TECHNICAL MEMORANDUMS

NATIONAL ADVISORY COMITTTEE IOR AERONAUTICS

No. 630

THE STEADY SPIN

By Richard Fuchs and Wilhelm Schmidt

Luftfahrtiorschung
Vol. III, No. 1, February 27, 1929 Verlag von R. Oldenbourg, Hunchen und Berlin

$$
\begin{aligned}
& \text { Washington } \\
& \text { July, } 1931
\end{aligned}
$$

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL MEMORANDUM NO. 630
\qquad
THE STEADY SPIN*
By Richard Fuchs and Wilhelm Schmidt
$\mathbb{N} \circ \mathrm{t}$ a $\mathrm{t} i \circ \mathrm{n}$

Space axes:

$$
\begin{aligned}
\eta= & \text { space vertical, } \\
\xi= & \text { space horizontal, here tangent to a circular } \\
& \text { cylinder with axis } \eta, \\
\xi= & \text { space horizontal, perpendicular to } \eta \text { and } \xi .
\end{aligned}
$$

Air axes:

$$
\begin{aligned}
& x=\text { path axis, } \\
& z=\text { space horizontal, perpendicular to } x, \\
& y=\text { axis perpendicular to } x \text { and } z .
\end{aligned}
$$

Body axes:
$\underline{x}=$ longitudinal axis,
$\underline{\mathrm{y}}=$ normal axis,
$\underline{z}=$ lateral axis,
$g=$ acceleration of gravity ($\mathrm{m} / \mathrm{s}^{2}$),
$\gamma=$ air density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$,
$\frac{\gamma}{2 g}=\frac{1}{20}$ in this report,
$q=\frac{\gamma}{2 g} v^{2}$ dynamic pressure (k g/m $)$.
*"Stationarer Trudelflug." From Luftfahrtforschung, Vol. III, No. I, February 27, 1929, published by R. Oldenbourg, Munich and Berlin, pp. 1-18.

The following data apply to Junkers A 35 low-wing monoplane:

$$
\begin{align*}
& G=1600 \mathrm{~kg}, \quad \text { gross weight, } \\
& F=29.76 \mathrm{~m}^{2} \text {, wing area, } \\
& \mathrm{b}=15.94 \mathrm{~m}, \text { span }, \\
& t=\frac{F}{\bar{b}}=1.87 \mathrm{~m}, \text { mean chord, } \\
& t_{x}=\text { wing chord }(m) \text {, } \\
& t_{1}=2.20 \mathrm{~m} \text {, chord at fuselage, } \\
& t_{2}=1.60 \mathrm{~m} \text {, chord at wing tip, } \\
& \underline{z}(m)=\text { distance of wing component } t_{x} \text { dmz from } \\
& \text { the center of gravity of the airplane } S \text {, } \\
& h=0.42 \mathrm{~m} \text {, center of gravity from wing chord } \\
& r=0.80 \mathrm{~m} \text {, center of gravity from leading edge, } \\
& \begin{aligned}
J_{\underline{x}}= & 300 \mathrm{mkg} s^{2} \text { inertia moment about longitudinal } \\
& \text { axis, }
\end{aligned} \\
& J_{\underline{y}}=550 \mathrm{mkgs}^{2} \text { inertia moment about normal axis, } \\
& J_{\underline{z}}=290 \mathrm{mkgs}^{2} \text { inertia moment about lateral axis, } \\
& \varphi(\text { deg. })=\text { gliding angle, } \\
& \omega=\text { rate of rotation about space vertical } \eta(1 / s) \text {, } \\
& \omega_{x}=\omega \sin \varphi, \\
& \omega_{y}=\omega \cos \varphi \text {, } \\
& \omega_{\underline{X}}=\omega(\cos \varphi \cos \mu \sin \alpha+\sin \varphi \cos \alpha) \tag{1/s}\\
& \omega_{\underline{Y}}=\omega(\cos \varphi \cos \mu \cos \alpha-\sin \varphi \sin \alpha) \\
& \omega_{\underline{z}}=-\omega \cos \varphi \sin \mu \\
& \omega_{\underline{X}_{I}}=\omega \cos \varphi \cos \mu
\end{align*}
$$

All rotations are positive when clockwise as seen in positive direction of rotational axes.

$$
\begin{aligned}
& v(m / s)=p a t h \text { velocity, } \\
& \Delta v=\Omega_{\underline{y_{z}}} \underline{z}(\mathrm{~m} / \mathrm{s}) \text { change in path velocity } v \text { due } \\
& \text { to rotation } \Omega_{\underline{y}_{1}} \text {, } \\
& \rho=\underline{V} \frac{\cos \varphi}{\omega}(\mathrm{~m}) \text { radius of helix, } \\
& \left.\begin{array}{l}
\alpha(\text { deg. })=\text { angle of attack } \\
\mu(\text { deg. })=\text { angle of bank }
\end{array}\right\} \text { as defined in Figure } 1 \\
& T(d e g .)=\text { angle of yaw, formed by axes } x \text { and } z \\
& \text { after rotating about normal axis } \underset{\text { y }}{ } \text {, } \\
& \Delta \alpha=57.3 \operatorname{arc} \tan \frac{\Omega_{\bar{x}} \underline{V}}{v} \text { (deg.) change in } \alpha \text { due } \\
& \text { to rotation } \Omega_{X} \text {. } \\
& \text { A (} k g \text {), } c_{a}=\frac{A}{q} \text { lift; in direction of lift axis } y_{1} \text {, } \\
& W(k g), \quad c_{W}=\frac{W}{q} \text { draw; in opposite direction to } \\
& \text { path axis } \gamma \text {, } \\
& Q \text { (lg) , } c_{Q}=\frac{Q}{q F} \text { cross wind force; perpendicular to } \\
& \text { IT (kg), } \begin{array}{r}
c_{n}=\frac{N}{q}=c_{a} \cos \alpha+c_{W} \sin \alpha \text { normal force; } \\
\text { in direction of normal amis } \underline{y},
\end{array} \\
& T\left(k_{g}\right), c_{t}=\frac{T}{q Y}=c_{W} \cos \alpha-c_{a} \sin \alpha \text { tangential } \\
& \text { force; opposite in direction } \\
& \text { to longitudinal axis } x \text {, } \\
& H_{L_{0}}\left(m g^{\prime}\right), c_{m_{0}}=\frac{M_{I_{0}}}{q F t} \begin{array}{c}
\text { aerodynamic moment about lead- } \\
\text { ing edge, }
\end{array} \\
& M_{I}(m l g g), \quad c_{m}=\frac{M_{I}}{\mathcal{E}^{E}} \\
& \text { aerodynamic moment } \\
& \left.\underline{h}_{I}=\frac{\underline{h}_{I}}{\frac{G}{G} V^{2}}\right\} \text { about lateral axis } \underline{z} \text {, }
\end{aligned}
$$

