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NATIONAL ADVISORY -COMMITTEE FOR AERONAUTIOS
- TECHNICAL MEMORANDUK NO. 600

RESISTANCE OF PLATES AND PIPLS AT HIGH REYNOLDS NUMBERS*

By L. Schlller and R Hermann '

1. Introduction

Some years ago Prandtl and Karman showed how the resistance
..of a plate to a flow parallel to its surfaces could be deter-
mined from the resistance of a pipe to a fluid flowing through
it.*?- The fundamental principle was to put the frictional re-
sistance at eveiy point of the plate .equal to that in a pipe of
like Reynolds Number. By the "Reynolds_Number" of the plate

we mean |

flow velocity
klnematlc v1scos1uy

X boundary-layer thickness.

On the other hand the frl 1onal re81stance must equal the loss
of momentum for the dlstance con81dered. Te 1aw of ve1001ty
dlstrlbutlon 1s assumed to ‘be the same in both cases. Prandtl
-and Karman car¢1ed out’ “the calculation for the case of the
ﬂBlas;us Law of,Powers," for which they showed the relation be-
tween resistance'and.velocity distribﬁtion end‘obtained, within
the range of not excessive R #alués, close agfeement with the

experimental results.

*WWiderstand von Platte und Rohr bei- honen Reynoldsschen Zahlen."
From Ingehieur-Archiv, Sept., 1930, pp. 391-398.

**prandtl, "Ergebnisse der Aerodynamlschen Versuchsanstalt zu
Géttlngen," Report I, p. 136; Report III, p. 1. Von Karman,
Z. f. ang. Math. u. Mecn., 1921, p. 233,
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In the meantime it was leefhed.that the law of resistance
for high R values does not ;ollow the simple powers, and that
the powers,ﬁwhlch dan be obtalned approximately for the velocity
. distribution, gradually change.* Since, moreover, very impor-
tant investigations have recently been made on the resistance
of platesbat very high R values, it-secemed of interest to ap-
ply the above line of reasoning to the‘newlgeneral law of re-
sietanoe.** For. this purpose, the resistance and veloeity dis-
tribution along the plate must always be equal to the vulues N
of the pipe flow at the corresponding Reynolds Number Wewmade
two kinds of calculatioas, of which the one g;ven_here.le tﬁe
simpler and more: practical and also agrees better with the ex—
perimental results.*** | o _

Aocordlﬁg to a frlendly 00mmunlcatlon from Dr Lerﬁs, Ham—
burg, he has also made llke Cﬁlculatlons **%% Pyt his method

and results differ considerably from ours,*****

*Stanton and Pannel "Slmllﬁrlty of lotion in Relatlon to
the Surface Fridtion of Liquids." Phil. Trans. Roy.. -Soc, , A,
Vol. 214 (1914), p.:199.  Jakob and Ezk "ulttellungen Uber
Forschungearbelten," issued by V.D.I. (1984 No. 267. - Hermanm
and Burbach,. "Stronungsw1derotand und Wirme oergang in Rohren "
Akad. Verlags es, Leipzig, 1930. L. Schiller, "Rohrwiderstand

.bei. hohen. Reynoldsscnen Zahlen." Gilles, Hopf, Karman, Aachen
1ectures, 1929. See also an Aachen paper by Vlkuradse 4
**G. Kempf, "Heue Ergebnisse der Wlderstandofo;schung " Werft,

Roederel, Hafen, 1929, Nos. 11-13.
***The first, which,is not repeated here, I made some time ago

with the aid oi my former assistant, Mr. Burbach.

***x*The results of Dr. Lerbs! calculatlon are eummarlzed by
‘Keupf, See above footnote. :

*****Regults reécently sent us" by DT Lerbs are conslderably more
like ours than- the published results, but they:sttll show a sys-
tematlcally 1qcrea81ng dev1atlon Wlth 1ncrca81ng R values.-
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2. Empirical Basis

