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Abstract - This paper describes a new logic simulator that was developed at the
NASA Space Engineering Research Center for VLSI Design. The simulator is
multi-level, being able to simulate from the switch level through the functional
model level. NOVA is currently in the Beta test phase and has been used to
simulate chips designed for the NASA Space Station and the Explorer missions.
A new algorithm was devised to simulate bi-directional pass transistors and a
preliminary version of the algorithm is presented in this paper. This paper also
describes the usage of functional models in NOVA and presents performance
figures.

1 Introduction

Logic simulation is, arguably, one of the most important parts of the of the current VLSI
design process. A fast, efficient, and accurate logic simulator can greatly enhance project
turnaround time and personal productivity. The logic simulation system developed at the
NASA Space Research Center for VLSI Systems Design located on the University of Idaho
campus is designed to relieve the current logic simulation bottleneck. It is designed to be
flexible and to meet the needs of VLSI designers for the near future.

NOVA is easily distinguished from other logic simulators currently available. First,
it is fast; speed is gained by novel use of software data structures (which can be easily
implemented in hardware) and by the development of a compiler (gibb) and flattener
(glink) to take a hierarchical description of a circuit and compile it directly into a flat file
for use by the simulator. NOVA also includes state models which incorporate most possible
state values. It has been shown [2] that to completely describe a circuit with three distinct
logic strengths, 21 states must be used; unlike other simulators, NOVA uses the required
21 states. This makes NOVA one of the most accurate simulators available. Third, NOVA
is user-extendible. Not only can NOVA be made to interface with the most of the software
that is currently available but even the internal primitives and functional models can be
defined by the user to customize the simulator for the user's particular project. Lastly,
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NOVA is very versatile; it can simulate from the switch level through the large functional
model level.

In this paper, an overview of the key architecture features of the simulator is presented
in Section 2. A discussion of logic states and a preliminary version of a new bidirectional
pass transistor simulation algorithm is presented in Section 3. User-defined Functional
models are discussed in Section 4. A comparison of NOVA versus the performance of other
simulators is presented in Section 5 and the superiority of NOVA in terms of speed for
equivalent accuracy is shown. Future uses and enhancements to NOVA are discussed in
the final section.

2 Overview

In this section, the set of programs written for the NOVA system will be discussed, the
use of busses and bus notation will be explained and the true multi-level nature of NOVA
will be shown.

2.1 Multi-level Simulation

NOVA is a true multi-level simulator. The simulation engine and the circuit description
language are robust enough to allow the user great flexibility.

NOVA can be used as a switch level simulator. In fact, it can be used as a switch level
simulator with user-defined timing delays. This allows the designer to describe the circuit
in terms of transistors alone and simulate the entire system.

NOVA also has as its primitives, most of the common gate structures used. Delays on
these gates may be allowed to default or may be set individually (rise time and fall time
may be different) for maximum flexibility. The circuit description language allows modules
to be declared which can then be thought of as user-defined gates.

Functional models are supported in NOVA and are described in Section 4. Briefly, one
may define anything as a functional model whether it be a chip, a board, a gate, or any
arbitrary set of transistors and gates.

Hence, NOVA is flexible and can simulate using any mixture of levels of abstraction of
the chip under design.

2.2 The Program Set

The NOVA system is composed of two basic subsystems. One is the system dealing with
the circuit description language and the other deals with the simulation engine itself.

2.2.1 Circuit Description in NOVA

A circuit is described in the BOLT language. This is a hierarchical language and has a
modularity which is similar to Pascal-like languages [1]. A program named gibb compiles
the BOLT file into an intermediate format calling upon bpp to preprocess bus notation
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into an expanded format, does the file inclusion, and performs string replacement. The
intermediate format is then sent through glink which is the hierarchy primitive flattener.
glink generates temporary files which are used by grcloc to produce the flat file which is
used by NOVA. A shell script is also created by glink if any functional models are present
in the circuit description. This shell script directs the compilation of the user's 'C' code
and links a program named fmnova.

