
m__

NASA-CR-194386

/

V

_mm

RICIS "88SYMPOSIUM
(NASA-CR-194386) RICI5 SYMPOSIUM N94-71135

19_8 (Rese3rch Inst. for Computing --THRU--

and Information Systems) 187 p N94-71152
Unclas

Z?/61 0185350

https://ntrs.nasa.gov/search.jsp?R=19940004380 2020-06-17T00:16:04+00:00Z

U

I

U

u

R

m

mD

im

r

j_

r_
mm

J

[]

A_
/ L__

-,7-_

RICIS SYMPOSIUM'88

Z

Co-Sponsored by:

NASA/Johnson Space Center
and

University of Houston-Clear Lake

November 9-10, 1988

Houston, Texas

"_S-

RICIS SYMPOSIUM '88
i

Steering Commnttee
Technical Co-Chairs:

[]

A. Glen_H0uston, Director- RICISI University of Houston-Clear Lake i

Robert B. MacDonald, Assistant for Research and Education -
Mission Support Directorate, NASA/JSC []

Conference Coordinator:

Katherine Moser, Coordinator - SEPEC, University of Houston-Clear Lake

Members:
i

Glenn B. Freedman, Director - SEPEC, University of Houston-Clear Lake

Bryan I. Fugate, Technical Manager - Software Technical Support, SoftwareTechnology _-
Program, Microelectronics and Computer Corporation

John R. Garman, Associate Director - Mission Support Directorate, NASA/JSC

Richard Kessinger, Manager - Space Programs, SofTech, Inc.
1

Everett Lyons, Project Manager - Space Station Sofware Support Environment, Lockheed
Engineering

Charles W. McKay, Director - SERC; High Technologies Laboratory, University of Houston
Clear Lake

James Raney, SSE Project Manager, Mission Support Directorate, NASA/JSC

University of Houston-Clear Lake

RICIS Steering Committee
m

Michael C. Gemignani, Provost and Senior Vice President for Academic Affairs
James T. Hale, Vice President for Administration and Finance

E. T. Dickerson, Dean, School of Natural and Applied Sciences

L. Todd Johnson, Dean, School of Business and Public Administration

Joan J. Michael, Dean, School of Education
m

Wayne C. Miller, Dean, School Of Humanities and Human Sciences

David A. Hart, Executive Director, University Computing

All rights reserved by the University of Houston-Clear Lake. Use of any materials contained herein

is prohibited without the expressed permission of the Software Education Professional Education

Center, 2700 Bay Area Blvd., Box 270,Houston, Texas 77058-1088

I

m

m

=

t ,

w

Introduction

Welcome to RICIS SYMPOSIUM '88!

Considerable national interest is concentrated on enhancing productivity to help ensure a U. S.

competitive advantage in the world marketplace. The technical community has realized the

importance of software in meeting this goal for some time (15-20 years!). Over the past three to

five years, the business community has come to understand and accept the importance of software.

In fact, software has surpassed hardware as the key element to the success of many products,
systems and businesses.

Despite this growing awareness of the importance of software, much work still needs to be done in

addressing software development issues. Because an increasing number of people have recognized

the need for a more disciplined approach to software development, "software engineering" is

emerging as an important professional discipline. Unfortunately many remain unaware of modern

software engineering methods and procedures, and too many organizatio0s are still developing
software in a hapbazard fashion.

Given this perspective, plus the fact that the focal point of RICIS research is the NASA Space

Station Program, "Integrated Environments for Large, Complex Systems" is an appropriate theme

for RICIS SYMPOSIUM '88. Distinguished professionals from industry, government and academia

have been invited to participate and present their views and experiences regarding research,

education and future directions related to this topic.

Within RICIS, more than half of the research being conducted is in the area of Computer Systems

and Software Engineering. The focus of this research is on the software development life-cycle for

large, complex, distributed systems. Within the education and training component of RICIS, the

primary emphasis has been to provide education and training for software professionals.

IIowever, RICIS research has grown to the point that it is not feasible to cover the many on-going

research activities in a single day-and-a-half conference. Hence we have elected to have a series of

conferences, with each focusing on a specific technical area or topic of interest within RICIS. An

overview of the accomplishments to date, research plans for the coming year, and upcoming

conferences will be presented by the RICIS research area directors for each of the five RICIS
research areas.

We hope you find RICIS SYPOSIUM '88 both informative and enjoyable!

A. Glen Houston

Technical Co-Chair
Robert B. MacDonald

Technical Co-Chair

II

Iw

m

m

m
I

I

m

I

I

m

mm

I

m
RI

!

i

mm

mm

IIIlll 1 Ill I lllIllllIllllIII I I

Table of Contents
I

Program Agenda

Keynote Speaker
Larry E. Druffel

Software Development Environments." Status and Trends

RICIS Research Review
Charles W. McKay

Computer Systems and Software Engineering

Peter C. Bishop

Research Review for Information Management

Terry Feagin

Artificial Intelligence and Expert Systems
A. Glen Houston

Mathematical and Statistical Analysis

Glenn B. Freedman

Research Review for Software Engineering and Training

9

11

17

27

33

37

L_

Session I Requirements Analysis Fundamentals
Colin Potts

Requirements Analysis, Domain Knowledge, and Design
Lawrence Z. Markosian

Knowledge-Based Reqirements Analysis for Automating Software Development

43

45

57

b

Dinner Speaker
Frank Belz

Integrated Software Support Environments: Some Lessons Learned 69

r
w

m

Session II
Tim Porter and Paul Babick

Lessons Learned from an ADA Conversion Project
Gokul Bhaumik

Modernization of Software Quality Assurance
Herb Krasner

Empirical Studies of Design Software:

Implications for Software Engineering Environments

C. T. Shotton and C. L. Carmody

Tool lnteroperability in SSE OI 2.0

Space Station Software Support Environments 71

73

85

93

99

U

I

m

m

J

m

I

im

[]

_U

i

ID

m

mE

l

II

X.- Session III Developing Software Engineering for

Competitive Advatage-Industry and
Federal Government

Dana L. Hall

The Role of Software Engineering in the Space Station Program

John B. Munson

Unisys" Experience in Software Quality and Productivity

Management of an Existing System

Howard Yudkin

Next Generation

113

115

117

125

m

T

Panel I Software Engineering as an

Engineering Discipline
Glenn B. Freedman

Software Engineering as an Engineering Discipline

John W. Brackett

Meeting the Challenge of Industrial Software Development:

The Boston University Graduate Program in Software Systems Engineering
Edward V. Berard

Software Engineering as an Engineering Discipline

Robert B. MacDonald

Software Engineering as an Academic Discipline
Norman Gibbs

Software Engineering as an Engineering Discipline

Panel II Computer-Aided Software

Engineering Environments

for Real-Time Systems
Charles W. McKay

A Conceptual Model for Evolving Run Time Support of Mission and Safety Critical

Components in Large, Complex, Distributed Systems

Miguel A. Carrio

A New Technology Perspective and Engineering Approach for Large, Complex and

Distributed Mission and Safety Critical Systems Componets

E.Douglas Jensen

Alpha: A Real-Time Decentralized Operating System for Mission-Oriented

System Integration and Operation

127

129

135

149

159

161

177

179

201

213

m

Im

i

RB

B

I

IR

i
m_

J

m

ii

I

im

!

I

Q

Integrated Computing Environments
for Large, Complex Systems

Wednesday November 9,1988

! 2:30 - 1:00 Welcomes and Introductions

A. Glen Houston

Conference Technical Co-Chair, Director RICIS
UH-Clear Lake

Robert B. MacDonald
Conference Technical Co-Chair

Assistant for Research and Education Mission Support Directorate
NASA/Johnson Space Center

Michael C. Gemignani
Senior Vice President and Provost
UH-Clear Lake

Joseph P. Loflus, Jr.
Assistant Director (PLANS)
Office of Director

NASA/Johnson Space Center

Crystal Ballroom

I:00 - 1:45 Crystal Ballroom

Keynote Address
Software Development Environments:

Status and Trends

...... Larry E. Druffei

M

Software Engineering Environments offer significant opportunity for improved productivity. A collection of tools is not

sufficient. To realize that opportunity, the environment must support a disciplined software engineering process and
consistent methodology. The presentation will describe a current state of practice, expose some current trends and
offer some considerations for future development.

1:45 - 2:00 Break i Ballroom Deck

RICIS Research Review
A. Glen Houston, Director, Research Institute for Computing and Information Systems (RICIS), University of Houston-Clear Lake

Dr. Houston will introduce the directors of each protect area within RIClS. Each project director will summarize hispast year's research accomplishments.

Computer Syslems and Software Engineering--Charles McKay, Director, High Technologies Laboratory andSoftware Engineering Research Center (SERC), UH-Clear Lake

Information Systems_Peter Bishop, Director, Space Business Research Center (SBRC), UH-Clear Lake

Mathematical and Stalisfical Analysis_A. Glen Houston

Artificial Intelligence and Expert Systems_ T_'i'i'yFeagln, Professor of Computer Science, UH-Clear Lake

Education and Training_Glenn B. Freedman, Director, Software Engineering Professional Education Cenler(SEPEC), UH-Clear Lake.

3:30 - 3:45 Break Ballroom Deck

I

m
W

J

I

3:45 - 5:15 Session I Crystal Ballroom

Requirements Analysis Fundamentals

Session Chair: Bryan I. Fugale, TechnicaIManager. Moderalor: Michael J. See, Head, Advanced Pro-

Software Technical Support, Software Technical ject Section Facility and Support Systems Division,
Program, Microelectronics and Computer Technol- Mission Operations Directorateogy Corporation

m

U

w

Requirements Analysis, Domain Knowledge and Design
Colin Potts

Requirements for software-intensive systems constantly evolve. A design architecture that is based on the structure of

the functionality at one point in time is vulnerable to requirements changes. An alternative, more stable approach,
domain modeling, should facilitate iterative design, encourage the reuse of design abstractions, and may enable us to
treat traceability more formally. Such techniques are new with the expected benefits potential.

Mr. Potts is a member of the techn cal staff in MCE's software technical program, previously he lectured at Imperial
College, London, and was Principal Investigator for two academic/industrial projects addressing requirements
analysis and formal specifications techniques. His current research interest includes specification and design methods
and hypertext applications in Software engineering.

Knowledge-Based Requirements Analysis for Automating Software Development
Lawrence Markosian

kvngwledge-based approach to representing and reasoning about requirements sup ort the automa i
, e opment. It shows how to formalize system re,',uirement _ _ ---,- J . P ton of software

'4 :, d_Ju dimply aomam-specmc analysis techniques to
vaJioate the formalized requirements and simultaneously derive detailed functional specifcations. General
programming knowledge can then be applied to the functional specifications to yield executable o
validated requirements c de that meets the

As a research associate at Stanford University, Mr. Markosian specialized in c0mpuied assisted instruclion of

logic-oriented courses. At Systems Control Technology, he applied AI to DOD applications. As a founder of

Reasoning Systems, Inc., Lawrence Markosian has applied software specifications synthesis technologies _to
communication, program translation, C_I, equipment configuration and product planning and integration.

5:15 - 5:45 Break Ballroom Deck
I

W

m

i

iw

I

B

5:45- 6:30
Reception-Cash Bar Ballroom Deck

2

R

b

E

6:30 - 9:00 Dinner and Speaker Crystal Ballroom C

Integrated Software Support Environmentsi Some Lessons Learned
Frank Belz

TRW has developed and applied several software support environmenlS ¢_n several dozen s_fflware pr¢_j¢.cIs, wilh
varying degrees of success. This talk will summarize the major lessons learned which distinguish the more successful
environment applications from the less successful ones. These lessons learned will be related to a new research and

development program in environment technology being conducted by the Arcadia Consortium.

Thursday November 10, 1988

_ _ 8:00 - 8:30 Continental Breakfast Ballroom Deck

8:30- 10:30 Session I I Crystal Ballroom

Some Lessons Space Station Software Support Environment

Session Co-Chair: Everett Lyons, Project Manager- Session Co-Chair: Jim Raney, SSE Project Manager,
Software Support Environment, Lockheed Engi- Mission Support Directorate NASA/Johnson Space
neering Center

Learned From an Ada Conversion Project
Tim Porter

Mr. Porter will present lessons learned from the development of Ada software programs to support large command
and control systems. The presentation will cover lessons learned about reusability, maintainability, portability,

productivity and virtual interfaces from large projects. Special emphasis will be on the lessons learned from porting the
SAWAS tool to the IBM environment to support the development of NASA's software support environment.

Mr. Tim Porter, Deputy Division Manager for Science Applicators International Corporation (SAIC), was chartered

with the funding of the company's future software engineering environment. He has 15 years experience designing
and developing command and control systems, software productivity tools, database clesign and management

systems. He has specialized in the application of Ada and relational database technology to support large command
and control systems. Mr. Porter has also focused on the development of reusable software to improve programmer
productivity.

Automating Software Quality Assurance
Gokul Bhaumik

Software quality assurance within an automated software development process control environment. New quality
evaluation concepts utilize automated process management features of the system architecture for concurrent
verification of design, the development activities and their attendant products for quality.

Mr. Gokul Bhaumik is Manager for Lockheed, Safety Reliability & Quality Assurance (SR&QA), Software Support
Environment System Project. Mr. Bhaumik has over 20 years experience in software test and evaluation, software
development, and software quality assurance assignments. In recent years, he has focused on the application of
modern software engineering technologies and practices to the quality assurance process.

SSE Tool Interoperability
C. T. Shotton

How to make heterogeneous tools work together.

C. T. Shotton is Technical Director of Planning Research Corporation (PRC). Mr. Shotton has been concentrating on
using grammar based technology to solve software interoperability problems for over four years.

10:30 - ! 0:45 Break Ballroom Deck

3

! 0:45 -] 2:15 Session I I | Crystal Ballroom

Developing Software Engineering
for Competitive Advantage-lnduslry and Federal Government

Sessio_lCo-Chalr: JohnR.Garman, Associale Director- Session Co-Chalr: Richard Kessinger, MaJlager-Mission Support Direclorate, NASA/Johnson Space
Center Space Programs, Sof-Tech, Inc.

The Role of Software Engineering in the Space Station Program
Dana L. Hall

Tile Space Station Program is characlerized by extensive application of software throughout its distributed _ligilt and
ground environment. Software represents bot_ the key means by which complex functions and user services will be

accomplished as well as a likely source of development, integration, and long term evolution problems. The leverage
thal software has on the Space Station Program is a Harbinger for all future programs and systems within the Agency.
Software Engineerin 8 and the tools and processes thai surround it are crucial elements of NASA's future.

Dr. Dana L. Hall is Deputy Director of Information Systems Services Group, Space Station Program Office at NASAHeadquarters.

i

Experience in Applying Quality and Productivity Engineering
into an Existing System

Jack Munson

Mr. Munson will present the problems Unisys experienced defining, developing, and implementing a system-wide

quality engineering program, within the difficult environment of existing systems. This included a variety of different
management systems and people from disparate cultural backgrounds. Also addressed are the results to date and thequality goals for the near future.

Jack Munson is Vice President and General Manager for Unisys Houston Operations. Mr. Munson was in charge of the
Unisys activity which, in conjunction with Rockwell as prime, won tile Space Transportation Syslem Operations
Contract (STSOC) in the Fall 1985. The major consolidation contract started in January 1986, with Unisys responsible
ror all existing ground based shuttle sot'tware at JSC--previously maintained by eleven different contractors.

===m

i

Ill

m

m

U

=_

!

u
w

Next Generation
Howard Yudkin

The synthesis process for incororating reuse and prototyping ideas into large software

system developmentsuggest how the acquisition process might be changed to support thenew development process. m
!

12:T5- 1:30
Lunch

4 Crystal Ballroom C

1:30 - 3:00
Panel I

Software Engineering as an Engineering Discipline
Crystal Ballroom

The Panel will explore the emerging discipline of software engineering from a
variety of perspectives: theoretical foundations, educational foundations, and
future directions of the field. Panelists will address the nature of software
engineering as an engineering discipline distinct from computer science and
electrical engineering. Further, they will assesssoftware engineering in relation to

the development of education and training programs that support industry andgovernment demands.

Panel Chair and Moderator: Glenn B. Freedman

Director, Software Engineering Professional Education (_enter (SEPEC)
=_ University of Houston-Clear Lake

Dr. Freedman is responsible for university education and training programs in software engineering offered to

NASA/JSC and the surrounding aerosPace community He is also an associate professor in the School of Education.

Panelist: John Brackett

Professor, College of Engineering, Boston University

Dr. Brackett has been a leading software industry executive and was a faculty member at the Wang Institute ofGraciuate Studies.

L _
w

..... Panelist: Ed V. Berard

President, EVB Software Engineering, Inc.

