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Abstract-

Impulse neural networks use pulse trains to communicate neuron activation
levels. Impulse neural circuits emulate natural neurons at a more detailed level
than that typically employed by contemporary neural network implementation
methods. An impulse neural circuit which realizes short term memory dynam-
ics is presented. The operation of that circuit is then characterized in terms of
pulse frequency modulated signals. Both fixed and programmable synapse cir-
cuits for realizing long term memory are also described. The implementation
of a simple and useful unsupervised learning law is then presented. The imple-
mentation of a differential Hebbian learning rule for a specific mean-frequency
signal interpretation is shown to have a straightforward implementation using
digital combinational logic with a variation of a previously developed pro-
grammable synapse circuit. This circuit is expected to be exploited for simple
and straightforward implementation of future auto-adaptive neural circuits.

1 Introduction

Natural neurons compute by performing spacial and temporal integration of incoming im-
pulse trains. In this paper, we describe circuits which implement artificial neural networks
that operate in a similar fashion-by integrating trains of discrete pulses. Artificial neurons
which work in this manner are desirable not only because they more closely mimic natural
neuron functionality than other neural-network paradigms, but also because pulse-based
communication inherits positive aspects of both digital and analog communication sys-
tems. Data can be represented without quantization effects by encoding information in
the time period between identical digital pulses. This combination of analog signaling with
digital waveforms is robust; even in a noisy environment, reliable detection of the presence
of a pulse is simple. These advantages may have contributed to the natural selection of
pulse-based communication in natural neural networks.

2 Information Representation and Interpretation

The impulse neural circuits we are working with communicate via the use of pulse frequency
modulation (PFM). There are two readily apparent ways of interpreting the information
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Figure 1: A pulse train f(t), its estimated mean frequency signal S(t), and signal velocity.
Waveform f(t), consisting of uniform lOus pulses with lus rise and fall times, changes from
30kHz to 60kHz and back. The observation period is T = .00015. S(t) and its derivative
were evaluated numerically



2nd NASA SERC Symposium on VLSI Design 1990 6.3.3

content of a PFM waveform. Information may be perceived as being contained in the time
interval between pulses or in the average of these intervals: equivalently, it is contained
in either the instantaneous frequency of the pulse train or in its mean frequency. One
advantage of the mean frequency interpretation is that it is easily estimated. The signal
value is equivalent to the average frequency as estimated by the reciprocal of the observed
average firing period, which is in turn proportional to the number of pulses which occur
over an observation period.

Investigations into the nature of PFM communication in neurons often emphasize the
mean-frequency interpretation. The integral-pulse-frequency-modulated (IPFM) signal
model for natural neural systems provides a case in point. The spectrum of an IPFM
signal contains a DC-referenced component proportional to the modulating signal that
can be easily recovered by low-pass filtering or averaging. This signal model suggests these
operations are the most likely methods employed by natural neurons to recover signal in-
formation, as they are the simplest and otherwise the only ways in which distortion-free
demodulation can be achieved [1].

The integrate-and-fire neuron model used to generate IPFM signals accurately describes
the operation of the impulse neural circuits we are investigating. This makes the time-
averaged signal interpretation useful for analyzing impulse neural circuits.

In the remainder of this paper we will assume a time-averaged signal interpretation
over some arbitrary period r. Under the assumption of a continuous pulse waveform, the
signal S(t) represents the average pulse firing rate:

f(a)d<r (1)

Since the signal is represented by the time average of the pulse train, it has been noted
that the pulse train itself should contain information regarding the time-differential (or
velocity) of the signal [Gluc88]. In fact, simple application of a fundamental theorem of
calculus yields:

S(i) = \(f(t] ~ f(t ~ r)} (2)

This well-known formulation proves useful in the analysis of the impulse neural circuit to
be described as well as in the development of a Hebbian learning rule which is particularly
well suited to VLSI circuit implementation. Figure 1 illustrates a PFM coded signal and its
derivative. A similar formulation using a low pass filter signal representation also allows for
stable numerical computation of the instantaneous mean frequency and its derivative [3].
The application of the low pass signal representation to VLSI implementation is beyond
the scope of this paper, but may have future utility.

