TECHIICAL MEMORANDUSS

THATIONAL ADVISORY COMITMEE FOR ARRONAUTICS

$$
\text { No. } 632
$$

$$
\text { By } \mathbb{E} \text {. Petersohn }
$$

Zeitschrift für Flugtechnik und Motorluftschiffahrt Vol. 10, No. 22, May 28, 1931
 Verlag von \mathbb{R}. Oldenbourg, Mnehen und Berlin

-.-	PILECOPY
	To ne returned to the files of the National
	Advisory Committee for Aeronautics
August, 1931	Wasningten, D, C.

TECHMICAL LIEMORAITDU:i NO. 632

DOWNAASE MEASUREMENTS BEHIND WINGS WITH DETACHED FLOT*

By E. Petersohn

In ordinary airplane-stability calculations which are applicable only to normal flight. (i.e., with contiguous flow), it generally suffices to know only the direction of the downwash, while the velocity variations behind the wing are of subordinate importance. With a detached or separated flow, however, these velocity variations are very great and of considerable importancein the determination of the stability. In order to obtain data on this proilem, an investigation of the yelocity conditions behind wings has been made by the Gottingen Aerodynaric Institute.

The investigation, which was made in the small wind tunncl having a diametor of 1.2 m (3.94 ft), emiraced tiaree ving models, benind which, at various angles of attack betpoon 0 and 60°, tho static pressure and the total pressure along various vertical lines (perpendicular to the direction of the undisturbed wind and to the Fing span) 7ere measured. The locations of these vertical lines are indicated in Figure l. horeover, the wing polars were determined by the customary three-component measurements.

For testing the pressure ficld, a Pitot tubc and a static probe, both of 2 mm (0.08 in.) diameter, wore mountea 40 mr (1.57 in.) apart on tho ond of a sheft 1 m (39.37in.) long, as shown in Figure 2. The shaft was attachod to a support outsido tho air stroam in such a may as to afford the threc following possibilitics of motion: a, motion in the diroction of its longth; b, vortical motion parallcl with itsclf; c, rotary motion about the axis AB. (Fig. 2.) The latter was necessary for adjusting the tube in the direction of the wind. The pipes from the static probe and Pitot tube led through the siaft to the manometer. The static pressure was measured by an oblique Recknagel tubular manometcr, wilile the total pres-

* "Abwindnessungen ninter Trágilügeln mit abgerissener Strömang." From Zeitschrift für Fluztechnik und fotorluftschiffahrt, Hay 28, 1931, pp. 289-300, published by R. . Oidenbourg, Lunich and Berlin.
sure was measured by a. \#̇éricical Prandtl tubular manometer. The whole test set-up is shown in Figure 3. Since the flow near the plane of symaetry of the wing may be regarded as nearly tro-dimensional, the measurements in this. plano were made with the Pitot tube and the static probe placed symmetrically with respect. to it. In making the measurements at the lateral points, the shaft was so shifted betroon the readings of the two pressures, as to bring the propor instrumont to the desirod point.

Thic thro following fings wore investigated, all having tic Gottingen 387 profile (fig. 1):

1. Rectangular wing $130 \times 520 . \mathrm{mm}(5.12 \times 20.47$ in.) , aspect ratio" 4;
2. Rectangular wing $92 \times 736 \mathrm{~mm}(3.622 \times 28.976 \mathrm{in}$.$) ,$ aspect ratio 8 ;
3. Tapered ming, as in Figure 1.

For wings 1 and 2 , the wind velocity was about $33 \mathrm{~m} / \mathrm{s}$ (108.3 ft. $/ \mathrm{sec}$.). For wing 3, it was about $28 \mathrm{~m} / \mathrm{s}$ ($92 \mathrm{ft} . /$ sec.). Since it has been found that, for tapered wings, the Reynolds Number, which diminishes toward the wing tips, has a certain influence in model tests, a vire screen of $1 \mathrm{~mm}(0.04 \mathrm{in}$)) Wire and $8 \mathrm{~mm}(0.315 \mathrm{in}$) was placed in front of the wing, in order to avoid this influence as much as possible by producing artificial turbulence.

The test results showed very little scattering and could be easily connected by a curve. (Fig. 5.) The symbols used in represcating the test rosults are defined in Figure 4. In Figures 6-11, the test points are omitied for the saire of clearness. All pressures are divided by the dynamic pressure $q_{0}=\frac{\rho}{2} \mathrm{v}^{2}$ of the undisturbed fiow. Hence the plotted values represent nondimensional proportionality factors. The plain lines show the course of the total pressures $\mathrm{pg}_{\mathrm{g}} / \mathrm{q}_{0}$, while the dash lines reprosent the static pressuros p / q_{0}. The static prossure in the undisturbed flow is tokon as the zero point of the prossures. The vertical ordinatos z / t ropresont the position of the tost points and their hoight above tho leading edge of the wing. In Figures 6, 8 and 10 tho zero lines of pressure are so loceted that they simultaneously indicato the location of the tost points with respoct to the wing.

