TECFNICAL MEMORANDUMS

NATIONAI ADVISORY COMMITTEE FOR ABRONAUTICS

IHIS DOCUMENT ON LOAN FROM THE FLLES OF
MATIOMAL ADVISORY COMMITTEE FOR AERONAUTICS
Lancley aeronautical liborato?y
No. 629
langley field, hat pios, viramia

REQUESTS FOR PUBLICATIONS SHOULD BE ADDRESSED as follows:

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS
1724 I STREET, N.W.,
WASHINGTON 25, D.C.

By Richard Fuchs and Wilhelm Schmidt

Zeitschrift für Flugtechnik und Motorluftschiffahrt
Vol. 21, Nos. 13 and 14, July 14 and 28, 1930
Verlag von R. Oldenbourg, Munchon und Berlin

NATIONAI ADVISORY COMAITREE FOR AEROMAUSICS

TECENICAL IHMORAHDUE TO. 629

THE DANGEROUS FIAT SPIT AND TEE FACTORS AFPBCTING IT* By Richard Fuchs and Wilinelm Schmidt

> 1. Notation
a. Axes

All the axes pass through the center of gravity (C.G.) of the airplane, their positive direction being as indicated by the arrows in $\exists i$ gure 1.

Air zxes (fixed with respect to flight path):
X, path axis tangent to path of C.G. of airplane;
$Z, h o r i z o n t e l ~ a x i s ~ p e r p e n d i c u l a r ~ t o ~ X ; ~$
Y, axis perpendicular to both X and Z.

Body axes (fixed with respect to airplane):
x, fuselage axis (longitudinal axis);
y, strut axis (normal axis);
z, \quad spar axis (lateral axis).

Other_axes:
y_{2}, axis of lift in plane of symmetry perpendicular to X ;
z_{1}, axis perpendicular to X and y_{1};
x_{1}, axis perpendicular to y and z_{1}.

[^0]b) Determination of Path of C.G. of Airplanc

c) Position of Airplane with Respoct to Path

All angular velocities are considered positive, then acting clockniso about the corresponding axis as viewed in the positive direction of the axis.
d) Rotation of Airplane in Space.
$\Omega(1 / s)$, total rotational velocity about an axis fixed in space; also sectorial. sum of rotational velocities $\dot{\omega}, \dot{\varphi}, \dot{\alpha}, \dot{\mu}$ and τ.
$\Omega_{X}=\omega \sin \varphi+\mu-\dot{T} \sin \alpha$
$\Omega_{y_{1}}=\omega \cos \varphi \cos \mu+\dot{\varphi} \sin \mu+\dot{T} \cos \alpha$
$\Omega_{\mathrm{z}_{1}}=-\omega \cos \varphi \sin \mu+\dot{\varphi} \cos \mu+\dot{\alpha}$
$\Omega_{\bar{z}}=[(\omega \cos \varphi \cos \mu+\varphi \sin \mu) \sin \alpha+(\omega \sin \varphi+\dot{\mu}) \cos \alpha]$ $\cos \tau-[-\omega \cos \varphi \sin \mu+\dot{\varphi} \cos \mu+\dot{\alpha}] \sin \tau$
$\Omega_{\mathrm{y}}=\quad f(\omega \cos \varphi \cos \mu+\varphi \sin \mu) \cos \alpha-(\omega \sin \varphi+\dot{\mu}) \sin \alpha$ $+\dot{T}$.
$\Omega_{\mathbb{z}}=[(\omega \cos \varphi \cos \mu+\dot{\varphi} \sin \mu) \sin \alpha+(\omega \sin \varphi+\dot{\mu}) \cos \alpha]$ $\sin T+[-\omega \cos \varphi \sin \mu+\ddot{\varphi} \cos \mu+\dot{\alpha}] \cos$ т.

Components of Ω about the corresponding axes.- All
rotations are positive when acting clockwise about the corresponding axis as viewed in the positive direction of the axis.
$\left.\begin{array}{l}\dot{\Omega}_{x}\left(1 / s^{2}\right. \\ \dot{\Omega}_{y_{1}}\left(1 / s^{2}\right. \\ \dot{\Omega}_{z_{1}}\left(1 / s^{2}\right.\end{array}\right\}\left\{\begin{array}{r}\text { Change of angular velocity, with time } \\ \text { about the corresponding body axis. }\end{array}\right.$

e) Iocal Constants

$g\left(m / s^{2}\right)$, acceleration due to grarity,
$\gamma\left(\mathrm{kg} / \mathrm{m}^{3}\right)$, air density
In this treatise $\frac{\gamma}{5}=\frac{1}{20}$ corresponding to an altitude of about $2300 \mathrm{~m}\left(754: 6 \mathrm{f}^{\dagger} \pm\right.$ 。)
$\underline{q}=\frac{\gamma}{2 g} \mathrm{v}^{2}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$, dynamic prescure,
$q_{H}\left(k_{E} / m^{2}\right)$, dynamic pressure on horizontal empennage,
$q^{\prime}\left(\lg / \mathrm{m}^{2}\right), ~ d y n a m i c ~ p r e s s u r e ~ o n ~ v e r t i c a l ~ e r p e n s e g e . ~$
f) Charactoristics of a Junkers 135 Ion-irg Aonoplane (Figs. 2-4)
$G \quad=\quad$ weight of airplane $=1600 \underline{\text { n }}$
$F=$ wing area $=39.76 \mathrm{~m}^{2}$,
$b=\operatorname{span}=15.94 \mathrm{~m}$,
t. $=$ wing chord (m),
$t_{3}=\quad " \quad " \quad$ in middle $=2.2 m$,
$t_{2}=n \quad "$ at tips $=1.6 \mathrm{a}$,
 0.80 m ,
$h=$ distance of C.G. above 略 $=$ chord $=0.42$ (Fig. 4),
$\begin{aligned} J_{\Sigma}= & \text { inertia noment of airplano about axis } \\ & X=300 \text { nlggs }{ }^{2} \text {, }\end{aligned}$
$J_{y}=$ inertia moment of airplane about axis $y=550$ mlegs ${ }^{2}$,
$\begin{aligned} J_{z}= & \text { inortia norent of airplanc abowt axis } \\ & z=290 \text { alrgs }\end{aligned}$

All coefficients have been ob̈tained by dividing the measured forces in kilograms by $q F$ and the measured moments in mkg by qTit.
c_{a}, lift; positive in positive direction of axis , c_{W}, drag; ". " negative " " . " X, c_{q}, cross-wind force; positive in negative direction of axis z_{1},
$c_{n}=c_{a} \cos \alpha+o_{W}$ sin α, normal force; positive in positive direction of axis y,
$c_{t}=c_{w} \cos \alpha-c_{a} \sin \alpha$, tangential force at zero angle of Jaw; positive in negative direction of axis \quad.

When the ebove coefficients belong to the wing alone, it is indicated by the subscript \vec{F}.
$c_{\text {nit }}$, normal force of horizontal emponnage,
c_{n}^{\prime} ', normal force of vertical empennage,
\mathbb{M}_{I}, aerodynamic moment of whole airplane about axis z,

H_{F},	"	11	1	wing	alone		"	"	z ,
$\stackrel{3}{4}^{\text {H }}$,	"	"	"	hori	ontal	tail	"	"	z

When the subscript 0 is used, it indicates that the ajove moments are about the leading edge of the wingo K_{F}, acrodynamic moment of wing alone about axis x,

E_{K}, gyroscopic moment about spar axis z,

K_{K},	$"$	$"$	$"$	fuselage axis x,
I_{K},	$"$	$"$	$" \quad$ strut axis y.	

All moments are positive when acting counterclockwise about the corresponding axis, as viewed in the positive direction of the axis.
2. Purpose and Scope of this Invostigation

It is znown that the operation of the control surfaces has hardly any effect in a flat spin, so that the airplenc can recovor from it only after a long time and ofton not at all. A flat spin must thoroforc bo considcred oxtroraly dangerous, so long as no vay is known for restoring tho normal offect of the controls.

The article on tho combinca latcral and longitudinal motion of airplanes (reforence l) shows what steady motions can be produced.by a givon anglo of deflection of a control surface. Soveral examples are given of how a spin cen be developed.

The purpose of the present investigation ju first to determine all the conditions ander which a flat spin is: possible; and then to determine the forces which cause a perceptible disturbance of the equilibrium of all the forces and moments existing in a flat spin, especially the forces tending to reduce the angle of attack of the airplane; furthermore to compare the efficacy of the available means and, for certain given cases, to find a way by Which en airplane can be quickly and safely orought out of a dangorous flat spin and restorod to a small angle of attack,"i.co., to normal flight.

A Enowledge of the article mentionod in Roforence 2 , at the end of this paper, is assumed. It is there shown how to calculate, by a comparatively simple method, the values of the variables belonging to a steady spin by starting with the assumption that the angle of yaw and the crossmind force are small and that the lift and drag, as well as the aerodynamic moment about the spar axis. z, are independent of the total rotation. In the course of the following investigation it will be shown that the angle of yaw must be small in a flat spin, thus justifying the above assumption. It will also be shown thet the total rotation is very large and that the lift and drag, as well as the moment about the axis z, can no longor bo regarded as independent of tho total rotation. Nevcrtheless, the results of the investifation in Reference 2 Woro hardly changod, evon for the cose in which consideration vas given to the offect of the totel rotation on the lift, drag and cerodynomic mament. Hence, we must differentiate betweon two kinds of spins. In both linds. tho airplane has a very large angle of glide and falls alnost vertically at an angle of attack exceeding that oi maximum lift. It is spoken of as a.stecp or flat spin, according to mhether tho engle of attack is very large or rolatively smal. Figure 5, token from an Amoricon publicatiom (reforence 3) shows an airplanc in a flat spin.

The acrodynamic forces and moments acting on an airplanc in a flat spin have nover beon detorminod in a Wind tunnol. A mathomatical dotormination of tho acrodynamic forces and moments acting on an airpleno in tho most common caso, even in e side wind and for any total rotation, is not yet possiblo, bocause of the lack of the roquisitc wind-tunnol data. Fortunctcly, it is known that, in a flat spin, the angio of row must bo small and the total rotation consists essentially of a rotation
about the path axis X. For this case a mathematical determination of the acrodynamic forces and moments is possible, provided the lift and drag, as well as the moments about the spar axis z aro first moasurod in a wind tunnel for anglos of attack up to about 90°. Such measurements were made on 2 Junkers A 35 low-wing monoplane. The rosults of the wind-tumel tosts with this airplanc, as well as tho calculatod arodynamic forces and moments acting on the flat-spinning airplane, are givon in Section 3 of the present report. Tho fundament tal equations for balancing all the forces and moments acting on the airplane are also given in the same gection.