2.2.2 The Simulator Programs

After successful circuit compilation, the simulator programs are used. The shell script nova
is used to determine whether the program fmnova (circuit contains functional models) or
the program nfmnova (no functional models) should be run [6]. Each of these programs
runs the actual simulation.

2.3 Busses in NOVA

Special syntax allows a bus, a range of similarly named nodes, to be specified in a compact
way in the BOLT language and in NOVA commands.

The syntax is fairly simple:

bus-name [indexl :index2]
where indexl and index2 are non-negative numbers.

The bus is then expanded internally to:

bus-name[indexl], ..., bus-name[index2]

As an example, a BOLT module for a 16 by 3 bit adder may be declared as:

sum[15:0] .adder!6x3 a[15:0] b[15:0] c[15:0];

3 Logic STATES

The circuit node or wire may be divided into three types referred to as:

1. State information

2. Strength information

3. STATE (capitalized) information - both state and strength information collectively

State information is the the logical value of the node (wire). A binary system (0,1) requires
three states to represent the logical state of a node:
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1)0
2)1
3)X where X represents an unknown logic value, or a half level (neither 0 or 1).

Informally, the simulator requires the state information to calculate the output of the in-
dividual elements comprising the circuit. It is the State information regarding the inputs,
of say, a NAND gate or an N-channel transistor, that is used to calculate what the output
of the element would be if no other other circuit element were connected to it.

Strength information is used to resolve conflicts between multiple circuit elements that are
connected to the same node. Thus, a classical logic simulator, which does not allow more
than one circuit element capable of driving a logic state to be connected to a node, does
not require any strength information at all. Modern logic circuits are rarely built solely
out of the classical logic elements (NAND, NOR, INVERTER, AND, OR). Pass-transistor,
tri-state, and pre-charged logic require a more sophisticated simulation scheme.

In general, different strengths may be assigned to the logic signals produced by a circuit
element. If two or more elements are attached to a node, the node will assume the logic
state with the greater strength. If a node has two circuit elements attached to it, both of
the same strength but trying to output different logic values, then the node is evaluated
to an X state.

3.1 Representing Indeterminate STATEs

STATEs representing either a 1 or a 0 must contain two pieces of strength information:

1. The greatest strength the signal may be driven to
2. The weakest strength it is possible for the signal to be

The first is significant because it sets a lower bound on the signal strength required to
overdrive the signal. The weakest possible signal strength is important because it sets an
upper bound on the strength of signal it can overdrive. In a case of contention between
signals, the logic state goes to an X if neither signal can overdrive the other.

A logic system with the three basic strengths: Active (a), Resistive (r), and Floating (/)
requires 12 distinct STATEs to describe the zeros and the ones in the circuit.
(Remember: Active > Resistive > Floating.)
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Table 1: Logic STATEs Representing 0 or 1 in a Binary System With Three Basic Logic
Strengths

In general if the system has N basic logic strengths represented by integers from 1 to N,
these STATEs may be represented by the triplet, KU , where:

K represents the actual logic state ( 1 or 0);
b represents the strongest possible strength of the signal

and ranges from: 1 <= b <= N;
d indicates the weakest strength

and ranges from 1 <= d <= b.

The indeterminate, or X logic STATEs also require two pieces of strength information:

1. the greatest strength of any circuit element connected to the node that
may be attempting to drive it to a 0;
2. the greatest possible signal strength driving the node to a 1.

The first is necessary because it sets a lower bound on the strength of a signal capable of
overdriving the node to a 1; and the second piece of strength information is used to set a
lower bound on the strength of a signal that can overdrive the X to a 0.
The logic system with three basic strengths described above therefore needs 9 distinct logic
STATEs to represent the indeterministic or half-level logic conditions that may occur on
a node.