Mr. Berard is recognized as one of the nation's leaders in software engineering and Ada education and training. In
addition, he has pioneered the development of large libraries of reusable Ada components.

Panelist: Robert B. MacDonald

Assistant for Research and Education, Mission Support Directorate, NASA/JSC

Mr. MacDonald has been a strong advocator for the development of software engineering as a rigorous engineering
discipline. He has recently been instrumental in providing leadership at NASA for implementation of a comprehensive
employee development program in software engineering.

Panelist: Norman Gibbs

Director of Education, Software Engineering Institute, Carnegie Mellon University

Dr. Gibbs has numerous professional affiliations and leaderships in software engineering and comp'uter science
education. He received his Ph.D. in Computer Science from Purdue University.

3:00 - 3:15

Break Ballroom Deck

5

3:15 - 4:45
Panel il

Computer-Aided Software Engineering Environmenls
for Real-Time Systems

Crystal Ballroom

Large, complex, distributed systems with operaiionai requirementsto _upport

non-stop and mission and safety critical (MASC) components pose life cycle
challenges that can not be safely or cost effectively supported with the traditional

models, methodologies, and tools that sometimes suffice for smaller andsimpler
applications. Furthermore, these challenges require an integrated approach across

three environments (host, integration, and target) to acceptably reduce and
control risks. This session will concentrate upon some of the most crucial ,ssues in
each of the three environments.

Panel Chair and Moderatori CharleSW. McKay

Director, Software Engineering Research Center, High Technologies Laboratory,
University of Houston-Clear Lake

Dr. McKay, Professor of CompUter Systems Design at UH-Clear Lake, will address the development of
comprehensive software engineering environments, with emphasis on large, real-time Ada systems.

Panelist: Miguel A. Carrio, Jr.

Manager, Advanced Technology Programs, Teledyne Brown Engineering

Mr. Carrio will address modeling method and tools appropriate for the first two phases of the life cycle, systems
requirements analysis and the partitioning and allocation of the • ,operational interlaces, se requfrements among software, harclware and

g

I

Panelist: E. Douglas Jensen

Director, Research and Development, CONCURRENT

Mr. Jensen will address critical support issues in the kernel and =library o(the run time support environment of thetarget processors.

m

III

4:45 - 5:15
Closing Remarks and Wrap Up

Crystal Ballroom

N

I

6

f

Keynote Address

Software Development
Environments:

Status and Trends

=

w

= =

r

q_

w

W

2

h_

M

W

Larry E. Druffel

(NOTES)

7

N

NB

imm)

m

m

m

m

mm

U

mm

RICIS Research Review

[i

w

Charles W. McKay

Peter Bishiop
A.Glen Houston

Terry Feagin
Glenn B. Freedman

=_ .

m

9

W

I

W

J

m

m

g

m

I

i _ "_i ¸_ _ _ _ _

II

J

li

J

w

I

m

10

m

Computer Systems and

Software Engineeing

r.<-3_ \
N94-71136

Dr. Charles W. McKay

.

v.m

11

m
m

It

mm

w

N

!
__m_m

gl

m
m

m

ww

mw

lm

1row

_w

12

- /

!

Computer Systems and

Software Engineering J

L

W

_J

L

E

m •

Charles W. McKay
SERC @ UHCL

The High Technologies Laboratory (HTL) was established in the

fall of 1982 at the University of Houston Clear Lake. Research

conducted at the High Tech Lab is focused upon computer systems

and software engineering. There is a strong emphasis on the

interrelationship of these areas of technology and the United

States' space program. In January of 1987, NASA Headquarters

announced the formation of its first research center dedicated to

software engineering. Operated under the High Tech Lab, the

Software Engineering Research Center (SERC) was formed at the

....University of Houston Clear Lake. The High Tech Lab/Software

Engineering Research Center promotes cooperative research among

government, industry, and academia to advance the edge-of-

knowledge and the state-of-the-practice in key topics of computer
systems and software engineering which are critical for NASA. The

center also reco_meDds appropriate actions, guidelines, standards,
and policies to NASA in matters pertinent to the center's

research• Results of the research conducted at the High Tech

Lab/Software Engineering Research Center have given direction to

many decisions made by NASA concerning the Space Station Program

Current research involves the investigation of computer

systems and software engineering concepts, principles, models,

methodologies, tools, and environments• The relationship of this

research to large, complex, non-stop, distributed systems is

emphasized. Work also continues in the areas of reusability, data

management systems, security, distributed systems, and the Ada

programming language and programming environments. Some members

of the High Tech/Software Engineering Research Center Team are

principal members of th_ARTEWG (Ada Run Time Environment Working
Group), which Was founded as an international task force to

address the issues of standardizing the interface to the Ada Run

Time Support Environment• Team members currently chair the

Distributed Ada Task Force and the Subgroup responsible for

evolving the Catalog of Interface Features and Options.

This year the High Tech Lab/Software Engineering Research

Center worked on a major project on reusability with Martin

Marietta Energy Systems, with support from STARS, AIRMICS, DOE and

six other universities.This project involved developing a

conceptual model _f0-r _ reusable Ada software _ that spanned the

requirements across host, integration, and target environments. A

reusability guidebook is to be published later this year with

contributions from .all participating organizations• It is

entitled Guidelines Document for Ada Reuse and Metric_ The High

Tech Lab/SERC has participated with MountainNE_, Inc. on a related

project on reusability which is jointly sponsored by NASA, AJPO,

and DOC. This has led to the establishment of an Ada Technology

Transfer Network, known as AdaNET. AdaNET is intended to_ be used

._ PAGE BLANK NOT P_LML_]3

as a repository of reusable products and processes across the life

cycle of Ada based projects, The repository will be accessible to

public and private organizations for potential use in the non

classified community. Ford Aerospace is also working with the

High Tech Lab/SERC on a project in reusability. Ford is

developing tools and procedures for support of a reusable software
library.

SofTech, :Inc. has worked with the High Tech Lab/Software

Engineering Research Center on many projects. Several of these

have been related to NASA's Space Station Program and the use of

Ada. Emphasis on software engineering, systems integration and

verification, and Information System technology has been prevalent

in the center's research. Studies have been conducted to

understand the important evolving Ada standards, guidelines and

policies. When necessary and appropriate, the center has sought
to influence these standards to reflect the best interest of the

Space Station Program. Research in the area of multilevel

security has been conducted to discover ways to enhance the safety
of life and property in the Space Station Program. The need for

automatic verification tools for the Space Station Program has

also been addressed. Another area of research which has been

investigated has been Ada support software, particularly in the

areas of its effective use in embedded computer systems and

testing and verification of flight software. The implications of

the use of Ada for expert and knowledge based systems have also
been studied.

Guidelines for extending the CAIS (Common Ada Interface Set)

as a baseline for the System Interface Set of the Space Station

Program Software Support Environment were investigated through the

High Tech Lab/SERC, with support from SofTech and Rockwell.

Honeywell, GHG Corporation, and the High Tech Lab/SERC have

participated in research in the areas of run time environments.

Together this team has worked to implement a baseline model with

guidelines and tools to support the distribution of entities

within Ada programs with tail0rable run time environments. A part

of the work has produced demonstrations of distributed Ada and of

run time instruments for performance monitoring and command based

interactions with the integration environment. The work continues

to advance toward a bare machine prototype.
÷

Research in the areas of object based information management

systems has been conducted in conjunction with IBM. This project

has focused upon identifying the key problems and promising
approaches associated with the development and support of such
systems.

The High Tech Lab/SERC and Inference Corporation studied the

issUes and approaches for developing tool support for integrating

Ada and artificial intelligence. The project is intended to

result in an Ada-based, expert system generation toolset.

For the next five years, the principle thrust of thelcenter, s

14

m
m

g

I

m

g

l

g

E

w

t

=

m

m

%-.

t =

W

W

L_

u

N

research will focus upon a new generation of integrated systems

software. The PCEE (Portable Common Execution Environment)
project is intended to provide a common execution environment for

Ada applications software and users. The principal domain of

interest is large, complex, distributed computing systems with

Mission and Safety Critical (MASC) components which require non-
stop operation.

The integrated systems software is to be built in Ada, and

supported by a heterogeneous collection of bare machines. The

goal is to provide systems software which is tailorable to the

needs of a variety of applications, while insuring that

performance, fault tolerance, security, extensibility and the

requirements for non stop operation are satisfied. The intent of

the object based approach is to create an appropriate run time

kernel with catalogs of interface features and options. These

features and options allow tailoring of system software interfaces

to the specific requirements of each application.

By designing the underlying implementation as a set of

integrated modules, unnecessary redundancy and conflict among the

various subsystems can be minimized while support for performance,

robustness, and security can be enhanced. Furthermore, the

complementary features and options of the underlying subsystems

can be selected for their ability to support MASC components in

non-stop, distributed, and embedded applications rather than a

more benign, general purpose programming environment. Examples of

the types of applications which would benefit from a PCEE include

the FAA's next generation of air traffic control software, the

Space Station Program, the next generation of C3I systems, and the

next generation of process control and flexible manufacturing

systems. The High Tech Lab/SERC is currently working on a project
with GHG Corporation to investigate the use of Ada in distributed

and fault tolerant real-time applications. The PCEE is being
proposed as a standard interface for this project also.

The High Tech Lab/Software Engineering Research Center

strives to advance the edge-of-knowledge and the state-of-the-

practice in computer and information technologies. Working

together with dedicated researchers from government, industry, and

academia, the center continues to make important contributions to

some of the most critical research areas of today.

g

g

m

lw

um

m

m
II

D

wl

i

II

W

II

m

I

iw

r

16

BI

II

qB

N94- 71137 __

F. /0

L

=
RESEARCH REVIEW FOR INFORMATION MANAGEMENT

Peter C. Bishop, Ph.D.

Space Business Research Center

University of Houston-Clear Lake

PAGE BLAt_IK NOT FILME'ID

mmu

Research Review for Information Management

The goal for RICIS research in information

management is to apply currently available
technology to existing problems

in informa,
tlon management. Research projec£s include

the Space Business Research Center (SBRC),
Management Information and De -J-J

_lun _up oft
Envlr?nment (MIDSE), and investlaation _
vlsual interface techn_1_-- --_- - vt
t_____ _ . _ --v_1. D_veral ad_i-
,v,,d_ projects issued reports. New pro ects

include: 1) the AdaNET _ro4ect _- _--- - j
j _v u_velop a

technology transfer network for software

engineering and the Ada programming language;

and 2) work on designlng a communication system
for the Space. Station Project Office at JSC.

The central alm of all projects is to use

information technology to help people work more
productively.

I

Zm

g

z

g

J

RICIS instituted the research review ...
Institute,s inaugural s,_,,- _..... process during the
• ' _,._u,, _n i_uT. The review is an

opportunity for RICIS area coordinators like myself to summarize

and report our results in specific research areas. As you know,
RICIS coordinates research contracts for JSC and - m
synthesizes and analvzes th rP_,,]_- _ . ore important -

_ e _ Lor strategic aavantage.

I am responsible for RICISresearch in information management.

Researchers in this field study ways that information technology

can be used to increase productivity. Our goal is to apply

currently available technology to existing problems in information

management. JSC, like any other large organization, is a wonderful
proving ground for such applications.

Space Business Research Center

Today, I would like to share some of the results from the

prototype operation of the Space Business Research Center. The

Center emerged from the Space Market Model Project, initiated in

August 1986. The Project was designed to determine the types of

information businesses need to make decisions about commercial
prospects of space.

Last year, I reported the results of Phase I. Quite simply,

the Center located a lot of information about space, especially
from the media and the cientific and technical communities. We

s '

did not find as much information about business activity i9 space,

18

nm

J

m

w

w

m

w

w

Lm

did not find as much information about business activity in space,
but we did find people who wanted it.

Figure 1 shows an analysis of the groups we interviewed to

gauge their need for additional space business information, and
their ability to pay for such data. We concluded that the two

groups most likely to use additional information were the service
businesses and government agencies that facilitate the
commercialization of space.

Figure 1

Comparison of

Information Needs by Sector

INTERNAL
NEED CAPABILITY RESOURCES

Business High Low High
Service

Aerospace High High High

Entrepreneur High Low Low

Government

-general Low High High

-space High Low High
commerciali-
zation

During Phase II, which started in September 1987, the Center

distributed space business information to any business person or

U.S. government official who requested it. The Center had

approximately 30 clients monthly and handled more than 400 requests
for information during the ensuing year. The shear volume of

information requests confirmed one of the results from Phase I--

that the business community wanted additional data about space.

Figure 2 shows the Center's client-profile. As expected, the

business service sector accounted for 50% of the requests. The

next figure indicates the types of information clients requested.

Directory information, 38% of all requests, was the type more
frequently sought. The business community wants to know who is

active in space business, and who the potential clients and

suppliers are. Economic statistics on the space industry in

general and on its respective markets were also requested
routinely.

The Center is still taking requests for information, although

u

their frequency has diminished. On July i, the Center began its
Phase III operation and started to charge, although at a subsidized

rate, for research. The rate of requests, predictably, is lower

than it was when the information was free. However we still receive

requests steadily, confirming that businesses not only need
information about space, but are willing to pay for it.

Figure 2

Number of Contacts by Client Category
February 1987 - April 1988

Number Percent

Academic 35 13%

Business Service 138 50%

Government 47 17%

Information Companies 14 5%

Large Aerospace i0 4%

Media 6 2%

Miscellaneous 7 3%

Small Aerospace 17 6%

TOTAL 274 100%

Figure 3

ST

Number of Ouesfions by Oueslion Calegory

Fmb 87 - Ap_ M. N-.4R

Number of Questions by Question category
February 1987 - April 1988 " :

Category Number

Directories 151

Market Studies 62
Government Contracti_

49 : :::==::=:
Space Technology 4_ -
Documents

Law and Policy
Economic

Education

Miscellaneous

Total

2O

38
22

1S
7

23

411

i

W

i

i

m

i

W

romp

U

w

mm

h_

J

w

: T_e center has established two other methods to disseminate

information during Phase III. The first is a publication program,

launched in August with release of the booklet Space Business 1988,

an economic profile and executive summary of the space industry

today. The public's response to the publication has been very
gratifying - the Center sold more than i00 copies in the first
month following its release.

The second method of information dissemination is the use of

seminars for the purpose of education. The _nancial Aspects of

the Space Industry was the Ist seminar which the Center co-

sponsored with the Houston Chapter of the Texas Society of
Certified Public Accountants. The seminar was very successful.

It attracted forty Houston business professionals who learned some

of the more technical aspects of financing and controlling space
ventures from people who are space business veterans.

The Center is poised to become an autonomous and self-

supporting research center for space commercialization. In

addition to offering research, publications, and seminars, the

Center also plans to provide an on-line retrieval service for

information on launch histories, space transportation vehicles,
and sateliites. Proposals to start this prototype service and to

continue our other services are currently under review by NASA.

To date, the Space Business Research Center has successfully used

current technology .to productively disseminate information to
businesses.

_4

L

i =

L_

Management Information and Decision Support Environment

RICIS has supported two other research projects to help JSC
manage information. The first is the Management Information and

Decision Support Environment (MIDSE). MIDSE is a research

prototype of an information environment that will enable JSC

managers and employees to more efficiently access information in
JSC's databases.

A 1986 JSC report, "The Strategic Plan for Information

Systems',, identified a key problem. While the operational

databases at JSC were well developed, managers and other employees

could not retrieve information quickly or easily. The report
recommended that access needed to be improved.

MIDSE is the RICIS response to that need. Briefly, the
information environment hinges on a common user interface for all

NOMAD2 databases on the JSC Center Information Network (CIN) .

Figure 4 is the first screen of that interface, the Johnson Space
Center Management Information System (JSCMIS). The interface uses

the new mainframe window technology available with the NOMAD2

programming language. The interface also operates _according to the

best principles for the human use of computers, specifically:

21

w

the new mainframe window technology available with the NOMAD2

programming language. The interface also operates according to the

best principles for the human use of computers, specifically:

• users can select input parameters in the order that best
suits their job needs;

• parameters are backed up, not only with information to help
use the interface, but also the database itself;

• the interface keeps track of details and presents them on
request;

• users can see the results of their selections almost

immediately, and modify those selections as they wish;and

users can save their work at any time and retrieve it
later.

The interface currently can produce reports from a special

edition of the JSC Personnel database. Work is now underway to
add JSC's financial systems to that environment. The interface

eventually will be used with all of JSC 's NOMAD2 databases.

Information on other DBMS systems will be ported over to a special
NOMAD database or interfaces to be constructed in the DBMSi_ own
4GL and have the same operational characteristics.