'We designate by u the variable velocity within the boun-
dari layer; by U the mean velocity in the pipe of radius a;
by U the velocity at the axis of the pipe or the velocity
outside” the boundary layer of the plate. We further distinguish

the'Reyﬁolds Fymber of the pipe, as based on the mean velocity,

b
v \

R ( p, M = viscosity, 0 = density,

ls:il

and, as based on the velocity at the axis, by

or, putting the pipe radius a equal to the boundary-layer

thickness &, by

Furthermore, the Reynolds Number for a plate of length x is

expressed by

_Ux
Ry = T

As the resistance law of the pipe above R = 50,000, we
take for our criterion the empirical equation which, according
to our Leipzig experiments in the range of R = 10* to R = 1&F,

yielded
—+0+ 300

Vv = 0.00370 + 0.161 R (1a)

whereby the resistance coefficient ¥ 1is defined by

. dp 2 a d
\1/. E . 0 /
' dx P T \

- pressure drop per uvnit 1engtﬁ> (1b)
vy o
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Prandtl and Karwman deduced from the Blasius law of pipe ré—
sistance thatAthe veiocity increases as the 1/7 power of the
distancé from the wall. Due to the deviation from the Blasius
1&W,'the velociﬁy nust generaily be put proportional fd'the
1/n 'poﬁér of the'distance from the wall. The valués used as
léhe Basis for the exponents n of the velocity distribution
&eré‘takén from the results of Nikﬁradse's experiments in GOttin-
gen and the hitherto unpublished results obtained by HObius. ‘In
accordance therewith, Figure 1 showé n  as the function of log
R in close dgreementiwith both sources. The curve was exténded
2, short distance to n - 10 by disregarding the n vaiues at
the highest . R values. In this manner V and n are repre-—- .
sented as functions of R, while the further calculation is-to

be made with R. The corresponding calculation is made by
l R_e_1U ‘ o ,
R— f= U, o “ (8)

the ratio of the mean velocity to that at the axis,.whioh in
turn depends slightly on R. |

 The quantity f, under the assumption of the validity of
the power law of the velocity distribution up to the azie of
the pipe, can be_céiculated as o function of n. If y - denotes
the distance of a point from the wall and r the distance of
the sane point from tae aﬁis of the pipe, then the velocity

distribution is represented by

o
=(5)7 - (222 (32)

ale
Qs
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The wmean velocity is defined by

. - a
mTa® u=2"/ rudr.
- e

If we substitute the value of u according to equation (3a) and

integrate, we obtain

£ = 3 n® - ' (4)

T TwE 1) (@2

al =l

Figure 2 shows f as a function of R. In reality the velocity
curve shows certain deviations'ffdm the power law at the axis
and at the wall. Since, moreover, the values of f (rig. 23),
within their séattering,-coincide with the cgrve-oalculated

~ according to equation (4), these values will be uscd in what
follows. ' In their application to the case of the Blasius law,
i.e., small R, they occasion slight discrepancies befwéen'

our results and Karman's * |

3. The‘Differéntiél Equation 5fAReynolds Tumbers

\

‘for Pipes and Plates

a) omentum theory.~ If we apply the momentum theory to the
steady flow along a plate'(x .component, Fig. 3) in the sense
of the boundary-layer théopy with increasing boundary—layer
tnickness, it means that tﬁe variation J' in the quantity of

fluid per second, whosc riotion is retarded at the wall by the

*Karman corrected the.wvalue f =.0.817, according to the Blasius
law, %o 0.84, that is, he rounded the profile strongly, which
seems too high to us with respect to the recent investigations
by Stanton and Pannell ond oy Schiller and ¥Xirsten, Z. f. tech.
Physik 10 (1929), p. 268, who obtained 0.81 and 0.82 with a suf-
ficiently developed profile. -
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frictional force W, is equal and opposite to the frictional

force
Jt = =W (5a)

If we refer the change of momentum on a plate of unit width to
the unit length, it then equals the friction per unit area oz

the internal wall friction T,

fz=-" | | (sp)

b) Total homeptum change.~ We will consider the quantity of

retarded fluid f pudy passing through the cross section
at the voint =x (unit wldth) per ualt of time.  Before the be-
ginningrof‘the retardation, this quantity had-the full velocity
U,'heﬁcé:thé”ﬁ6MQntum U'gép udy. In the cross section x
the elements of this quantity have the“velocipy U, and there~
fore the whole quantify hos the momentum ,/ P u@ dy.