3 Impulse Neural Circuits

The impulse neural circuits we have been developing incorporate a blend of analog and dig-
ital circuit implementation styles [8]. There are two principle subcircuits utilized, namely
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Figure 2: Axoxomal and fixed-synpase circuits

axosomal and synapse circuits. The axosomal circuits compute a nonlinear summation
of input signals whose magnitudes are weighted by the synapse circuits. Together they
implement an integrate and fire mechanism which corresponds to one of several commonly
used models of natural neuron function [6],[2],[1].

3.1 Axosomal Circuit

The axosomal circuit (Figure 2) is a simple current controlled relaxation oscillator. The
circuit has two discrete states of operation, the input integration state and action potential
generation. The Schmitt trigger establishes two threshold potentials which determine when
the neuron moves between these states. Feedback to two FETs, one in series with and one
shunting capacitor Ct, determines whether it is being charged by net input excitation
during the integration state or being discharged during an action potential. Instantaneous
membrane potential is represented by voltage z; across the capacitor. The upper Schmitt
trigger threshold voltage (Vth) emulates the natural neuron action-potential threshold while
the lower (Vy) emulates the membrane potential at which the voltage-gated ion channels
close.

During the integration state, Xi < Vth and the series PFET conducts charge to or from
C, at a rate dependent upon the net result of excitatory and inhibitory stimuli (expressed
by ID in Figure 2). Over this period, the shunting NFET conducts no current. When
Xi reaches Ifo, f(xi) switches from 0 to 1, switching off the series PFET and driving the
shunting NFET into the active operating region. This is the action potential state of the
circuit. The capacitor discharges toward ground at a rate determined by Ct, Vth, and the
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NFET characteristics. When Xi = Vjj, the circuit switches back to the accumulation state
and one firing cycle is complete. Circuit operation continues in this manner at a rate which
is dependent upon the net excitation from the dendritic current.

3.2 Synapse Circuits

Two dendritic circuits have been developed, a fixed synapse and a programmable synapse.
Using a parallel-connected combination of these synaptic cells, networks with any combi-
nation of inhibitory and excitatory connections can be constructed. Additionally, these
circuits can emulate additive or shunting connections.

Figure 2 depicts the inhibitory and excitatory fixed synapse circuits. In each two-
transistor circuit, one FET behaves as a voltage-controlled switch for converting uniform
pulses into weighted, discrete charge packets that are conducted to or from an axosomal
summing capacitor. A second FET determines the synaptic weight, or size of the charge
packet. Depending on the choice of reference voltage (Vrp or Vrn), the pair acts as either
a switched current source in an additive synapse or a switched resistor in a shunting
connection. Further control over synaptic efficacy is attained by customizing FET W/L
ratios. Thus, fixed networks may be implemented simply by tailoring device geometries
and selecting appropriate bias voltages.

Unfortunately, experimental work has shown that it is difficult to select these parame-
ters based on weight values obtained from conventional neural-network training techniques.
More traditional paradigms, such as error backpropagation, employ abstract models which
do not exhibit the nonlinear response or process variations found in these electronic cir-
cuits. One solution to this problem is the application of auto-adaptive circuitry which
compensates for circuit imperfections.

The programmable synapse constitutes a portion of that auto-adaptive circuitry. Specif-
ically, it stores the current adaptive state (connection weight) in a non-volatile fashion as
the threshold voltage (Vth) of a floating-gate FET. The programmable synapse circuit
(Figure 3) consists of five transistors, two of which share a common floating gate. In com-
bination with reference FET Qi, the circuit acts as a switchable current source controlled
by reference voltage Vrn and the impulse gating signal f(*j). With Vrn adjusted such that
Q4 operates in the subthreshold region, a small shift of Vth induces a significant change
in the Qt source current. With Q\ properly biased, this current controls the amount of
current flowing into the dendritic summing node (/£>). With Vrn fixed, variations in Vth
for $4 will vary ID over several orders of magnitude when $3 conducts.