The very large angle of attack and angle of glide, as well as the relatively large total rotatiom belonging to a flat spin, depend primarily on the mass distribution and on the vertical empennage and tail end of the fuse-. lage. The importance of the mass distribution for initiating a flat spin is explained in Reference 4, while the effect of the shape of the vortical empennago and fuselage tip is shown in Reforences 1 and 2. In Section 4 we shall find that the position of an airplane entering a flat spin can be quite accurately determined and that the corresponding angle of yaw must be small. The assumption that the angle of yam must be small, which was taken as the basis of all previous investigations, proves therefore to be correct for the flat spin.

The effect of disturbances in a flat spin can be determined mathematically. It has been shown that the fundamental equations can be greatly simplificd and solved in such a way as to indicato which quantities are affected by a change in the angle of attack. It is thus possible to compare these quantitios and to determine which are the most effectivo. This subject will be considerod in Scction 5 .

It will be shown that, in agreement with reality, the control surfaces havo hardly any effect and that there ins practicelly but one way to reduce the angle of attack very much in a flat spin: This is to suddenly increase the upward slope of the curve of the coefficient of the aerodynamic moment about the spar axis. z as plotted against the engle of attack, which is equivalent to a sudden enlargenent of the horizontal emponnago during flight.

The solution of the fundamental equations is obvi-
ously correct only in so iar as the basic assumptions are themselves correct. This is the case. only just after the disturbance of the equilibrium. The effect of a disturbance can jo followed longer only with the aid of a numerical integration. This is done in Section 6 for the caso of the sudden doubling of the horizontal empennage during flight. This is the only way to judge regarding the possibility of rocovory from a flat spin. It will be shown that, While tho angle of attack decroases groatly, tho anglo of yaw increasos considerably, at loast in tho beginning. Therefore the accurato mathomatical detcrmination of all the aerodynamic forces and momonts acting on the airplano becomes impossible, duc to the lack of the requisite wind-tunnel data. Nevertheless. tho approximato calculation of theso forces and moments, as hero made, without rogard to the side rind, may at loast be regarded as giving correct qualitative results, all the more because the airplane, due to the sudden enlargement of the horizontal empennage during flight, tips forward and passes into a vertical dive without rotation or side wind. Hence the results of the calculation are also physically instructive.

Lastly, the questions of especial interest to airplane desieners will be considered in Section 7 . It will be shown, by way of example, now the horizontal cmpennage might bo constructed, so as to enable a sudden enlargoment of i'ts area during flight, i.co, a quick and safe recovery oven from tho hithorto justiy feared flat spin. It will also be shown how the tail end of tho fusolage and tho differont tail surfaces could bo designod so that a flat spin: Fould be impossible.
3. Introduction of the Mathometical Deta Roquired for This Investigation
a) The Airplane Investigated

The investigation was conducted with a Jankers A 35 low-wing monoplane (Figs. 2-4), whose dimensions wore given in Scetion l.f. The incrtia moments verc determined mathematically.

b) Available Tind-Tunnel Data

All the measurements were made in the Gottingen wind tunnel on a rigidly mounted model of the above low-wing. Honoplane, boti on the whole airplane and on the wing aloné. The angle of attack α was varied between . 20° and $+90^{\circ}$. The lateral angle T was rept at 0°. In general the elevator and rudder romained in the neutral position, measurements being made with an elevator displacement β_{H} of $\pm 10^{\circ}$ only at small angles of atteck.

Soasurements were made of the lift and drag and of the moment about the leading edgo of the wing. Tho lift and drag were divided by $q \vec{F}$ and tho leading-edge moment by. qFit , thus obtaining the rospective absoluto or nondimensional coefficients. In Figure 6 the lift and dras, coefficients are plotted against the angle of attack, both for the whole airplane and also for the wing alone. In Tigure 7 the coefficient of the leading-edge moment is plotted against the angle of attack with the elevatar displacement as parameter:
c) Aerodymamic Forces and homents Acting on an Airplane in a Flat Spin

All the forces and moments depend essentially on the angle of attack α, the lateral angle (angle of yaw) T and on the total rotation Ω, whose components about the air axes are represented by the equations:

Path axis X,

$$
\begin{equation*}
\Omega X=\omega \sin \varphi+\dot{\mu}-\dot{\tau} \sin \alpha \tag{1}
\end{equation*}
$$

Iift axis V_{1},

$$
\begin{equation*}
\Omega_{\mathrm{y}_{1}}=\omega \cos \varphi \cos \mu+\dot{\varphi} \sin \mu+\dot{T} \cos \alpha \tag{2}
\end{equation*}
$$

Axis $z_{1}+X$ and y_{1},

$$
\begin{equation*}
\Omega_{z_{2}}=-\omega \cos \varphi \sin \mu+\dot{\varphi} \cos \mu+\dot{a} \tag{3}
\end{equation*}
$$

Any cocuratc detcrmination of the aerodynamic forcos and momonts acting on an airplano oith a sido wind and a givon rotation is genorally impossible, due to the lack of the requisite vind-tunncl data, but.is quite possiblo in a.flet spin.

A "flat spin" is a vory stoop, noarly stoody spiral flight in which tho fusolego is almost horizontal. For such a flight caso the anglo of attack is accordingly $\begin{gathered}\text { an }\end{gathered}$ vory largo and tho anglo of glido is approxinatoly -90°. (Fig. 5.)

Sinco, accoreing to Section 4, tho:anglo of Jav must bo small in a flat spin and con thoreforo exort hardly any influonco on the aorodynonic forces and momonts at tho corrcsponding large angles of attack, and sinco, morem ovor, according to oquations (1) to (3), :trie compononts $\Omega_{y_{1}}$ and $\Omega_{z_{1}}$ of the resultant rotation Ω ore very small in comperison with the component Ωx, all the aerodynomic forcos and moments acting on the airplane dopond chiefly on the anglo of attack α and on the rotation Ω_{X} about the path axis. Thoy can be celculated Then thoy have not becn determined by vind-tinnol tosts.

As mentionod above (3,b) the rosults of tho vindtunncl tosts cover only the coofficionts of lift, drog and loading-odgo monont in toras of tho anglo of attack. The corresponding values arising from the rotation about the path axis, as well as the newly added crossmind force and the momonts about tho fusclago and strut axes (x and y), must bo calculatod.

In a flat spin tho crossmind forco is negligible in comparison $\begin{aligned} & \text { ith tho lift and drag. By crossmind forco }\end{aligned}$ with tho cooificiont c_{q} is neant a force in tho direction of the axis z_{1} porpondicular to the poth axis X and to tho lift axis y_{1}. In a flat spin it is produced chiofly by the fusclage and vorticel omponnage which, duo to the rotation Ω_{X}, aro exposed to a lateral air current.

Assuming the forces acting on the fusclago and vortical omponnage to be combined into a singlo forco and designating tho coofficient of thoir componcnts in the diroction of tho sper axis z by c_{n}^{\prime}, tho corrosponiting: dymenic prossure by q^{\prime} and the corresponding area by: F', we thom have, according to Fisure 8,

$$
c_{q} \approx \frac{F^{\prime}}{F}-q^{\prime} c_{n}^{\prime} \cos T
$$

Since F^{\prime} / \mathbb{F} is clays sam ll and q^{\prime} / g mover axcoods 2, it follows that c_{q} is nogligiblo in comparison with the lift and drag, oven for largo values of $c_{2 i}^{\prime}$ andzoro angle of yaw.

The lift and drat produced by tho othor parts of tho airplane arc hardy affected by tho rotation SX about the path axis. For any given rotation Ω_{X} the corrosponding values of tho ring alone are:

$$
\begin{aligned}
& c_{a_{F}}=\frac{1}{F} \int_{z=-\frac{b}{2}}^{+c_{a_{F}}(\alpha+\Delta c) \cos \Delta \alpha+} \\
& \left.\quad+c_{W_{F}}(\alpha+\Delta \alpha) \sin \Delta \alpha\right]-\frac{1}{\cos } \frac{1}{2}+\alpha
\end{aligned} d z
$$

$$
c_{W}=\int_{z=-\frac{1}{F}}^{+\frac{b}{2}} \int_{W_{B}}(\alpha+\Delta \alpha) \cos \Delta \alpha
$$

$$
\left.-c_{a_{F}}(\alpha+\Delta \alpha) \sin \Delta \alpha\right] \frac{1}{\cos ^{2} \Delta \alpha} t d z
$$

Where $\Delta \alpha=5 ? .3$ arc $\tan \frac{z \Omega_{X}}{\nabla}$. The values $c_{a_{F}}$ and $c_{W_{F}}$, applicable only to the wing at rest, were derived from Figure 6.

In Figure $9, \quad c_{a_{F}}$ and $c_{W_{F}}$ are plotted against α and $\frac{b \Omega_{X}}{2}$. At the large values of $\frac{b \Omega_{X}}{2 \nabla}$ for the flat spin, the corresponding lift and drag coefficients for the stationary wing are considerably altered. (Referfence 5.)

If the coofficionts of inf and drag for the wing alone are subtracted frow the corresponding coefficients for the whole airplane at the same angle of attack (fig. 6) and the resulting values arp added to those plotted in Figure 9, the lift ard drag coefficients are obtained for the thole airplane, as plotted in Figure lo against α and $\frac{b S X}{Z^{-}}$.

A knowledge of tho moments about the spar axis z is necessary for spin invostigations. Thoso moments are therefore determined from the corrosponding moasured moments about the leading edgo of the wing as follows ow

Let $H_{F_{0}}$ be tho coofficiont of tho zorodynamic mon mont about the leading cdgc for the wing alono and H_{0} tho corrosponding cocfficiont for tho whole airplane;: Then $M_{L_{0}}-M_{F_{0}}$ yields the coofficient $H_{H_{0}}$ of tho moment about the leading odge of the wing produced chiofly by the horizontal ompennage.