The tapered wing shows an increase in the total pressure on both sides of the blanketed area up to about 8% as compared with the undisturbed flow. (tig. l5.) Comparative tests, without the turbulence screen, showed that this pressure increase was due to the screen. This phenomenon is explained by the fact that the flow velocity is reduced by the screen, so that the loss of energy from tho screen in the middle of the air stream. where the wing hangs, is smallor than in the loss disturbed portions of the stream. This was therefore corrected by referring the pressures measured in the blanketed area to a dynamic prossure corrosponding to a maximum total prossure of $p_{g_{n a x}}$, instead of to tho pressure $p_{g_{0}}$ measured in the undisturved flow. The correctied. values are plotted in Figures 10 and 11 .

In the threencomponent test the already known phenomenon was observed that, within a certain angle-of-attack range (about 15 to 35°), different flow conditions obtain, according to whether the wing is first adjusted and then subjected to the air blast, or whether the wing is adjusted in the wind and then reduced from larger angles of attack to the one at which the testis made, or whether the wing is adjusted in the wïnd and then raised from smaller angles of attack to the one at which the test is made. \because The first two cases generally yiold the same flow: It \because may happen, however, that all three cases yield different kinds of fiow. The first case then yields a lift between those measured in tho last tro cascs. In the experiments reported hore, the wing was always adjustod before the mind was turned on": The polars are reprosented by tho plain lincs in• Figuros 12 to 14.

With the exception of the static-prossuro curvos shortly bohind the wing, tho prossuro-distribution curves show unexpectedly great symmetry at small angles of : attack. The dissymmetry of the static pressuro near the चing is explaincd by the fact that the circulation about the wing is here vory noticeable.

- Another phenomenon, which is of more theoretical than practical interest; is evidenced by the'two static-pressure minima in the vicinity of the wing at large angles of attack in the transition zone between "doad water" and the undisturbed flow. - These are probably due to the "Karman vortices" developed here.

At a few points the measured total pressure falls below the static pressure. In the cases where this happens, there is a reversed flom, so that the tubes are blown or from the rear. Here the instruments indicate a megetive pressure.
noreover, in the case of detached flow, there is a great negative pressure immediately beinind the wing. This can probably be explained as follows. When the flow is detached, the lift distribution assumes the form shomn in Figure l6a. The distribution of tho vortices according to the known rules of the wing thoory, will accordingly take tho form shown in Figure I6b, that is, there are developed, in the vicinity of the midde of the wing, quite strong vortices, thich produce the great nogetivo pressure. In agreement $\quad i t h$ tiis explanation, as shovn in Figure 26 , is the phenomenon that, near: the wing, where the vortices are not yet piled on one another, the negative pressure, with increasing angle of attack; reaches its maximum shortly after the separation. The reduction of the negative pressure at still greater angles of attack ís due to the act that, rith increasing angle of attack, both the lift maxima travel tomard the ving tips; wherevy the vortices passing off from the middle of the wing gradually spread tomard the ving tips.

Bigures 9,9 and 11 shot how the mognitude of the blanketed area decreases toward the wing tips. This reduction is due to the fact that the erfective angle of attack grows smaller tovard the $\begin{aligned} \text { minf tips. Tinis is particu- }\end{aligned}$ larly noticeablo at small angles of attack. With the tapered wing (Iig. Il) tinis reduction is increased by the aiminishing ming chord.

For aviation purposes it is clearer to represent the results on a system of coordinatas inxed with respect to tine airplane. In Figures 17 to 19 the limits of the blanketed areas (i.e., the areas where there is a reduction in the total pressure) in the plane of symmetry are plotted for the different wings and angles of attack. It follows that, after tho complote separation of the flow, the form of the blankotod area is rearly independort of the shape of the wing. This is decisive only for the angle at mhich the separation besins.

Pressure-distribution curvos for a fow lines porpendicular to the wine chord in tho plane of symmetry pore
determined from the measured pressure-distribution curves in Figures 20 to 22. These lines serve as the zero lines for the corrosponding prossures. From thoso curves it is very easy to determine to what force variations any control surface behind the wing is exposed at different anglos of attack. Of especial interest are tho maximam pressure variations indicatod by the enveloping curves of the various groups of curves. In Figures 23 and 24 these enveloping curves ere roducod to ono and the samo chord for the investigated ming. The curves for the difiorent Tings are quito similar. It follows that the angle of attack, at which separation occurs, has little effect on the shape of the enveloping curves. This is probably due to the fact that, in the transition zone from the contiguous to the detached flow, a smaller blanketed area is connected with a greater deflection.

In order to present the results in a clearer manner, several groupings are made in Figures 26 to 31 . In Figure 26 , the maximum total pressure variations \bar{p}_{g} / q_{0} in the plane of symmetry of the wing are plotted against the ancle of attack. The parameter is x / t, in which x is the distance of the given section, perpendicular to the undisturbed flow, from the leading edge of the wing, and t is the wing chord. It is clearly seen how rapidly the pressure decreases on separation. In a similar way Figure 27 represents the integral of the total pressure change g in the plane of symmetry of the wing, after being made nondimensional by dividing by the dynamic pressure and the wing chord. This integral is very closcly connected with the profile drag of the wing.