A.aa A.ro -A./a

-<»-ar -"Wr -"Vr

Xa/ Xrf Xff

Table 2: Logic STATEs Representing Indeterministic Node Conditions in a System with
Three Basic Logic Strengths
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In general, if the system has N basic logic strengths that are represented by integers from
1 to JV, these indeterministic STATEs may be represented by the triplet, Xp,, where:

X indicates the actual logic state is unknown or at half level;
p represents strongest possible strength of any signal driving

the node to a logical 0;
q represents strongest possible strength of any signal driving

the node to a logical 1;

Both p and q range from I to N.

The minimum number of internal logic STATEs required to represent the information
necessary to accurately simulate a binary system (0,1) with N basic logic strengths is seen
to be:

^STATES = N(ZN +1) (i)
where: JV2 STATEs represent unknown logic values and (N2 -f 1) STATEs represent the
(0,1) STATEs. For a system containing three basic strengths (active, resistive, floating)
equation 1 gives a minimum of 21 STATEs required for proper simulation.

3.2 The Number of Basic Logic Strengths

It should be noted here that adding NIL strength STATEs corresponding to no connection
(placed one step lower in the hierarchy of strengths than a floating strength), can simplify
the formulation of the transistor models significantly, but is not, strictly speaking, neces-
sary. The addition of a strength placed one level higher in the strength hierarchy than the
floating strength can simplify the simulation of charge sharing effects and is appropriate
when a large capacitance charge shares with a small capacitance. On the other hand, if
depletion transistors, pullup resistors, and other overdrivable devices are not among the
logic elements used in the circuit, then the resistive strength may be eliminated. The
number of basic logic strengths may be extended to as many or as few as desired. (In the
Table below, the alphanumeric representation is used for display only. The STATEs are
represented internally as in the first column.)

3.3 Simulation of Bi-directional Pass Transistors

Transistors are not inherently uni-directional, rather, they are bi-directional. In all but the
most unusual cases, the designer can easily determine the source node and can, therefore,
use the uni-directional model. For those instances when a bi-directional model of a transis-
tor is required, an algorithm to correctly simulate the action of those nodes was developed.
In the development, a couple of assumptions were made. First, a designer will not have
long chains (greater than 8) of bi-directional pass transistors; due to the distributed RC
time constants, the circuit slows down considerably when the chain becomes larger than
4 to 8 [5]. Second, the designer will not use the bi-directional model if a uni-directional
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model will work as well; one must realize that a simulation of bi-directional transistors will
slow down the simulation. The algorithm, then, can be a separate routine rather than a
routine that is exercised every time the simulator is used.

3.3.1 Extensions to the basic States

As a signal propagates through a bi-directional pass transistor, its ability to overdrive
another signal lessens, ie. the signal strength deteriorates slightly. To accommodate this
within the framework of states that are already in place, the state strengths are given
subscripts. The highest strength subscript is a 0 and the lowest strength is a 7. As an
example of the use of the subscripts, let us suppose that a signal of state lar enters a
chain of bi-directional pass transistors. After propagating through the first transistor, the
state is Ioor0, after the second transistor, the state is lair!, and after the ith transistor,
the state is

3.3.2 Overdriving a State

One state may overdrive another state using the established rules of precedence as given
in [2]. The substrengths 0 through 7 may be overdriven by any higher strength. This
property is better shown by example:

• Ia3r3 + Ia6r6 — » Ia3r3

• Or6r5 + l/i/i -» OrBr6

• 10404 + Oa2a2 — » X 0,10,4

+ 10707 — > Ia«a6

It is easily shown using the theory of Hamiltonian cycles, that the algorithm will con-
verge to a proper state even with opposite ends of a chain being driven to different states.

One must be careful with regards to the timing algorithm. Through empirical study,
it was decided to allow any transition to an X state happen in zero delay time but the
transition from an X to a 1 or 0 state would happen in the normal delay time. Of course,
a simple strength change within the same state happens with zero delay.