If wo draw a vertical line from the C.G. of the airplane to the plane of the ving chord and designate the distance of its bottom point from tho leading odge of tho wing and from tho c.pe of the horizontal emponnage by r and l_{H}, respectively, we obtain for tho coofficient M_{H} of the moment about tho spar axis, as produced by the horizontal ompennago,

$$
M_{\mathrm{H}}=\frac{l_{\mathrm{H}}}{\mathrm{r}+\underline{l}_{\mathrm{H}}}\left(M_{\mathrm{L}_{0}}-M_{\mathrm{F}_{0}}\right)
$$

In Figuroll, MH is plottod against tho anglo of attack α 。

The momont about the spar axis z is derivod from the coofficient $M_{F_{0}}$ of the corrosponding momont about the leading edge due to the wing alone by the formula

$$
u_{F}=M_{F_{0}}-\frac{r}{t_{1}} c_{n_{F}}+\frac{h}{t_{1}} c_{t_{F}}
$$

h being the vertical distance from the C.G. of the airplane to the plane of the wing chord and $c_{n_{F}}$ and $c_{t_{F}}$ the respective coefficients of the normal and tangentiel
 cients arc plotted against tho angle of attack.

The addition of M_{T} and \mathbb{H}_{E} yiolds the coofficient \mathbb{M}_{I} of the acrodynamic moment about the spar axis for the Whole airplane. Thesc coofficients are plotted against the angle of attack in Figure Il. So long as the distance r is approximately $0.36 t_{1}$, as for the airplano investigated, the moment about the sper axis produced by
the wing alone is small in comparison with the corrosponding moment of the horizontal empennage at the largo angles of attack belonging to the flat spin.

- At Inrge angles of attack of the flat spin, the moment producod by the wing alone about tho spar axis. z, aue to a rotation Ω_{X} about the path axis X, is hardly changed.

Designating tho coofficient of the normel component of the total aorodynanic forco acting on the horizontal onponnago by $c_{n_{H}}$, the correspondine dynanic prossure by q_{E}, the area of tho horizontal emponnase by F_{H} and tho distance betweon the c.p. of the aorodynanic force and the spar axis by l_{H}, tho coofficiont. M_{H} of tho monent about the sper axis, duo to tho horizontal empennage, be conos

$$
\begin{equation*}
u_{H}=\frac{c_{n_{E}} q_{H} F_{H} l_{H}}{q t_{1}} \tag{4}
\end{equation*}
$$

The coefficient c_{n} is hardly affocted, even by the large rotations about the path oxis occurring in a flat spin, so that M_{H} depends chiefly on the dynamic prossure q_{H}, for which we have the formula

$$
q_{H}=q\left[1+\frac{4 l_{H}^{2} \sin ^{2} \alpha}{b^{2}}\left(\frac{b}{2} \frac{\Omega_{X}}{r}\right)^{2}\right]
$$

Accordingly the moment about the spar axis for any rotam tion Ω_{X} about the path axis becomes

$$
M_{H}\left[1+\frac{4 l_{H}^{2} \sin ^{2} \alpha}{b^{2}}\left(\frac{b \Omega X}{2}\right)^{2}\right]
$$

The addition of the coefficient M_{F} of the moment about the spar axis due to the wing alone yields the coefinciont of the movent about the sper aris due to the mhole airplane. The lattor is plottod asainst α and $\frac{b x}{2 v}$ in Figure 13. At the largo valuos of α and $\frac{b \Omega x}{Z}$ for ${ }^{2}$ a flat spin, the moment about the spar axis for the stationary nodel is considerebly changed.

For a rotation $S x$ about the poth axis, the wing alone produces monents about the fuselage and strut axes,

Whose respective coofficionts K_{F} and I_{F} can be calculated as follows:

$$
\begin{aligned}
& +\frac{b}{2} \\
& \begin{array}{c}
K_{F}=\frac{1}{F} \frac{\int_{1}}{t_{1}=-\frac{b}{2}} \quad c_{n_{F}}(\alpha+\Delta \alpha)-\frac{1}{\cos ^{2}}-\Delta \alpha \quad t \quad z d z
\end{array} \\
& I_{F}=\frac{1}{F t_{1}} \int_{z=-\frac{b}{2}}^{+\frac{b}{2}} c_{t_{B}}(\alpha+\Delta \alpha) \frac{-1}{\cos ^{2} \Delta \alpha} t z d z
\end{aligned}
$$

Where $\Delta \alpha=\arctan \frac{z \Omega_{X}}{V}$. The respective coefficients $c_{n_{F}}$ and $c_{t_{F}}$ of tho normal and tangential forces for tho wing alone arc taken from Figure le. In Figures 14 and $15 \mathrm{~K}_{\mathrm{F}}$ and I_{F} are plotted against and $\frac{b \Omega x}{2}, \quad$ rospoctivoly.

In addition to the above moment about the strut axis y produced by the wing alone, duo to the rotation Ωx, there is another very important moment about the same axis, produced principally by the vortical emponnago and the tail end of the fusclage, whoso coefficient is designmated by I^{\prime}.

If we imagine all the forces acting on the vertical empennage and tho tail cod of the fuselage combined into a single forgo and denote tho coofficiont of the component acting in tho direction of the spar axis z by c_{n} ', the corresponding dynamic pressure by q^{\prime}, the offective area of the vortical omponago and fuselage end by $F^{\prime \prime}$ and the distance between tho strut axis y and the cap. of tho aerodynamic force by $?_{i}$ wo then have

$$
\begin{equation*}
I^{\prime}{ }^{\prime}=\frac{\varepsilon_{n}^{\prime} q^{\prime} \underline{F}^{\prime \prime} i^{\prime}}{q_{1}} \tag{5}
\end{equation*}
$$

On the airplane in question the greater part of tho vortical empennego lies above the fuselage and the horizontal empennage. When tho anglo of attack is small, the whole area of the vertical empennage is exposed to tho air flow. In 0 flat spin, however, the angle of attack is very large, so that almost all the vertical ompennago above the fuselage and the horizontal empennage

16 H.A.C.A. Technical Meraorantum Na. 629°
is blankoted. (Fig. 16.) Heace the cffoctive arca F" is considorably smallor in a ilat spin thon in normal flight and has approximatoly the following valuc:

$$
\begin{equation*}
F^{\prime \prime}=\boldsymbol{N}^{i}-C \sin \alpha \tag{6}
\end{equation*}
$$

in which C is tho blanketod portion at $\alpha=90^{\circ}$.
The cooficient c_{n}^{\prime} dopends principally on the angle α^{\prime}, at which tho offectivo arca: Fll is struck by tho air flow. In the absence of exporimental data, wo ore using the normal-forco coofficiont as plottod against α in Figure 17.

The dynamic prossuro q^{\prime} is roprosontod by tho formula

$$
q^{\prime}=q \cdot\left[1+\frac{4 i^{\prime 2} \sin ^{2} \alpha}{b^{2}}\left(\frac{b \Omega x}{2}\right)^{2}\right]
$$

Consoquently the coofficiont I' of tho moment about tho strut axis y, principally producod by tho vortical omponnego and the tail end of tho fusclago duo to a rotation Ω_{X} about tho path axis, bocomes

$$
I^{\prime}=\frac{\left(F^{\prime}-\sigma \sin \alpha\right) i^{\prime}}{F t_{1}}\left[1+\frac{4 l^{\prime 2} \sin ^{2} \alpha}{b^{2}}\left(\frac{b \Omega X}{2}\right)^{2}\right] c_{n}^{\prime}
$$

The coofficiont c_{n}^{\prime} deponds on tho anglo x^{\prime}, as ropresented by the formula

$$
\alpha^{\prime}=\arctan \frac{2 q^{\prime} b}{b} \frac{\Omega x}{2} \sin \alpha
$$

In Figuro 18, I^{\prime} is plotted gainst tho anglo of attack α rith the parometer $\frac{b \Omega X}{2}$.
d) Fundamental. Bquations

Equilibriun of the forcos in tho diroction of the air cxos:
Path axis X,

$$
\begin{equation*}
\frac{G}{\tilde{G}} \dot{V}=-G \sin \varphi+S \cos T \cos \alpha-c_{W} q F \tag{7}
\end{equation*}
$$

Iift aris y_{1},

$$
\begin{align*}
0= & \frac{G}{g} v(\omega \cos \varphi \sin \mu-\varphi \cos \mu) \\
& -G \cos \varphi \cos \mu+\operatorname{sic} \cos \sin \alpha+c_{a} q F \tag{8}
\end{align*}
$$

Axis $z_{1}+X$ and y_{1},

$$
\begin{align*}
0=\frac{G}{G} v & (\omega \cos \varphi \cos \mu+\dot{\varphi} \sin \mu)+ \\
& +G \cos \varphi \sin \mu-S \sin T-c_{q} q T \tag{9}
\end{align*}
$$

Equilibrium of the moments about the body axes:
Fuselage axis x,

$$
\begin{equation*}
J_{z} \dot{\Omega}_{x}-\left(J_{y}-J_{z}\right) \Omega_{y} \Omega_{z}=-K_{L} \tag{10}
\end{equation*}
$$

Strut axis y,

$$
\begin{equation*}
J_{y} \dot{\Omega}_{y}-\left(J_{z}-J_{x}\right) \Omega_{z} \Omega_{x}=-I_{\underline{Y}} \tag{11}
\end{equation*}
$$

Spar axis z,

$$
\begin{equation*}
J_{z} \cdot \Omega_{z}-\left(J_{x}-J_{y}\right) \Omega_{x} \Omega_{y}=-M_{I} \tag{12}
\end{equation*}
$$

The rotational velocities $\left(\Omega_{x}, \Omega_{y}\right.$ and $\left.\Omega_{z}\right)$ about the body axes are defined as follows:
$\Omega_{x}=[(\omega \cos \varphi \cos \mu+\dot{\varphi} \sin \mu) \sin \alpha+(\omega \sin \varphi+\dot{\mu}) \cos \alpha] \cos t$

$$
\begin{equation*}
-[-\omega \cos \varphi \sin \mu+\dot{\varphi} \cos \mu+\dot{\alpha}] \sin T . \tag{13}
\end{equation*}
$$