$H_{H}(m k g), M_{H}=\frac{M_{H}}{\frac{G}{G} V^{2}}$ olovetor moment,
$M_{K}(n k g), M_{K}=\frac{M_{K}}{\frac{G}{G} v^{2}} \begin{aligned} & \text { Gyroscopic moment about the } \\ & \text { Iatric }\end{aligned}$
$K_{I}(m k g), K_{I}=\frac{K_{I}}{q F b}$ corodynamic moment about longitudinal axis x,
$\mathrm{K}_{\mathrm{F}}(\mathrm{mlg} \mathrm{g}), \mathrm{E}_{\mathrm{F}}=\frac{\mathrm{K}_{\mathrm{E}}}{\mathrm{q} j}$
aerodynamic moment of

$$
\left.\mathbb{Z}_{W^{\prime}} \prime=\frac{\mathbb{K}_{E}}{\frac{G}{G} V^{2}}\right\}
$$ wing about longitudinal axis x,

$K_{Q}($ mag $), Z_{Q}=\frac{K_{Q}}{q \bar{D}}$ aileron moment about longi-
$K_{K}(m k g), K_{\mathbb{Z}}=\frac{K_{\mathbb{Z}}}{\frac{G}{g} v^{2}}$ tudioncopic moment about longi-
$I_{I}(m k g), I_{I}=\frac{I_{I}}{q F b}$ aerodynamic moment about normail axis y,
$I_{W}(\mathrm{mkg}), I_{F}=\frac{I_{F}}{q F b}$ oorodynanic moment of wing about normal axis $\underset{\text { y }}{ }$,
$I_{S}(m k g), I_{S}=\frac{I_{S}}{q E D} \begin{aligned} & \text { rudder moment about normal } \\ & \text { axis } y,\end{aligned}$
$I_{K}\left(m_{g}\right), I_{K}=\frac{I_{K}}{q Y b} \quad \begin{aligned} & \text { gyroscopic moment about nor- } \\ & \text { maI axis }\end{aligned}$
All moments, opposite in direction to tho corresponding positive rotations, arc positive:

$$
\begin{aligned}
& \beta_{H}(\text { (eg. }) \text { elevator noting, }<0 \text { displacement upward, } \\
& >0
\end{aligned}
$$

All control movements producing positive moments are positive.

This report attempts a comprehensive survey of the subject of spinning, and constitutes an extension and supplement to Fuchs and Hopf's "Acrodynamik," chapter IV.

Several British reports (references 4 and 5) carry the notation that the angle of yaw is relatively small in spinning and rarely exceeds 20.. The English have established the effect of side slip for the most necessary data in the wind tunnel at angles of side slip $T<\sim 20^{\circ}$.

It js readily seen from Figures 5 and 6 (reference 6) that the change in lift and drag with side slip amounts, at the most, to 10% of the corresponding values with no side slip so long as the jam does not exceod 20°.

In Figure 7 (roforence 6) crossmind forco co, perpendicular to lift and drag at $\tau=20^{\circ}$ With side slip has attained about 10% of lift with no side slip.

The change of aerodynamic moment about the lateral axis, due to side slip becomes significant, according to Figure 8 (reference 7), even though $T<20^{\circ}$.

Figures 9 and lo (references 4 and 8) disclose that, as a result of a rotation around the path axis, the rolling and yawing moments are materially changed, as in curves a_{1} With no side slip or aileron displacement, in curves az with aileron displacement, and especially in curves b with side slip.

It is seen, for example, with respect to the moments about the longitudinal axis for $\alpha=25^{\circ}$ that the effect of a side slip at $T=9.5^{\circ}$ is equivalent to an aileron deflection $\beta_{Q}=5^{\circ}$.

Thus, the exsuing investigation proceeds from the following evidence:

So long as $T<20^{\circ}$, the changes in lift and drag do not exceed lo\% with no side slip; the crossmwind force amounts, at the highest, to lo\% of the lift. Hence the computed v, μ and ω values for $T=0^{\circ}$, as based upon c_{a}, c_{W} and c_{Q}, will underéo no substantial change for any angle of yaw below 20°.

But the moments about the body axes undergo marked changes with side slip. On tho other hand, the aerodynamic moment about tho longitudinal axis can bo produced by a suitably choson ailoron displacement, according to Figure 9, and tho samo applios to the momonts about the normal and tho lateral axes, as the corresponding elevator, rudder, or aileron displacements are introduced.

When we bear in mind the fact that side slip and the corresponding control morements are identical in effect, tho balance of the moments about the body axes with side slip is all but rovertible to on oquilibrium by corresponding control movements but with no sido slip.

Thus it becomes readily apparent that a study at $T=0^{0}$ is not materially altered when it includes the changes in aerodymamic forces and moments resulting from side slip at $\tau<20^{\circ}$.

For this reason we repeated our investigation for the case of $T=0^{\circ}$, but confined ourselves for the most part to the steady spin.

Calculations on unsteady spinning aro made only occasionally, whore it pertains to a numerical intogration of the differontial oquations sot up for the oquilibrium of all forces and momonts acting on tho eirplane, and thon only to sevoral short equations in ordor to clarify the problem of getting out of e spin.

The steady spin without sido slip postulates:
Bquilibrium of forces in direction of the air axes -
Path axis $x: \quad 0=G \sin \varphi-c_{\pi} q \mathbb{F}$
Lift axis $\underline{y}_{1}: 0=\frac{G}{g} v$ ary sinu-G cosp coishitca q ?
Aris $\perp z$ and ${\underset{I}{1}}: 0=\frac{G}{\xi} v \omega_{y} \cos \mu+G \cos \varphi \sin \mu$
Equilibrium of moments about the body axes:
Longitudinal axis $\underline{x}:-\left(J_{\underline{Y}}-J_{\underline{Z}}\right) \omega_{\underline{y}} \omega_{\underline{Z}}=-\mathbb{R}$
Normal axis \mathbb{E} :
$-\left(J_{\underline{Z}}-J_{\underline{X}}\right) \omega_{\underline{Z}} \omega_{\underline{X}}=-I$
Iateral axis $\underline{z}: \quad-\left(J_{\underline{X}}-J_{\underline{Y}}\right) \omega_{\underline{X}} \omega_{\underline{Y}}=-M$

The above six equations embody the five variables: $\alpha, \mu, \nabla, \varphi$ and ω, and reveal in conjunction with $\tau=0$, the position of the airplane completely.

The resolution of equations (1) to (3) yields in dependence of α and φ, the other three variables μ, v, and ω, for which all forces acting on the airplane are in balance.

Applying these values to each one of equations (4), (5), and (6) results in α and φ values, at which, by equilibrium of all forces acting on the airplanc, the moments about the respective axis are also in equilibrium.