3.3.3 Interaction with Uni-directional Transistors and Gates

One can think of a group of bi-directional transistors as a cluster. A state comes into the
cluster and is appended with the extra subscripts, ie. the state Spq becomes the state
Spoqo' When the state finally leaves the cluster, the extra subscripts are simply dropped
and the state takes on the original format.
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4 Functional Modeling in NOVA

In today's complex design arena, a complete functional and behavioral language is a neces-
sity for a complete logic simulation tool. Functional models are useful for modeling large
blocks of circuitry. Examples of some blocks that one might want to create a functional
model for include micro-processors, co-processors, and any number of large circuits that
one might want to interface with. These models are also used during a design for top-level
simulation and design and exercising gate/transistor level models. The NOVA functional
modeling language is a super-set of 'C'. The user may write programs using I/O, sockets
and other LAN access, math, graphics, etc.; the communications with the simulation en-
gine is done through a set of carefully defined routines. The functional model language in
NOVA is based on a set of 'C' language function calls. These calls organize the interaction
between the NOVA engine and the functional models into an efficient model and provide
integrity of the internal NOVA data structures.

There are two major parts to a functional model within NOVA.

1. the BOLT language module description

2. the 'C' language functional description

For a functional model to interface with other modules that may be functional models
or may be transistor or gate level models requires information to be specified and passed
to a functional model and back to the NOVA simulation. Following is a discussion of the
major design choices to be made and the major paths of information flow from the user to
the functional model and to the NOVA simulation.

4.1 Evaluation

The major means of passing information into the functional model from the rest of the
NOVA simulation is through the input pins to the module block. This information can
be used as input data, clocking information, and the forcing function for evaluating a
functional model. The issue of when to evaluate a functional model can be a difficult
decision. One must consider the architecture of the block that is being modeled (i.e. if the
model only needs to be evaluated on a rising or falling clock edge) and weigh this versus
having any change in any input evaluate the model. As NOVA is a timing simulator and
all inputs do not change at exactly the same time, having the functional model evaluate on
all changes to all inputs will cause the simulation to proceed at a much slower pace than
is necessary. For this reason the execution speed tradeoff between building a functional
model and using the gate and/or transistor level BOLT model may not be as obvious as
initially thought. A clocked synchronous model will typically execute much faster than an
asynchronous block such as a RAM of comparable size.
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4.2 Local Storage

If a user wishes to only have one instantiation of a given functional model, creating local
storage is simple. The user merely needs to declare the variables that he wishes to remain
between calls to the functional model as static within the 'C' program. If there is to be
more than one call to the functional model, then the user may create local storage which
is allocated by the NOVA simulator on a per instantiation basis. One can allocate variable
amounts of storage by using "malice" and storing the pointer to the allocated structure in
the NOVA local storage.

4.3 Communicating with NOVA

All the communication from the functional model to the NOVA simulation is done strictly
through use of Output pins from the module. As this is how information is passed in a
gate/transistor model, the functional model must utilize the pins to send information to
the NOVA simulation.

4.4 External Communication

The functional model user is free to do anything that the 'C' language is capable of doing.
An example might be to initialize a RAM or ROM model by reading a file or to prompt the
user for information through a terminal. More elaborate uses might be building a "Virtual
Logic Analyzer" by connecting a functional model through a graphical interface (such as
X windows) allowing the user to view the simulation in a human oriented manner as it
progresses and allowing the user to add asynchronous events if desired. NOVA has been
specifically designed to allow functional models the full use of the UNIX operating system
and the I/O available.

4.5 Scheduling Other Events

One problem with using the functional model system as presently constructed is the lim-
itation of NOVA being able to only schedule one event on a node at a time. When
constructing a functional model, one often knows that certain events will happen in the
future at a given time. This state information must be stored by the functional model
which can lead to some awkward coding practices. A set of functional models constructed
at Advanced Hardware Architectures have implemented a method for handling this in a
non-obtrusive manner and will be discussed in a future paper.