$\Omega_{\mathrm{y}}=(\omega \cos \varphi \cos \mu+\dot{\varphi} \sin \mu) \cos \alpha-(\omega \sin \varphi+\dot{\mu}) \sin \alpha+\dot{T}$
$\Omega_{z}=[(\omega \cos \varphi \cos \mu+\dot{\phi} \sin \mu) \sin \alpha+(\omega \sin \varphi+\dot{\mu}) \cos \alpha] \sin T$

$$
\begin{equation*}
+[-\omega \cos \varphi \sin \mu+\ddot{\varphi} \cos \mu+\dot{\alpha}] \cos \pi \tag{15}
\end{equation*}
$$

On tie assumption that the propeller tinust S is zero, equations (7) to (15) may better be writton as
follows：

$$
\begin{align*}
& \dot{\alpha}=-\Omega_{\mathrm{X}} \sin T+\Omega_{\mathrm{z}} \cos T+g \frac{\cos \mu_{\nabla} \cos \Phi}{\cos }-\frac{\gamma_{F}}{2 G} v c_{\dot{\alpha}} \\
& \dot{\mu}=\frac{\Omega_{x} \cos \tau+\Omega_{z} \sin \tau}{\cos \alpha}+g \frac{\tan \alpha \sin \mu \cos \varphi}{v} \\
& +\frac{\gamma F}{2 G} \nabla\left[c_{2} \sin \mu \tan \varphi-c_{q}(\cos \mu \tan \varphi+\tan \alpha)\right] \\
& \dot{T}=\left(\Omega_{x} \cos T+\Omega_{z} \sin \tau\right) \tan \alpha+ \\
& +\Omega_{y}+g \frac{\sin \mu \cos \varphi}{\because \cos } \frac{\gamma}{\alpha G} \frac{\nabla}{\cos } \frac{c_{q}}{\alpha} \\
& \dot{\varphi}=-g \frac{\cos \varphi}{V}+\frac{\gamma F}{2 G} v\left(c_{a} \cos \mu+c_{q} \sin \mu\right) \tag{19}\\
& \dot{\nabla}=-\xi \sin \varphi-\frac{\gamma F}{2 G} C_{W} V^{2} \tag{20}\\
& \omega=-\frac{\gamma F}{2 G} \frac{\nabla}{\cos \varphi}\left(c_{a} \sin \mu-c_{q} \cos \mu\right) \tag{21}
\end{align*}
$$

$$
\begin{align*}
& \dot{\Omega}_{Y}=-\frac{\gamma F}{2 g} \frac{t_{1}}{J_{Y}} v^{2} \mathbb{I}_{I}+\frac{J_{z}-J_{X}}{J_{Y}} \Omega_{z} \Omega_{X} \tag{23}\\
& \dot{\Omega}_{z}=-\frac{\gamma F}{2} \frac{t_{I}}{J_{z}} \nabla^{2} M_{I}+\frac{J_{z}-J_{Y}}{J_{z}} \Omega_{X} \Omega_{y} \tag{24}
\end{align*}
$$

4．Equilibrium Conditions of al at Spin
a）Equilibrium of the Forces

For tho case $⿴ 囗 十 ⺝ 丶 e^{2}$ the propeller thrust S and the coefficient of tho crosswind force c_{g} ，as well as all their dorivativos，vanish，tho fundamental equations （7）to（9）show that：

$$
\begin{align*}
\nabla & =\sqrt{-\frac{G 2 g}{F \gamma} \frac{\sin Q}{c_{W}}} \tag{25}\\
\omega & =\sqrt{\frac{F^{2} \gamma^{2}}{4 G^{2}} \frac{c_{a}^{2} \nabla^{2}}{\cos ^{2} \varphi}-\frac{g^{2}}{v^{2}}} \tag{26}\\
\mu & =-57.3 \text { arc } \tan \frac{\nabla \omega}{g} . \tag{27}
\end{align*}
$$

In these equations c_{a} and c_{w} are the respective coefm ficients of lift and drag for the whole airplane. These coefficients are nearly independent of the anglo of yar at the large angles of attack prevailing in a flat spin. On tho other hand, according to Section 3, c, they are largely dependent on the total rotation Ω, which, in a flat spim, consists ossontially of the rotation. Ω_{X} about the path axis. This dependence is shown in Figure 10. Taking c_{a} and c_{W} from Figuro 10 , $\frac{b}{2} \frac{\pi}{\nabla}$ can bo calculated by equations (25) and (26) for any givon cnglo of attack and anglo of glide. In Figuro l9, $\frac{B \Omega}{2}-\frac{X}{V}$ is plottod against the angle of attack α with the angle of glide φ as parameter. It is obvious that the value corresponding to any given anglo of glido is noarly constant for the angles of attack in a flat spin, so that the coofficionts c_{a} and. c_{v} for thesc angles of attack, corrospondiag to a constant value $\frac{b}{2} \frac{\pi}{v}$, can bo taken from Figurc 10. It is obvious that, x or tho airplano investigated, $\frac{b}{2} \frac{\mathrm{~V}}{\nabla}$ connot excecd a maximum value of about 1.5 corresponding to an angle of glide φ of about -87°. On the basis of these values, ∇, ω and μ aro calculated by equations (25) and (27) and likeviso plottod in Figure a 19.

At tho angles of attack and glido in a flat spin me, have the following results according to Figure 19:

The path velocity v varies but little with the angle of attack, being about. $25 \mathrm{~m} / \mathrm{s}(32 \mathrm{ft} . / \mathrm{sec}$.$) for the$ airplane investigated.

The rotational velocity ω diminishes with increasing angle of attack. For example, at an angle of attack
of 60° and an angle of glide of $-8 \dot{\gamma}^{\circ}, \omega$ has a value of about 5, that is, the airplane requires about 1.3 seconds for a complete revolution about the vertical axis. The angle of bank μ is about -85°.

b) Equilibrium of the Moments

The balancing of the moments about the strut axis y is expressed according to equation (11) by

$$
\left.J_{z}-J_{x}\right) \Omega_{z} \Omega_{x}=I
$$

the negetive gyroscopic moment \boldsymbol{I}_{K} being equal to the aerodynamic moment. I_{I}.

It is obvious that the factor $J_{z}-J_{X}$ is so small for airplanes of the ordinary type that no considerable gyroscopic moment can develop about the strut axis. Hence the balancing of the moments about the strut axis is restricted to the aerodynamic moments alone. These consist essentially of the moments produced by the wing alonc and, above all, by the vertical empennage and the end of the fusolage, so that

$$
I_{I}=I_{F}+I^{\prime} .
$$

can be mritten for tho aerodynamic moment about the strut axis.

The moments about the strut axis are therefore balanced. When. $I_{I}=0$, that is, when $I_{F}=-I^{\prime}$. The moment produced by the wing alone, which accelerate the existing rotation, must therefore at least equal the damping moment due to the vertical empennage and the tail end of the fuselage. Both moments are nearly independent of the anglo of yaw. Honco the latter has hardly any offoct in the balancing of the moments about the strut axis. An accurate detormination of both moments is theroforo difficult.. It may still be maintained that the damping moment produced by the fuselage tip and the vertical om-
 while the moment, which is produced by the ming alone and \#hich accelerates tho oxisting rotation, is noarly inde-
pendent of $\frac{b \Omega}{2} \frac{\lambda}{\nabla}$ and remoins small. For tho investigated airplano, according to Figurcs 15 and 13 , a comparison of thesc tio moments is possible only when $\frac{b}{2} \frac{\Omega}{V}$ is not grector than about $1.5^{\circ}-i .0$., whon the angle of glide is not groator thar about $-87 \%^{\circ}$. Henco the maximum value of $\frac{b \Omega x}{V}$, and consequestly of φ, is determined by tho balancing of tho monents about tho strut axis.

Tho moments about tho fusolage axis are balanced ac-: cording to cquation (10)

$$
\left(J_{y}-J_{z}\right) \Omega_{y} \Omega_{z}=\mathbb{K}
$$

tho nogative gyroscopic monent $-K_{K}$ boing equal to the aorodynanic moment K_{L}. The nondinonsional coefficients K_{I} and $-K_{K}$ are obtainod through division by qFt ${ }_{1}$ and the introduction of equations (14) and (15). Tho aerodynamic momont consists ossentially of the wing moment, so that we may put $K_{I}=K_{F}$. I_{t} is nearly independent of the angle of yar and can be taken from Figure l4, corresponding to an anglc of glido $\varphi=-87^{\circ}$, i.c., to a valuc of about 1.5 for $\frac{b S \pi}{2}$. In $\begin{aligned} & \\ & \text { ingure } 20, ~ K_{L} \\ & \text { and } K_{K}\end{aligned}$ are plotted against tho anglo of attack, vith the angle of yar. T as parametor, for a eliding anclo of -8 7°. It follows the.t tho gyroscopic moment about the. fuselage axis: is Eroatly affectedty the anglo of yow. Evon at an angle of y an of $\pm 20^{\circ}$, any balancing of the moments about the fusclage axis is no longor possiblo at tho angles of atteck prevailing in a flat spin.

The monents about the spar axis z aro balanced according to equation (12)

$$
\left(J_{x}-J_{y}\right) \Omega_{x} \cdot \Omega_{y}=U
$$

the negative gyroscopic moment $-\mathrm{lh}_{\mathrm{K}}$ being equal to the aerodynamic moment $M_{工}$. The nondimensional coefficients M_{I} and H_{K} are obtainedtiarough division by qFt H_{1} and the introduction of equations (13) and (14). The aerodynamic moment is nearly independent of the angle of yaw. In Figure 21, $M_{\text {I }}$ and $-H_{R}$ are plotted against the angle of attack mith the angle of y aw i as parameter, the gliding φ boing - 87°. It is found that tho angle of yaw has hardly any offoct on the balancing of the moments
about the spar axis, so long as it is Ioss than about $\pm 20^{\circ}$, the angle of e.thack being about 60°.

In summarizing, it may be said: thet tho maximum value of $\frac{b S x}{2}$ and the corresponding angle of glide $\dot{\square}$ are determinod by balancing tino monents about the strut axis y; that ony balancing of the noments about the fusolage axis x is possiblo only at smell angles of yow τ; lastly, that the anglo of attack a is determined by bolancing the moments about the spar axis z. Howevor, when the angle of glide Q, tho lateral angle (angle of yarl) τ, the angle of attack α and the valuo of $\frac{b \Omega X}{\bar{V}}$ are known, the volocity v, the rotation ω and the angie of bank μ can bo calculatod. Thus tho fundamontal oquilibrium conditions of a flat spin are fully dotormined.
5. Effoct of Disturbancos in a Frat Spin
a) Simplification of the Fundamental Equations

On the assumption that the ongine is stopped, the suitably alterod fundamontal equations (16) to (20) can be still furthor simplifiod for flat spins, as follows.