The circuit is programmed by the application of voltage pulses Vpp to the control gate
of Qs, causing a high electric field to form in the dielectric between the gate and the
substrate. This will induce charge tunneling between the substrate and the floating gate,
where the carriers will become trapped. Any trapped carriers will redistribute themselves
between Qt and Q6 since they share the conductive polysilicon floating gate. As a result,
the Vth of both transistors will be shifted slightly. A positive Vm causes negatively charged
electrons to become trapped in the floating gate, which in turn causes Jj, to drop below
Iref. There will then be an increase in the current flowing into the summing node. The
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Figure 3: Programmable synapse circuit

opposite happens for a negative Vpp. Note that, unlike the fixed synaptic cells, a single
programmable synapse may change from excitatory to inhibitory or vice versa.

3.3 Signal transfer function

The transfer function computed by an impulse neural circuit can be derived under the
assumption that the chief information carrying component of the impulse train is its av-
erage value. The impulse neural circuit which we have described can be shown to use
time-aver aging to demodulate input signals. It can also be shown that the average output
signal is a nonlinear function of a weighted summation of averaged input signals.

The averaged output of an impulse circuit which integrates input signals during both
the integration and action potential state is given by:

j=i C(Vth - Va)
(3)

for observation interval r. A,T0 are the output pulse amplitude and width, C is the inte-
gration capacitance, h is the nonlinear transconductance relation associated with synapse
j, ftj is the transconductance factor of synapse j, and Vtht Va are as defined previously. NI
is the total number of inputs.

This general result shows that the output mean firing rate is a linear weighted sum-
mation of input mean firing rates for a circuit which integrates inputs over the entire
observation period tau, regardless of the circuit state. Such is not the case, however, in
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the actual neuron circuit. Input signals are not integrated during the action potential state.
This means that the circuit output will eventually saturate with increasing net excitation.
A nonlinear activation function can be derived for the circuit using a special case of (3)
where the observation interval is r — TO + 2\, with T\ representing the integration period
for a single output pulse:

Since no input signals register an effect during the action potential state, the first
integral term evaluates to zero. Algebraic manipulation of the resulting equation yields
the following expression for TI:

T = C(Vth - Va)
1 NET

where

NET=

where Sj represents an approximation of the input signal over the (shorter) observation
interval TI and NET is the net input excitation (weighted sum of input signal approxima-
tions). The actual input/output relationship computed by the circuit becomes:

Here, SQ expresses the instantaneous firing rate of the neuron output signal as a nonlin-
ear weighted sum of mean firing rates observed over the integration period. This function
is sigmoidal, saturating as NET approaches infinity and dropping to zero with NET = 0.
This result agrees precisely with that obtained via the more specific analysis reported in
[8], and concurs with circuit simulation results.

A series of SPICE simulations (Figure 4) of an axosomal circuit extracted from a 2/i
CMOS layout shows very close agreement with the form of (6) over at least six orders of
magnitude of input current. Preliminary measurements from a prototype of the axosomal
circuit are also presented (Figure 5). Although the data exhibits the same exponential slope
and saturation characteristic as the simulation, it also manifests an awkward transition
into saturation that has not yet been explained. The large offset in the data before the
saturation region is attributable to the input capacitance of the chip, which is significant
since the extracted value of Csubs is less than .2pF.
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Figure 4: Comparison of simulated transfer characteristic with Equation 6 for
C = .18pF,T0 = 2.2 x 10-8s, and Vih - Va = 2.2v
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Figure 5: Comparison of simulated transfer characteristic with measurements from a pro-
totype neuron
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4 Auto- Adaptation in an Impulse Neural Circuit

There exist three general neural network adaptation strategies. Neural networks can be
trained using supervised, unsupervised, or reinforcement methods. Any algorithms which
update connection weights as a function of some error between an output and target
vector are supervised. Error backpropagation is one of the best known examples of a
supervised learning algorithm. Supervised adaptation not only updates the connections
when errors occur, but also gives some indication about how to update the connections to
reduce error. Unsupervised training methods use no error feedback whatsoever to adjust
connection weights. Their chief ad vantage is the exclusive use of local information from pre-
and post-synaptic neurons. The reliance on only local information helps simplify VLSI
implementation of the learning rule. Reinforcement methods utilize output feedback to
update connection weights, but without specific error gradient information. Reinforcement
learning can use either global or local information, and provides a good model for classical
conditioning phenomena which have been observed in natural neurons.