If these values of φ and α are plotted as curves of $\varphi=f(\alpha)$, three such curves are obtained corresponding to the three equations (4) to (6). From each of these three curves those values of α and φ are found at possible intersection points for which the simultanoous equilibrium of all the forces and all the moments is satisfied, and for which, therefore, the steady spin is possible.

Our investigations centered around a Junkers A 35 low-wing monoplane with the latest test data on c_{a}, c_{w}, and c_{m}, and for angles of attack up to $\alpha=90^{\circ}$. Unfortunately they were limitcd to a stationary model without aileron or rudder displacomont and for cortain clovator settings within $\alpha=0$ to $\alpha=20^{\circ}$.

The change in lift and drag within this range is slight with elevator displacement, as Figure l4 shows. In addition, other pertinent data disclosed the aileron and ruddor movoments to be practically without effect on the acrodynamic forces, and notably on the acrodynamic momont about the lateral axis, so that it is justifiable to assume c_{a} and $c_{\mathbb{W}}$, especially at highor α, as constant for any control movoment, and c_{Q} as evanescently small at zero yaw.

According to the British reports the principal changes in forces and moments about tho lateral axis, effected by rotation ω occur in tho lift and in the drag, as shown in Figures 11 and 12 (referoncc 4). Evon for values of $\frac{b \omega_{X}}{2}=0.2$ to 0.3 , cncountored perhaps in a steep spin at relatively small α, tho change in c_{a}
and c_{V} amounts to about 10% of tho valuos mossurod on tho quiotly suspondod modol. So lift and drag may bo considered approximatoly comstant for tho rotations in question.

Figure 13 (roforence 7) revoals tho rolatively slight chango in moment cbout tho latoral axis when row tatod about the path axis at largo anglos of attack; at small α the chango is more pronounced and is equivalont to a small clovator displacoment. Novortheloss, We consider c_{m} as boing about constant for any value of $\frac{b \omega_{x}}{V}$, so that tho aorodynamic forcos as woll as the aoroaynmic momonts about tho latoral axis may bo assumed approximatoly constant, for all rototions ω undor considoration.

As regards the magnitude of the control momonts, Wo were compelled to introduce them for large values of α without data on the corresponding control displacements, and to refer for small α in part to measured elevator setting, and in part to estimated aileron or rudder displacement.

The wing moments K_{F} and I_{F} about the longitudinal and the normal axis were not measured, but were accurately estimeted by integration and by means of curves c_{n} and ct with respect to $\alpha_{\text {. The inertia moments }}$ worc defined by calculation as usual.

Equilibrium of Eorces and Moments

$$
\text { in Steady Spin with no } S_{i} \text { do Slip }
$$

Equations (1) to (3) yield the values μ, ∇ and ω dependent on α and φ for steady spin as

$$
\begin{align*}
& \mu=-57.3 \operatorname{arc} \tan \left(\frac{V \omega}{g}\right) \tag{7}\\
& \nabla=\sqrt{-\frac{G}{G} \gamma-\frac{\sin \varphi}{c_{W}}} \tag{8}\\
& \omega=\sqrt{\frac{I^{2} \gamma^{2}}{4 \sigma^{2}} \frac{c^{2}}{\cos ^{2}} \nabla^{2}-\frac{\delta^{2}}{v^{2}}} \tag{9}
\end{align*}
$$

The c_{a} and c_{W} values applying to the airplane were taken from Figure 14, while Figure 15 shows

$$
v=\sqrt{-1075-\frac{\sin }{c_{w}} \varphi}
$$

plotted against α and φ. The path velocity rises with increasing angle of climb and drops as the drag increases.

Figure 16 manifests

$$
\omega=\sqrt{0.000083 \frac{c_{a}^{2}}{\cos ^{2}} \frac{v^{2}}{\varphi}-\frac{96}{v^{2}}}
$$

relative to α and φ. The rate of rotation increases enormously by rising angle of climb and disappears for level flight. For the latter the modified equations (la) to (Ba) are valid:

$$
\begin{align*}
& 0=-G \sin \varphi-c_{w} q F \tag{Ia}\\
& 0=-G \cos \varphi \cos \mu+c_{a} q F \tag{2a}\\
& 0=G \cos \varphi \sin \mu \tag{Ba}
\end{align*}
$$

as a consequence of which $\mu=0$ and $\tan \varphi=-\frac{c_{W}}{c_{a}}$.
Figure lr exhibits tan $\phi=-\frac{c}{c} \frac{\mathrm{c}}{\mathrm{a}}$, as well as the corresponding values of φ referable to α, so that α may be read from Figure 17 for certain values of φ whore $\omega=0$.

The introduction of constant values ω other than zero into equations (1) to (3) yields φ (ω = constant) (fig. lr) with respect to α, which were taken from curves ω plotted against α and φ in Figure 16 .

Figure 18 shows $\mu=-\operatorname{arc} \tan \left(\frac{\nabla \omega}{g}\right)$ with respect to $\&$ and φ. Even in a flat glide the angle of bank becomes very pronounced at the usual angles of attack, while an airplane already inclines quite steeply in ordinary curve flight. When $\omega=0, \mu$ disappears.

To compute the gyroscopic moments the rate of rotations $\omega_{\underline{X}}, \omega_{\underline{Y}}$ and $\omega_{\underline{Z}}$ are necessary.

Conformably to Figure 16, ω does not become appre-
ciable at small gliding angles; but when those angles become large, μ becomes large also, according to Figure 18, in which case

$$
\begin{aligned}
& \omega_{\underline{I}} \approx-\omega \cos \alpha \\
& \omega_{\underline{Y}} \approx \omega \sin \alpha \\
& \omega_{\underline{Z}} \approx 0,
\end{aligned}
$$

Which, geometrically speaking, means:
Wo can indicate a straight line placed in the symmetrical plane of the aircraft, which passes through its contor of gravity, forms anglo α with tho longitudinal axis and is parallel to that of the space vortical about Which rotation ω is set up. Tho distance of tho space vertical from this straight lino is

$$
\rho=\frac{\nabla \cos \varphi}{\omega}
$$

For tho case of $\psi \rightarrow-90^{\circ}$, we find ω, according to (9) while V (according to (8)) revels a tondoncy toward a fixed value, so that distance P becomes very minute and rotation ω is almost around the cove straight lino. Thorn tho groator α bocomos tho more this straight Lino is coincident with tho normal axis.

In Figure 19 tho rato of rotation for $\omega_{\underline{x}}$, ω_{y} and ω_{z} is given for $\varphi=-85^{\circ},-80^{\circ}$ and -75°. It will be noted that rate of rotation ω_{z} about the lateral axis is always very low, that rotation $\omega_{\text {x }}$ about the longitudina axis predominates at smell α, and rotation ω_{y} about the normal axis when α is high.