If the initial stato of cquilibrium of a flat spin be disturbed, a numerical integration. (Section 6) shows that the path velocity ∇ changes but little at first, so that ∇ may bo considered constant. In a flet spin a balancing of all the forces and moments acting on the airplane is possiblo, according to Soction 4, only then the angle of yar T is small. In the folloring investigation of the initial position of oquilibrium, it is assumed that T_{0} is so small that sin ${ }^{\top} 0$ is approximatoly zoro and $\cos \tau_{0}$ is approxi rately 1.

Accozding to Section 3, c the aorodynaic forces and moments actine on an airplanc in a flat spin depend not only on tho angle of attack but also on the totil rotation Ω, which consists ossentially of the rotation Ω_{x} about tho path axis. If this initicil position of oquilibrium is disturbed, the nuricrical integration shors (fig. 24) that the only important offoct at first is o chenge in the rotation Ω_{z} about the spar axis, while the components of the total rotation ronein noarly con-
stant. The cross-wind force (Soction 3, c) is negligibly small in comparison $\begin{aligned} & \text { mith the lift and drog, so that its }\end{aligned}$ coefficiont c_{q} may be considered zero.

The lift is producod principally by the wing and is hardly affectod by the accompanying rotation Ω_{z}. It accordingly depends almost ontiroly on the angle of attack α and on the rotation Ωx aoout the path axis and can be takon from Figure 10 to corrospond to a given rotation Ω_{X}, that is, to a given value of $\frac{b \Omega_{X}}{2} V_{i}$ constant v. The curve of the lift coofficient $c_{\text {a }}$, as plotted against the angle of attack α. With $\frac{b \Omega X}{2}$ as parameter, can, according to Figure lo, be rogardad. as a straight lino for tho angles of attack in question, so that wo can put $c_{a}=m_{1} \alpha+n_{1}$. No assumptions nocd to bo mado regarding the drag coefficient c_{W}.

The moment about the spar axis is affocted by the accompanying rotation Ω_{z} in so far as on additional moment is producod, mainly by tho horizontal ompennage, which tonds to damp tho. rotation Ω_{z}. This additional damping moment of tho horizontal omponinge is duc mainly to a change in the anglo α_{H} cousod by the rotation Ω_{z}. On the othor hand tho accompanying dynamic pressurcean at first be regardad as constant, bocauso Ω_{z} is then small. Tho coofficicnt of this additional horizontalcmpennage momont car accordingly bo writton $\frac{d}{d} \frac{\alpha_{i}}{\alpha_{H}} \alpha_{E}$, in which

$$
\Delta \alpha_{\mathbb{H}}=\arctan \frac{l_{\mathbb{H}} \Omega_{\mathrm{z}}}{\mathrm{~V}} \approx \frac{l_{H}}{V} \Omega_{z}
$$

Since, according to Figuro ll, tho $\begin{aligned} & \text { ing noment is nocrly }\end{aligned}$ constant at the largo angles of attack provailing in a flat spin, we can put

$$
\frac{d}{d} \frac{M_{H}}{\alpha_{H}} \approx \frac{d}{d} M_{I H} .
$$

Tho curvo of the coofficiont M_{L} of the total moment about the spar axis, as plotted arainst the anglo of attack α with the parameter $\frac{b \Omega x}{2}$, can, according to Figuro 13, be regarddd as a straight lino $M_{I}=m_{2} \alpha+n_{2}$ for the anclos of attack in question, so that
 inence

$$
M_{I}=n_{2} \alpha+n_{2}+\frac{l_{H}}{\nabla} m_{2} \Omega_{Z}
$$

The moment about the fusclage axis is hardly affoctod by tho operation of tho ailerons at the large angiles of attack pyovailing in a flat spin. If any change in tho shope of the $\begin{aligned} & \text { ing durinf fliflnt bo disrocerdod (which }\end{aligned}$ चill bo shown to havo hardiy any offoct on the alteration of the anfle of attack), tho mowent about tho fusolago axis is matorially affcctod only by the ongle of attack and by the rotation about tho path axis. Tho curve of tho corrosponding cocfificiont in terms of tho ancle of attack can, according to Figuro 14, bo reprosontod by a straight lino $K_{I}=m_{3} \alpha+n_{3}$ for the paranoter $\frac{b \Omega X}{2}$ belonging to a flat spin.

T The airplane monont I_{I} about the strut axis consists essentially of the moment I_{F} produced by the wing and the moment I^{\prime} produced by the tail end of the fuselego and tho vertical emponnage, as exprossod by the equation $I_{I}=I_{\mathbb{T}}+I^{\prime}$. The moment I_{F} produced by the wing. alono may bo rogardod as constant at írst.

The cocfficiont of tho momont I^{\prime} produced by the fusclage ond and the vortical ompennage is ropresentod, according to equation (5), by tho formula

$$
I^{\prime}=\frac{c_{n}{ }^{2} q^{\prime} F^{\prime \prime} Z^{i}}{q}
$$

in which, according to equation (6): $F^{\prime \prime}=F^{1}-C \sin \alpha$ con bo put for tho ofioctivo aroe of tho fusolage end and vortical omponnago. In a ilat spin tho total rotation consists cssontially of e rotation ΩX about tio path exis, \#hich, at the largo anglos of attack, nearly equals the rotation Ω_{y} about the strut axis. The dynamic pressure q^{\prime} may bo regardod as constant at first and bo calculatod as follows:

$$
q^{r}=q\left[1+\left(\frac{l^{\prime} \Omega^{y_{0}}}{\nabla}\right)^{2}\right]
$$

On the contrary, the angle α^{\prime}, at which the fuseloge end and the vertical empennage arc struck by tho air flow, and tho coefficient c_{n} ' of tho corresponding normal force are quito sensitive to any chongo in the rom tation. Ω_{y}.

$$
\alpha^{\prime}=57.3 \text { arc } \tan \frac{\frac{l}{}^{\prime}}{v} \Omega_{y} \approx 57.3 \frac{l^{\prime}}{v} \Omega_{y}
$$

In Figure 17 the coofficiont c_{n}^{\prime} is plottod against a^{\prime} or (Which amounts to nearly the same thing) against 57.3 $\frac{l^{\prime}}{v} \Omega_{y}$. This curve can be represented by a straight line, as follows:

$$
c_{n}^{\prime}=m_{4}^{\prime} \alpha^{\prime}=m_{4} \Omega_{y}
$$

in which m_{4} approximates $57.3 \frac{l^{\prime}}{V^{\prime}} \dot{m}_{4}^{\prime}$. Hence the coedficient of the total moment about the strut axis.becomes

$$
I_{L}=I_{F}+\left[I+\left(\frac{l^{\prime} \Omega y_{0}}{V}\right)^{2}\right] \frac{F^{\prime \prime} z^{\prime}}{F} t_{1} m_{\&} \Omega y
$$

Hence I_{I} depondsprincipally on the rotation Ω_{y} about the strut axis.

Of the fundamental equations (16) to (24), sorving for the determination of the nine variables.

$$
\alpha, \mu, \tau ; v, \varphi, \omega ; \Omega x, \Omega_{y} \text { and } \Omega_{z}
$$

equation (20) docs not need to be considered, because of the assumption that the path volocity ∇ is constant at first, \quad which leaves only eight differential equations to bo integrated. By simplifying these. on tho basis of the above assumptions, by developing the terms from the products of several variables into a Taylor series, only the first terms of which are considered and, lastly, by neglecting the terns which are small in comparison with the others, $\begin{gathered}\text { o } \\ \text { obtained tho following eight differential }\end{gathered}$ equations of tho first order:

$$
\begin{align*}
& \dot{\alpha}=a_{1} \alpha+b_{1} T+c_{1} \Omega_{z} \quad+f_{1} \tag{28}\\
& \dot{T}=a_{2} \alpha \quad d_{2} \Omega_{x}+\theta_{2} \Omega_{y}+f_{2} \tag{29}\\
& \dot{\Omega}_{Z}=a_{3} \alpha \quad+c_{3} \Omega_{Z}+d_{3} \Omega_{x}+e_{3} \Omega_{Y}+f_{3} \tag{30}\\
& \dot{\Omega}_{x}=a_{4} \alpha \quad+c_{4} \Omega_{z} \quad+e_{4} \Omega_{y}+f_{4} \tag{31}\\
& \dot{\Omega}_{y}=\quad: \quad \cdots \quad \theta_{5} \Omega_{y}+f_{5} \tag{32}\\
& \mu=a_{6} \alpha+b_{6} T+c_{6} \Omega_{z}+d_{6} \Omega_{X} \quad+f_{6}+g_{6} \mu+h_{6} \varphi \tag{33}\\
& \dot{\varphi}=a_{7} \alpha \quad+f_{7}+g_{7} \mu+h_{7} \varphi \tag{34}\\
& \omega=\text { as }^{\alpha} \quad \ldots f_{8}+\mathrm{g}_{8} \mu+\mathrm{he}_{8} \varphi \tag{35}
\end{align*}
$$

Equations (28) to (32) no ionger contain the quantities μ, φ and ω; so that a separation of the variables is possible, and equations (33) to (35) no longer need to be considered in calculating the ospecially important change in tho anglo of attack α.