Natural neural systems adapt to the environment while processing trains of pulses in
the apparent absence of direct performance feedback, so unsupervised learning provides
one model for adaptation in such systems. It is our goal to implement auto-adaptive VLSI
neural circuits, so a natural alternative is to begin with algorithms that use locally available
information to update connection strengths. Unsupervised learning is a logical candidate
for this.

At least four types of unsupervised learning have been described, including signal
Hebbian, differential Hebbian, competitive, and differential competitive learning. This
algorithm class exhibits a simplicity and locality not present in more complex training
algorithms such as backpropagation and ART. Our work thus far has focused upon Heb-
bian rules exclusively, even though extensions based on competitive learning may also be
possible. Hebbian style adaptation rules are found in adaptive bidirectional associative
memories (ABAMs) [Kosk89], and in reinforcement generation for classical conditioning
models. Hebbian rules have also been used in principle component analysis for feature
extraction in lieu of computationally complex matrix algebra [9], [7], [5].

Signal Hebbian adaptation is expressed as a correlation of pre-synaptic and post-
synaptic neuron firing rates:

i) (7)

where Si(t) represents a mean firing rate of neuron i at time t and /? is an adaptation
rate constant. It is important to note that this expression is independent of the type of
frequency averaging used, so its meaning can vary with the signal interpretation. Even
though the signal Hebbian rule can account for learning, it cannot account for "unlearning",
since connection strengths monotonically increase with signal correlations.

The differential Hebbian adaptation rule can be expressed as the correlation between
the rate-of-change (velocity) of pre- and post-synaptic signals:

wtj = ftSiSj (8)
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When used for reinforcement generation, differential Hebbian has been shown to ac-
count for several aspects of classical conditioning behavior which go beyond the simple
acquisition accounted for by signal Hebbian learning.

A differential Hebbian learning rule for the mean frequency signal representation ex-
pressed in (1) can be implemented using simple digital logic in conjunction with a variation
of the adaptive synapse circuit of Figure 3. Given the relation described in (2) it can be
shown that the product of two signal velocities can be computed using the relation:

< - r) - /,(<)/! (< - T) + h(t - T)/,(« - r) (9)

Since all /;(<) are binary signals having the value "lw when an action potential is
occurring at time <, much of the computation can be carried out by simple combinational
logic. This representation is naturally compatible with impulse neural circuits, as the
binary pulse train signal representation allows for the reduction of the multiply operations
to simple logical AND functions.

Using (1) to establish a signal interpretation based upon inverse mean period allows for
the design of a simple auto-adaptive synapse circuit. Figure 6 diagrams an implementation
of an auto-adaptive differential Hebbian synapse cell which is currently being developed.
The binary products are computed by the AND functions while their arithmetic combi-
nation is computed by charge summation in the floating gate circuit. Delayed versions
of the input signals are derived from simple binary delay cells. Only one delay cell is re-
quired per neuron circuit. The configuration shown will exhibit some features of classical
conditioning if f\ is the output from the post-synaptic neuron and fj is any input signal.
As such, the circuit computes reinforcement signals which contribute to both connection
acquisition and extinction.

5 Conclusion

We have shown that a differential Hebbian adaptation rule can be implemented in a simple
and straightforward manner in an impulse neural circuit. The results of this work are
expected to contribute to the implementation of classically conditioned neural circuits and
adaptive bidirectional associative memories as well as any other network training algorithm
based upon a differential Hebbian learning rule.
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Figure 6: An autoadaptive differential Hebbian synapse cell representing the weight from
neuron j to neuron i
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