4.6 Other Uses For Functional Models

A number of additional uses for functional models (as opposed to modeling blocks that
will be present in the design) have been developed. These include:

• a module for comparing differences in incoming vectors and documenting the time
and variation
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• a module describing a block and running in parallel to the gate/transistor model of
the block and feeding into a comparison block

• analysis of the incoming vectors and providing a human readable analysis of the
vectors to a file

• synthesizing complex input patterns that require feedback from the simulation to the
pattern. The tool used by Advanced Hardware Architectures for pattern generation,
PATGEN, lends itself well to these applications as it also is a super-set of 'C'.

5 Performance Issues

To a designer, time is of the essence. One would like to be able to perform as many
simulations as possible in a given time frame both to decrease development time and
to increase confidence in the chip being designed. As has already been discussed, logic
simulation proceeds in two steps. First, the circuit description is compiled, then the circuit
is simulated. For comparison purposes, the results of identical simulations using three other
simulators have been compared to NOVA. All four simulators were tested using the Quick
Simulator Benchmark [3] and were run on the HP9000/370 [4]. The only major difference
between the runs was that NOVA was tested on a machine with 16MB of memory and the
other three were tested on a machine with 32MB.
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Figure 1: Compile Time Comparison
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Figure 1 shows the compile time comparisons. As can be seen from the graph, NOVA
(gibb) compiled circuits faster than AWSIM, BEST and VERILOG. It is interesting to
note that VERILOG hit a physical memory limit at about 60K gates. This is because
VERILOG uses about 400 bytes of memory per gate (whereas NOVA uses 32 bytes).

Simulation time is compared in Figure 2. The results are somewhat deceiving. None of
the other simulators have as many features as NOVA so it is hard to compare. AWSIM is
a zero delay simulator; therefore, it should be simulating much faster as propagation delay
is not taken into account. BEST uses only 11 states and should be faster than NOVA but
it isn't. VERILOG is faster than NOVA for the circuits that it can simulate. It should
be noted that VERILOG cannot simulate as many gates as can NOVA due to memory
limitations. VERILOG also cannot simulate at the transistor level. Neither BEST nor
VERILOG can handle arbitrary delays; hence, they are tuned to run at a certain delay
speed.
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Figure 2: Simulation Time Comparison

Lastly, the relative performance (and portability) of NOVA is shown in Table 3. Using
the HP9000/340 as a base for comparison, a suite was run to determine the relative simu-
lation time. It is interesting to note that neither the size of the circuit nor the length of the
simulation affected the relative simulation time appreciably. All four systems in the table
are UNIX systems and it is the feeling of the ones porting the code, that NOVA could
easily be made to run on any UNIX based machine. It might be noted that the DN10000
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Type of
System

HP9000/340
HP9000/375

Apollo DN10000
Cray X-MP

Relative
Speed

1.0
3.02
5.08
6.56

Table 3: Relative Performance on Various Computers

is a two processor machine for which there is a very efficient 'C' compiler. The relatively
low performance of the Cray X-MP can be partially explained because only about 6% of
the code in the simulator could be vectorized. Much of the code is involved in pointer
manipulation and in integer arithmetic which are the most inefficient operations on the
Cray.

6 Future Uses and Enhancements to NOVA

Future enhancements to NOVA are currently focusing in two areas. One is the improvement
in functional models and the other is coupling the I/O with the X-window system.

The industry seems to be standardizing upon two languages for describing behavioral
and functional blocks. These languages are VHDL and VERILOG. A compiler can be
designed that will translate these languages into the appropriate 'C' code and then compiled
into the NOVA system for efficient execution and close tying of the functional blocks to the
extant gate/transistor models. This allows a Top-down design with the same simulation
tools being used throughout the design.

An X-window interface is currently being implemented and tested. The ability to see
transitions graphically will greatly enhance NOVA's usefulness.
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