The coofficionts in equations (28) to (32) have tho following valuos:

$$
\begin{aligned}
& a_{1}=-\frac{\gamma}{2} \mathbb{F}_{G}^{V} \operatorname{ma}_{0} \\
& b_{1}=-\Omega x_{0} \\
& c_{1}=1 \\
& f_{1}=-\frac{\gamma}{2} \underset{G}{\underline{V}} n_{1_{0}} \\
& a_{2}=\frac{\Omega_{x_{0}}}{\cos ^{2} \alpha_{0}} \\
& d_{2}=\tan \alpha_{0} \\
& o_{2}=1 \\
& f_{2}=-\frac{\Omega_{x_{0}} \alpha_{0}}{\cos ^{2} \alpha_{0}} \\
& a_{3}=-\frac{\eta V^{2} E t_{1}}{z J_{z}} m_{0}
\end{aligned}
$$

$$
\begin{aligned}
& c_{3}=-\frac{\gamma E t_{1} l_{\mathrm{K}} v}{\varepsilon J_{z}} m_{z_{0}} \\
& \mathrm{~d}_{3}=\frac{\mathrm{J} \mathrm{X}}{-\mathrm{J}_{\mathrm{Z}}} \mathrm{~J}_{V} \Omega_{\mathrm{Y}_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& f_{3}=-\frac{\gamma}{2} \frac{v^{2} H^{1} t_{1}}{J_{Z}} n_{z_{0}}-\frac{J_{x}-J_{Y}}{J_{Z}} \Omega_{X_{0}} \Omega_{x_{0}} \\
& a \leq=-\frac{\gamma}{2} \frac{v^{2}}{G} \frac{t_{1}}{J_{X}} m_{3_{0}} \\
& c_{G}=\frac{J_{Y}-J_{Z}}{J_{X}} \Omega_{y_{0}} \\
& e_{G}=\frac{J_{X}-\frac{J_{Z}}{J_{X}} \Omega_{Z_{O}} .}{} \\
& f_{4}=-\frac{J_{y}-J_{z}}{J_{X}} \Omega_{y_{0}} \Omega_{z_{0}}-\frac{\gamma v^{2}}{2}-\frac{F}{J_{\Sigma}} n_{3_{0}} \\
& e_{\mathrm{B}}=-\frac{\gamma F^{\prime \prime} l^{\prime} V^{2}}{2} \frac{J_{y}}{J_{y}}\left[1+\left(\frac{l^{\prime} \Omega_{y_{0}}}{\nabla}\right)^{2}\right] m_{4_{0}} \\
& f_{5}=-\frac{\gamma}{2} \frac{\mathrm{~F} \mathrm{t}_{1}}{\mathrm{~g}} \mathrm{~J}_{\mathrm{y}} \mathrm{~V}^{2} \mathrm{I}_{\mathrm{F}_{0}} .
\end{aligned}
$$

b) Solution of the Fundamental Equations

From equations (28) to (32) we can derive an equation of the following form:
$\ddot{\alpha}-a_{1} \alpha-\left(a_{2} b_{1}+a_{3} c_{1}\right) \alpha-\left(b_{1} d_{2}+c_{1} d_{3}\right) \Omega_{x}-\left(b_{1} e_{2}+c_{1} \Omega_{3}\right) \Omega_{y}$

$$
\begin{equation*}
-c_{1} c_{3} \Omega_{2}-\left(b_{1} f_{2}+c_{1} f_{3}\right)=0 \tag{37}
\end{equation*}
$$

in which

$$
\begin{gathered}
a_{1}=-\frac{\gamma}{2} \frac{F}{G} m_{1_{0}} \approx-0.1 \\
a_{2} b_{1}+a_{3} c_{1} \approx-\omega_{0}^{2}-\frac{\gamma}{2} \frac{v^{2}}{g} \frac{F t_{1}}{J_{2}} m_{2_{0}} \approx-18.5
\end{gathered}
$$

$b_{1} d_{2}+c_{1} d_{3} \approx-\omega_{0} \sin \varphi_{0} \sin \alpha_{0}\left(1+\frac{J_{X}-J y}{J_{z}}\right) \approx+0.3$
$b_{1} e_{2}+c_{1} e_{3} \underset{\sim}{\sim}-\omega_{0} \sin \varphi_{0} \cos \alpha_{0}\left(1-\frac{J_{X}-J y}{J_{z}}\right) \approx+3.2$

$$
c_{1} \quad c_{3}=-\frac{\gamma F t_{2}}{=} \frac{l_{H}}{J_{z}} m_{z_{0}} \approx+1.4
$$

$b_{1} f_{2}+c_{1} f_{3} \approx \omega_{0}^{2} \sin ^{2} \varphi_{0}\left(\alpha_{0}+\frac{J}{2} \frac{J^{-}-J}{J_{z}} \sin 2 \alpha_{0}\right)-$

$$
-\frac{\gamma}{2}-\frac{V^{2}}{g}-\frac{F}{J_{z}} t_{1} \quad n_{z_{0}} \quad \approx+8.9
$$

so that equation (37) may be expressed numerically as follows:
$\ddot{\alpha}+0.1 \ddot{\alpha}+18.5 \alpha-0.3 \Omega_{x}-3.2 \Omega_{y}-1.4 \Omega_{z}-8.9=0$
With $\Omega_{z_{0}} \approx-1.7$ and $\Omega_{z_{0}}=0.2$

It is therefore obvious that, in normal construction, the terms with Ω_{x} and Ω_{z} are negligibly\# small in comwarison with the other terms and can be omitted. The angie of attack is at first hardly affected by any change in the rotation Ω_{x} about the fuselage axis, which might, cog., be forcibly produced by changing the shape of the Wing during flight. According to equation (32), the frotation Ω_{y} can bo exprossod by tho formula

$$
\Omega_{y}=-\frac{f_{5}}{e_{5}}+\left(\Omega_{y_{0}}+\frac{f_{5}}{\theta_{5}}\right) e^{e_{5} t} \approx \Omega_{y_{0}}+\left(\Omega_{y_{0}} e_{5}-f_{5}\right) t
$$

so that, by using this value, the following nonhomogene-

$$
\text { N.A.C.A. Technical Memorandum No. } 629
$$

ous differential equation of the second order is obtained for a.

$$
\ddot{\alpha}-a_{1} \dot{\alpha}+q \alpha=r t+s .
$$

The damping is so slight that it doos not neod to be considerod at the beginning. Henco oscillotion sets in about a mean position which changes with time. At tho boginning (as wo shall soo), this is in thoroughly satisfactory accord with a numerical integration corriod out as accuratoly as possiblo. The solution is dorivod from the initial conditions and tho constants q, r and s of the difforentiol equation with the folloring valucs:

$$
\begin{align*}
& q=\left(\frac{\Omega_{\Sigma_{0}}}{\cos a_{0}}\right)^{2}+\frac{\gamma E t_{1} v^{2}}{2 J_{z}} \quad \square_{z_{0}} \tag{38}\\
& r=\left(\frac{\gamma F t_{1}}{I_{1}} \frac{\nabla^{2}}{J_{y}}\right)^{2} \Omega_{x_{0}}\left(1+\frac{J_{x}-J_{y}}{J_{z}}\right) \\
& \left\{I_{F_{0}}+\frac{F^{\prime \prime} i^{\prime}}{\mathrm{F}_{1}}\left[I+\left(\frac{i^{\prime} \Omega_{Y_{0}}}{V}\right)^{2}\right] \Omega_{Y_{0}} \quad m_{m_{0}}\right\} \tag{39}\\
& s=\left(\frac{\Omega_{x_{0}}}{\cos \alpha_{0}}\right)^{2} \alpha_{0}-\Omega_{x_{0}} \Omega_{y_{0}}-\frac{\gamma \nabla^{2} F t_{1}}{\frac{G}{G}} \quad{ }^{n} z_{0} \tag{40}
\end{align*}
$$

This form of the difforential equation and its solution is very essentiol, bocause it indicatos the moons by Which tho anglo of attack can be sufficiently reducod to onable recovery from tho dangerous condition. Frora this solution ve can dotormino what quantitios are roally involved.

If re refrain from altering the wing and the imertia moments during the spin, then m_{2}, n_{2} and m_{4} are the only quantities remaining in equations (38) to (40), which enable the pilot to change the angle of attack:

6. Denger of tho Flat Spin

The olimination of danger frome a flat spin is synonymous with tho detormination of tho effect of moasures for disturbing it and for restoring the airplane to normal flight at a small anglc of attack.

It has alroady beon stated in Scction 5 that the only practicablo. Way to chango tho anglo of attack is to altor the quantitics m_{20}, n_{20} and m_{40}. The quantitios mao and. $n z_{0}$ indicato only the slopo or parallel displacoment of the straight linos reprosonting the curvo of tho coofficiont cormesponding to the moment about the spar axis, as plottod against tho angle of attack according to Figuro 13. I焦mowise, m_{4} indicotcs only the slopo of the straight lines which ropresont tho curve of tho normal force corresponding to the fusolage ond and the vertical cmponnago as plottod against tho angle of attack according to Figurc 17. Figure 22 roprosonts the beginning of the oscillation producca by doubling the valuos map, nao and mao corrosponding to the stato of oquilibrium. Tho anglo of attack is but slightly roduced by a parallel displacoment of the noment linc corresponding to the doubling of n_{2}, Which might porhaps bo attainodby cxtromo prossuros. Alloron and rudder dofloctions do not enter into equations (38) and (40) and consoquently have nothing to do with tho question of roduaing tho anglo of attack. This ogain confirms tho fact that thoso controls.have almost no offect in a flat spin. Evon tho doubling of n_{40}, which, as shorm by a moro thorough invostigation, night be attained by doubling the area of tho vortical omponnage, effocts only a slight chango in tho angle of ottack. The groatest change is effectod, according to Figuro 22, by doubling nao. According to oquation (4) tho coofficiont H_{H} of the noment of the horizontal empennage about the spar axis can be represented by the formula

$$
M_{H}=\frac{c_{n_{H}} \cdot q_{H} F_{H} l_{H}}{q_{1}},
$$

in which

$$
q_{H}=q\left[1+\frac{4 \eta_{H}^{2} \sin ^{2} \alpha}{b^{2}}\left(\frac{b \Omega X}{2}\right)^{2} \cdot\right]
$$

So long as the rotation. S_{X} about the path axi s does not change much; q_{H} romains reaily constant. Tho coefficient $c_{n_{H}}$ of tho normal force on the horizontal omponnago doponds not only on tho anglo of attack, but al. so on the plan form of tho horizontal ompornago F_{H} and on i.ts profile. It romains constant for onc and tho samo anglo of attack, if the profile is not cinenged and the shape of the altered horizontel empennage is similar to the original shape. Under the conditions

$$
M_{H}=C F_{H} l_{H},
$$

i.e., the coerficient of the moment of the horizontal cmm porinage increases with its area F_{F} and with the dism tanco l_{H} of tho cop. of the horizontal omponnogo from tho spar axis. If, for oxample, the arca of tho horizontal emponnago is doublod, tho cocfficiont M_{H} of the moment of tho horizontal ompennasc is also doubled, involving, howover, no change in the wing momont. . The curve $M_{\mathrm{I}}=\mathrm{m}_{2} \alpha+\mathrm{n}_{2}$ of the cocfficiont of the aorodynamic momont about tho spar azis, as plottod in Figuro 13 against the anglo of attack α, assumos thoroforo vory ncarly tho dosirod doublod slope m_{2}. Accordingly, the most effective way to change the angle of attack is to increase the area of the horizontal empennage. This enlargement must be offected suddenly and during tho spin, sincc it is only in this way that tho largo calculatod chango in tho angle of attack duc to the sudden doubling of tho surfacc aroa can tako nlacc according to Figuro 22. Soction 8. will show how this requiromont con be structurally fulfilled.