Figure 4

Johnson Space Center Management Information System

====================================

APPLICATION name:

REPORT name :

FORMAT name

CONDITIONS name :

...... Verslon-0.8--

Function Keys

2:Clear 3:Prey 5:Modify 6:Delete 9:Save 10:List ENTER:Proceed

W

I

I

g

I

g

i

I

uw

Visual Interface

A second RICIS research prototype is helping with the

information management of JSC's photograph,s and film ifootage
archives. JSC is the repository for all still, film, video and b

22

. i

E

t_

__=

collection mount exponentially as its size increases. Dr. Mark

Rorvig at the University of Texas at Austin has worked the past

year to design an interface specifically suited to this and

similarly large repositories of visual material.

: The Standard strategy t0catalog and retrieve images depends

on the use of words. Captions and/or keywords are assigned to each

image. A user who wants a particular image enters one or more

words (linguistic search terms), and the system retrieves
ass0ciated images

The system's weak point is that linguistic symbols (words) do
not always match visual symbols (images). Not only is it difficult

for a cataloguer to use a consistent set of words to describe all

images, it is also difficult for a user to select the right words
to establish search parameters.

Dr. Rorvig's approach to the problem includes representation

of the image itself as a search tool. In this way, linguistic

terms can be associated with their images, and searches can be more
thorough and more precise.

_ The visuai interface has potential application in any

organizationthat maintains collections of images, including

museums, news organizations, publication houses and government

agencies. This is another example where existing technology,

intelligently applied, can solve pressing problems for those who

must manage both information and human resources to obtain high
productivity. (See Reference I.)

Reports

There isn't sufficient time to describe all the current major

research projects in information management at this same level of

detail. There are several significant reports, however, which I
would like to mention.

Last year, Dr. Chris Dede reported the preliminary results of

his technology forecast for new knowledge-based documentation

systems in the Space Station era. His report has been published

and i s now available for distribution. (See Reference 2.) The

report also was the basis for a national RICIS conference on

hypertext and hypermedia, co-hosted by Dr. Dede in September.

Dr. Robert Hodgin completed his survey of the computing
capabilities of JSC and the Clear Lake areas, and released his

report last Spring. (See Reference 3.) The report contains a brief

summary of the computer hardware and software used locally, and a

comprehensive list of the aerospace contractors who contributed to
this census.

a Dr. Robert Mayer of Texas A&M continues his work to _evelop
formal methodology for software requirements analysis. We

23

U

received an interim report from his research team last Spring.
(See Reference 4.)

Finally, the Center for Space and Advanced Technology has

submitted the drafts of two reports in the final phase of their

RICIS activity on the commercialization of the U.S. International

Space Station. The first report analyzes the forces and factors

that will promote or inhibit space station commerciaiization. The

second report scrutinizes the potential for biotechnology in space.

The biotechnology study includes the results of an industry survey

indicating that the commercial potential for research in space is

higher than anticipated. (See References 5 and 6.)

The final reports of these studies are available through the

RICIS office or through the Space Business Research Center. Also,
their principal investigators will be happy to discuss their

projects in detail with individuals who would like additional
information.

Next Steps

Most of these projects will continue into 1989. I expect to

report additional results at this symposium next Fall. In

addition, the Space Business Research center iS working on two new
projects in information management.

The irst of these is the AdaNET project to develop a
f-1 :-7 _ z -? _ - --i _

technology transfer network for software engineering and the Ada

programming language. AdaNET is funded by the NASA Technology

Utilization Office with the assistance of othergovernment

agencies. Most of the development work is being conducted by
MountainNet, Inc., a West Virginia based firm. The network effort

has been undertaken to transfer knowledge, experience, and

artifacts - from government projects which have used software

engineering principles and/or the Ada language - to the private

sector. A central goal of the research is to advance an

understanding that software reusability is the theoreticai

foundation for the next generation of software repositories.

AdaNET is a main RICIS project, and I expect you will hear a great
deal more about it in the coming months

Another information management project was started last August

for JSC's Space Station Project Office. The project entails

designing a communication systems to let office managers

communicate the status of their work to each other and to the

project manager effectively and efficiently. This deceptively
simple requirement, however, has become a problem of enormous

magnitude in today's world of large sca_le projects spanning long

time frames. The Space Business Research Center is working with

the Department of Decision and Information Science at the

University of Houston to help build the system.

i

u

g

z
Ri

J

i

I

E

J

m

imw

J

J

_z

i

24

w Conclusion

All these projects have the same central aim - to use

information technology to help people work more productively.

Individual projects change as we make progress in many ways. Last

year, we discussed goals. This year, we report results. However,
much remains to be done. Next year, I expect to report even more
of our accomplishments.

w

I.J

h_

L_

25

REFERENCES m

I. Rorvig, Mark E., Research in Imaqe_Manaqoment and Acces_
_3L/_W_Q, August 1988.

2. Dede, chrlstopherj._ Factorsrs_apinq_e Evolut_0nof

Electronic Documentation System,s, January 1988.

3. Hodgin, Robert F. and P. Bishop, C_lear Lake Area Computer
Capability Census and Directory, 1988.

4. Mayer, Robert, Methodologies for Inteqrated Informatio_
Mana eme t S stems, 1988.

5. The Center for Space and Advanced Technology, Space
S_tation IndustrializationL 1988.

6. The Center for Space and Advanced Technology,__
__D_j_o_: An Industry Profile, August 1988.

I

i

l

w

26

J

m

w

J...s-4_ 3

/ 353

9 S
N94-71138

-; Z

w

_J

RICIS RESEARCH REVIEW OF

ARTIFICIAL INTELLIGENCE AND EXPERT SYSTEMS

submitted by

Dr. Terry Feagin

27

ABSTRACT

The paper summarizes the research accomplishments

of the past year for the artificial in£eiiigence

and expert systems areas. Most projects have been

underway for only a short time, but overall

progress within the areas has been steady and
worthwhile. Several projects have already attained
their major objectives.

==

mm

I

mm

m

l

mw

w

28

m

m

I

w

w

w

RICIS RESEARCH REVIEW OF

ARTIFICIAL !NTE.LLIGENCE AND EXPERT SYSTEMS

This past year's research accomplishments in the

area of artificial intelligence and expert systems
are summarized below.

The first project (Communications and Tracking

Expert Systems Study) is being conducted by faculty
at the University of Houston-Clear Lake and

involves the development of expert, automated

software for the support of fault detection,
isolation, and recovery from failures in the

communications and tracking system on the space

station. As a result of this work, a very fast

method for isolating single-point and two-point

failures in the system has been developed.
Simulators for testing the software have been

developed and used to evaluate the system.
Distributed expert systems have also been studied
and developed for work in this area.

Another project (Computer Graphics Testbed to

Simulate and Test Vision Systems for Space

Applications) is underway at Rice University.
During the first year of work, this project has

seen the' development of a preliminary graphics

testbed and physical models have been constructed

to permit comparison with the graphics models. A

graphics testbed has been developed using a Sun

workstation to permit control of the light source

direction with gray shading or Gouraud shading.
Physical models include hexagonal cylinders and

attachment devices. Evaluation is underway as to
the suitabilit _ of 3M_VDL vision systems.

Another project has culminated at the University of
Michigan in 1988. The project involved path

planning for robotic equipment, including foreign
code encapsulation and automating the process.

29

J

Another project, underway at Massachusetts

Institute of Technology, concerns the development
and application of fuzzy sets and related theories

to faiiure detection and control in space systems.

A project currently being carried out at Rice

University involves the demonstration of a 3D

vision algorithm for space applications. The

research concerns developing object recognition

algorithms that are insensitive to object
orientation and distance.

g

U

I

At Yale University, the use of the T programming
language on the Cray X/MP is being investigated.

The language, a superset of Scheme which is a

dialect of LISP, is being ported to the Cray with

an eye toward making use of parallel computation.

W

D

Another project, carried out by Lincom Corporation,
involves research and development for onboard

navigation and ground-based expert/trainer system.

Object-oriented programming systems (OOPS) and

frame representation schemes using Ada are being

studied by Softech and Brown University. The
possibilities for merging OOPS and Ada has been

pursued. The merits and demerits of OOPS as a way
of addressing the applicability of OOPS to various

programming tasks has been investigated.

A UniVersity of Lowell study is underway regarding
a unified robotics control system using a parallel

CLIPS environment. The goals include

identification of enabling and enhancing
technologies for space operat ions, and the

application of emerging technologies to problems in

space and planetary exploration, with particular

attention to ways of increasing computational speed
via parallel processing and expert systems.

The last project, underway at Rice University,
involves the development of algorithms and software

for the recognition and location of single
unoccluded objects based on fusion data from a

single camera (intensity image) and from a laser

range imaging device (range image). The algorithm
discriminates the objects from the clutter and
obstacles in the field of view.

w

mm

m

3O

w

Most of these projects have been in progress over

only a year or two and most results are only of a

preliminary nature. Nevertheless, it is apparent
that the overall progress within this area of

research has been steady and worthwhile. Several

projects have attained major objectives already and
new results are forthcoming.

L_

L

w

w

U

r_

i
31

i

]c

i

i

U

i

i

!

I

__=_
mR

|

u

i

i

i

i

I0

32
• ., g

Mathematical and

Statistical Analysis

N94. 71139
- L'_',.J

Dr. A. Glen Houston

i 7

w

w

t t

PAGE BLArIK NOT F'd.MEID

c_._llll_t-i.t,Y
33

um

m
I

m
II

I

I

m

g

i

m
ID

M

ID

m

B

nl

U

m

_J
i

n

l

MATHEMATICAL AND STATISTICAL ANALYSIS

Research Goal

The goal of the mathematical and statistical analysis component
of RICIS is to research, develop and evaluate mathematical and

statistical techniques for aerospace technology applications.

Specific research areas of interest include modeling, simulation,

experiment design, reliability assessment and numerical analysis.

_ctivities

To date, there has been only one research activity in

mathematical and statistical analysis. This research activity is
entitled "Space Station Momentum Management and Attitude Control,,

and referred to as MS.1. This research is sponsored b_ the

Guidance and Navigation Branch of the Mission Planning and
Analysis Division within the Mission Support Directorate at

NASA/JSC. The NASA technical monitor is David Geller, an

aerospace engineer in the Guidance Analysis Section. The UH-

Clear Lake technical representative is Dr. Terry Feagin,professor of computer science.

The research is being done at the University of Texas under the

direction of Dr. Bong Wie, an assistant professor in the

Department of Aerospace Engineering and Engineering Mechanics.

Co-investigators include Dr. Jason L. Speyer and Dr. David G.

Hull, professors from the same department. Two graduate research
assistants also support this activity.

The research effort was initiated February 1 1987, for a plannedthree-year period.

The objective of this study is to develop robust fault-tolerant

adaptive control techniques for the Space Station. The Space

Station Program needs a control system which must accomodate a

modular construction of the Space Station and provide attitude

stabilization over a wide range of geometry and mass

distribution, which will occur during the initial assembly and

follow-on configuration growth stages. The study focuses on

developing fundamental concepts as well as advanced analytical
techniques for designing a robust adaptive control system.

The major accomplishment to date has been the development of
momentum and attitude control equations fo
guidance, navigation and control r the Space Station,s

• _u_uL_r system. In particular,
une momentum and attltude control equatlons have been modified to

accomodate both small and large station pitch torque equilibrium
attitudes (TEA's). The new control equations utilize quaternion

feedback. The modifications were required since the space
station navigation computer is planned to provide attitude

information in quaternion form, and the space station may be
required to maintain large pitch TEA's.

_.__ I_G_ BLANK NOT FILMED

35

l

As a _result of this investigation, a significant new feature has

also been added to the controller. It now has the capability to

seek a dynamic TEA. This is a time-varying torque equilibrium

attitude that virtually eliminates control moment gyro (CMG)

momentum occilations. The new feature plus the above

modifications greatly enhance the overall usefulness and

flexibility of the controller.

Other accomplishments include the development of algorithms for

identifying station mass properties including bending modes and

frequencies.

In the coming year, plans are to continue the study and

development of adaptable control equations and-identification

algorithms for the Space Station GN&C flight computer; attempt to

define robustness measures that are meaningful for Space Station

momentum management control systems; investigate techniques for
establishing the inertia bounds in which the station will remain

stable; and determine the optimum gain selection technique for

the momentum management controller.

Future Plans

For some time, we have been attempting to initiate a research

activity related to software reliability modeling. During the

past year, exploratory conversations were held with members of

JSC's Safety, Reliability and Quality Assurance office. These

discussions have now led to a potential relationship between UH-

Clear Lake and the Safety Group within the Boeing Aerospace

Company.

The plan is for UH-Ciear Lake to lead a project to establish a

quantitative risk analysis methodology for the software portions

of Boeing's. computer-aided user-oriented system evaluation

(CAUSE) hardware and software analysis model. The intent is to

automatically generate detailed fault trees from which single and

multiple failure points of systems (due to software) can be

identified and analyzed as a part of the risk analysis process.

In support of this project, a workshop is planned to be held in

the coming year. Experts in the field will be invited to

participate and discuss the issues in modeling software

reliability.

m

I

mm

i

i

R

mm

B

mm

r"

36

L

w

Research Review for

Software Engineering Education and Training

L_

w

Glenn B. Freedman, Ph.D.

Software Engineering Professional Education Center

University of Houston - Clear Lake

= =

L:__A

w

¢

37

m

i

m

I

m

D

B

Im

in

Im

38

L_

n

i

±

M

_z

&id

I.d

EDUCATION AND TRAINING

The education and training component of RICIS supports the

range of activities sponsored by the cooperative agreement. In

particular, this component emphasizes research in technology

transfer, information transfer, and dissemination of research in

computing and information systems. During the past year the level

of research activity in education and training increased, as the

overall level of effort in the cooperative agreement increased.

Highlighting the year's activities was the formation of the

Software Engineering Professional Education Center (SEPEC). SEPEC

assists all RICIS researchers and research sponsors through its

conferences, seminars, and technology transfer activities. SEPEC

also assists all RICIS components by coordinating cooperative

programs and affiliations with various NASA branches, other
university groups, and industry. Thee
llnk organizatio _ _ __,__ . e cooperatlve relations "

x,la± Innova_lOne research
_a_eVelopment in software engineering and other computer related

: In review, there were seven research activities in the

education and training area that were begun or completed during the

past year. In this research overview, the activities will be

reviewed in the temporal order in which they were funded. For each

activity, the title major points status and deliverables are asfollows: ' ,

!. ADA TRAINING SYS_

Completed by SofTech, Inc. the
System (CBATS) was deve [.._ Computer Based Ada Traini
meet the need for a- _;_d thruugh funulng with the U.S. av,, _

easy to use. -_u_ _erence system that cOUl d be on-l_neland

CBATS used hypertext technology to link the Ada reference

manual, syntax examples, Ada and software engineering information
and commentary in a straightforward, useful manner.

2. SOFTWARE ENGINEERING AND ADA_ouRs
___ E DEVELOPMENT

A coordinated approach bringing together NASA management,
UHCL, and SofTech resulted in a fi ..
entitled "Softwa ,, . eld-tested, three _av _

Strategies.. T= - _ g ring. Concepts and I-
**_ purpose _ _ mp_ementatlon

-- = o_ _.= _uurse _s to proviae managers with
the software engineering background and Ada technology information

necessary_to assist with transition to Ada and !%s _elated softwareenvironments

Completed in October 1988, the course is now available.

PAGE BLAI_K NOT FtLML'ID

39

3_ RESEARCH IN INTELLIGENT TUTORING SYSTEMS FOR KNOWLEDGE POOR
DOMAINS

This project is sponsored by the US Air Force Human Resource

Laboratory at Brooks Air Force Base. Working with the Artificial

Intelligence section and flight training branch at NASA/JSC, as

well as UHCL, this project will provide a prototype tutoring system

for the Mission Operations Directorate to use in training personnel

to use the flight control panel, a task that requires coordinating

a knowledge base, with automatic motor skills, auditory and visual

overload, and a detailed understanding of flight data. The work

for this project is being conducted at Southwest Research Institute
in San Antonio.

4. SOFTWARE ENGINEERING EDUCATION nAND TRAINING IMPLEMENTATION

RESEARCH

This_eSearch_ivity Will resuit_n new __ng_pesfor

NASA, featuring the latest available information on design

strategies in support of Ada use. In addition, the activities

supports maintenance of an education and tralnlng database for

courses, resources and services. The activity fosters the

dissemination of research information on software engineering_

Sponsored by the Mission Support Directorate, this activity focuses

primarily on space station applications, intended for the
deliverables.

5. PROTOTYPING CAPABIliTIES FOR MISSION OpEI_ATIONS DIRECTO_ATR _

This activity provided access to the Mission Operations

Directorate to use the facilities of the Advanced Technology Center

for training and research purposes. The activity is on-going.

6. HYPERMEDIA TOOLS FO_ BUILDING TECHNICAL TRAINING SYSTEM8

This activity, sponsored by the US Air Force's Human Resource

Branch Intelligent Systems, investigates advanced knowledge

transfer technologies and their application to future training

systems. The research is to be conducted by Dr. Christopher Dede

and will be directed both to Air Force requirements and those of

NASA's space station training offices.