The equilibrium of the moments
a) about the lateral axis is based upon:

$$
\left(J_{X}-J_{Y}\right) \omega_{\underline{Z}} \omega_{\underline{V}}=M_{I}
$$

negative givoscopic moment $\left(-M_{\mathbb{K}}\right)=$ aerodynamic moment HI 。

With the nondimensional $M_{K}=\frac{M_{K}}{\frac{G}{g} v^{2}}$ inserted, we obtain

$$
M_{K}=-\frac{\left(J_{\underline{x}}-J_{y}\right)}{\frac{G}{E}} \frac{\omega^{2}}{v^{2}}(\cos \varphi \cos \mu \sin \alpha+\sin \varphi \cos \alpha,
$$

which may be seen on Figure 20 in relation to α and φ. The gyroscopic moments do not appear until the gliding angles are very high, and become very pronounced when $\varphi>-85^{\circ}$ 。

The aerodynamic moment, defined as $\underline{M}_{I_{0}}=c_{m_{0}}$ q Ft on the leading edge of the stationary model in the wind tunnel and reproduced in Figure 14 with respect to α was replotted for moment M_{I} about the lateral axis and expressed in the same nondimensional form as K_{K}, that is, we substituted

$$
M_{I}=\frac{M_{I}}{\frac{G}{g} v^{2}}=0.017 c_{m} \text { for } c_{m}=\frac{M_{I}}{q} \frac{M_{T}}{}
$$

Figure 20 shows H_{L} plotted against α for various additional elevator moments

$$
\underline{H}_{H}=\frac{M_{E}}{\frac{G}{g} v^{2}}
$$

constant at any α, to which at small α a given elevator setting β_{H} corresponds. It is noted that curve (- M_{K}), referred to α and φ, and curve M_{L} referred to $\vec{\alpha}$ intersect in several points for which $\left(M_{K}\right)=M_{L}$; that is, where the moments about the lateral axis are in balance.
B) The equilibrium of the moments about the longitudinal axis is expressed by

$$
\left(J_{\underline{y}}-J_{\underline{z}}\right) \omega_{\underline{y}} \omega_{\underline{z}}=\mathbb{K}_{I}
$$

negative gyroscopic moment $\left(-\mathrm{K}_{\mathrm{K}}\right)=$ aerodynamic moment $K_{\text {I }}$ 。

The rotation ω_{X} about the path axis induces wing moments about the longitudinal axis exceeding by far any
eventual aileron moment K_{Q}. A damping moment of the vortical tail group as occurs because of rotation ω_{x} about the longitudinal axis, may be disrogardod.

The integration estimates tho aerodynamic moments of tho wings at

$$
\mathrm{x}_{\mathrm{F}}=\int_{\underline{z}=-\frac{0}{2}}^{+\frac{b}{2}} c_{n}(\alpha+\Delta \alpha, \nabla+\Delta v) \frac{\gamma}{2 g}\left(\frac{v+\Delta v}{\cos \frac{v}{\Delta \alpha}}\right)^{2} t_{X} \underline{z} \tilde{d} \underline{z}
$$

In particular, $c_{n}(\alpha+\Delta \alpha, \nabla+\Delta v)$ hero significs that c_{n} is affected by α and by its offoctod change through $\Delta \alpha=5 \% .3$ arc $\tan \frac{\omega_{x} z}{\nabla+\Delta v}$ bocauso of rotation ω_{x}, further by pod. V and its change through $\Delta v=\omega_{\underline{y} 1} \underline{z}$ bocauso of rotation $\omega_{\underline{y} 1}$.

The integral was graphically determined against α and φ so as to include any value of $\frac{\partial}{2}$.

To give the reader a picture of the method employed, we include Figure 21 as typifying the distribution of the normal force over the wing; $c_{n}\left(\frac{v+\Delta v}{\cos \Delta \alpha}\right)^{2} t_{x}$ is plotted against ring span \underline{Z}, where the integral evaluates prescisely $\mathbb{Z}_{F}=0$. Now it becomes evident that for $\varphi=-80^{\circ}$ and $\alpha=-27^{\circ}$, tho wing moment about the longitudinal axis is zero notwithstanding tho prevalent rotatimon ω_{x}.

Figure 22 affords $\mathbb{E}_{\mathbb{F}}=\frac{\mathbb{Z}_{F}}{q P^{B}}$ against α and φ, and the possibility of positive and negative wing moments. They disappear when $\omega=0$ (the relevant points may be called outer zero points), the a values pertinent for φ may be taken from the curve of Figure 17. For slow rates of rotations ω_{X}, where $\Delta \alpha$ too is small, the integral obviously becomes evanescent at values of α for which curve c_{n}, referred.to α in Figure 23, exhibits an oxtreme value, namely, point G for $\alpha=14^{\circ}$ and point E for $\alpha=32^{\circ}$. Lioroovor, it is positive or negative according to whether $\frac{d . c n}{d \alpha}$ is $>$ or <0.

In keeping with this, small ψ values, for which, consistently with Figure 16, the rate of rotation ω as well as $\Delta \alpha$ are small, have, apart from the two outer-
also one or two inner points G and H; in addition, for $\alpha<140$ and $\alpha>32^{\circ}$, where $\frac{d c_{n}}{d \alpha}>0$, only negative wing moments, and for $\alpha>14^{\circ}$ and $\alpha<32^{\circ}$, where $\frac{d c_{n}}{d \alpha}>0$, only positive wing moments occur. As φ and thereby $\Delta \alpha$ become larger, the positive moments become more and more evanescent, the zero points G and H continue to come closer together and to assume still greater values of α, until only negative moments appear.

With the gyroscopic moment $\mathbb{K}_{\mathbb{K}}$ expressed nondimensionally

$$
\underline{X}_{K}=\frac{\frac{\mathbb{K}_{K}}{}}{\frac{G}{g} v^{2}},
$$

we have:
$\underline{Z}_{\mathrm{K}}=-\frac{\left(J_{Z^{-}}-J_{Z}\right)}{\frac{G}{g}} \frac{\omega^{2}}{\nabla^{2}}(\cos \varphi \cos \mu \cos \alpha-\sin \varphi \sin \alpha) \cos \varphi \sin \mu$.
In conformity with Figure 19, the gyroscopic moment is dependent on the always small rotation $\omega_{\underline{z}}$, hence is itself very small, as indicated on Figure 24, and may be neglected with respect to K_{F}.

As a result, our assumption is sufficiently precise when it presumes the moments about the longitudinal axis to be almost in balance for those values of α and φ for Which the moments of the wings disappear, or in other words, for the zero positions of curve $\mathbb{K}_{\mathbb{F}}$ with respect to α and φ, at least so long as no aileron displacement occurs.
\mathbb{T}_{12} insertion of an aileron moment, constant for any α,

$$
Z_{Q}=\frac{Z_{Q}}{q F b}= \pm 0.01
$$

rather corresponds at $\alpha=0^{\circ}$ to a $\beta_{Q}= \pm 4^{\circ}$ aileron deflection, but at higher α to a much greater deflection, so the abscissa of the curves must be shifted parhallel to itself, upward and downward, respectively.
γ) The moment equilibrium about the normal axis is expressed by equation

$$
\left(J_{\underline{z}}-J_{\underline{Z}}\right) \omega_{\underline{Z}} \omega_{\underline{X}}=I_{\bar{J}},
$$

negative gyroscopic moment $\left(-I_{K}\right)=$ aerodynamic moment I_{I}.
The rotation ω_{X} about the path axis induces wing moments, which, aside from a rudder moment and from the far from negligible damping moment of the fuselage and the vertical tail group, such as a rotation $\omega_{\text {re }}$ about the normal axis sets up, constitute the principal momeats acting about the normal axis.

