocomes apparont the angle of benk μ practically changos in the same way for all these types. This becomes comprehensiblo upon reilection. that m_{3}, and moreover, the inortia moment, are the dominant factors when no autorotation prevails.

Trenslation by J. Vanier, National Advisory Committoc for Aoronautics.

References

1. Fuchs, Richard, and Schinidt, Wilheln: The Steady Spin. N. A.C.A. Technical Monorandum No. 630, 1931. Translation from Luftfahrtforschung, Fob. 27, 1929, Vol. III, 式O• 1 , pp. I-I8.
2. Fuchs, Richard, and Schmidt, Wilhelm: The Dangerous Flat Spin and the Factors Affecting It. N.A.C.A. Technical Memorandum No. 629, 1931. Translation Irom Zeitschrift für Flugtechnik und Motorluftschiffahrt, July 14 \& 28, 1930, Vol. 21, Nos. 13 \& 14.
3. Reissner: Wissenschaftliche Fragen der Flugtechnik, Deutsche Math. Vereinigung 1909, p. 3I.
4. Batson, A. S., Williams, S. H., and Halliday, A. S.: Experiments on a Model of a Forker (F.VII) Monoplane Wing. British A.R.C. R\&M No. 1059, Sept., 1926. Pt.II.
5. Fuchs, Richard, and Schmidt, Wilhelm: Aerodynamic Forces and Roments at Large Angles of Attack and Their Dependence on the Shape of the Wing. Zeitschrift fur Flugtechnik und hotorluftschiffahrt, Jan. 14, 1930, Vol. 21, No. I.
6. Schmidt, Wilholm: Devolopment of an Airplanc Which is Proof against Autorotation and Capablc of Stecp Landing. Submitted Dec. 16, 1929, to tho Tcchnische Hochschulo, Borlin, as a doctor's disscrtation; accoptod Doc. 17, I930. (To be published later.)
7. Aeronautical Rescarch Committee (British): The Iateral Control of Stalled Aeroplanes. General report by the Stability and Control Panel. British A.R.C. R\&in No. I000, Sept., 1925.
8. Jones, B. Melvill, and Trevelyan, A.: Step by Step Calculations upon the Asymmetric Movements of Stalled Aeroplanes. British A.R.C. R\&M No. 999, Oct., 1925.
9. Irving, H. B., Batson, A. S., Townend, H. C. F., and Kirlup, T. A.: Some Experiments on a Model of a B.A.T. Bantam Aeroplanc with Special Roforenco to Spinning Accidents.
Part I-Longitudinal Control and Rolling Experiment's. " II-Experincnts on Forces and Noments (includn ing ruddor control).
British A.R.C. R\&ll No. 976, Mov., 1925.
10. Bradifold, F. B.: Lateral Control of Bristol Fichtor at. Low Speods. licasuremont of Rolling and Yawing Momonts of Rodel Wings Due to Rolling. Dritish A.R.C. Recm iNo. 787, Jan., 1921.

Fig. 1 Increase in angle of attack diue to a vertical squall.

Fig. 2 Increase in angle of attack due to a horizontal squall.
$v=$ speed of flight, $\mathrm{v}^{*}=$ reduced relative wind velocity.

Fig. 3 Coefficient of wing moment about the longitudinal axis plotted against $\frac{b \Omega_{X}}{}$, and α as parameter.

Fig. 4 Teimporary course of the variable following a passing asymmetric disturbance. $\dot{\mu}_{0}=+0.1(1 / \mathrm{s})$

Fig. 5 Temporary course of the variable following a passing asymnetric disturbance. $\dot{\tau}_{0}=-0.1(1 / s)$

Fig. 6 Temporary course of the variable
following a passing combined disturbance $\dot{\mu}_{0}=+0.1(1 / s)$ and $\dot{\alpha}_{0}=+0.5(1 / \mathrm{s})$

Fig. 7

Fig. 8

Fig. 9 Coefficient of wing moment about the normal axis against $\frac{\mathrm{B} \mathrm{N}_{\mathrm{x}}}{2 \nabla}$ with, α shown as parameter

Fig. 12 Increase in angles of bank and yaw following a passing asymmetric disturbance. $\dot{\mu}_{0}=+0.1(1 / s)$

Fig. 13, The positive root λ_{i} plotted against ε.

Fig. 14, Increase in angle of bank Iollowing a passing asymetric disturbance $\dot{\mu}_{0}=+0.1(1 / \mathrm{s})$

Fig. 17, Temporary course of
ing an elovator displacoment (downard). (continuation Fig.5)

ing a ruddor displacemont.
(contimuation of Fig.4).

an aileron displacement

Fie. 18, Increase in angle of bank following a passing asymmetric disturbance $\dot{\mu}_{0}=+0.1(\mathrm{I} / \mathrm{s})$.

Fig. 19, Increase in angle of bank following a passing asymmetric disturbance
$\dot{\mu}_{0}=+0.1(1 / s)$.

[^0]: *"Das fef $^{\text {Unhrliche seitliche Kippen eines Flugzeuges "uber }}$ den Flugel und seine Becinflussung." From Zeitschrift fur Flugtechnik und Motorluftschiffahrt, July 14, l93l, pp. 393-400.