As the project has just begun, results will not be available
until late 1989. =......................

7, MICROCOMPUTER _NTELLIG_NC_ FOR TECHNICAL TRAINING -PHASE IT

This project features a continuation of work developed by

Search Technology for the US Air Force and NASA/Mission Operations

Directorate. The project will build on the initial product of a

rule-based system to teach shuttle fuel cell understanding through

sophisticated simulations of malfunctions. The second phase will

extend the capabilities of the system and add an authoring sYgtem._
The second phase has just begun

m

m

g

B

i

m

m

mm

mm

mm

0 _

In summary, the education and training component of RICIS

assists all other components through d_ssemination of information,

research on innovative systems, and support for advanced technology
in education and training settings.

n

_ =

E

m

t

_J

41

42

mm

m

U

u

u

U

m

m

m

Session I

m

m

Requirements Analysis
Fundamentals

7-

w

Session Chair:

Moderator:

Bryan I. Fugate

Michael J. See

Speakers

Colin Potts

Lawrence Markosian

P'A_E BL,.a,tlK i_OT FI¢_L_

43

(
i

W

mr

m

h

U

n

1row

• ..,-"

N94. 71140

Requirements Ana|ysis, Domain _

Knowledge, and Design

I/

Colin Potts

MCC Software Technology Program

BAG£ BLAt_K NOT FIL,I'I¢;_

45

{ ":

_2

=__

L

Requirements Analysis, Domain

Knowledge, and Design

Colin Potts

MCC Software Technology Program

Abstract: Two improvements to current requirements analysis practices are

suggested: domain modeling, and the systematic application of analysis heuristics.

Domain modeling is the representation of relevant application knowledge prior to

requirements specification. Artificial intelligence techniques may eventually be
applicable for domain modeling. In the short term, however, restricted domain

modeling techniques, such as that in JSD, will still be of practical benefit. Analysis

heuristics ate standard patterns of reasoning about the requirements. They usually

generate questions of clarification or issues relating to completeness. Analysis
="heuristics can be represented and therefore systematically applied in an issue-based

framework. This is illustrated by an issue-based analysis of JSD's domain modeling
and fucntional specification heuristics. They are discussed in the context of the

_: Po_liminary d_ign of simple embedded systems.

Introduction,

Requirem_ents ¢!licitation and requirements analysis are activities that take place at the procurement in-

terface (Potts, 1988a) between customers and developers. Much has been written about the costliness

and seeming inevitability of errors made during these activities. These errors are breakdowns in the

supposedly shared understanding of the system among customers and developers. The problems are

made worse in many large system development projects by two factors: changing and conflicting re.
quirements, and the lack of application domain knowled e in th
lscoe and Krasner, 1988 In i._ n_ _ . g e development organization (Curtis,
are suggested: domain) th raper, two _mprovements to current requirements analysis practice

modeling, and the systematic application of analysis heuristics.

The Role of Domain Knowledge

In most development settings, requirements change frequently throughout the system's liftetime, es-

pecially during its early design phases. Designs that are structurally based on the functional require-

ments are particularly sensitive to changing requirements. As requirements are revised or new require-

ments added the logical basis for the design architecture may be lost. To make a design less sensitive

47

I

to changing requirements, one could base the design on anticipated as well as existing requirements.

Unfortunately,it is hard to anticipate requirements.

An alternative is to base designs on a model of the application domain. A domain model contains

the objects, relationships, and concepts that are considered important to the users. It is likely to be

more stable than the requirements, because the domain evolves more slowly and less significantly dur-

ing the lifetime of of a system than its requirements.

There are other advantages to formulating a domain model before specifying the requirements in

detail (Bruns and Potts, 1988): terms and concepts _efi-ff_d-in a domain model can be used with less

risk of misunderstanding; domain knowledge may be shared across projects; the activity of domain

modeling acts as a goal-directed familiarization activity prior to Sl_.cificati0n_=_d, the existence of a

domain model may improve the training of new developers and maintainers. = -

The use of domain modeling in software design has been proposed before. Greenspan, Mylopoulos

and Borgida (1982) give a good overview of the domain modeling approach to software development,

and why it was felt to be necessary in the TAXIS information systems design project:

In considering the development of a variety of information systems we haye found it

necessary to become initmately familiar with a wide range of subject ma.tters:

medical knowledge, hospital procedures, available therapies (drugs, surgery, etc.),

legal re_sp0ns!bilities to government, and so on. We believe tha_t_th_ ki_nd of real

world knowledge needs to be captured in a formal requirements specification.

A valid domain model can only be formulated by people with sufficient knowledge of the appli-

cation domain, but this runs up against the relative absence of domain expertise in most development

projects. One possible long-term solution is to apply artificial intelligence techniques to require-

ments analysis. Intelligent requirements analysis tools are envisaged that will be able to use deep

knowledge of the application domain to question the analyst about possible inconsistencies or gaps in

the stated requirements. Some promising research is underway (Fickas, 1987; Rich, Waters and Re-

ubenstein, 1987), and ultimately the problems of requirements analysis may be addressed by these

means. A recent review of domain modeling approaches (Bruns and Polls, 1988), however, concluded

that the most effective applications of domain modeling in industrial system development to date

have incorporated restricted modeling primitives, modest goals, and a systematic method. Examples

of such restricted domai n modeling approaches include JSD (Jackson, 1983) and Booth's (1987) object-

oriented Ada design method. _ _ -

Systematic Requirements Analysis

A second maj_ pr_lem with requirements eiieitation and anal_,Sis l_ract]ces _is their unsystematic na-

ture. To some degree this is unavoidable; requirements elicitation and analysis are inherently open-end-

ed. Much can be done, however; for example by using diagramm/ttiC-techniques such as CORE

(Muiler_, 198- inc- e cofifide in requirements consistency_ _,_,ho_er place where greater con-

trol could be exercised is the interface from requirements to design. Better practical techniques are

needed to 'graft' requirements onto design specifications, particularly in view of the inevitability of

changes to the requirements once the design is underway. If this could be done,: it would have the bo-

nus of improving traceability: that is, the ability to be able to demonstrate that every requirement is

satisfied by -the-d_ign -

_m

m

W

I

I

II

IIW

II

IW

D

48

!,,,,,,,/

w

L_

m

Making requirements analysis more systematic is also a goal of the AI research mentioned above.

But again, a short-term partial solution is available. Standard requirements analysis heuristics and

checks can be represented in a systematic and machine supported (though not mechanizable) frame-
work: the issue base (Conklin and Begeman, 1988; Potts, 1988b).

JSD as an illustration

JSD (Jackson, 1983) serves as a good example of a system development method that attempts to ful-

fill both short-term objectives. It has a restricted form of domain modeling (Bruns and Ports, 1988),
and its many heuristics can be cast in an issue-based framework 0aotts, 1988b).

In the remainder of this paper, JSD will be used to

heuristlcs_Firs_--its design philosophy and its restricted illustrate domain modeling and issue-based
form of domain modeling are discussed.

Next, the systematic, issue-based nature of its heuristics is illustrated. Heuristics in two phases of

the methodar e discussed; the heuristics that determine what should be included in the domain model,

and the heuristics that guide the way functional requirements are introduced into the model or an ex-

isting design. Figure 1 shows the procurement intemce that is implicitly assumed in ISD and by the

quotation from Greenspan et al., cited above. The figure indicates those processes and transitions that

are illustrated by ISD in this paper. (Because the flow of information is predominantly from the cus-

Entity/action

modeling ,,. ! Initial Model Step

_i / Domainl

/
I ,I i I--'-'q i

ustomers i pea:. i r- Implementors

............ ".......... ,, Embedding or imposing
'PRQCUREMENT INTERFACE' functions onto model

Figure 1: The 'procurement interface' when domain modeling precedes specification.
JSD activities and heuristics are shown.

49

[_ •

tomers to the implementors, only forward flows are shown. This does not imply that feedback does

nOt occur.) : =: : ._

JSD is only an illustration Of how systems can be specified and designed whtn _ter' emphasis is

given to domain modeling and systematic analysis. JSD is not universally applicable, nor is it perfect

where it is applicable.

The Development Method JSD

Although Jackson does not describe JSD this way, JSD consists of two major phases, specification

and implementation, each of which involves a series of steps. The strategy of JSD, the major steps and

their rationale, is described in this section, and the tactics, or modeling heuristics locally applicable

within the steps, are illustrated later. The product of the specification phase is an operational specifi-

cation, which describes the desired functionality. It consists of a set of concurrent processes which

communicate asynchronously. The goal of the subsequent implementation phase is to sequentialize the

specification until an efficiently implementable amount of ctr_ifrf_ffy-_m_iins_ Only the specifica-

tion phase of JSD will be described will be described further.

The JSD specification phase follows the formula:

System = Model + Funcdon

A system comprises a model of its environment and mechanisms to accomplish its functionality.

For example, a patient monitoring System in a hospital must include a model of padents and their vi-

tal signs, etc., and operations that perform the required functions, such as sounding alarms when a pa-

tient's vital signs fall outside a safe range. A model is created by first analyzing the entities and

events of the relevant part of the real world (in the case of a padent monitoring system, the real

world is an intensive care unit). The resulting model contains a set of regular expressions, each one

specifying the lifecycle of a real-world entity in terms of the actions it performs or suffers. An ex-

ample is given as a structure diagram in Figure 2. A PATIENT is ,h,.D_ MONITORed and DE-

u
R

m

m

m

I

u

m

U

m

m

PATIENT *]

MONITOR

. EW2qT .] _ _

°!i °11 °1BALANCE ADMINISTER
CHANGES DRUG

Figure 2: A structure diagram showing the lifecycl e of theBE D entity
of an intensive care unit, : _,, : _: : _: .

I W

50

u

=-.

L_

+ +

I
r

TACHed in that order. The MONITOR part of the lifecycle is itself an iteration of MEDICAL

EVENTs, which may be a READ VITAL SIGNS action, a FLUID BALANCE CHANGE, or an AD-

MINISTER DRUG action, and so forth. The content of a JSD domain is restricted to only those enti-

ties and their properties that the+system needs to model to execute successfully. Other domain knowl-

edge that may be useful to the developers is excluded. For example, a patient monitoring system

needs to model the patient, because it is required to produce statistical summaries of a patient's vital

signs and to warn the nurse if any of them becomes threatening. It does not need to model a nurse's le-

gal responsibilities or hospital policy -- however important this information may be _ because the

system itself is not required to act directly on this knowledge. Thus, a]SD model is more restrictedin scope than a domain model might be.

Next, an 'initial model' is constructed, in which (to simplify slightly) every entity is connected
to a monitoring process inside the system boundary (see Figure 3).

The functional component of the specification is not produced in JSD until after the initial model

is complete. Jackson does not discuss the elicitation of requirements in any detail, but it is clear from

his examples that it is essential to have some skeletal requirements documented so that an analyst can
judge which entities are relevant to the system and must be modeled.

Once the requirements have been elicited and documented __ however that is done -- desired func-

tions can be introduced into the initial model to create the full system specification. Simple reporting
functions can be accomplished by augmenting existing monitoring processes. These functions are said

to be embedded in the model. More complex functions usually require one or more processes to be in-

troduced that realise the function by combining information modeled by several monitoring processes.

These functions are said to be imposed on the model. Figure 3 shows the resulting system specifica-

tion diagram for the patient monitoring system. There are two alarm functions. One is set off whenev-

er the PATIENT entity becomes disconnected from the system (this function might compare the cur-

...................... ?__.___..-__....':.....................................,_.,L.,.........!Functional specification Real-world

I + I_ i System

t________j "-f l MOTORIT,.

|PATIENT I---_('PS)---_.I PATENT L_ PSK_.,]-I SAJ_'-E-a_"

.................
:_.+<mmmmm

Boundary _/_ nec

Embedded_ Imposed

.................... Function Function ,

Figure 3: +Initial Model and System specification diagram for Function Step.

• i

51

rent PS value with constants symptomatic of sensor disconnection or failure). This function can be

embedded in MONITOR PATIENT. The other alarm is activated When=the patient's vital=signs faii

outside a range defined by the DOCTOR in the input DRS. Since this f-unctlo_-u_res =integration of

multiple inputs from the environment, it is an imposed function and requires the introduction of the

CHECK SAFETY PROCESS.

Issue-Based Domain Modeling and Specification
Before illustrating some of JSD's modeling and specification heuristics, the issue-based framework

that is used to represent it will be introduced.

The Issue-Based Framework

In the issue-based framework (Potts, 1988b), there are only five kinds of entities: artifacts (method-

spec!fi¢ clesign documents),- steps (revi_n,_ refinement or elal_oration operations), issues, POsitions,
and arguments. Artifacts (e.g. data flow diagrams) and steps (e.g. top-down decomposition) are a

standard component of all design methods, but the representation of reasoning and rationale in terms

of issues, positions, and arguments is less familiar.

The representation stems from Rittel's work in using his IBIS ('issue-based information sys-

tems') model to support the discussion of policy and design alternatives in architectural planning (see

Conklin and Begeman, 1988 for a summary). Issues pose questions about some focus of concern. For

example, q-_w can the heartbeat sensor fail in Such a way that the patient's vital signs appear threat-

ening?' is a domain-related issue. A position is a candidate response to an issue, such as 'Heartbeat sen-

sot failure mode F gives rise to apparently threatening vital signs'. An argument may support or ob-

ject to a position. For example, an argument that supports the above position might be 'Failure mode

F apparendy quadruples the heart rate because of a masking error', whereas an argument that opposed

the position might be 'Failure mode F can always be detected independently by self-test procedure P'.

Issues, positions or arguments may spawn sub-issues. For example, a sub-issue raised by the last argu-

ment could be 'Can self-test procedure P be run sufficiently fast whenever the patient's h_ate ex-

ceeds X beats per m[-nu:te:_ that it can be ascertained within ff therapeuticaiiy safe intetwal whether

Failure mode F has arisen?'

issue-Based Reasoning in the Early Stages of JSD :

Figure 4 illustrates a small part of an issue-based representation of the heuristics of JSD. Ignore for

the moment=-the n-es_-iX_x-es,and cons|alex only the heJavy out_ boies. These represent the five basic

entity classes of _ representation. From the names of the relations in Figure 3 it can be seen that

steps modify artifacts, issues review artifacts, positions respond to issues, and so on. Within the

heavy outer boxes we see that _ for example _ JSD's issues form a taxonomy of classes. Although

positions in general respond to issues, We see that 0niy so-rn_J_ _sltlons are valid responses to par-

Ocular issues. For example, the position sub-class not entity! is a valid response to issues of sub-

class entity?, which addressd_ questionwhether ac_3_ entit_js:_ entity in themodel accord-

ing to JSD's modeling criteria. Furthermore, arguments of type not individuatable can support this

type of position, whereas arguments of type not OMB (for 'outside the model boundary') cannot.

The legality of relationships is inherited. For example, any issue of type EA check, including enti-

=

m

i
J

m

I

J

g

g

J

w

I

52

_ I

ARTIFACTS

cites

entity
arg

STEPS

les

contributes

EA step
,'1

Ad

reviews :ontributes to

entity?

not
supports to entity!

pos

u

D
=.=
W

m

w

w

u
E

j_r

m

Figure 4: Part of the Entity Class Hierarchies for JSD with
relationships.

ty? and action? issues, can be raised to.renew the JSD entity-action list document.
=

Example

Figure 5 shows some of the JSD sub-classes from Figure 4 instantiated for a specific domain mod-

eling situation. It is taken from Jackson's example of an elevator system. The issue in question is

whether the elevator system needs to model the PASSENGER. This issue is raised to review the enti-

ty-action list (a]SD document that includes much of the JSD domain model information). This issue

is of a type that should always be raised concerning candidate entities in the model. Because the issue

is a yes/no question, there are two positions attached to it: the selected position that PASSENGER is

notan entity, and the position that it is. To save space, only the selected position is shown in the dia-

gram. Several arguments can be made for or against excluding an entity from a JSD model. One of

them, of type 'not individuatable' is shown. This states that PASSENGER cannot be an entity type

in the model, because the system has no way of keeping track of individual passengers. It must be able

to respond to requests, of course, but it has no way of telling, for example, which passenger issued a

request, or whether the passenger who issued a downward request at one floor is the same passenger
who requested to get off at the ground floor.

The point of this example is to show that this kind of questioning and reasoning occurs in all

JSD model developments. The details change, but the presence of entities in the model has to be ques-

tioned, there are standard criteria for including or excluding entities, and so on. The issue-base, a frag-

53

u

ARTIFACT

Support|ng
documentation:

The elevator

receives input
from passengers
only when e_ey
press buttons.