Evaluated by integration, the wing moments are

$$
I_{\underline{F}}=\int_{\underline{z}=-\frac{b}{2}}^{+\frac{b}{2}} c_{t}(\alpha+\Delta \alpha, v+\Delta v) \frac{\gamma}{2 g}\left(\frac{v+\Delta v}{\cos \Delta \alpha}\right)^{2} t_{x} \underline{z} d \underline{z}
$$

which, in Figure 25, are plot tod with reference to α and φ in the nondinonsional form of

$$
I_{F}=\frac{I_{F}}{q F b}
$$

Tho outer zero positions are valid for $\omega=0$, tho inner When tho integral disappears, io., first at small φ and ω for points \mathbb{K} and J of curve c_{t}, as plotted against α in Figure 23, where $\frac{d c t}{d a_{t}}=0$. The wing moments become positive or negative according to whether $\frac{\text { d. ct }}{\text { da }}<$ or >0.

The zero points \mathbb{F} and J tend toward higher α and come closer together as φ increases. At very high α the moments about the normal axis become quite small.

Tho gyroscopic moment $I_{K}=-\left(\tilde{J}_{\underline{Z}}-J_{\underline{x}}\right) \omega_{\underline{Z}} \omega_{\underline{X}}$ may be disregarded with respect to I_{F}.

As a result the moments about the normal axis arc practically in balance for those α and. φ at which I_{F} disappears, ie., for tho zero points of tho I_{F} curves roforred to α and Q at least as long as there is no rudder displacoment, and tho damping moments of tho fuse-
lage and of tho vortical tail surfacos duc to rotation W_{y} about tho mormal axis aro disresarded for thoprosent oring to the lack of exporimontal data。

With an addod ruddor momont, constant for any α, We have:

$$
I_{S}=\frac{I_{S}}{q E D}= \pm 0.01
$$

Fhich at $\alpha=0^{\circ}$, is practically cquivalont to \quad. $\beta_{S}= \pm 20^{\circ}$ ruddor displacomont, but at highor α to ono docidodly highor; thus tho obscisso of tho curves must bo shiftod parallol downoerd and upmard, rospoctivoly.

Tho demping moments of the fusolego ond of the vorticol tail group, induced by rotation wy about tho norinal axis, ploy a vory important part in the momont: equilibrium about tho normol azis and must not bo ignorod. If tho vorticol tail sroup, and particularly the roar ond of tho fusclago, prosont a largo area rolativoly romoto from tho nommol axis, thoy moy in fact bocomo just as high as tho 7ing momonts I_{F}, and ovon surpass thom at largo α.

Hithorto our study dofinod tho volues for α and φ at which tho ?orcos and.monents about the throc body axes were in equilibriun, as exhibited in Figure 26 for the special case of β_{Q} and $\beta_{S}=0^{0}$ with φ plotted ageinst α, disresarding the damping caused by the fuselage and by the vertical tail unit. Curve a comprises those values of α and p for which, if $\omega=0$, all forces acting on the airplane are in equilibrium and, since tho momonts must diso be in equilibrium if the spin is to be steady, whero all curvos of the moment equilibrimm must start on this curve a. The b curves divulge the equilibrium of the moments about the laterel axis With the respective elevator moments.

As long as rotation w romains snall, i.c., for rolotively smoll φ as shown in Figuro lr, thoro aro practically no gyroscopic moments (see fig. 20), so that, for a given elevator moment, those about the lateral axis are in equilibrium for those values of d which Figure 20 revecis as zero pointis on the H_{L} curve referablo to α_{0}

Consequantly, eurve b_{1} nust begin et point A on curvo : and which furthor belongs to on anglo of attack
$\alpha=12^{\circ}$. For the coordinatos of this point, that is, for $\varphi=-7.5^{\circ}$ and $\alpha=12^{\circ}$, and for thoso alonc, sto ady spin is possiblo without olovator displacomont. Points B and C are defined in the same manner.

The greater the gliding angle Q and thereby rate of rotation ω, the greater the gyroscopic moments and the greater the tendency of the intersections of the H_{T} and the (HK) curves toward higher angles of attack (fig. 20), thus deflecting the b curves more and more to the right.

At relatively small α and φ the b curves are quite far apart for different elevator moments, but come quite close to one enother when α and φ assume large values.

The d_{1} and the o_{1} curvos portain to the equilibrium of tho moments about tho longitudinal and tho normal axis, respoctivoly, by zoro control displacement.

Now wo add an ailoron momont, constant for any α, to thosc about tho longitudinal axis of Figurc 22, and obtain now zero points on tho $E_{玉}$ curvos with rospoct to α and Q, Thoso coordinatos aro shown in Figuro 27 as now curvos d with parametor K_{Q}.

It is soen that tho d curvos arc for apart thile α is rolativoly small, and continuo to approach ono anothor at high α as φ becomos larger.

A similar study roveals the o curvos in Figuro 28 by ruddor momont I_{S}. At lorge anglos of attack this momont is usually vory small, moking any oquilibrium for α and φ valuos othor than tho wing momont impossiblo, at loast so long as tho damping momonts of tho fusclage and tho verticel control surfacos aro disrogardod. Thoso damping morants may becomo comparativoly largo, thus making a momont equilibrium possible only for a small anglo of attack.

A glance at Figuro 26 disclosos tho fact that curvos b, d and e, even when disregarding tho domping momonts of the fuselage and of the vertical tail surfaces, never intersect in one single point if no control movement occurs. The result is that as far as concerns the A 35, a steady spin is impossible without control displacements.

However, it is quite possible to force such an intersection point as, for instance, by a slight negative elevator displacement $\beta_{\mathrm{H}}=-3^{\circ}$ which yields point \mathbb{E}.

Any steady curve flight is possible depending on the chosen control movement - at least, for comparatively low angles of attack. However, at very high angles α, say, near point F, the b, d and e curves most probably never meet in one point; but, since the curves are so close together, and there prevails at least an almost perfect balance of forces and moments, we shall designate such as "approaching steady" spin.

When the possible curve flight is very steep and the respective angle of attack is above that for maximum lift, we ordinarily speak of "spinning" and we distinguish the "steep" from the "flat" spin, according to whether the angle of attack is near that for maximum lift or very large.

