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TECHNICAL MEMORANDUM NO. 1207

THE THEORY OF PLASTICITY Ii¥ THE CASE OF SIMPLE
LOADING ACCOMPANIED BY STRATN-HARDENTING*
By A. A, Tlyushin
The states of stress and strain of bodies are characterized by the

stress tensor S and the strain tensor E, each of which is usually
represented in the form of the sum of a spherical tensor and the deviator

0)]
Il

oI + Dg
(1)
E =6l + Dg

so that I is a unit tensor, ¢ and e the mean values of the diagonal
components of S and E or of their linear invariants. The deviators
in turn asre represented in the form

Dg = TiDs*
(2)
71 *
De = 5 De

where T; and 73 are the quadratic invariants of the deviators Dg

and De, known as the octahedral shear stress (stress intensity) and the
octahedral shear strain (strain intensity):
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= 5\ f(er —e2)2 + (o2 = 03)2 + (e3 — 01)®

Hence 0n

and e, are the principal components of the S and E tensors.

- *¥'"Teoriya Plastichnosti pri Prostom Naruzhenii Tyel, Material kotorikh
Obladayet Uprochneniem." Prikladnaya Matematika i Mekhanika XI, No. 2,
1947, pp. 293-296.
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The deviators Ds* and De* may be called directed tensors, and
corresponding to them are Cauchy surfaces, directed hyperboloids. Each
of thesge is completely determined by four numbers, of which three fix
the orientation of the principal axes 1, 2, 3 relating to the arbitrary
gystem of coordinates (for example, through the Fuler angles), and the
fourth determines the ratio between any pair of components in the devi-
ators or the ratio between any pair of semiaxes of the Cauchy surfaces.

In fact, between the six components of the deviator De{%mé} there
exist two relations

* * *
Sll + 822 -+ 833 = 0

~

(Sll* - 322*)2 + (522* - 533*)2 + (333* - 311*)2 (4)

6(5:5"2 + 8,572 4 837°9) =
+(12+23+31)9 J

and so only four of them are independent. The same holds for the
components of the deviator De{Emn}'

The state of stress and strain of an element of a body depends on
one parameter A. Such a parameter may be, for example, the time or
a value of the load. If the invariant T; dincreases with increasing X,
one may say that the element 1s being loaded; if it decreases with
increasing X, the slement is being unloaded.

Slmple loading is defined as that for which the directed stress
tensor Dy does not change with increasing A; the directed stress
hyperb0101d in this case remaing fixed for each element. Other cases
of loading are called complex.

The introduction of the above concept, its qualification, and the
principal difficulties so far unresolved are susceptible to easy reali-
zation in the present state of plagticity theory. Through analysis of
the experimental data comnected with establishment of the laws of
plasticity, we arrive at the following conclusions:

1. The laws of plasticity are completely established only for the
case of gimple loading of an element of the body; indeed, the tests of
Ros and Eichinger, Schmidt, Lode and Nadai, Taylor, Davis and Nadal and
others (reference 1} show that tube experiments under complex stress
conditions always yield a single result if the relative elements of the
principal stress axes are unchanged, and if the ratio of the two principal
stresses is constant during the tests; this result leads to the conclusion
that an invariant dependency exists between stress and strain.
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2, In the case of complex loading of an element, on the contrary,
no determinate relationship has been established: the Bauschinger effect,
the mutual orientation of the principal axes of stress and strain, the
strain velocity, the strain-hardening effect and other phenomena in the
complex stress state are not studied. It is clear only that the laws
holding for simple loading do not hold for complex loading.

One asks, is not the theory of plasticity, known to be correct
only for simple loading, excessively restricted and is it sufficiently
broad for the solution of practical problems? In answer to this one
may say the following: firstly, such a theory and within such limits
of applicability is unique, in agreement with experiment, and from
thisg it follows, secondly, it is applied and gives correct (agreeing
with tests) results for a large class of important technical problems.

The following assertion flows from the theorem which we have

demonstrated in previous work (reference 2): if an arbitrary load,
applied to a body of arbitrary form, grows in proportion to a general
parameter A, then this is sufficient for each element of the body
to be under the conditions of simple loading; i.e., for the directed
stress hyperboloid to remain fixed at each point of the body.

We emphasize that this is only a sufficient condition. Tests
ghow that for complex loading sufficiently close to a simple loading,
the theory based on the following laws gives results close to the true
regsults. Thus if there acts on a body a system of forces of which each
in the course of the loading process is a definite constant fraction of
the whole, then the loading of each element is simple. If only one
force or one uniform pressure p acts, (for example, in a tube, the
inward or outward pressure) it may be taken as the parameter A and
simple loading may result from any law of growth with time.