ARTIFACT

EntIW-ectlon

list:

Entitles:

Passenger
Elevator

Ac_ons:

Get in, Get,

I

ARTIFACT

Entity-action

list:

EndUes:
Button
Elevator

Actions:
Press

modifies STEP

replace entity

PASSENGER-> BUTTON

I contribute s to

reviews_

cites __ POSITION

not entltyl

ARGUMENT [_ i PASSENGER is not,an enti_

not Indlviduatable I ISSUE I _ I
._..,,,,--"_e s pon d s to

Individual PASSENGERs cannot ! Entity check I I

be discn'minated by _e system I Is PASSENGER an entiO/? J J_

selected? - true '_

Key:

ARGUMENT ¢ I "_

Inot Indlvlduetable

Individual PASSENGERs cannot

be discriminated by the system

Entity ;nsta_e: :

Generic entity Class

JSD-specific entity sub-class

Instance definition

Figure 5: Simple (PASSENGER replacement) design episode

ment of which is shown here, is a fretwork structured temp_te.

The preceding illustration is atypically simple and the reasoning is restricted to a small part of

the model. The topic is the content of the entty-acdon list, and the evaluation of a small number of

modeling criteria are sufficient for the exploration of the alternatives. Most decisions are more com-

plex than time they range more broadly and necessitate more open-ended reasoning. Potts (1988b)

contains a detailed example, also from Jackson's elevator system, of the reasoning behind the way the

scheduling function is imposed on the initial model. This involves several interconnected analyses, ar-
tifacts and sub-issues.

As an analogous, though abbreviated account, consider the introduction of the CHECK SAFETY

process of the patient monitoring system specification (see Figure 3). The reason for introducing

CHECK SAFETY, explained in terms of the issue-based framework, is as follows: an issue is raised

concerning the requirement that a safety alarm should be sounded whenever the patient's vital signs

fall outside the doctt_'s specified bounds. The issue is how the requirement should be supported: by

embedding inside DOCTOR MONITOR, or (more likely) in PATIENT MONITOR, or by the addi-

tion of a new imposed function process. Many subsidiary issues will be raised at the same time: for

example, how are the bounds to be specified?, how often should the comparison be made? are the

bounds all single valued or can the doctor specify logical combinations of different vital signs? etc.

The usual reason in JSD for introducing a process to support a required function is that it must com-

bine inputs from several monitor processes or other function processes. This is the case here. The algo-

m

WlV

m

i

g

gll

m

i

II

=

m

m

7

w

w

w

54 ==

- i

_.. -

_2

• t

w

y_

Hthmic structure of the process will directly reflect the structure of the merged data stream

DR&PS, so another issue is raised concerning its structure. Some of these details sound like a detailed

design questions, but really concern the frequency and ordering of events in the world and the accept-

ability of system responses to the inputs it receives. To determine the structure of the DR&PS data

stream and the degree of fairness required of CHECK SAFETY several detailed questions need to be

answered. For example, how frequently should the CHECK SAFETY process check for new criteria

from the doctor? Should new criteria take effect immediately? What does 'immediately' mean here?

How long a delay is acceptable between the doctor entering a new criterion and its taking effect in

the comparison process of CHECK S_? These issues address the requirements directly, but
they might not be raised if the interconnected procedures of JSD did not trigger them.

Conclusions

In thi s paper it has been argued that domain modeling is more important early in the development pro-

cess than functional specification, and that forms of domain modeling are feasible. It has also been ar-

gued that a more systematic approach to requirements analysis is feasible, and that an issue-based

framework is u_fu!f0r capturing the heuristics of a method. JSD illustrates both suggestions.

Other methods than JSD also illustrate the role of domain modeling and systematic process in

specification and design. Object-oriented methods like Booch's (1987) seem different from JSD, but

are based on a similar principle: that a design should be derived from a domain model. Even some

structured analysis methods (e.g. Hatley and Pirbhai, 1987; McMenamin and Palmer, 1984) have

moved away from top-down functional decomposition toward an 'outside-in' event-driven methodolo-

gy. In all these cases, not only does the analyst strive to understand and model the system's environ-

ment before specifying the system's functionality, but the form and content of the resulting 'domain
model' have a major impact on the subsequent design process.

Domain models can be expressed with richer semantics than ISD's. Gist (Balzer, Goldman and

Wile, 1982) introduces relationships and provides several kinds of semantic constraints (as opposed to

event ordering restrictions or cardinality constraints). In RML (Greenspan, 1984), some of the mean-

ing associated with relationships can be described, and a general inheritance mechanism is introduced.

In the Requirements Apprentice (Rich et al., 1987), domain knowledge is organized in frame-like cli-

chds. In KATE (Fickas, 1987) constraints can be weakened into normative policies, and domain behav-
ior can be described in typical usage scenarios.

Some informal development methods provide the analyst with many analysis heuristics _ CORE

(Mullery, 1985) and ISD are especially noteworthy in this respect, although other methods like

Booch's or Hatley and Pirbhai's (1987) version of structured analysis for real-time systems are also

quite prescriptive. The issue-based framework was not designed specifically with JSD in mind, and
may be equally suitable for other prescriptive methods.

The specialization mechanism allows the simple generic model to be customized for a prescrip-

tive development method, or any application domain in which the modeling issues are well-under-

stood. Although it is conceivable that intelligent tool support could be developed with a knowedge-

base that corresponded to that of the issue-based framework, more modest goals seem more promising

in the short-term. The issue-based analysis of a method Or domain could be used as a manually im-

posed discipline when using the general-purpose issue exploration tool glBIS (Conldin and Begeman,

55

1988).

It must_b¢____ that JSD has not been the topic of this paper. Ii _ on!y_a:'_ iHustmfi0n of__e

ways in which informal development methods that are based on sound design principles can lead to a

more SYs_mafic approach to _the earlier phases of system developmenL They can do Sis in two

ways: by encouraging the explication of application knowledge in a formal description, of the domain,

and by providing the analyst with a structured network of checks and heuristics.

Acknowledg med s " -: :==

Some of the content of this paper is derived from a review of domain modeling approaches writ-

ten jointly with Glenn Brans, who also commented extensively on an earlier draft.

References

Balzer, R., N.M. Goldman and D.S. Wile, 'Operational specification as the basis for rapid prototyp-

ing' ACM SIGSOFT Software Eng. Notes, 7(5): December, 1982.

Booch, G. Software Engineering with Ada, Benjamin Cummings, 2nd Edition, 1987.

Brans, G. and C.Potts, Domain Idlo_lin_Approaches to SoftwareDeveiopme:nt_ MC:C-T_hniCal Re-

port, STP'186288,_3une, i998 _........ "..........

Conklin, L and M. Bcgeman, 'gIBIS: a hypcrtcxt tool for explorato_ policy_ di_ussign'_ ACM

Trans. on Office lnfo. Sys', October, 19.88.1 _;i _ _ ; : : =_

Curtis, B., H. Kmsner and N. Isco¢ 'A field study of the software design process for large systems',

Comm. ACM, 31(11), November, 1988

Fickas, S. "Automating the analysis proce.ss: an example' Proc. 4th Int. Workshop on Software Specifi-

cation andDesign, IEEE Comp. Soc. Press, 1987.

Greenspan, SJ., Requirements Modeling: A knowledge representation approach to software reqMre-

ments definition, Univ. Toronto, Technical Rq_ort CSRG-155, March 1984.

Greenspan, SJ., L Mylopoulos and A. Borgida, 'Capturing more world knowledge in the require-

ments specification: Proc. 6th Int. Conf. Software Eng., IEEE Comp. Soc. Press, 1982.

Hatley, Z).I._md i.A. Pirbhai, Strategies]or-Red-7"imeSystem Spedfic_ttion, D6rset House, 1987.

Jackson, M.A., System Development, PrendcMHall, 1983.

McMenamin, S.M., and I.E, Palmer, Essential Systems Analysis, Yourdon Press, 1984.

MuUery, G.P., 'Acquisition - Environment' in M.W. Alford, J.P, Ansart, G. Hommel, L. Lamport,

B. Liskov, G.P. Mullery and F.B. Schneider (eds.) Distributed Systems: Methods and tools for

specification - an advanced course, Springer-Verlag, LNCS 190, 1985.

Potts, C., 'The other interface.: specifying and visualizing computer systcms' in T.R.G. Green, G.C.

Van der Vccr and D. Murray (ods.), Working with Computers: Theory versus outcome, Academic
Press.1988(a).

Potts, C., A Generic Model forRepresenting Design Methods, MCC Technical Report, STP-3!2-88,
1988('o) =:_ _ : =_: £ :_ ri::: I =i.::_ _..... _ ::::_

Rich, C., R.C. Waters and H. Rcubenstein, 'Toward a requirements apprentice', Proc. 4th Int. Work-

shop on Software Specification and Design, IEEE Comp. So<:. Press, 1987. : :

m
J

M

J

!

m
J

m

g

D

U

m

W

56

J

i i

L_

N94. 71141 ; f

/6_5-_5G
/)

/o

=- s

;= =,

Knowledge-based Requirements

Analysis for Automating Software Development

_ Lawrence Z. Markosian

Reasoning Systems, Inc.
_ 1801 Page Mill Road

Palo Alto, CA 94304

57

u

n

u

U

g

Ip

r
i

58

Know!edge-based Requirements

Analysis for Automating Software Development 1

2

Lawrence Z. Markosian

Reasoning Systems, Inc.
•1801 Page Mill Road

_ Palo Alto, CA 94304

I_,,¢

-__-__

:Abstract. We present a new software development paradigm that automates the

derivation of implementations from requirements. In this paradigm,
informally-stated requirements are expressed in a domain-specific requirements
specification language. This language is machine-understable and requirements
expressed in it are captured in a knowledge base. Once the requirements are
captured, more detailed specifications and eventually implementations are derived by
the system using transformational synthesis. A key characteristic of the process is
that the required human intervention is in the form of providing problem- and
domain-specific engineering knowledge, not in writing detailed implementations.
We describe a prototype system that applies the paradigm in the realm of
communication engineering: the prototype automatically generates implementations
of buffers following analysis of the requirements on each buffer.

Introduction. Our goal is to increase software development productivity by automating the
development process. We attack several weaknesses in current software development models:

• lack of formal connection between requirements and code,

• emphasis on manual production of code, an error-prone process, and

• inability to reuse previously-developed code.

Our approach is to provide domain-specific requirements specification languages that allow
machine-capture and machine-understanding of requirements in a particular domain. Next we
provide very high level compilers that automate the generation of more detailed specifications and
imple.mentations (code) from the requirements specifications. These compilers are also
do matn-s.pecifie and embody knowledge about how to generate specifications and implementations
m parueular engineering domains. Thus the compilation process occurs in a knowledge base, and

every s_p in _e generation of code from requirements is explicitly represented in this knowledge
base. t ne sottware development environment that we propose tracks design and implementation
decisions made by the user a s.we! 1,_ _ose made by the system itself. Because the process as well

1 The work reported in this paper has been partially supported by the Naval Oceans System Center under U.S.

Navy contract N00039-86-C-0221. The views and conclusions expressed in this paper are those of the author and
should not be interpreted as representing the policies of the U.S. Government or any agency thereof.

PtmJE)tl_ PAGE BLANK NOT FtLMBD

59

II

as the products of software development are machine-captured, the entire development history is
available for analysis, and future applications in the same domain can be derived in part by a replayof earlier derivations.

Our prototype development en "vironment is for the realm of radio communications. The underlying
software development environment, on which the co_unicati0n_specific automated environment
is based, is _ru. REFINE is a specification-oriented, general-purpose software devel
envtronment. REFINE has many features that support the develot_ment of,4,',,,,,_,, _,.,_,._,,. opment
Ja-guages, me ca ture ot clomain-sne.elfl,- ,.,,,_,,;,.° -, '_ . -.':"...... -_e..--,_,,-P . r"..... -.-t,.,-,,-,-_utn nan pro In knowI •
of executable code from specifications, and recordin,, and r ,--1-_ -_g- edge, the synthesis

o ,.v.aj ,.,l t.c ucrtvauon process.

Related work. Our work is a continuation of research in program synthesis and automatic

programming initiated by Green et al. [1]i Rich and Waters [2] discuss this work an ide an
extensive collection of literature on the domain of program development by transformdpr°a_

synthesis• Barstow has writtren extensively on domain-specific automatic programming systems in
[3] and the state of the art in transformational programming in [4]. Kelly and Normenmann [5]
have developed a knowledge-based approach to the synthesis of communication protocol
specifications from informal scenarios of typical system operation.

Enabling technologies. Our knowledge-based approach to generating programs from
requirements is based on transformational synthesis. In this process, requirements that have been
captured in the knowledge base are analyzed and refined into detailed specifications and then into
executable code. At intermediate stages in the process there may be parts of the requirements that
have been refined down to the code level, and parts that have been only partly refined or elaborated
but not fully implemented. Each refinement step is incremental, with a specific feature selected for
refinement at each stage. The computational model used is that of applying transformatton rule
that take a partially detailed piece of the ,,ro _:. " s

v r,,,_- _uut;ture ann map _t into a more detailed structure
to which further transformation rules may be applied For example, transformatl
into lower-level data t,-,,es such '"....... - "on rules refine sets

• . .,e ,,., ,_-a.rn, tt_ts or nasn tattles. Ilae ret:nement i '
engmeenng .and programming knowledae base c _.,,.a:..,..:^_ _,,_ _ .. s .graded by the

o . Ea h ,qaljAa_auwl Ol a 1TansIo
represents a design decision, and these d,'_-,, ,_o,-:_:^--, , rmauon rme

-,.,,6- ,.,_._A_xu.n me recoraeo In a oenvation tree that
enables the user to return to an earlier stage in the refinement in order to la oprewous desi n deci " • . . p y ut alternatives to

• g stuns. Transformattonal synthesls has been apphed successfully to program
g;p_raa_.°:n_)aeesdsmnr_tOssm_tic generation of mission plans for robotic vehicles. In these

•. . yn p s proceaes ennrely automatically. In the pro.to.type discussed intins paper, the process is interactive, with the user s
system's knowledge base is Inadequate to Identify UrPe mge t.gmeermgdecisionswhenthe

correctness preserving, synthesls__p .rc_,,ss lsthat transformation rule_s_hr_ _ ,_

f_anthsffdonessof thepa_ : vv-_ tun pamaay renneo set ot requirements preservesre_fnaement to the re;quirements. Correctness-preservation is a property of,.,--,_,.,Uil lUl=_ m_,[nas to oe ensue-' ----
• ,-,, ,,,v. u_e uevelopment environment _tselfis built. But it

needs to be ensured only this one time instead of each time a new application is built.

We contrast the representation of knowledge about requirements, speci_ations and programs Witla
traditional approaches, such as using a subroutine library to generate different im 1
we will indicate later i " nz_r -, ,,._..__,,_ ,. p ementations. As

n this .--r--, u,,. u_c t.,t u anstormauonm rules yielclS an exponential
productivity gain over the use of subroutines--knowledge that is represented explicitly is more far
generally applicable than knowledge encoded in the form of procedures.

m

J

w

II

I

mm

m

W

qll

m
w

w

6O

r i

The REF1NE system. The basic REFINE system [6] that underlies our prototype provides a

general-purpose specification language. The REFINE specification language includes first-order
logic and set-theoretic data types such as sets, sequences, mappings and relations. Thus it is

possible to write purely declarative functional specifications of system behavior in the REFINE

language. In addition, the language is wide-spectrum and supports a range of programming styles,

_cl_dmgn_a_oeCtso_t_,srUele;b_fied and procedural; "I'h.e _ compiler automatically generates

• , _ p ons. t'or example, the compiler generates low,level data type
_mpJementations 0ists, arrays, hashtables, etc.) of abstract sets, as well as the appropriate
implementations of set-theoretic operations such as union, intersection, membership, equality tests
among sets, etc. Customer experience over the 4-year history of REFINE use shows that there is an

order-of-magnitude productivity gain writing REFINE specifications instead of programs in a 3rd
generation language such as Ada, Lisp or C. A large part of this productivity gain is attributable to

the fact that specifications express primarily functionality while programs express both functionality
and detailed implementations. The REbqNE system is discussed in [7].

Because most of the programming knowledge in REFINE is general-purpose, we believed an even

greater productivity gain could be achieved by customizing the system to a particular application

area. A key component of REFINE that allows this customizing to be done is the language
definition subsystem. This subsystem allows a user to develop an extension to the basic REFINE

language, or an entirely distinct language. The language definition subsystem includes a grammar
specification system, a parser generator and a printer generator.

The REblNE compiler can also be extended by a user to generate implementations of the extended
specification language. An extended compiler will perform semantic analysis of specifications and
apply transformation rules to generate implementations. _.....

All of these capabilities are illustrated in the application to communication systems that we describebelow.

