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THETHEORY OF PLASTICITY IN TBE CASE OF SIMPLE

LOADING ACCOMP.4KtED BY STRAIN41ARDEI?ING*

By A. A. Ilyushin

‘The states of stress md strain of
stress tensor S and the strain tensor
represented in the form of the sum of a

bodies me characterized. by the
E, each of wh5ch is usually
spherical tensor snd the deviator

S=aI+Ds

E=eI+De
}

(1)

so that I is a unit tensor, a and e the mean values of the diagonal

components of S and E or of their linesr invarisnts. The deviators

in turn ere represented in the form

Ds = TiDs*

1

(2)

De = ~De*

where ‘i and. Yf are the quadratic invariant of the deviators Ds

and De9 known as the octahedral shear stress (stress intensity) eni the

octahedral shesr strain (strain intensity):

01–U>)2+ (a*– 03)2+ (03 -13-J2
‘i 1 (3)

Hence an and en are the principal components of the S and E tensors.

*“Teoriya Plastichnosti pri Prostom Nsruzhenii Del, Materisl kotorikh
Obladsyet IJprochneniem.” Prikladnsya Matematika i Mekhanika XI, No. 2,
1947, ~P. 293–296.



2 \ NACA TM No. 1207 .

The deviators D~*
*

and De may be called &irected tensors, and
.

corresponding to them ere Cauchy surfaces, directed hyperboloids. Each

of these is completely determined by four numbers, of which three fix
the orientation of the principal sxes 1, 2, 3 relating to the arbitrary
system of coordinates (for example, through the Euler angles), and the
fourth determines the ratio between any pair of components in the devi–
ators or the ratio between emy pair of semisxes of the Cauchy surfaces.

{1
In fact, between the six components of the deviator De Sm there

exist two relations

%* + SQ* + S33* = o 1
(S,J- S2272 + (!!2; - S3;)2 + [s3; - %02

i-
*2

+ 6(s12*2 + S23 + S3;2) = g J
(4)

and so only four of them are independent. The same holds for the
components of the deviator ‘e~Emnj “

The state of stress and strain of an element of a body depends on
one parameter k. Such a parameter may be, for exemple, the time or
a ~~alue of the load. If the invariant Ti increases with increasing k,

one may say that the element is being loaded; if it decreases with
increasing A, the element is being unloaded.

Simpl~ loading is defined as that for which the directed stress
tensor Ds does not change with increasing h; the directed stress

hyperboloid in this case remains fixed for each element. Other cases
of loading are called complex.

The introduction of the above concept, its qualification, a.d the
principal difficulties so far unresolved are susceptible to easy reali-
zation in the present state of plasticity theory. Through analysis of

the experimental data connected with establishment of the laws of
plasticity, we arrive at the following conclusions:

1. The laws of plasticity are completely established only for the
case of simple loading of an element of the body; in~deed,the tests of
Ros and Eichinger, Schmidt, Lode and Nadai, Taylor, Davis and Nadai and

others (reference 1) show that tube experiments under complex stress
,

(conditions alweys yield a single result if the relative elements of ,the
principal stress sxes are unchanged, and if the ratio of the two principal

stresses is constant during the tests; this result leads to the conclusion

that an invariant dependency exists between stress ant strain.
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2. In the case of complex loading of an elenent, on the contrary,
no determinate relationship has been established: the Bauschinger effect,

the mutual orientation of the principal axes of stress and.strain, the
strain velocity, the strain–hardening effect and other phenomena in the
complex stress state sre not studied. It is clesr only that the laws

holding for simple loading do not hold for complex loading.

One asks, is not the theory of plasticity, known to be CoHect

only for simple loading, excessively restricted ad is it sufficiently

broad for the solution of practical problems? In snswer to this one

may say the following: firstly, such a theov anilwithin such limits
of applicability is unique, in agreement with eqertient, -d from
this it follows, secondly, it is applied SDi $i=s correct (a@=e@?
with tests) results for a large class of important technical problems.

The following assertion flows from the theorem which we have

demonstrated in previous work (refeYence 2): if an arbitrsry load,

applied to a body of srbitrq form, grows in proportion to a general
psxaneter k, then this is sufficient for each element of the body
to be under the conditions of simple loading; i.e.j for the directed
stress hyperboloid to remain fixed at each point of the body.