The tendency of an airplane to spin depends on the mass distribution, the shape of the wing structure, the position of the center of gravity, the area of the exposed fuselage and the vertical tail group and its distance from the normal axis.

Hopf (reference 2) has already pointed out (see reference 1 , chapter $I V$) that the mass distribution predicts the magnitude of the gyroscopic moments ($J_{x}-J_{y}$) $\omega_{x} \omega_{y}$ and thereby the moment equilibrium about the lat-eral-axis.

Assuming the mass distribution so changed that factor $\left(J_{X}-J_{Y}\right)$, and thereby the gyroscopic moments, increase to double and to half the value, vields the c_{1} and c_{2} curves in Figure 26.

The b and c curves bespeak a less pronounced deflection as ($J_{\underline{x}}-J_{\underline{y}}$) decreases. If it wore possible to so design an airplane that $J_{\underline{x}}=J_{y}$, it would theoretically preclude the inccption of any gyroscopic moment about the lateral axis; the b and c curves would run parallel to tho ordinate axis. For very small $J_{\underline{x}}-J_{y}$ the b curves would not deflect to the right until very high gliding angles were reached but would then deflect that much sharper, and become $\varphi \approx-90^{\circ}$
for higher α, thus moving a consịderable distance away from the other d and e curves.

The result would be that at small $J_{\underline{x}}-J_{y}$ curvilinear flight would be impossible for angles of attack above those attainable in level flight but not as yet belonging to a flat spin.

Thus it becomes apparent that spinning may be prevented more or less completely, at least for an average range of α, by judicious mass distribution.

We have seen that "a rotation about the path, the longitudinal, or the normal axis may engender positive and negative wing moments. It is not easily conceived how the moments about the normal axis with respect to those about the longitudinal axis can be disregerded, as is done quite frequently. For a glance at Figure 25 reveals them of almost the same magnitude as the positive moments about the longitudinal axis in Figure 22.

However, we confine our study to the moments about the longitudinal axis and merely add that the same is equally applicable to the normal axis.

Figure 22 unfolds zero points on the \underline{K}_{F} curves plotted against α and ψ, for angles of attack beyond those of maximum lift and for whose coordinates the moments about the longitudinal axis are in equilibrium. Now compare the d_{1} curve of Figuro 26 for the caso of zero aileron moments:
a, equilibrium of forces in straight glide

b_{1},	about	latoral axis	
b_{2},	$" 1$	$"$	$" 1$
b_{3},	$" 1$	$"$	$" 1$
c_{1},	$"$	$" 1$	$" 1$
c_{2},	$"$	$"$	$" 1$

d. " longitudinal axis
el " normal axis
$M_{H}=0$
$M_{H}=-0.0011 \cdot($ displacement upward)
$M_{\mathrm{H}} \cong+0.0010$ (\cong downword)

$$
\begin{aligned}
& M_{H}=0 \text { and double gyroscopic moment }, \\
& M_{H}=0 \text { and half gyroscopic moment } \\
& M_{H}=0 . \\
& M_{H}=0 .
\end{aligned}
$$

The possibility of spinning, i.e., of a moro or less complete balance of forces and moments in stalled stoep curve flight depends on the existence of one intersection point each from the three curves b, d and e by corresponding control moment as parameter. Because this is impossible when, for example, curve d is not present, it is merely necessary to prevent the appearance of the inner zero points on curve \underline{K}_{F} with respect to α and φ, even for any possible aileron moment to make spinning absolutely impossible.

We have seen that the wing moments about the longitudinal axis are dependent only on the shape of curve c_{n} with respect to angle of attack, and that for small ω_{x} these moments are negative or positive according to whether $\frac{d c_{n}}{d \alpha}>$ or <0. Only negative moments prevail when the c_{n} curve, valid for each wing section parallel to the plane of symmetry, continues to rise with increasing α. This depends on the shape of the wing, and thus constitutes a second means for limiting the chances of spinning.

Even if it should prove impossible to completely avoid a $c_{n_{\max }}$ of the wings alone, it should at least bo endeavored to have this occur at the highest possible α and yet not too high, in order to prevent as much as possible a drop in the c_{n} curve when α assumes large values.

Anothor successful method for combating the possibility of spinning lics in tho constructive dovelopment of the airplano with rospect to the position of the conter of gravity, which in the A 35 is $0.36 t$ aft of the leading odge, that is, relativoly far back. Tho rosult is that in level flight, for instance, ovon by zero elevator displacement, the airplane does not attain equilibrium before fairly large angles of attack havo boen reached and tho airplane can be stalled considorably.

Consequently the b curves are easily mede to intersect curves d and e in one point.

Shifting the center of gravity extremely far forward rondors this stall very difficult to reach. As last and final antispinning method expounded in this study, we mentron the shape of the fuselage and of the vertical tail group. With the sides of the rear fuselage, and the area 0 fin and rudder as large as possible, relatively large damping moments are invited, which, in particular, may male a flat spin very improbable.

Autorotation

In view of the fact thar in a spin the rate of rotatin $\omega_{y_{1}}$ with respect to ω_{x} is very low, the resulting aerodynamic moments will always show satisfactory agrecont with practical experience when the measurements are made as follows.

The model is mounted on an axis AB passing through its center of gravity and placed in its plane of symmetry so that any angle of attack may be obtained and the moments about the body axes can be measured direct.

Then axis $A B$ is suspended in the wind tunnel so as to be always in the direction of the air flow and so that the model is actually able to execute the dosirod rotation ω_{x}. Since wo did not make such measurements on the model of tho A 35 we intorprotod mathonatically the K_{B} and I_{F} curves shown on Figures 22, 25, 29 and 30, plottod against α and φ, and against α and $\frac{b \omega x}{2}$, rospocLively.

The zero points of the so curves reveal those values of α and $\frac{b \omega_{z}}{\frac{2}{\gamma}}$ for which the aerodynamic moments about the longitudinal and the nomen axis are in equilibrium, whereby the abscissas are shifted parallel to one another for existing aileron and ruder moments - constant over any $\frac{b \omega_{x}}{2}$.

The $\frac{b \omega_{x}}{\frac{V}{v}}$ values thus obtained are shown for moment equilibirum about the longitudinal axis on Figure 31, plotted against angle of attack α.

It discloses, for the case of zero aileron moment, a curve similar to those known from the ordinary autorotation tests. Apparently several equilibrium positions are feasible for one and the same α, which is only attributable to the shape of curve c_{n} with respect to the angie of attack α of the wings.