The problem domain. Our prototype domain-specific requriements analysis and synthesis
environment was developed for communications engineering. Specifically it addresses the

synthesis of different kinds of buffers to meet different requirements. Before illustrating the
operation of the prototype, we discuss requirements analysis issues regarding buffers and the
impact of the requirements analysis on implementation.

The purpose of a buffer is to mediate data flow between asynchronous processes, or between a

synchronous and an asynchronous process. Hence every time a data flow between such processes
is explicitly required or discovered in a system design, it could trigger the need for a buffer. For
our discussion we make the simplifying assumption that the buffer feeds
We list several • a synchronous rocess.

general propernes that one needs to know for any use of a buffer: P

• the buffer's input data rate,

• its functional behavior and

• the desired type of implementation.

The requirement for a buffrer at a particular point in the development of the design may be
represented in a suitable system as a logic assertion:

61

I

I

"If process P1 transmits data to process P2 and P1 is asynchronous and P2 is

sync_onous then a buffer is requ'u_d between processes P1 an d P2." _

Similar assertions specify requirements for buffers under other condition_.

Engineers will expect certain parts of the buffer design process to be similar in all cases and other
parts to depend on the particular context in which the buffer is used.

The similarities among implementations can be summarized as follows:

• a data storeof some Capacity is required,

• buffer behavior is generally (but not_ways) that of a FIF O _queue;

• we may assume data can be removed from the buffer at a constant rate, because the output is
assumed to be synchronous;

• we may assume that the mean input rate (over suitable intervals) is equal to the output rate;

• overflow control may be required;

, underflow control may be required.

L_.._

Differences among implementations will include different values of parameters in the above buffer
attributes (e.g., the actual capacity of the buffer); also, we expect

• different specifications of functional behavior for different requirements, and

• different implementations in different environments.

Input data rate requirements analysis. We f'trst consider three possible characterizations of

input data rate:

:_ approximateiy_eonstant, _: ,,
= .= =

• normally distributed and

• bursty.

Alternative implementations of the buffer store are appropriate for the different characteristics of

input data ra_: _-:_ _ - -==_--:_ ::

• approximately constant: fixed-length array, length dependent on:

input rate distribution'

--output data rate and

_requirement on avoiding saturation. 2

2 A model for determining buffer length is given in Lynch [9]

n

J

I

m

m

U

m

g

J

w

ql¢

mlg

62

I

• normal distribution: dynamically-allocated structure such as a list

• bursty: a combination of array and list.

Overflow control requirements analysis. Next we consider possible requirements on
buffer behavior under overflow or near-overflow conditions. Possible choices of overflow
behavior include:

• input process blocks,

• no blocking; oldest data lost,

• no blocking; most recent data lost,

• feedback to an input filter control,

• feedback to an input aperture control,

• feedback to an input sampling control and

• adaptively changing the buffer store size.

Each of the types of overflow control is appropriate in some situations. For example, in a textbook
specification of a buffer as a FIFO queue, the input process typically is represented with a guarded
command that waits (blocks) until space is available. In a radar system, a buffer receiving plot data

may overwrite the oldest plot data. In a mouse click handler on a workstation, the buffer may drop
the most recent mouse-click data because the display handler cannot keep up with rapid clicks and
thus the most recent clicks are unlikely to be meaningful. In digital transmission of analog signals,
feedback to control the sampler, aperture or filter may be appropriate.

Underflow requirements analysis. Underflow control is often necessary to insure that there
are no transmission gaps, which could cause loss of synchronization and an eventual loss of data.
Possible ways of handling underflow include:

• output process blocks

• output process extracts a "null" data item

• feedback to an input f'dter control, etc.

The discussionthus far should provide an idea of the kind of requirements a communications

engineer must analyze and the resulting design decisions that must be made in building a system to
meet these requirements.

Buffer analysis requirements and synthesis in REFINE.

We indicate how knowledge about buffers is represented in our REFINE-based prototype, and how
the requirements analysis and code synthesis process proceeds. (A more detailed discussion of the
process can be found in Ladldn et al. [8].)

• Buffers are an object class in the knowledge base with attributes that include:

63

I

m apartial specification, common to all buffers and therefore associated with each
instance of the class

-- input data rate requirement

output data rate requirement

-- the partial implementation of the buffer, in its partially reFmed form

Figure 1 shows some of the attributes of the buffer object class and the possible values of these

attributes. The order in which the attributes appear reflect approximately the range from highest
abstraction level (requirements) to lowest (coded implementation).

Input data] • Approximately constant
rate • Uniform distribution

• Bursty

Acceptable

pro b . error

Overflow

behavior

• 0_<pc_< 1.0

• Input process blocks
• Oldest data lost
• Newest data lost

• Feedback to input filter

• Feedback to input aperture
• Feedback to input sampling

Underflow] ,_ OU_ut-_eSs blocks
behavior • Extract a null data item

• Feedback to input filter
• etc.

Store size

[derived]

Functional
specification

Implementation

[paniy derN_] =_

[derivedl

Figure I: Buffer object class, attributes and
possible values for attributes

When the need for a p_u'ticular buffer is recognized by the system, an instance of the buffer object
class is generated. The values of the input data rate, out_ mt data rate, and partial implementation
attributes may at this point in the development be undefi led. They will become defined, and may
change, as the system draws Conclusions about the use of the particular buffer,

Note that in particular a knolwedge base object representing a buffer contains the partial

implementation of the buffer as an attribute. It is this feature of our representation, along with _e
retention of previous KB state via the context mechanism, that enables backtracking tO previous
design stages, and reimplementation of the buffer with a different design decision_

Here is an example of an abstract buffer instance in the application-specific language developed for
this prototype:

the-buffer BUFFER-I with-input-data-rate 9600 baud

with-discipline FIFO Wlth-underfiow'action

EXTRACT-NULL has-element_dataLtype CHARACTER

Someoftheatmbutesofthebufferhavebeendefined_forexample, theinputdata mte. Thevalue

64

z

__---__
= =

=__

w

w

9

(600 baud) may have been provided as part of the original problem requirements or it may have
been derived by the system or supplied interactively by the user. This specification is abstractbecause not all the attributes of the buffer have been d
buffer store has not vet ,_.,:...A.., ____. efin .e__ .for example, the ca aci of th., been ,_,..,,,,r..u, nor IS mere v _ .a,-,-:._, :__, P ty e

.,et. v,,,,.,,_ w_p,ementauon

• Other communication system components, such as data compression, noise immunization
and eneryption devices, and channels are also represented using object classes.

• Assuming the requirements have been forma/ly specified, they are also represented as objects in
the knowledge base. Each requirement is represented in the form of an annotated abstract
syntax tree. These trees are annotated further as requirements analysis proceeds.

An example of a partial requirement on the larger communication system in which this particularbuffer is embedded is the following:

The-comm-system CS-I with transmitter ALPHA-3

communicates ALPHANUMERIC data and

has SPORADIC traffic distribution

with nominal rate 50K baud and peak rate 65K baud.

This is a fairly high-level requirement and says nothing about implementation details except that a
transmitter of type ALPHA-3 is to be used. The language in which this requirement is expressed isa domain-specific requirements language that was
subsystem. Its expressiveness and syntax is in-_-i ef'med using the _ language definition
wmcn engineers state system :_-- _,,.,,_ed to be comparable to the infoabstr_,-, :._z., .,.,.luu_***_nts. Lne -ars'-" :- -'- rmal langua_ze in

•.,_, ,,_,mnx wee. lhe abstract syntax ,-_,," _" _- -, u._c.proto _ty_pesystem enerates
....... _s annotated w_th several attributes_f the ancommun!cation system that do not appear in the " "

were derived by the system as anal " ong-mal r_.xtuzrement. Values for thes "
the corn le " . ys,s proceeded. One of . . e attributes

p te maplementanon of the communication system, mese atlnbutes ,s the code representing

• Logic assertions relate buffer properties to system Properties such as input data rate, and these

properties are maintained throughout the synthesis by the logic cons_t maintenance facilityin RF.2INE. ,

An example of such an assertion is that the buffer capacity is to be COmputed usin a
mathematical model from the input and output data rates _--, .,-- -,,- -. g particular

data. A model for computing buffer capacity can be found in Lynch [9].,,-,., u,_ m*owaole error rate due to loss of

• Transformation rules represent possible refinements of a buffer

Most of the transformation rules in the prototype determine values of undefined buffer at "
from the context in which the buffer is used. One sim le hi h- . . .tributes
the buffer (FIFO, LIFO, etc.) from the fact that i " P. , g level rule derives the discipline of
All the interactive rules in our ---*-_ - t ,s being used as the transmitt,-,-'

la, t, to • • ,., _ output outrerhuman_are o " • type--mose mat r utre •_ f th_s hi h-level t eq informataon to be r "
be provided, on the h_;_ --- _-yPe" .they requtre either additional i,e,.,.,,.,,.:^_ pro__ded by ,,

...... _,_ o, wmcn the system can dr ---*_'--;,_._,-,- a_ut me context to
aw a needed Concluslon; or mey specificallyask the user to supply some value for an attribute of a buffer In genera/ th

to derive needed buffer characteristics bv back ,,-,_ ,-,.,.:----'- -- , . e prototype will attempt
, W__,, _.-auung tO tile ori_ :consequences of the initial requirements If b._.,-, '_u_rements or

or if the prototype's rulebase is inad--uate [the requ_.ments are.insufficient to su I
r.,q , me user wm t)e askea to supply a valueP,p y the answer,

65

Other transformation roles arc more complex and determine details Of the buffer.specification and

implementation. An example is given in Figure 2, This transformation rul.e dertvesfl .art of the ,
buffer s detailed functional specification (the buffer store). The specaficalaon to De ctenvea oepenas
on, among other things, the type of the data to be stored and the required overflow action. These
rules, which are fired after the high-level attributes have been determined, are entirely automatic and

do not require user intervention.

Thus the user supplies engineering knowledge and guidance, while the system handles program-

ruing details. In particular, the underlying REFINE system is capable of deriving implementations
automatically from complete functional specifications, and thus the user concentrates on higher-
level, application-oriented tasks rather on coding.

g

m

m

lm

Rule Make-Data-Structure-for-buffer-contents (a: DATA-BUFFER)

'##r comm-grammar
the-buffer @n

with-overflow-action @o-a

element-data-type @d-t
implementing-data-structure @undefined'

and

and

-->

defined? (d-t)

impl-ds = new-var (buiid'symbol'name (In, 'data]),

(if o-a = ,flush-newest-require-reset then

'tuple(integer, seq(@ (copy-expr(dt)),
boolean) ' else _ :_........ _: :_

'tuple(integer, seq(@(copy-expr(dt)))'))

variable?(impl-ds) I true

and initial-value (impl-ds)

(if o-a -- 'flush-newest-require-reset

'<0, []>")

and scope(impl-ds) = 'global

then _<0, [1, true>'

and bufer-data-structure.(a) ,T. impl-ds

and lisp-code(impl-ds) = undefined

and lisp-initialization(impl-ds) = undefined)

else

m

J

J

g

I

m

w

W

W

Figure-2i Transforma_i-onruie_to construct 6ttt'fer store

Note that, in general, if a buffer has n high-level properties and each of these attributes have m
possible ref'mements, then representing each refinement as a transformation rule requires roughly

66
: ' W

. .

L =

i i

Im,d

= =

. __

L

=

k.;

n * m transformation rules. On the other hand, use of subroutines to represent this knowledge
would require on the order of m n subroutines. Thus representing engineering knowledge about
buffers in the form of transformation rules represents an exponential decrease in the amount of code
that needs to be written, and a corresponding increase in reusability.

Summary and Conclusion. We have described and illustrated a new approach to sysiem
development that uses the requirements analysis process to construct detailed specifications and
implementations. The paradigm is based on the use of transformation rules. These transformation

rules are correctness-preserving. Transformation rules are a highly reusable knowledge
representation technique compared to subroutines in a standard programming language. When it is
necessary to make a refinement step but the development environment is unable to proceed
automatically, the possible choices are presented to the user in a hi h-level fi
user provides high-level s ecifications d r_._,,_,-,, ' ag . ormulataon. Thus the
assumes the burden ¢ a,.;.P,_ • an7.--._--_,,c,t_, ana me cteveiopment envtronment

o ,.,opang the detailed program code. Because the system builder is
allowed to concentrate on the application problem, primarily requirements analysis and
specification, we conclude that our approach holds the potential for very large increases in
productivity in software development, and that domain experts--engineers---can replace
programmers as the primary developers of software systems.

References.

1. Green, C. C., Luckham, D., Balzer, R. Cheatham, T. and Rich, C., "Report on a
Knowledge-Based Software Assistant," RADC Report RADC-TR-195, Rome Air

Development Center, New York, also Kestrel Institute Technical Report KES.U.83.2, Kestrel
Institute, Palo Alto, CA, 1983, also reprinted in Rich and Waters [2]

2. Rich, C. and Waters, R. C., eds., Artificial Intelligence and Software Engineering, MorganKaufman, Los Altos, CA, 1986

3. Barstow, D. R., "Domain-Specific Automatic Programming," IEEE Transactions on Software
Engineering SE-11, 11 (November, 1985)

4. Barstow, D. R., "Artificial Intelligence and Software Engineering," Procee&'ngs of the 9th

International Conference on Software Engineering, Monterey, CA, March 1987, 200-211,IEEE Computer Society Press, 1987

5. Kelly, V. and Nonnenmann, U, "Inferrin Formal • • . .
Desenpuons," Proceedin-s - " g Software Spec_ficauons from E lsodm

" " " nference on Artificial Intelligence,July, 1987, 127-132 *; AAA1-87 Sixth Natzonal Co P

6. The REFINE User's Guide. Reasoning Systems, Palo Alto, CA, 1987

7. Linden, T. and Markosian, L. Z., "Transformational Synthesis Using REFINErU, ', in Richer,

M., and Yazdani, M. (eds), Artificial Intelligence: Tools and Techniques, Ablex Publishing,Norwood, NI (to appear)

8. Ladkin, P., Markosian, L. Z., and Sterrett, A., "System Development by Domain-Specific
Synthesis," Proceedings of the Third International Conference on Applications of Artificial
Intelligence in Engineering, August, 1988, Palo Alato, CA

9. Lynch, T. J., Data Compression Techniques and Applications, Lifetime Learning, 1985

tmttl
67

w

W

r _

lm

I!

J

I

L_

llJ

III

}L \ i

'Wl

m

w

68

w

, Dinner Speaker

Intergrated Software Support
Environments.

Some Lessons Learned
f

/
/

Frank Belz

i =i (NOTES)

=z

k

_d

= =

H

L_

w

I_GE BLANK I_tOT FtL,N_ID

_1_11,11,11
69

g

I

I

I

J

i

I

I

I

I

i

I

W

I

W

I

I

7O
i
w

Session II

Space Station Software

Support Environments

=-

(./"

- 2

Session Co-Chair: Everett Lyons

Session Co-Chair: Jim Rainy

t

Speakers

Tim Porter

Paul Babick

Gokul Bhaumik

Herb Krasner

C. L. Carmody

C. T. Shotton

71

W

I

k _

g

IB

Ug

g

II

m

IO

m
!
W

!t

w

w

72

f *_T

/8_ 3_ /

N94- 71142
'0

f

w

Lessons Learned from an Ada Conversion Project

w

Tim Porter and Paul Babick

73

W

w _

g

U

e

II

m

g

m

w

_ I

IEB

J

_ z

g

Ur_

74

W

.... lib

= =

J

= =
L

' Abstract.

Recognizing the importance of building software with

the robustness to accommodate rapid advances in

technology, developers have focused on methods which

preserve both past and future investment in software,

and in providing an advanced software engineering
environment that frees the engineer, to the extent

possible, from the more routine aspects of software

design and development. The software engineer is

permitted to concentrate on the creative aspects of
problem resolution. Standard languages such as Ada

maximize portability across hardware and operating

systems. Standard interfaces which enhance portability
.. and permit the incorporation of new technology as it

becomes available have been developed. Software design

and development techniques which maximize portability
receive increasing emphasis. Experience gained in

porting an Ada application between two widely varying
environments is evaluated in light of current practices
to maximize software portability.

.f
_..r.

Introduction.

The Software Automated Verification and Validation System
(SAVVAS) is an automated tool used to manage and track software

requirements during development projects. Developed in Ada on a
Digital Equipment Corporation (DEC) VAX/VMS environment, SAVVAS

has been ported to the IBM 3090/VM environment and will be

delivered to NASA to support software development in the Space

Station Software Support Environment (NASA SSE). For the purposes
of this paper SAVVAS functionality is immaterial but can be

characterized as an information management tool, with a few

relatively simple embedded algorithms, and consisting of

approximately 25,000 Ada lines of code (LOC). SAVVAS depends on

the services of a database management system (DBMS) and was

originally designed to use the INGRES relational DBMS. It was

subsequently modified to use the ORACLE relational DBMS in the

VAX/VMS environment, and uses ORACLE in the IBM environment.
Figure 1 illustrates the SAVVAS architecture.