Of coursc the approximato solution of the fundamental cquations is valid only so long as tho fundamontal assumptions are corrcet. Such is tho caso only for the timo immediatoly after the disturbonce. Furtincr changos, ospocially in tho anglo of attack, can bo dotorminod only by numerical integration. This has bocn done for the caso of a suddon doubling of the arca of tho horizontal omponnage during a spin. In Figures 23 and 24, the ninc variablos $v, \varphi, \omega, \alpha, \mu, \tau, \Omega_{x}, \Omega_{y}$ and Ω_{z} aro plottod against the time. The assumptions undorlying the approximato integration hold good whon tho path velocity ∇ and the rotations Ω_{x} and Ω_{y}.. about the rospoctivo fusolago aid strut axos vary but littio, at least during the poriod inmediatoly following the disturbance. Almost tho wholo chango in the rotation Ω
then becomos ovidont thrcugh a chanco in the rotation Ω_{z} about the spar axis. In Ficure 22 tho corrosponding change in tho anglo of attack, as detorminod by the numorical integration, is plotted alongside the exact som lution. At tho boginning, tho approxinate intogration yiclds almost the samo result as the accurato numorical integration.

Howover, as soon as tice anglo of attack assumes considerably snollor values, the numerical integration doviatos from tho approximate onc. Thore is no oscillation about the nean position, as in tho approxinate intogration, but the anglo of attack drops to still smallor valuos, whoroby the anglo of yan incroases vory rapidly, at loast jin tho boginning. Tho airplanc nosos ovor and turns about the strut axis in such a way that the air flow strikos the fusolago alinost perpendicularly. Tho resulting pressuro against the vertical cmpenago and tho tail end of tho fusclage croatos a monont about tho strut axis, which turns tho fusclace in the diroction of foll, i.o., again roducos tho angle of yaw. Sinco the totel rotation also diminishos groatiy with tine, and the anglo of glido approachos -90°, the airplone soon onters a dizo which is froo fron rotation and side wind and from which it can level off. The pilot is therefore able to pull an airplane quickly out of a dangerous flat spin by suddenly enlarging the area of the horizontal empennage.

A diminution of the angle of attack, vory similar to that produced by the sudden onlargemeat of the horizontal omponnago, can also be orought about, without the action of the pilot, by the airplane suddenly encountering a strong ascending current, since it is entirely indifferent, as regards recovery, whether the quantity $\mathrm{m}_{2_{0}}$ or \boldsymbol{v}^{2} is doubled in equation. (38). Doubling v^{2} would correspond to increasing the sinling spood in a flat spin from avout $30 \mathrm{~m} / \mathrm{s}$ ($100 \mathrm{ft} . / \mathrm{soc}$.) to about 42 m / s (138 ft. $/ \mathrm{soc}$.). Tho ascending curront must accordingly have a velocity of about $12 \mathrm{~m} / \mathrm{s}$ ($40 \mathrm{ft} . / \mathrm{sec}$) to produce tho same effoct as doubling the aroa of the horizontal ompennago. Such an up-curront is concoivable, so that it is not impossible for an airplano to nose over without tho aid of the pilot. On the other hand, the oncountoring of a donn-current would groatly incroase the difficulty of rocovering from a flat spin.

It should also bo montionod that an oirpleno can also be brought out of a dangerous flat spin. by the proper hondiling of tho olovator. Figuro 22 shoms that a single strong push producos a periodic change in the angle of attack, which is practically synonymous with an oscillation of the airplane about the spar axis.. It is ooviously possible, by ropoated pushos in time $\begin{aligned} & \text { oith the }\end{aligned}$ initiatod oscillations, to incroaso thoir amplitudo to thatovor degroc mav bo nocessary for rocovory from tho spin. Aroricansihevo conductod a sorios of oxperimonts on tho recovory from. a flat spin. Thoy succoododin levm cling off tho airplanc by tho doovo manouver, but only aftor falling a long distance. The portincnt paragraph in tho Amoricen roport (reforence 3) reads:
"Should this bo incffective aitor soveral additional turns an attorpt should be mado to rock tho planc out, using tho onginc in conjunction cach timo the controls arc movod for recovory. It is necossary, of course, to Work rith tho netural period of the plano in attompting rocovory by this means, the controls beine oporatod vory much in tho sano mennor that a soaplano is rockod on tho stop for toking off."
7. Constructional Moasures
a) For Recovering from a Flat Spin

Tho proscnt thoorotical invostisation sinows, in agreenent with practical oxpcrionco, thet tho oporation of the controls causes only a very slight disturbance of the equilibrium of all the forces and moments acting on an airplane in a flat spin. Hence an airplano can be brought out of such a spin only very gradually and often. not at all. The investicetion shows, moreover, that a sudden increase in the moment of the horizontal empennage during a spin immediately and greatly reduces the anglo of attack and causes the airpleno to nose ovor strongly, so that it can bo quickly and safely brought out of tho flat spin, which has hithorto beon justly foared.

This result is not at all surprising. It is obviously possiblo to recovor from tho dangorous flat spin if tho airplonc can be iorcod down suddenly to the small anglo of attack at winich all tho controls bocome fully offectivo. Juat the fact that the controls hovo practi-
cally no effect at the large angles of attack prevailing in a flat spin, is the real reason thy the operation of the controls can bring an airplane out of such a spin but very gradually and often not at all.

On the other hand, enlarging the area of the hori-: zontal empennage increases its moment just when it has a very large angle of attack, as in a flat spin. Constructionally thero is no insurmountable obstaclo to such an onlargoment of the horizontal empennagc. A possiblo construction is shown, 0.g., in Figuro 25. In ordimary flight the dottod movable portions are enclosed in the stabilizer. In caso of need thoy can be projectod so as to form a considerablo onlargemant of the horizontal emponnage.
b) For Provonting the Possibility of a Flat Spin

The bost way known to make a flat spin impossiblo, is to give tho proper form to the vertical empennage and to tho tail ond of tho fuselage. In roference 2 wo called attontion to the fact that tho surfecos for damping the rotation about the strut axis (particularly the vertical emponnago and tho tail ond of tho fusclage) must be made as large as possible and so arranged that they are exposed to the air flow from all directions, especially from obliquely underneath.

Many airplane fuselages are so brilt that, as seen from the sido, thoy tapor greatly toward the tail, whilo, as soon from above, thoy aro too broad evon at the tail, so that the arca of the latoral surfaces of the fusclage at the tail aro small and the vortical cmponnage, situm atod chicfly above the Eusolege.tip, is largoly shieldod from the air flowing from obliquely undernoath. Tho horizontal ompennage produces a similar effect to a still greater degree, so that the vertical empenmage is almost completely blanketed from air currents coming from obliquely underneath.

Due to the unfavorable shape of the fusclage and the shape and arrangement of the tail surfaces, the damping moments about the strut axis aro frequently too small to cnable the prevention of a flat spin. A flat spin: cannot always be proventod by enlarging the vortical omponnage, at least when the latter is situatod above tho fuselago and the horizontal omponnago.

Tho foct that, dospito the unfavorable shapo and arrangoment of tho fusclago and vortical omponmasc, many of the airplanes thus constructod hove not fallon into flat spins, doos not provo thet thoy aro incapablo of doing so. It has jecn found thet airplancs supposod to bo spinproof have novortheloss fallon into dangorous flat spins undor spocial conditions.

Tho risk of falling into: f flat spin can be groatly reduced by a suitablo construction of the fusolage tip and of the vertical ompennage. There aro airplanos whosc fusolago tips, as secn from abovo, aro but littlo brooder than the superimposod vertical omponnogo. If, moroover, spacos aro loft botween the fusēlage and the horizontal empennage, as shomin in içure 26 , so that tho vertical empennege is exposed to the air flow from all possible directions, including that from obliquely underneath, and if, furthermoro, tiee lateral surfaces of the fusolago end and tho vortical emponnago aro made as large as possible, tho flat spin will then be impossiblo.
8. Summary

This report doals first with the fundamental data roquired for the invostigation. Thosc are chiofly the aorodynamic forces and monents acting on an airplanoin' a flat spin. It is shown that theso forces and monents dopend principally on the anflo of attack and on the rotation about the path axis, and can thoroforo cither bo moasured in a wind tunnel or calculoted from wind-tunncl moasurements of lift, drag and moment about the loading odge of the ring of an airplano modol at rost. The Iift, draf and morant about the spar axis aro so groatIy altorod by the rapid rotation in a flat spin; that they can no longer, as in roferonco 2 , Do rogardod as inm dependent of the rotation. No substantial change in the angles of attack and gide occurring in a flat spin, as found in reference 2, is invol.ved. The cross-wind force, as compared with the lift and drag, can bo disregardod in a flat spin." Practically the only aerodynanic moment about tho fusolege axis is that produced by tho wing as a result of the rotation. In addition to the corresponding aerodynamic noment about the strit axis, as produced by tho wing alone, thero.is another derodynanic monent principally producod by the vortical ompennago and tho tail end of tho fusolage. This nonent is due to the
rapid rotation, which it constantly tends to derip.
Tho initial conditions for a flat spin aro as follows. The principal nomont about the strut axis consists of tho aerodynamic moment producod by the wing alonc, Which accolorates the existing rotatjon, end tho danping noment produced by tho vertical emponnogo and the tail ond of tho fusolago. Theso mononts can be balancod only for agivon nazinum value $\frac{b \Omega x}{2 v}$, corresponding to a definite maximum angle of glide φ. The lateral angle (angle of yaw) . T must be small, in order for it to be possible to balance the moments about the fuselage axis at a given angle of elide. Lastly, the angle of attack α is determincd by balancing the moments about the spar axis, when the angle of glide $\hat{\psi}$ and the lateral angle T are knomn.