A11 the different theories of plasticity without exception may
be written in the form of a single tensor equation

L(Dg) = L'(Dy) (5)

where I and L' are linear integro—differential operators related to
the deviators Dy and D, by a parameter A,

S
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4D A LA )
L(Ds)=ADS+B~E§+...+O cnsax+o A DDgdAfdr + . . .

aD A At
A'Dg + B' —2Z 4+ . . .+ C'Dgdr + D'DgdM'dr + . J
0 o to

in which the coefficients A, B, C, . . . A', B'", C', . . . are functions
of the tensor invariants Dg and D, and of tensors obtained by the laws

of linear transformation, and in eddition, the parameters A, A', A" . . . .
It is necessary to add to equation (5) a certain number of scalar relation—
ghips between the invariants.

. (6)

L'(Dg)

The plasticity theory of St. Venant-Levy-Mises is obtained from
equation (5), if all coefficients are zero except A and B, but the

4
ratio %T is determined from the Mises condition; +o this one must add

a gcalar condition: the condition of incompressibility.

The plasticity theory of Prandtl-Reuss is obtained from eguation (5)
when A, B, and B' are different from zero, and

Bt =

1
- L
B =2

A=3DS -%
da

where the dot denotes a scalar product of tensors;-to this one must
add the condition of incompressibility.

The theory of small elasto—plastic straing, the basis for the
development of Hencky and Nadai, is obtained from equation (5) when A
and A' are different from zero and the relation between them is
established by a known law of strain-hardening oy = Q(ei) and Hooke's

Law o0 = 3ke for volume strains.

The Handelman—Prager theory presented in the preceding article is
obtained from equation (5) if we set
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1

2G

d.O’i

= S(Ui) ey

with the remaining coefficients set equal to zero., In the result we
obtain

2GBeyy = 8S.y + 8(01)804Syy, + .+ .
GBeyy = B4y + g(ai)acisxy,

where 05 1is the stress intensity. Equation (7) contains one unde—
termined function g(di) which must be found from tests. Inasmuch as
equation (7) must be true for simple loading for which there must be =

known dependency o = @(ei) between the stress intensity o3 and the
strain intensity &; represented by the tension diagram, it is easy to
show the relation

S(Ui> =

Hence the new theory of Prager contains no new experimentally
determined functions which would characterize complex loading conditions.

In conclusion we present the following sufficiently obvious theorem
which shows the unity of all theories described by equation (5): if the
loading of an element of the body is simple and if equation (5) must not
show the appearance of relaxation after—effects, creep, or other phenomena
connected with tims, then it is identical with the equation

A(Dg) = A" (Dg) (9)
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By the condition of the theorem, the directed tensors DS*

and De* do not depend on the parameter A, hence

ab aT.
s _4da.p ™ 2 —x
dAi dXCTlDS ) = Dg dr

A ™ x A
CDst CTiDS dk: = DS CTid}\:
0 0 0

Consequently the operator L(DS) may be written in the form

*
L(Ds) = Dg L(Ti)
The same is also true for L'(Dg), therefore equation (5) takes the form
*L(r p.*Lr (2
Dg {i) = *Ye (T

But L(T;) and L'(7;) are invariants and may be denoted by A
and A', since the parameter A evidently must not enter in them, for
otherwise a dependency on the time would result; so they must be functions
only of T4 and 7.

Thus, all the theories of plasticity represented in equation (5) are
identical among themselves for the case of simple loading and equivalent
to the simplest of them — the theory of small elasto-plastic strains.

Therefore, to talk ebout the degrees of exactness of this or that
one of them, as do Handelman and Prager, must refer only to the processes
of complex loading. In particular, relative to the new theory of Prager
previously proposed, one may say that it leads to obvious contradiction
with tests since it involves only a single experimental function g(oi),
completely determined only by simple loading tests; functions reflecting
the Bauschinger effect, the possibility of rotation of the principal stress
axes relative to parts of the body and the strain—hardening effect are not .
included in the new thsory.

There remains only to note that the preceding theory of Prager in
which he improves the accuracy of the theory of small elasto—plastic strains
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by introduction of a nonlinear tensor equation, is useful in the
supplementary calculation of corrections of the second order of
smallness.

Translation by E. Z. Stowell
National Advisory Committes
for Aeronautics
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