F_,C._ BLANK NOT F_LlWBD
=.

75

fTerminal _

Interface [_!

f

Virtual Interfaces

SAVVAS _ IRACLE

Project Database

Figure 1. SAVVAS Architecture.

Software Portability.

The degree of software portability is defined as the relative ease

with which source code can be moved between alternative hardware,

compilers, operating systems, and other external interfaces. High

degrees of portability are desirable in order to protect software

investment, prolong product life, and promote software reuse. As a

result new-technol0gical innovations can be easily introduced.

Various measures can be taken to improve software portability.

However such measures may also adversely impact software

performance in several ways.

Applicat_0ns written _in Ada have been re:put_ _ to :=bi_ hTg-hq-y_-

portable. While the Ada language has been standardized (MIL-STD-

1815A) and extensive compiler validation tests have been develop_ed =

to evaluate the degree of standard compliance by Ada compilers,

high degrees of portability can be difficult to achieve unless

?6

m
J

I

il

g

J

I

m

==

L =

w

accorr?panied by the use of other more important portability
enhancing methods and techniques. These include the isolation of

non-portable source code, constraints on the use of certain language
features, and standard or virtual interfaces. Each of these is

reviewed in the context of the SAVVAS port and in light of previous
experience.

Isolation of Non-Portable Code.

Rarely is it possible to totally eliminate all non-portable code

from application programs. Even simple operations such as cursor

positioning on a terminal or text display require the transmission of

special control sequences to the display device. System calls to the

operating system are usually unique to the operating system. Some

operating systems will accept leading or trailing blanks in

filenames. Others will not. The cost associated with porting
software can be minimized by isolating identified classes of such

software to specific Ada packages. This makes the task of finding

and correcting non-portable source code much simpler when porting
a software application. A trivial example is the set of routines

required for terminal input and output. The package specification

contains procedure and function declarations with specific machine-

dependent control sequences isolated to the package body. Figure 2

illustrates a simple terminal interface package. This package also
illustrates another of Ada's advantages in that by isolating machine

dependent code to the package body, as illustrated in figure 1, only
the package body must be recompiled before the program is re-

linked. No other program units become obsolete by virtue of changes
to a package body, thus minimizing recompilation time and

development costs. In many applications only a few such packages
may be required to isolate all known non-portable source code.

Experience has also shown that identifying all non-portable source

code can be very difficult, and undetected occurrances often result
in bizarre program errors that are even more difficult to correct.

Clearly lessons learned in this area should be reflected in the
°rganiza!i°n'ss0!!ware standards and procedures.

W

77

........ I i'--,,!", ..

I

package SIMPLE_TERMINAL_INTERFACE is

procedure GO_TO_POSITION (X, Y: in INTEGER);

procedure DISPLAY_TEXT (MESSAGE: in STRING);

end SIMPLE_TERMINAL_INTERFACE;

with TEXT_IO; use TEXT_IO;

package body SIMPLE_TERMINAL_INTERFACE is

..... pl;ocedu-re GO_TO_POSITiON (X, Y: in INTEGER) is
begin

-- Send the appropriate code sequence to the_ term!rlal.
..... :: These are dit_ferent for varying terminai=_types_.

end GO_TO_POSITION;

procedure DISPLAY_TEXT (MESSAGE: in STRING) is
begin

-- Send the message to the terminal

-- including any required code sequences.
end DISPLAY_TEXT;

end SIMPLE_TERMINAL_INTERFACE;
:

Figure 2. Simple Terminal Interface Package.

I

U

M
J

I

!

W

g

w

!

m

With respect to terminal interface, the mechanisms available on

the IBM 30907VM-_system ' are radically' different fro-m=:those_on

VAX/VMS Systems. The block oriented nature of IBM terminals

required significant changes, and in some cases wholesale rewrite,

of the human interface modules. This is not surprising in spite of

the fact that SAVVAS has a very simple menu-driven interface.

IBM's Interactive System Productivity Facility (ISPF) was utilized to

recreate SAVVAS menus. The object modules created for each

screen were then linked into SAVVAS. Another important design

feature which minimizes software porting costs is to use software

layers of increasing abstraction. This simplifies conversion to

III

J

J

J

m

?8

m

w

° .

m

w

vastly different environments by permitting the introduction of

alternatives at various levels of abstraction depending on the degreeof product deviation.

Contraints on the Use of Certain Language Features.

The SAVVAS port as well as previous experiences demonstrates

that some Ada language features are less portable than others. For

example, previous experience has demonstrated that programs which

rely on tasking and which have severe timing constraints may be
much less efficient (and may not even work) when ported to other

perhaps less optimized, but validated, compilers. Validation of an

Ada compiler provides no guarantees with respect to run time

performance. There can also be wide variance in the implementation
of Ada pragmas. Pragmas are essentially compiler directives. For

example the Ada pragma Interface is used to provide direction to
t! • y!

the compiler in the linking of object modules external to the Ada

environment, e. g. assembly or other foreign language developed

modules. Many compilers provide pragmas that are unique to only a
single vendors compiler. Software which relies on such features is
clearly less portable than programs which do not.

SAVVAS stores project data in a relational database. This eases

data manipulation and report production. It also means that SAVVAS

is dependent on some DBMS provided features and is linked to vendor

supplied C-language routines. Originally, SAVVAS was developed as

a stand-alone tool for the VAX/VMS environment to support U.S. Navy
software develOpment projects. The original implementation relied

on a pragma unique to the DEC Ada compiler called "pragma
IMPORT.VALUED_PROCEDURE, to import object modules outside of

the DEC Ada environment such as the DBMS access modules. For

most relational DBMSs these access routines are written in the C

programming language. The purpose of "pragma
IMPORT_VALUED_PROCEDURE, is to specify parameter types and
passing mechanisms for linkage to external modules. This DEC-

supplied pragma is non-standard but, as stated previously, is
allowed under compiler validation rules. It represents but one of

many approaches to defining the parameter passing mechanisms

required in linking external modules. The Alsys compiler used in

the IBM environment employs a very different approach. Needless to

say, extensive rework was required because of the rather
sophisticated database interface requirements. This extra effort is

attributabl e solely to the use of non-standard language features.

This problem was compounded by the fact that the DEC pragma
permits parameter declaration "out of order." Since S-uchoSt _ of
order parameters in many cases compiled successfully, erroneous
programs resulted that were very difficult to debug.

Ada's exception handling is a powerful feature designed to assist in
the construction of fault tolerant software. Typically the software
designer identifies potential categories of software failure creating
specially named exceptions and providing procedures for software
recovery in the event of failure. _ Tlhe exception handling featiJre also
provides a pre-defined "others" category of exceptions to be used for
unanticipated exceptional conditions. Deeply nested exception
handlers each of which has a catch-all "when others" path make for
bullet proof programs that won't fail catastrophically. They also
make programs extremely difficult to debug since it is virtually
impossible to determine at what level the software failed. The
SAVVAS experience indicates that the payoff in decreased test and
debug time usually exceeds the cost of additional care in the design
of exception handlers.

Virtual Interfaces.

J

BB

Hn
BII

l

I

BB

z

IIII

m
m

The intent of a virtual interface is to isolate application
software from perturbations in the external environment. Virtual

interfaces have been developed which provide interfaces from Ada

application programs to relational database -_management _Systems,

human interface systems, graphics display devices, and even

operating systems. These interfaces are sets of standard calls

providing basic facilities f6r--accessing external capabilities. If
these interfaces are robust enough, applications are buffered from

changes in the external environment. For example technology

advances such as a new database machine may be easily integrated
into applications without incurring undue software maintenance

costs. In a sense virtual interfaces are an extension of the idea that

non-portable code should be isolated. In effect virtual interfaces

standardize well known classes of non-portable source code. They
therefore enhance software portability and protect Software
investment.

Ada/SQL is a proposed virtual interface to relational DBMSs. It

provides standardized native language (Ada) access to relational

databases using SQL-like syntax. SQL, orS-tructured Query i_anguage, _ :

is an American National Standards Institute (ANSI) approved

80

m

I

m

m
U

!

m

F

L...1

m

m

i'

L=.

,,

standard for database access. The relative merits of Ada/SQL over

otherdatabase access approaches, such as embedded SQL or the

module approach, are still being debated. It is however a relatively
mature virtual interface to relational databases, Applications

written using Ada/SQL can easily be interfaced to any relational

database management system. Porting to new environments is

especially easy once the "standard" non-portable components of the

interface have been developed for alternative DBMSs since these

modules can simply be plugged into an application and a new DBMS

swapped in. The database itself must still be created and populated

using the new DBMS but application software remains unchanged. It

is significant that during the SAVVAS port no changes were required

to the Ada/SQL virtual interface. The source code which implements
this interface is identical on both IBM and VAX systems. This

capability is critical to large systems representing investments of

many millions of dollars. Such systems cannot afford to be ',locked

into" specific vendor products by relying on the vendor suppliedinterface procedures.

In both the SAVVAS conversion from INGRES to ORACLE and the

port to the IBM 3090, several problems in the database interface

area occurred. Some of these required significant amounts of effort

to resolve. However all eventually resolved to compiler
limitations/bugs or unidentified non-portable software modules.

For example, the original software design of SAVVAS assumed that
any user disk space could have write access by more than one user -

true for the VAX but not so for the IBM. Assumptions such as this

are obvious to the "monday morning quarterback" but are sometimes

difficult to detect in practice. Assumptions about the underlying
environment are often quite subtle and can permeate an entire
software design.

Another important evolving interface standard is the X Window

System. X evolved from research at the Massachusetts Institute of

Technology into a network-oriented windowing system. While not

Ye t anANSI standard, X has been adopted by an increasing number of

computer manufactures, including DEC, DG, Apollo, SUN, and IBM. X

was not employed on SAVVAS, but an Ada-X Binding has been

deve!oped and employed in numerous software development projects.

It has proven to be a versatilel comprehensive interface package.
The Ada-X Binding is a formalized virtual interface for the

construction of human interfaces and would be used in place of

81

developer created terminal interface packages such as the simple
example included above.

Standards for graphic displays are also important. Several have
been proposed such as theGraphi_s Kernal Standard (GKS). An Ada-
GKS Binding has been developed to virtualize this interface for Ada
applications.

Standard operating_sYstem interfaces - such as P©SIX have also
gained considerable momentum. Other candidates include the
Common APSE Interface Set (CAIS) and the European-sponsored
Portable Common Tools Environment (PCTE). Each of these are
attempts to provide a Standards_et oi operating system primitives.
POSIX is receiving widespread support in industry, government and
academia. Ada-POSIX bindings are being developed. Programs such
as the NASA SSE are evaluating these alternatives in the hope of
finding a suitable standard. A virtual interface to the operating
system would eliminate many of tl4e portability problems which
result from subtle assumptions about the external environment such
as the user disk space issue discussed above.

Conclusion,

Clearly a consistent software design methodology coupled with
design and coding standards which enforce effective modularization
and limit the use of less portable language features is essential to
achieving a high degree of software portability. Standards and
guidelines should be constantly reviewed and updated based on new
insights and experiences.

Virtual interfaces such as Ada/SQL, the X Window System, POSIX
and Ada-GKS significantly contribute to software portability, and in
addition have significant productivity implications. These tools
should be incorporated into Ada software libraries and made readily
available to the software development staff. On the other hand they
also clearly add to program Performance overhead, and must be
weighed in light of performance requirements.

The SAVVAS port has validated past experience and cautions with
respect to achieving software portability and will be capitalized on
in future tool development and integration efforts. The SAVVAS
experience also highlights the importance of adequate training to
take full advantage of an advanced programming language. Putting

82

II

i
D

II
Ill

II

II

m

[]

m

[]

II

m

II

n

B

Ill

m

m
m

programmers through familiarization courses will not normally
result in Ada programs which evidence modern software engineering
practices. Instead they will result in poorly written programs that

are error-prone, difficult to debug, and costly to maintain. SAVVAS

was originally developed by a team with mixed experience and

education. The software engineers which conducted the port to the

IBM environment could almost guess which programmers wrote

which modules. This reemphasized the importance not only of
adequate training but also of comprehensive standards and

procedures, automated standard checkers, and thorough program
walkthroughs and reviews led by experienced programmers.

i

83

m

|

m
Im

i

Ip r m

Ill

m

mm

II

U

m

B
Im

m

I

ID

m

84

/_5 3 5 /9
N94-71143

Gokul Bhaumik

= =

L =

w

Modernization of Software Quality Assurance

P_GE ULANK NOT FK_BD

85

I

m

u

I

m
m

U

m

U

I

!

U

I

• - _ <

_ _ _ i:'_;._;'_:_._-_ _ _ _ _.

$6

m

L
w

NEED FOR
MODERNIZATION OF QUALITY ASSURANCE

FUNCTION

The evolution of the modern day programmer-analyst, in a sense, has followed
a path similar to the Freemason of the middle ages. During the early days of the
computer technology, any understanding of how to build a computerized system
set the individual apart and was licensed for personal success. It has been
said, however, that often, systems were built much like the Wright Brothers
designing airplanes: build the whole thing, somehow, push it off a cliff, and if it
flies, fine. If it crashes, start all over again. Of course, some designs were
monuments to initiative and individual talent, but - like the builder of old planes,
we have not yet fully come to grips with all the variables of system design. The
need for results have out-raced the time needed for developing techniques to
design, develop, and more importantly assuring the quality software systems or
products. The above speech was given by John W. Luke, President, Infonet
Division, Computer Science Corporation at the AIIE conference on software,
Chicago, Illinois, on July 27, 1977.

NEED FOR QUALITY MANAGEMENT

The customers satisfaction depends not only on functional performance, it also
depends on quality characteristics of software products. And it is this quality
aspect of software products need to be examined which will pro vide a clear,
well-defined framework for quality assurance functions to improve the life-cycle
activities providing significant leverage on software quality.

We need to be aware of the thoughts expressed by many quality experts and
they are:

• Quality cannot be added on. It means that unlike present day, traditional
inspective type of control, it must be engineered from the very beginning
of the software development process. The quality function must start at
the same time when system conceptualization begins.

• The level of quality built into a program is a function of the quality
attributes employed during the development process. Standards,
practices, tools, and techniques are needed to define these attributes. If
they do not exist, the quality process remains a subjective evaluation.

• • =

• Quality therefore, must be managed. It must be planned, it must be
organized. It must be directed and it must be regulated or controlled.

The above thought provoking comments, therefore, lead us to the necessary
definition of Software Quality Assurance function.

I_C_ BLAt_(NOT FILMED

87

I

I

Defihition: Software Quality Assurance is a formal, planned approacli_of actions
designed to evaluate the degree of identifiable set of quality attributes present
in al/software systems and its attendant products. ,

To support the above definition, the architect of quality evaluation must plan and
implement necessary tools, techniques, and methodologies in such a manner
that brings to fruition another important advocacy advanced by many experts in
the quality disciplines •

",4 strictly orchestrated Interdependency between the design and
development processes or product and their concurrent verification
measures for attributes relative to quality."

QUALITY MANAGEMENT ROLE

The Quality Management Role on any Software project must then be to:

• Monitor
• Regulate
• Evaluate

the Software Development 15rocess _and '_Pro_duct-s ancl--recommerld/initiate
necessary corrective action(s) as depicted in the following figure.

CORRECTIVE ACTIONS

"__E ACTIONS

i

mm
!

m

ME

m

m

Ill

m

m
m

R

m

88

u

. i

w

w

= =

QUALITY EVALUATION

For the purpose of Quality Evaluation, necessary criteria must be established for
both the process and the products as well.

PROCESS EVALUATION CRITERIA

• Activities required by approved project plans are performed.

• Processes are compliant with the approved project plans.

• Tools, Techniques & Methodologies described in the project plans
are utilized.

• Processes are adequate to meet the contractual requirements.

• Adequacy of configuration control system

• _Adequacy of discrepancy reporting and corrective action system.

PRODUCT EVALUATION CRITERIA

• Compliance with contractual specification requirements

• Adherence to required format and documentation standards

• Technical Adequacy

• Consistency with indicated documents

• Traceability to indicated documents

• Appropriate degree of Quality attributes(factors), namely,

Correctness, Efficiency, Flexibility,
Integrity, Interoperability, Maintainability,
Portability, Reliabdity, Safety_ Reusability,
Testability, etc

• Adequacy of test cases,and test procedures

• Completeness of testing

• Adequacy of retesting.

i_ _: 89

D

SR&QA TOOLS AND METRICS

A significant amount of the work done to evaluate quality is manual, tedious,
and subject to human error. Tools are desirable in order to monitor
development process, compliance to standards, change control etc. Automation
aids should be used extensively to simplify many of these tasks to overcome the
complexity and volume of products. Automation aids can be used to correlate
and centralize the software requirements. Software design can be directly
verified by software tools. A variety of design and code checkers, both static and
dynamic should be used for detailed verification of resultant code. Traditional
review/audit checklists can certainly be made computer aided. Some other tools
are:

• Impact analysis tool

• Requirements traceability matrices

• Test specification tool

• Regression test identification tool

QUANTITATIVE EVALUATION OF SOFTWARE QUALITY UTILIZING
METRICS

mm

lib

BE

m
BE

mal

El

BI

D

In order to evaluate quality quantitatively, quality of software must be defined in
terms of measurable attributes of software and only then mechanism can be
devised to measure it quantitatively.