The characteristics of a flat spin are thus determined. For the airplane in question, they are:

Path velocity	$\nabla=25 \mathrm{~m} / \mathrm{s}$,
Angle of glide	$\varphi=-87^{\circ}$,
Rotational velocity	$\omega=5(1 / \mathrm{s})$,

i. o., the airplane requires about 1.3 s for ono revolution: about the vertical axis;

Angle of attack	$\alpha=60^{\circ}$,
Angle of bank	$\mu=-85^{\circ}$,
Lateral anglo (anglo of yaw)	T small.

The investigation of the effoct of disturbances in a. flat spin begins with tho intogration of tho known fundamental equations pertaining to the oquilibrium of the forces and moments acting on the airplane. These fundamental equations can be advantageously transformed and simplified, so as to onablo tho separation of tho varian bles and especielly the detormination of the very important anglo of attack, from which wo cen ascertain tho requisito factors for rocovory from the dangorous conditiome It is shown that, in agrocment with exporienco,
N.A.C.A. Technical Memorandum No. 629
the controls have hardy any cffect ond that the only remaining moars is a suddon increaso in the slopo of the curvo of the moment coofincient about tho spar axis in terms of tho anglo of attack. The roquisitc increaso in the slope of this curve can be effected by a sudden enlargement of the horizontal empennage during the spin.

The dancerousness of the flat spin can only be determined by following the effect of a disturbance on the variables ovor a considerable period of time. This is possiblo only by a numerical integration, Which mas made for the case of a sudden doubling of tho horizontal empennage and led to the following at least qualitatively correct result.

Due to the sudden doubling of the area of the horim zontal empennage during flight, the airplare quickly noses so far over that the angle of attack is reduced to that of normal flight. For a time the rotation of the airplano about the strut axis continues, so thet the lateral anglo ja very large at first and the sido of the fusolage is struck almost vertically by the air curront. Tho fusolago end and tho vertical ermpanage thon damp tho rotation about the strut axis so strongly, that the fusologe axis gradually approaches the diroction of tho path axis and tho laterel angle diminishes. Tho rotation grad-ually-diminishes, and tho anglo of elido approaches 490°. The airplano soon goos into a divo Fithout rotation or sido wind. The suddon enlargement of tho horizontal empennago is thereforo the most offoctive means for bringing an airplano quickiy out of a dancerous flat spin.

The sudden oncountoring of an up-current by a flatspinning airplane may causc it to nose ovor and recover from the spin. without tho aid of the pilot. The sudden encountering of a down-current wovld, however, greatly increasc the difficilty of rccovoring from a flat spin. It is quite positilo that an airplane which is often put into a stocp spin $\because i t h o u t$ going into a dangerous flat spin may novortholoss fall into tho letter under cortain conditionsc Hence it is very rash, simply on the basis of test ilights, to claim that an airplano cannot flatspin, until it hes becn satisfactorily demonstrated undor all possible concitions of flight.

Another way to recovor from a flct spin, although not so quiclely, is by the corroct operation of tho olevator. A single strong push on tiro control stick causos
a slight poriodic variation in the anglo of attack and starts an oscillation of the airplano about the spar axis. By altornate pushing and pulling in timo with the original oscillations, their amplitado can be incroasod as much as may be nocessary for recovery from tho spin. American experiments with flatmspinning airplanos have domonstrated that an airplano can tins bo brought out of a dangorous flat spin.

The suddon onlargement of the horizontal emponnage during flight, as required for quick recovery from a flat spin, can be accomplished as shown, for cxample, in Figure 25. The stabilizer is provided with toloscoping parts which aro enclosed in the stabilizer during ordinary flight, but can bo projocted, in case oi need, so as greatly to enlarge the arca of the horizontal emponnage.

If it bc dosircd to avoid all possibilfty of a flat spin, tho horizontal omponnago may bo so constructod as to leavo spaces next to the fuselago (fig. 25), thus ex. posing. the largoly dimonsioned vortical omponnage and latoral surfaces of tho ond of tho fusclage to air curronts from all possible dircctions and ospocially from obliquoly undernoath.

$$
\text { 9. } R e f 0 r e n c o s
$$

1. Baranoff, A, v. and Hopf, I.: "Untorsuchungon "ubor die kombinierte Seiten- und Längsbewegung von Flugzeugen." Luftfahrtforschung, March 20; 1929, Vol. III. (N.A.C.A. Technical Memorandum No. 620 (1931): Combined Pitching and Yawing Motion of Airplanes.)
2. Fuchs, Richard and Schmidt, Wilhelm: "Stationarer Trudelflug." Report 117 of the D.V.I. (Deutsche - Versuchsanstalt fur Luftfahrt), Bexlin-Adershof; Luftfahrtforschung, Feb. 27, 1929, Vol. III. (N.A.C.A. Technical Memorandum No. 630 (1931): The Steady Spin.)
3. Ofstie, Ralph A.: The Flat Spin. Aviation, Dec. 21, 1929, Vol. 27, pp. 1203-1206.
4. Fuchs-Hopf: Aerodynamik, püblished in 1922 by R. C. Schmidt 2 Co.: Berlin $W 6$.

ReIorencos (cont.)

5. Seiferth, R.: "Untersuchung oinos Tindradelugzougs." Zeitschrjft für Flustechniz und Ootorluftschif-
 Memorandum No. 394 (192\%): Testing a 7indmill Airplane ("Autogiro").)
6. Fuchs, Richard: "Rechnerische Zrgebnisse \#ber Störune des gefahrlichen Trudelstandes." i poper roed at the neeting of the W.G.I. (Vissenscheftliche Gesellschaft für Iuftfahrt), Nov. 7, l929. T.G.I. Ycarbook, 1929. (it.A.C.A. Tochnical Homorandum No. 591 (1930): Hathomaticel Troatiso on the Rocovory from a Flat Spin.)
7. Fuchs, Richard and Schmidt, Wilhelm: "Luftrrafte und Iuftkraftmomente bei grossen Anstellwinkeln und ihre AJhängigleit von der Tragmerissestalt." Report 168 of the D.V.I.; Z. F. A., Jon. 14, 1930, Vol. 21. (N.A.C.A. Technical Memorendun Ho. 573 (1930): Air Forces and Air-Force Moments at Jarge Angles of Atteck and H_{0} w They are Affectod by tho Shape of the $\begin{aligned} & \text { ing.) }\end{aligned}$

Translation by Dwight ii. Miner,
National Advisory Committoo
for Aeronautics.

A, Normal force N
B, Strut axis y
C, Angle of wing setting μ D, Lift A E, Lift axis y_{l}
F , y axis \perp to x and z
G, Tangential force T
H, Fuselage axis x
I, Lateral angle τ
J, x axis \perp to y and z_{1}
K, Angle of attack α
L, Path axis x
M, Drag W
N, Spar axis z
$0, z_{1}$ axis 1 to x and y_{1}
P, Crosswind force Q
Q, Horizontal axis $z \perp$ to x

$W, F_{\mathrm{s}}=1.79 \mathrm{~m}^{2}$
$A^{\prime}, \quad r=0.80 \mathrm{~m}$

Fig. 4
Figs. $2,3,4 \quad \begin{aligned} & \text { Plan, front and side views of Junkers A35 } \\ & \text { low -wing monoplane. }\end{aligned}$ low-wing monoplane.

Fig. 5 Flat-spinning seaplane falling almost vertically at a midspan angle of attack of about 60°

Fig. 6 Coefficients of lift and drag plotted against angle of attack.

Fig. 7 Coefficient of monent about leading edge of wing plotted against angle of attack with elevator angle as paraneter.

Fig. 8 For calculating the cross-Wind force.

Fig. 9 Coefficients of wing lift and drag plotted against angle of attack with parameter $b \Omega_{x} / 2 v$.

α
Fig. 10 Coefficients of airplane lift and drag plotted against angle of attack with parameter $b \Omega_{x} / 2 v$ (n_{1} instead of n_{2}).

Fig. 11 Coefficients of aerodynanic moments about spar axis plotted against angle of attack.

Fig. 12 Coefficients of normal and tangential forces of wing alone plotted against angle of attack.

Fig. 13 Coefficients of aerodynamic moments about spar axis plotted against angle of attack with paraneter $b \Omega_{x} / 2 v$.

Fig. 14 Coefficients of aerodynamic moments of wing alone about fuselage axis plotted against angle of attack with parameter $b \Omega_{x} / 2 v$.
(2)

Fig. 15 Coefficients of aerodynamic moraents of wing alone about strut axis plotted against angle of attack with parameter bo ${ }_{x} / 2 v$.

Fig. 16 Blanketing of vertical empennage.

Fig. 17 Coefficient of normal force of a square flat surface plotted against angle of attack.

Fig.18. Coefficients of aerodynamic moments about strut axis, produced chiefly by fuselage end and vertical empennage, plotted against angle of attack with parpmeter $\mathrm{b} \mathrm{n}_{\mathrm{x}} / \mathrm{\omega v}$.
N.A.C.A. Technical Wemormaluai ino. $629 \quad-\mu \quad$ Figs.19,20,21

Fig. 19 Path velocity, rotational velocity about vertical axis and angle of wing setting plotted against angle of attack for angle of glide -870 , as likewise $\mathrm{b} \Omega_{\mathrm{x}} / 2 \mathrm{v}$ plotted against angle of attack with angle of glide as paraneter.

Fig. 20 Balancing of monents about fuselage axis at angle of attack -87°. Coefficients of aerodynamic and gyroscopic noments plotted against angle of attack with lateral angle as perameter.

Fig. 21 Balancing of moments about spar axis at angle of glide -87°. Coefficients of aerodynamic and gyroscopic moments plotted against angle of attack with lateral angle as parameter.
N.A.C.A. Technicel Memorandum No. 629

Fig. 22 Angle of atteck plotted against tine.

Fig. 23

Figs.23,24 The nine variables plotted against time.

Fig. 25 Horizontal empennage enlargable during flight.

Fig. 26 Horizontal empenage with open spaces next to fuselage.

[^0]: *"Der geïärlicliche flache Tridelflug und seine Beeinflüssung, " from Zoitschrift fthr Flugtechnik und Motorluftschiffanrt, July 14 (p. 325), and vuly 28 (p. 359), 1930. publishedoy R. Oldenbourg, innich und Berlin.