The whole momentum change J!' fron tle oeglnnlng of the

retardation to the point x accordingly anounts to
- 8] §)
Ji=/f pwr dy-U/ pudy.
O 0]

If, according to equation_(Ba), we write

: i

u_ /NN -

T =6/ (30)
as the>velocity distribution in the boundéry laYer and integrate,

we thus‘obtain

: l_h | 2 S n ‘ :
dh==p U 5 (n + 1) (o + 23) : : (6)
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c) Iomentun change per unit length.- We obtain the rmomentun

change per unit length (equation 5b) by differentiating equation
(6) according to x, while taking into account the fact that
and n are‘functions of x. Through extension with Ul corre-

sponding to the above notation, the differential coefficient

: . 4 . .
88 can ve written as '&B—, and likewise & g% as R4, If,
dx . dRx ao dR
for abbreviation, we write
n n® - 3 dn

(a+ 1) (n+23) f((n + 17 (n + 3) R @R ¢ (R), (7a)

we obtain

aJ! _ 2 dR S
L=V F- G (R) . | (7o)

d) Internal wall friction.- The equilibriun equation for a

fluid cylinder of unit length
__:_‘.'r[laB: 2 a‘ﬂ‘ TO

together with equation (1b) yields, for V, the relation betwcen

the internal wall friction and the resistance coefficient

.%o.z%pﬁz

or, with respect to equation (2),

¥ = 0.1330 R
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with f = 0.817, we . have

. 1
% =.0.0233 0 U® R™4 (8b)

e) The differential ecguation.— The introduétion of the mo-
‘mentum change per unit length (7b) snd the wall friction (8a)
into the momentum theorem (5b) yields the differential equation
" between the Reynolds Fumber R of the pipe (or the boundary-
layer thickness) and the Reynolds Nuuber Ry of the plate
length 1
' - dRy 4G
dr il

v, ()

A closed integration of equation (9a) .is excluded by the compli-
cated construction of the functions £, ¥V and G, and a graphic
integration is necessitated by the fact that the empirical func-
tions on the right are already given graphically. Figure. 4
shows the differential equation (9a) with R for abscissa and
F (R) for ordinate. |

With n as an independent variable, R - follows as a defi-
nite .n from the empirical curve of:Figure 1, the corresponding
f from equation (4) or Figure 2, and the corresponding R from
“equation (8); The empirioai resistance equation (la) with R
yields the desired V¥ . Equation (7a); with the values of . n
and R, gives the desired G, with which the requisite values

of R, G, f and ¥ in equation (9a) are all determined. The ex—
dn
dR
is quite possible, sin¢e-thé subtrahend in equation (7a) is al-

pression in equation (7a) was obtained from Figure 1, which
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ways less than 9% of the minuend. For small Reynolds Numbers
(R < 50000), the Blasius theorem yields equation (8b) and, for
n =7, equation (7a) yields G = 0.0972, so that

. 1 , .
F=4.17 R* ' g "(9v)

f) Integration of the differential ecuation.~ .From equation-

(9a) we obtain by infegfétibn
R
3x'= g,F (3) 4 R,
. in which the integration constant is determined by the fact that,
‘when Ry = 0, then R = 0 also. The implied disregard of the
~ laminar initial portioh is unobjectionable with respect to its
brevity for thé'stafément of a‘résistance law for high values
of Ryx.
By planimetry of the function F (R) in Figure 4, we ob-

tain the relation between Ry and R in the form
Ry = X (R) or R = H (Ry), (10a)

as represented in Figure 5. For the Blasius range with the

value of F given vy equation (9V)
5 4

Ry = 3.33 R* or R = 0.383 Ry (10b)
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4. Coefficient of Resistance

a) Coefficient of total resistance cf.-. This is ordinaril
£i01 : f y

defined by the one-sided total resistance W, or the two-sided

resistance W, of a plate of area F by

Cr = = (11
f SPF Fo 7t )

On the other hand the total resistance (referred to the unizt
width) according to equation (5a) equals the total loss of nomen~

tum of the flow and, teking equation (8) into account

n

= - 1 = 2 28
W, 2 J O U ey 5 (12)
The introduction of eguation (13) into equation (11), with
F==x1l, yields
£ RN I 2)
or, by extension with up,
2 n R
Cer = ——— 13
T (n+1) (n+2)Ry (13a)
If we put
' , 2 n- A, (14)