As regards the stability of the equilibrium posttins of the $\underline{K}_{\mathbb{F}}$ curves plotted against α and $\frac{b \omega_{x}}{2 V}$
in Figure $29,{ }^{2}$ discussion of equation

$$
J_{\underline{x}} \frac{\mathrm{~d} \omega_{\underline{x}}}{\mathrm{~d} t}-\left(J_{\underline{y}}-J_{\underline{z}}\right) \omega_{\underline{y}} \omega_{\underline{z}}=-K_{F}
$$

(equilibrium of moments about longitudinal axis) discloses:

If several equilibrium positions prevail, one must always bo stable, the other unstable, according to whether

$$
\frac{\mathrm{d} \underline{K}_{F}}{\mathrm{~d}\left(\frac{b \omega x}{2}\right)}>\text { or }<0
$$

Applied to curve $\frac{b \omega_{x}}{Z}$ plotted against α in Figure 3. it postulates:

For small angles of attack up to $\alpha=14^{\circ}$ there is but one single position of equilibrium where autorotation would not set in.

An angle $\alpha>14^{\circ}$ has for a certain α, aside from the equilibrium position

$$
\frac{b \omega_{x}}{2 \frac{x}{v}}=0
$$

still a second which, conformably to the general discussions, is stable, while $\frac{b \omega_{x}}{\frac{V}{v}}=0$ becomes unstable. Here autorotation would sect in.

Beginning at $\alpha=32^{\circ}$, there are, aside from $\frac{b \omega_{x}}{2}=0$ two more equilibrium positions, of which since the topmost is always stable and the positions alternatingly stable or unstable, the lowest $\frac{b \omega_{x}}{Z} \frac{0}{v}$ is stable again.

At $\alpha=55^{\circ}$ e special position R (see fig. 29) appears, in which one stable and one unstable position of equilibrium coincide.

A comparison with the c_{n} curve plotted against α in Figure 23, discloses:

The $\frac{b \omega_{x}}{2 v}=0$ values relate to stable equilibrium positions so long as $\frac{d c_{n}}{d \alpha}>0$, and to unstable positions when $\frac{d c_{n}}{d \alpha}<0$.
G and H on Figure 31, the points of transition from stability to instability and vice versa, correspond to points G and H on Figure 23 ; that is, to the extreme values of the c_{n} curves with respect to α, for which $\frac{d_{n}}{d \alpha}=0$.

Hence the important conclusion:
The ranges of α for $\frac{b \omega}{Z} \bar{V}=0$, stable or unstable, or in other words, where autorotation about the longitudinal axis would or would not occur, can forthwith be read from the c_{n} curve referable to α. So long as $\frac{d c_{n}}{d \alpha}>0$, the equilibrium position $\frac{b \omega_{x}}{2 v}=0$ is unstable, i.e., autorotation sets in. But, when $\frac{d c_{n}}{d \alpha}>0, \frac{b \omega_{x}}{2 v}=0$ is stable; autorotation cannot sot in.

When we introduce an aileron moment \mathbb{K}_{Q}, constant for any $\frac{b \omega_{x}}{2}$, the abscissa in Figure 29 must be shifted parallel upward or downward, according to whether K_{Q} is negative or positive. In this manner we obtain the new equilibrium positions shown on Figure 31 against α with K_{Q} as parameter.

A positive aileron moment, that is, one which in ordinary flight would turn the airplane still more in a turn, extends the range of autorotation, while a negative moment decreases it.

Figure 32, taken from a British report (reference 8) reveals similar curves for a biplane. Here, however, it was not, as above, a question of equilibrium of aerodynamic moments about the longitudinal axis, but about the path axis.

Figuros 33 and 34 (reforonces 7 and 9), also taken from a British roport, apply to the moment oquilibrium about path axis x, about which the rotation ω_{x} occurrod.

Wing gap, stageer, docalage and ailoron displacenont offect in general a change in mutual intorforence, honco in autorotation.

Incroased wing gap, positivo stagger, top wing ahead, positive decalage and aileron displacenent, which ordinarily would force the airplane out of the curve, are conducive to the diminution of magnitude and range of autorotation.

Efiect of elevator displacement in steep and flat spin:

It is gonerally conceded that any control displacement in a steep spin effects an immediate and powerful disturbance of the prevailing flight attitude, but that all control displacements are obviously ineffoctive in a flat spin. Pushing the control stick forward is the bost means, if any, to rocover from the spin. Those facts agroo vory woll with our calculations.

For tho stoep spin curvos b, d and o in Figure 26, roveal distinctly oxprossed intorsoctions which provail for well-defined control displacoments only; the curves for tho corrosponding control displacements are, moreover, far apart.

In a flat spin the conditions are different. Distinct intersections on the three curves b, d and e are most likely altogethor procludod; the curvos for all control displacoments are very closo together.

So in ordor to prosago the manner, and moro porticularly, tho time intorval durjng which the momontarily prosont flight attitudo is changed, wo mado soveral calculations on unstoady flight. Wo limitod ourselvos to tho effoct of a positive olovator displacement (pushing); onco in a stoop, porfoctly stoady spin, thon in a flat, "approaching steady" spin - (\$ and F on Figuro 26).

We defined the two flights as follows:

	α	μ	τ	φ	∇	ω	number of turns	β_{H}	β_{Q}	β_{S}
Steep spin	17.0	-85.4	0	-67.5	61.8	1.96	3.2	-3	0	0
Flat spin	64.0	-84.2	0	-87.0	28.9	3.32	1.9	0	0	0

We started with the differential equations defining the equilibrium of all forces and moments acting on the airplane; then we introduced an additional elevator moment $M_{H}=+0.0021$, which corresponds to a $\beta_{H}=+10^{\circ}$ elevator displacement at small α. This was used to dism turb the "perfect" as well as the "approaching perfect" position of equilibrium in the stoady and in the flat spin.

Wumerically integrated in $1 / 20$ and $1 / 70$ second intervals, the differential equations revealed the data graphed in Figures 35 to 37 .

In a steep spin a push on the control stick effects an instantaneous and powerful change in flight atifude. The angle of attack, in particular, promptly assumes a normal range, and the rate of rotation ω drops very quickly. (Reference 10.)

In a flat spin the effect of "pushing" is altogether different. The gradual and seemingly periodic change in angle of attack is striking. An equally periodic change in all other variables is bound up with it, so that the airplane, if at all able, would assume another and, above all, normal attitude of flight only very slowly. The fact that pilots who went into a flat spin unintentionally जere able to get out of it again by alternatingly pushing and pulling in the tempo of the ensuing vibrations, seems to bear out our contention.
Conclusion

With the object of further clarifying the problem of spinning, and to supplement and extend the data in Fuchs and Hopf's "Aerodynamik," Chapter. IV (reference 1), the equilibrium of the forces and moments acting on an airplane is discussed in the light of the mast recent test data. Convinced that in a spin the flight. attitude by only small angles of yaw is more or less completely steady, the study is primarily devoted to an investigam tion of steady spin with no side slip. At small α, wholly arbitrary and perfectly steady spins may be forced, dopending on the type of control displacements. But at large α only vory steop and only "approaching steady" spins are possible, no mattor what the control displacoments.