We emphasize that this is only a sufficient condition. Tests
show that for complex loading sufficiently close to a simple loading,
the theo~ based on the following laws gives results close to the true
results. Thus if there acts on a body a system of forces of which each
in the course of the loading process is a definite constsnt fraction of
the whole, then the loading of each element is simple. If only one

force or one uniform pressure p acts, (for example, in a tube, the
inwsrd or outw=d pressure) it may be taken aE the parameter h end

simple loading msy result from any law of ~owth with time.

All the different theories of plasticity without exception may

_bewritten in the form of a single tensor equation

where L snd L’ are linear integrtiifferential operators related to

the deviators D5 end De by a pm~eter ~j
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in which the coefficients A, B, C,. .. A1, B1, Ct, . . . are functions
of the tensor invarismts Ds ad De and of tensors obtained by the laws

of linear transformation , and in addition, the pecrameters k, At, k“ . . . .
It is necessary to add to equation (5) a certain number of scala relation-
ships between the invuimts.

The plasticity theory of St.
equation (>), if all coefficients

ratio A%
B~ is determined from the

Venant-Levy41ises is obtained from
are zero except A and B, but the

Mises condition; to this one must add

a sca.lsmcondition:

The plasticity
when A, B, and B’

the condition of incompressibility.

theory of Prandtl-Reuss is obt~ine& from equation (~)

are different from zero, and

where the dot denotes a scalsr product of tensors; -to this one must
add the condition of incompressibility.

The theory of small elasto-plastic strains, the basis for the
development of HencQ and Nadai, is obtained from equation (5) when A
and At we different from zero smd the relation between them is
established by a known law of strain-hardening Ui = @(ei) and Hookets

Law o . Sk. for volume strains.

T%. Hsndelman-I%ager theory presented in the preceding article is

obtained from equation (5) if we set
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.
B=l

B’=2G

with the remaining coefficients set elual to zero. In the result we

obtain

2G5e= = 5S~ + g(~i)~UiSxx, . . . 1

1- (7)

where ai is the stress intensity. Equation (7) contains one unie–

termined function g(‘i) which must be found from tests. Inasmuch as

equation (7) nust be true for simple loading for which there must be a

ktlOWn dependency Ui = @(ei) between the stress intensity ~i and the

strain intensity ei represented by the tension iiagram, it is easy to

show the relatlon

5

d~i
3G–—

dei
g(O_i) =

~i *
dei

A(Ds) = A’(De)

*

(8)

Hence the new theory of Prager contains no new experimentally
determined functions which would characterize complex loaiing conditions.

In conclusion we present the following sufficiently obvious theorem
which shows the unity of all theories iescribed by equation (5): if the
loading of an element of the body is simple and if equation (>) must not
show the appemance of relaxation after-effects, creep, or other phenomena

connected with time, then it is identical with the equation

(9)
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By the condition of the theorem, the directed tensors Ds*

.

and De* do not depent on the parameter h, hence

urcDsd’=JrcTiD@=DsD’ia
Consequently the operator L(Ds) my be written in the form

The same is also true for Lt(De)j therefore equation (5) takes the form

Ds*L(’@ = De*L’ (~)

But L(Ti) ~d L’<7i) are inveriants and my be denoted by A

an3- A’> since the parameter h evidently must not enter in them, f’or

otherwise a dependency on the time would result; so they must be functions

only of Ti ad ?’i.

Thus, all the theories of plasticity represented in equation (5) are
identical among themselves for the case of simple loading and equ~valent
to the simplest of them – the theory of small elasto–plastic strains.

Therefore, to talk about the degrees of exactness of this or that
one of them, as do Hande2man and Prager, must refer only to the processes
of complex loading. In particular, relative to the new the~m of ~rager
previously proposed, one w say that it”lea~s to o~~ious contradiction
with tests since it involves only a single experimental function g(ai),

completely determined only by simple loadhg tests; functions reflecting
the Bauschinger effect, the possibility of rotation of the principal stress
axes relative to pats of the body end the strain–hardening effect are Dot

.

included in the new theory.

There remains only to note that the preceding theory of Prager in
which he improves the accuracy of the theory of small elasto—plastic strains
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by introduction of a nonlinesr tensor equation, is useful in the
supplementary calculation of corrections of the second-order of
smallness.

Translation by E. Z. Stowell

National Advisory Committee

for Aeronautics
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