(n + 1) (n +23)

~then A, on the way to n and R, is a function of R, and the
latter, in conformity with equation (10a), is a function of R,

so that equation (13a) can also be written
1

cf - A (RX%XH (Rx) | (13b)
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The calculation of c¢y 1is made, acéording to equation (13a),
by fi}st‘deférmining R, in addition to n chosen as an inde-
péndent vafiable (as ébove in the calculation of F), ahd then,
from FiguréAS, thé ob&resbonding Ry. For thé Blasius raﬁge
(n=7), with A= %% = 0.194 according to equation (14) and

with R . according to. equation (10b), rformula (13a) yields

-1
S

oy = 0.074 Ry (13c)

Figure‘é shows the fesultAof the calculation. As in the corre-
Spohdinéréufves of pipe resistance, there is also shown here,

With incféaéing Ry, an increasing deviation of the resistance
curve frowm the extrgoolated Elasius-Karman theorem. Mo suitable

. comparative data are available.

b) Coeificient of local resistance.— The measurements-made
by theAHaﬁburg doval Institute between log R = 6.9 and ldg
R'= 8.65 are not measurements of the total resistance, but of
thé'looallfésistanoe, as obtained by the installation of short
test plates in o long towed body.

‘The coefficient of local resistance, like equation (11),
is defined by 4 o

| B

d Wy _ .To ’ (15)

Cf = - -
p L 2
= U 4F 5 U

The relation of the coefiicients cp and cg! 1is thenAgiven‘by

o s o e |
ey = é.cf} ARy oept=cf *RFEF --(18)

Wi
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The calculation of cf' is preferably made not according to
equation (16) from ¢, Dbut directly from equation (15) while
taking account of equation (8a), as derived from the pipe-

resistance law, for the internal wall friction, which yields
: r = 1 | .
cr! =g £V . (17a)

Here f and V cver R are functions of R and hence, accord-

ing to equation (1l0a), oiso functions of Ry. For n selected

as the independent variable, we determine f, ¥V and R, for which

Figure 5 shows the corrcsponding Rg. For the Blasius range,
on the basis of equation (8b) and with replacement of R by Ry
according to (10b), we obtain

@i+

el = 0.0594 Ry (17v)

Figure 7 shows <c¢° o8 a function of Ry. Owing to the

range of the basic empirical values of the pipe resistance and

~of the exponent of the velocity diétribution, the results of

the calculation were extended to log Ry = 7.89. Above this
value, the curve was rectilinearly extrapolated, as justified
by the fect that the curve, on reaching log Ry = 6.9, is al~

ready straight within 1/4%. The equation of this asymptote* is

~0+ 1294

cg! = 0.0308 Ry (17¢)

Zquation (17v) gives the values for cr! up to log Ry = 6.3

to within 1/4% and up 0 log R, = 6.5 to within 1% deviation

*0f course no physical significance can be attached to this ex—

~trapolation at the highest R values, espccially with respect

to the n values of Nikuradse.
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from the general equation (17a). Equation (17¢) gives the val-
ues for cp' sbove log Ry = 6.5 to within 1% and above log

8.9 to within 1/4%.

As experimental rnsults, we have introduced the cf! val-
ues reportéd by Kempf for his smoothest surface (varnished, pol-
ished and waxed). The discrepancies between our calculation
and these results lie between =3% and +4%, while the extrapo-
lated Karman eqguation, within the range of the experiments, lies
between 7% and 40% too low. On the whole the experimental curve
shows a somewhat sharpcer curvature than the calculated curve. .
It should be ‘noted that the olotted curve of the experimental
cg'! values represents the mean cf' values. These were ob-
taincd from differeant plntes distributed throughout the length

of the towed bhody and differ among themselves by about 3%. In

J

view of this fact, the agresment between the cxperimental and

-

colculated result s (almost within the accuracy of measurerent)
rust be considercd remarkobly good.
Translation by Dwight H tiiner,

National Advisory Consiittee
for Aeroncutics.
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Figs.1,2,3,4
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Figs.5,8,7
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