Figuro 28 ropresents the deflection f of the blanketed area, f being measured perpendicularly to the direction of the undisturbed wind from the center of the chord to the center of the blanketed area. The center of the chord is determined as shown in Figure 25. .In the detached flow the deflection is very small, due to the vortices passing off from the middle of the wing, which oppose the end vortices.

Figures 29-31 show, for a given section, the distribution of $\underline{p}_{E_{1}} q_{0}$ and f along the wing span. The x / t values are so chosen that the corresponding x / \sqrt{F} values ($F=$ wing area) for all threc $\begin{aligned} & \text { fings aro the same. }\end{aligned}$

In order to enable the calculation of the maximum
variations in the total pressure for other cases, an attempt was made to develop an empirical formula on the basis of the results obtained. The measured variations in the total pressure were therofore plottod against a roducod distance of $x=\frac{x}{t \sin \alpha}$ bohind tho wing. (Fig. 32.) It was found that, for a complotely dotached flow, tho points obtained for the various anglos of attack lio on one and the same curve For \bar{x} values groator than 3 to 5 this curvo can bo roprosentod by tho oquation

$$
\frac{\bar{p}_{g}}{q_{0}}=\frac{5}{\bar{x}}\left(1+\frac{a}{\bar{x}}\right)
$$

in which a is a constant doponding on the wing contour.
 $a=0.8$. For the rectarguiar wing with an aspect ratio of $8, \quad a=2.4$. For the tapered wing, $a=0$. These socmingly groat variations in tho tho value of a have but little effect, however, on the value of \bar{p}_{g} / q_{0}.

A similar method with the dynamic-pressure values, however, yielded too great a scattering; so that it mas not possible to connect the different points by a curve.

As already mentioned, all the measurements were made for one and the same wing profile. It is to be expected that the profile form will have but little effect when the flow is detached.

Summary

Behind a wing, after the separation of the flow, there is developed a very pron ounced blanketed area, i.e., a diminution in the total and static pressures. The location of this blanketed area deviates but little from the direction of the undisturbed wind. The blanketed area seems to be nearly independent of the wing contour in both magnitude and direction.

Translation by Dwight M. Miner,
National Advisory Committee
for Aeronautics.

Fig.l, Dinensions of Wing models and location of test points.

Fig.5, Exarmlo of test results. Rectangular wing. Aspect ratio 4

Aspect ratio, $8 \quad x / t^{-326} \times / V_{F}-1,15$

Fig. 9 Pressure distribution along span. Rectangular wing.

$$
x_{t}=2,32 x_{6 /}-1,15 \quad \text { Aspect ratio, } 4
$$

Fig. 11 Pressure distribution

 along span. Tapered wing.Total pressure
Static pressure

Fig. 7 Pressure distribution

- P/ $/ q_{0}$ along span. Rectangu-

Fig. 6, Prossure distribution in plane of symetry of wing. Roctangular ving. Aspect ratio 4

Fig. 8, Pressure distribution in plane of symetry of wirg. Rectangular wing. Aspect ratio 8

Fig. 10, Pressure distribution in plane oí symmetry of wing.
Tapered vine.
N.A.C.A. Technical Menorandum No. 632

Fié. 15 , Ef-
fect af screci on pressure distribution buhind wing
in wind tumel

Fig. 12

Figs.12.13.14, Polar curves of investigated wings

Fig. 16, Lift and vortex distribution in detached flow

Fig. 17, Limit of blanketed area with fixed wing and various angles of attacir. Rectangular wing. Aspect ratio 4.

Fig. 18, Linit of blanketed area aith fixed ming and various angles of attack. Rectangular wing. Aspoct ratio δ.

Fig. 19, Limit of blankotod area with fixed wing and various angles of attact. Taperod ning.
H.A.C.A. Techrical Memorandum No. 632

exnssexd TB704

$$
\begin{aligned}
& \text { Figs. } \\
& 20,21,22 \\
& \\
& \text { Pressure } \\
& \text { distri- } \\
& \text { bution } \\
& \text { curves } \\
& \text { with } \\
& \text { fixed } \\
& \text { wing and } \\
& \text { different } \\
& \text { angles of } \\
& \text { attack. }
\end{aligned}
$$

Figs.
23,24

Rectangular wing
Aspect ratio. 4
Dynamic preasure

N.A.C.A. Techinical Memorandum No. 632

Figs. 25,27,28,29,30

Fig. 26, Maximun total-pressure variation \bar{p}_{g} plotted against α

Fig. 27, Integral of total-pressure variation g plotted against $\%$

Fig. 25 Deflection f of blaiketod area plotted against angle of attack, ∞

Fig. 29, Maximu total-pressure varietion along span.

Fig. 30, Integral of total-pressure variation along span.

Fig. 31, Deflection of blanketed area slong span.