A stoep curve flight for which, in addition, the anglo of attack exceeds even that for maximum lift., is gonerally callod "spin" and we distinguish tho "stoop spin" from the "flat spin" according to whether the anglo of attack is near to that for maximum lift or very large.

From the designer's point: of view, the spinning tendency of an airplane can be materially lowered by:

1) Wing shape: a continuous rise of the c_{n} curve against α valid for each wing cross section parallel to the symmetrical plane. Even if not altogether unavoidable, the c_{n} max should not occur until very high angles of attack have boen reached, and should only be so large that the drop in the c_{n}. curve is as small as possible for high valuos of α.
2) Mass distribution: inertia moment J_{X} about the longitudinal axis and inertia momont J_{y} about the normal axis should bo as nearly alike as possible.
3) Position of tho contor of gravity of the airplanc: should bo extremoly far forward.
4) Correct shape of rear end of fuselage and of vertical tail group: the sides of the fuselage, particularly at the rear end, as well as the area of the vertical tail group should be as large as possible and be exposed to the air stream in all directions.

It is exprossly emphasizod that those exigencies wore set up without regard to any other flight characteristic, and merely from the point of view of prevonting as i ar as possiblo, tho ontry into a spin.

A study of the effect of control displacoments in tho discussod spinning attitudos rovoals that tho stocp spin, in contrast to the flat - and I think most oxhibition flights bolong in this class - can bo rovortod to normal flight in vory short time and is, for that roason, not dangorous.

Roferonces and Bibliography

Roference l. Fuchs and Hopf: Acrodynamik, publishod by R. C. Schmidt \& Co., Borlin W 62, 1922.

Reforence 2. Hopf, L.: Flug und Trudelkurven. Zeitschrift fur Flugtechnik und Motorluftschiffahrt, Vol. 12, p. 273, Sept. 30, 1921.

Reference 3. Reissner, H.: Die Scitensteuerung dor Flugmaschinen. Zeitschrift für Flugtechnik und llotorJuftschiffahrt, Vol. I, pp. 101 and ll\%, May 10 and 28, 1910.

Roforenco 4. Gatos, S. B., and Bryent, L. W.: Tho Spinning of Aeroplanes. British A.R.C. R\&M No. IOOI, 1926.

Reference 5. Glauert, I.: The Investigation of the Spin OI an Aeroplane. British A.C.A. R\&il No. 618, 1919.

Reference 6. Irving, $H_{\text {. B. B B }}$ Batson, A. S., Frazer, R. A., and Gadd, A. G_{\bullet} : Experiments on a ifodel of a Bristol Fighter Aeroplane (1/IOth scale).
Part I: Force and Noment Measurements at Various Angles of Yaw. By تi. 3. Irving and A. S. Batson.
Part II: Lateral Derivatives by the Forced Oscillation llethod. उy R. A. Frazer, A. S. Datson, and A. G. Gadd.
Dritish A.R.C. R\&N No. 932, 1924.

Reference 7．Irving，H．B．，Batson，A．S．，Townend，
H．C．H．，and Kirkup，T．A．：Some Experiments on a Model of a B．A．T．Bantam Aeroplane with Special Reference to Spinning Accidents． Part I：Longitudinal Control and Rolling Experi－ ments．By E．B．Irving and A。 S．Batson． Part II：Experiments on Forces and Moments（In－ cluding Rudder Control）．By H ．C． $\mathrm{H}_{\text {。 }}$ Townend and T．A．Kirkup． British A．R．C．R\＆in No．976， 1925.

Reference 8．Bradfield，F．B．：Lateral Control of Bristol Fighter at Low Speedse Measurement of Rolling and Yaring Moments of Model Wings Duc to Rolling．British A．R．C．R\＆M ITO．787，1921．

Reference 9．Irving，H．B．，and Batson，A。 S．：Prelimi－ nary Note on the Effect of Stagger and Decalage on the Auto－Rotation of a R．A．F． 15 Biplane． British A．R．C．R\＆N No．733，1920．

Torvin－Kroukowsky，B．V．：Tail Spins and Flat Spins． Aviation，July 18，1927．

Translation by J．Vanier， National Advisory Committee for Aeronautics．

Fig. 2

Fig. 3

Fig. 4
Figs.2,3,4 Three view drawing of Junkers A35 model airplane.

Fig. 8 Aerodynamic moment about lateral axis against α
and τ. (Reference 7)

Fig. 7 Cross wind force due to sideslip plotted against α and in

Wing alone

$\frac{z w_{x}}{2 v}=0.3 ; \tau=10^{\circ} ; \beta_{Q}=0^{\circ}$
Fig. 10

Figs.9,10 Aerodynamic moment about longitudinal and normal axis plotted against α and τ, as well as against ω_{x} about path axis and aileron displacement β_{Q}, (Reference 8 and $\frac{x}{4}$).

Fig. 13 Aerodynamic moment about lateral axis against α and against rotation U_{X} about path axis (Reference 7).

Figs.ll,12 Lift and drag against α and rotation u_{x} about path axis (Reference 4).

N.A.C.A. Technical Memorandum No. 630

Fig. 15 Path velocity against α and φ.

Fig. 16 Rate of rotation against α and φ.

Fig. 17 Angle of glide $\varphi_{(\omega}=$ const. $)^{\alpha}$ and $\tan \varphi(w=0)=-c_{a} / c_{W}$ against α and rate of rotation.

Fig. 18 Angle of bank against α and φ.
N.A.C.A. Technical Memorandum No. 630

Fig. 19, 20

Fig. 19 Rate of rotation about the body axes against α and. φ.

Fig. 22 Balance of moments about longitudinal axis. Aerodynamic moment of wing against α and φ.

Fig. 23 Normal and tangential force of wing alone against a.

IT.A.C.A. Technical Momorondun ITO. 630

Figs. 29,30

Fig. 29 Wing momont about longitudinal axis against α and $\frac{b \omega_{x}}{2 v}$.
I_{F}

Fig. 30 Wing moment about nomal axis against α and $\frac{b \omega_{X}}{2 v}$.
N.A.C.A. Technical Memorandum No. 630

Figs.31,32,33,34
Fig. 31 Balance of moments about longitudinal axis for various aileron moments $\frac{b \omega x}{2 v}$ plotted against α.

Fig. 32 Balance of moments about path axis of a wing; $\frac{b \omega_{x}}{2 v}$
plotted against a and β_{Q}.
(Reference 8)

> Fig. 33 Balance of moments about path axis of a biplane; $\frac{\text { bu }}{2 v}$ plotted against a and wing gap. (Reference 7)

a

Hic. 34 Balance of moments about path axis of a biplane; rate of rotation about path axis plotted against α, stagger and docalago. (Reference 9)

Figs. 35,36 Change in flight attitude due to an elevator moment $M_{H}=+0.0021$ (displacement downward) in a not dangerous steep and a dangerous ilat spin for zero aileron, and muder moment. The 5 variables are referable to time.