Light and Fisher have defined software quality as "the composite of all related
attributes which describe the degree of excellence of computer software".

General Electdc study, sponsored by RADC, has refined the above notion of
quality further into identifiable factors which are some conditions or
charactedstica that contribute to software quality.

Based upon the result of these studies, T. J. McCabe has defined the process of
Quality Evaluation as the identification of important factors in a given
environment, the specification of these factors and the measurement of the
degree of their presence during and after implementation.

Units of metrics are defined as the ratio of a_ual occurrences or non-
occurrences to the possible number of occurrences of certain software
attributes.

Defining the actual metrics that are used to determine the quality of a specific
product is beyond the scope of this paper. ._

m

N

I

9O

I

WHAT LOCKHEED IS DOING TO AUTOMATE THE QUALITY
EVALUATION PROCESS

Through the Space Station Freedom Software Support Environment(SSE)
Project, we are called upon to meet a new challenge in orchestrating a quantum
leap forward in software development productivity and methodologies.

The SSE architecture provides an important quality technology breakthrough by
allowing the implementation of quality evaluation techniques in an automated
fashion. This automated support results from the "product test control" features
inherent with the SSE framework. The following figure describes the information

flow in and out of a SSE System Project instance that supports quality
management. The SSE instance not only ensures the application of quality
criteria, it also maintains current status data on the progress of development
and quality evaluation.

z_

|4

Manager I

Quality

Manager

Metrics

Report

Lessons

Learned

Reports

Test and

Integration
Levels

Metrics

Reports

IV&V Test

Reports

IV&V

Tools

Products,

Tests and Data

Quality
Reviews

SR&QA

Reports

Metrics

Reports

Status

Reports

Test

Reports

SSE Project Instance

Standards

SR&QA

Plan

System

Plan

7-_

w

|_l.k 91

I

In summary, the SSE architecture, supporting the automated quality evaluation

is in the process of bringing to fruition already stated advocacy advanced by the
quality experts and that is:

"a strictly orchestrated interdependency between the design
and development processes or products and their cOncurrent
verification measures for quality."

BB

D

==

BB

m

J

m

m
U

m
m

U

i_ ¸,:, _

92

N94- 71144

i

= =

Empirical Studies of Design
Software:

Implications for Software

Engineering Environments

I

Herb Krasner,

Lockheed Software Technology Center

w

93

94

In

i

aim

i

i

.==.

1_tl -

Empircal Studies of Software Design • Implications for

Software Engineering Environments

Herb Krasner, Lockheed Software Technology Center

1. INTRODUCTION

The empirical studies team (Herb Krasner, Raymonde Guindon, Diane

Walz, Nell Iscoe, Vincent Shen, Barbara Smith, Bill Curtis and Nancy
Pennington) of MCC's Design Process Group conducted three studies in

1986-87 in order to gather data on professionals designing software

systems in a range of situations. The first study (the Lift Experiment)

used thinking aloud protocols in a controlled laboratory setting to study

the cognitive processes of individual designers. The second study

(the Object Server Project) involved the observation, videotaping and data

collection of a design team of a medium-sized development project over

several months in order to study team dynamics. The third study (the

Field Study) involved interviews with the personnel from 19 large

development projects in the MCC shareholders in order to study how the

process of design is affected by organizational and project behavior.

The focus of this report will be on key observations of design process (at
several levels) and their implications for the design of environments.

2. OBSERVATIONS

In our study of individual, experienced designers working on the lift

problem we observed: the differences in design strategies and solutions,

the ways in which many levels of abstraction and detail are worked at the

same time, the wa_,s in which designers understand and elaborate

requirements through explorations of their mental model of the problem

environment, and the discovery-oriented nature of their problem solving.

Furthermore we identified the main sources of process breakdown [see
Guindon, Krasner and

Curtis, 1987] as: 1) lack of specialized design idioms, 2) lack of

knowledge about design process and methods, 3) poor prioritization of

issues leading to poor selection of alternative solutions, 4) difficulty in
considering stated or inferred constraints during solution

formation, 5) difficulty in keeping track of and returning to

postponed subproblem SOiUtions, 6) difficulty in keeping track

of steps or test cases during evaluative simulation, 7) difficulty

in expanding or merging subproblem solutions into the complete

system solution, and 8) premature committment to an initial solution

skeleton based on a priori criteria. Implications for the design of
software tools to support individual professional designers were
generated.

P__ P'AGE BLAt'_K NOT FtLI_EtD 95

In our longitudinal design team study [Walz, Elam,
Krasner and Curtis, 1987] we observed the processes of group

disagreement about goals, processes, plans, issues and system design. We
saw that problems can arise in the
accomplishment of a group task when individual team members hold
conflicting assumptions, goals, beliefs, etc. which are not surfaced
and/or resolved. These conflicts can cause conflicting or incompatible
system components. Team members attempting to integrate various
individual efforts may find difficulties/incompatibilities due
to the differences in these underlying beliefs. The process of design by a
team is an information pooling task and therefore difficulties in
communication can be expected. The identification and characterization
of design "inflection points" can lead to more effective management of the
divergence/convergence process in team design. Implications for
software environments to support a high performance design team were
developed.

I

m

J

W

D

t

In our field study of 19 large software projects, we identified the key

problem areas spanning the boundaries between project, organization and

external settings. We identified problems in: the acquisition and

dissemination of sufficient application knowledge, the effect of

requirements change and uncertainty, the artificial barriers to software

technology transfer, the dynamics of design evolution and the special .
problems of government contract developments. We also identified and

described project level phenominae related to multi-group interaction as

[Krasner, Curtis and Iscoe, 1987]: 1) the typical communications

breakdowns in large programming projects, 2) the cultural and

environmental differences that create barriers to effective intergroup

communications, and 3) the boundary spanning activities that coordinate

five crucial topical networks of design information. Four types of

communication breakdowns observed on the projects were characterized. •

Implications for software environments to support large projects of

remotely distributed teams were developed.

3. CONCLUSIONS

Across these 3 studies we observed how some breakdowns

occur, how some get solved, someget amplified, and h_ow some

new types occur as you go from individual to-tea-m to-iai'-g-e-projects

and organizations. The mechanisms underlying the breakdowns

at the individual level were the lack of knowledge about some _

important aspect of the design or limitations in human information

processing and memory capacity. At the team and organizational

levels these mechanisms were still important precursors of many

96 ...,,t

J

m

W

m
m

J

W

-z

=

.

ot tt_e breakdowns observed, however, these mechanisms were augmented
by interpersonal and organizational processes to create the breakdowns
in a multiperson, multigroup design effort. We have identified

interp_t'sonal mechanisms providing synthesis and integration that allow

teams to compensate for individual limitations. These are the

communication mechanisms that provide for the coordination of mental
models of the design and its process across a project staff. The

processes of design integration and synthesis cannot be effectively
translated into a software system unless cognitive coordination
processes are effective.

4. The Lockheed STC Effort

The Lockheed STC Software Process Management Group is currently

exploring process models of design that support at least the following

components: the decomposition of system requirements/designs, the

synthesis of relevant design idioms, the intelligent management of

project resources, the coordination of models of the design and its

process across project staff, the constraint-based exploration
of requirments under changing/negotiated conditions and the
capture/reuse of historical design rationale.

i

= =

w

- =

9?

I

m

I

II

ID

IB

m

I

m
mm

U

mw

w

Iw

98

L_

-2 -

N94- 71145

Tool teroperab_htyIn ""

in SSE OI 2.0

.7_F/4- 4_!

w

C. L. Carmody
and

C. T. Shotton

I-'7

W

PAGE BLANK NOT FtLME't)

99

100

li

liw

mi

WD

I!

I

m
I

g

m

g

I

z
w

w

w

..T_J._:Tool Interoperability in SSE OI 2.0

,t]g.r: C.L.Carmody and C.T.Shotton
D.aLe: October, 1988

_: This paper presents a review of the concept and

implementation of tool interoperability in the Space Station Software

Support Environment (SSE) OI 2.0. By first providing a description of

SSE, the paper describes the problem at hand, that is; the nature of the

SSE that gives rise to the requirement for interoperability - between SSE

workstations and hence, between the tools which reside on the

workstations. Specifically, word processor and graphic tool
interoperability are discussed.

The concept for interoperability that is implemented in OI 2.0 is

described, as is an overview of the implementation strategy. Some of the

significant challenges that the development team had to overcome to

bring about interoperability are described, perhaps as a checklist, or

warning, to others who would bring about tool interoperability.

Lastly, plans to expand tool interoperability to a third class of tools in OI
3.0 are described.

F_GE. BLANK NOT FtLMIL_

101

m

g

m

U

I

I

M

g

g

m

D

wz102

Background

Tool Interoperability in SSE OI 2.0

w

The SSE System is an integrated system consisting of computer hardware,

communication networks, SSE, and all other elements that support the life-cycle

management of all Space Station Freedom Program (SSFP) operational

software. The Space Freedom Station Software Support Environment (SSE) is

an evolving collection of software, procedures, standards, hardware

specifications, documentation, policy, and training materials which, when

implemented in hardware and a computer network(s), provides the environment

for the life-cycle management of SSFP software, including itself. The SSE

System will provide a common environment for software support to the SSFP in

geographically distributed and networked computer facilities, typically a host

processor with attached user workstations. The near-term evolution of the SSE

System, in operational increments one through four (Oi 1.0 through OI 4.0),

involves replacing the COTS from the Interim and Initial Systems (OI 1.0 and OI

2:0) with non-proprietary, SSE developed software which is more tightly
integrated into an environment.

On October 10, 1988, the second operational release of the SSE System, OI

2. 0, was delivered to NASA for the continued development of the SSE itself,

and for use by SSFP developers, the Work Package Contractors, prior to the

delivery and installation of their Software Production Facilities (SPFs). Delivery

of the SPFs will constitute the next major operational increment of the SSE; OI

3.0. As of OI 2.0, the SSE System contains two host architecture types (VAX

8820 and IBM 3090), and three workstation types (Macintosh II, IBM P/S 2, and

Apollo). The bulk of the functionality of OI 2.0 is provided by commercial off-the-

shelf software (COTS), on both hosts and workstations, which supply initial SSE

capabilities in process management support, software production support,

document development and production support, office automation support and

project management support. A major requirement of the SSE System is to

provide equivalent functionality on each of the three workstation types, for that

functionality allocated to the workstations, and on each host architecture, for that
functionality allocated to the hosts.

_GE eL_U_K NOT r_ee

103

i

Typidally, a Space Station Freedom software development project will consist of

several developers and testers working as a team. Each team member will do a

major portion of his work on his own workstation (any one of the supPorted

workstation types), and then place that work under configuration control on the

host for integration with the work of others. In order for that integr:ation to take

place, whether it be the integration of code, of design products, or of document

sections, there must be a concept and method for the interoperability of
functionally equivalent tools.

g

w

J

u

in OI 2.0, a portion of the functionality that is allocated to the workstations is the

preparation of document sections, both text and graphics. To satisfy that

requirement, the workstations are equipped with the following word processing

and graphics packages;

° Microsoft Word and MacDraw on the Macintosh Ii

• Microsoft Word and Gem Draw Plus on the IBM P/S 2

• Interleaf 3.0 on the Apollo (for both text and graphics)_ " _ _ _

Each word processing and graphic package outputs a different format; even

Microsoft Word on the Macintosh !1 outputs a different format from Microsoft

Word on the IBM PiS 2. In_order_i'o-support the common text and graphic

functionality (with distinct output formats), OI 2.0 contains a set of transformation

procedures which will transform tool-specific format to a common

interoperability format, and from that format back to tool-specific format.

Planning Research Corporation (PRC), subcontractor on the SSE project, has

developed a set of word-processing transformation procedures, to support a

Text lnteroperability Format (TIF), and a set of graphic transformation

procedures, to support a Graphic Interoperability Format (GIF).

J

g

i

I

!

!

W

g

I

104

The _oncept of Tool Interoperability

- i

w

t=.,#

w

7 7
= :=

w

=" " ,

Mac II

Apollo Project Object Base

P/S 2, 4
text

g

developers and
testers work

on any of three

SSE workstation types

text and graphic objects
are placed under

configuration control

in interoperability format

the set of transformation procedures

and the defined interoperability formats

the flow of text objects

the flow of graphic objects

Figure 1; The Concept of lnteroperability within SSE OI 2.0

As is indicated in .Figure 1, The Concept of Interoperability within SSE O! 2.0,

SSE users do a major portion of their work with tools that reside at the

workstation. In this context (which is shown to be the development of text and

graphics objects for later integration into a document), developers and testers

are shown as the major SSE users; developers produce text and graphic

objects using the baselined tools available on their workstations. When a

developer is through with a given text or graphic object, he transforms it into the

appropriate interoperability format, with one of a set of transformation

procedures. The object, in interoperability format, is placed under configuration

control on the host with the other objects for the given document. That object is

now available for test, and testers may run both host-based tests and

workstation-based tests. For example, a test of a graphic object may consist of

bringing it down to the tester's workstation and making sure all words in the

'" "" 105
LJ

J

figure are spelling correctly, and the figure itself conforms to project graphic

standards. Using the transformation procedures, the tester does not need to

have the same type of workstation as the developer; he doesn't even need to

know on what kind of workstation the objects were originally developed. And, if

an object needs rework, a different developer with a different type of workstation

can do the rework. Ultimately, when all planned tests are passed, the objects

are integrated into the final product on the host; in this case, a document. [SSE

OI 2.0 also contains transformation procedures which will transform text and

graphic objects from interoperability format into a merged document using the

VAX host-based document processing tool, Scribe].

B
I

m

I

I

m

I

I

As shown in Figure 2, Text lnteroperability Procedures, there are six text

transformation procedures; three transform tool-specific output into text

interoperability format, three transform from text interoperability format into a

form acceptable by the SSE baselined wordprocessors.

I

I

Microsoft Word on IBM

(DCA format)

Microsoft Word _ __ Text

on Macintosh _lnteroperability

(RTF format) _ Format

Interleaf on Apollo

Microsoft Word on IBM

(DCA format)

Microsoft Word
on Macintosh

(RTF format)

"Ik
Interleaf on Apollo

Figure 2; Text Interoperability Procedures

m

U

zII

IBm

m

As shown in Figure 3, Graphic Interoperability Procedures, there are six graphic

transformation procedures; three transform tool-specific output into graphic-

interoperability format, three transform from graphic interoperability format into a

form acceptable by the SSE baselined graphic packages.

106

I

i....,

Gem Draw on IBM

MacDraw _"_-_Graphic

on Macintosh _ Interoperability

'nlerleaf on Apollo _/- F'ormat

Gem Draw on IBM

MacDraw

__ C INTLE_G_ on Macintosh

Interleaf on Apollo
,,. Figure 3; Graphic Interoperability Procedures

= l

m

w

Implementation Overview

Design Drivers

It is possible to separate those qualities of software design that are featured in

the development of SSE tool interoperability into two sets; those design drivers

of SSE which are supported by the concept and implementation of the

transformation procedures, and those design drivers which characterize the
implementation of the transformation procedures.

Support to SSE Design Drivers

The following list is an example of those design drivers ('quoted from the SSE

System Concept. Document) mandated for the SSE System which the
transformation procedures support directly.

Commonality; "from the users' perspective, each host/workstation

combination will have exactly one set of tools available for SSP software

support.. These tools will support interoperability between
host/workstation Combinations-

Expandability; "the architecture of the SSE System will be amenable to

addition of new capabilities or external system interfaces-

Technological Transparency; "every aspect of the SSE design will

enable change brought about by advancing hardware and software
technologies to be of minimal impact-

107

,,! Data Type Transparency; "the SSE will shield the user from explicit,
required knowledge of the data types addressed for work in levels where

such is not appropriate"

Integration; "the SSE will be a tightly integrated whole, centered around

a policy of software life-cycle management. Tight integration is comprised

of maximizing information transfer between SSE functional capabilities

with a simultaneous minimization of user intervention."

Use of Ada; "the SSE supports the use of Aria for the development of all

SSP operational software, including itself"

Vendor Independence; "the SSE design will be highly portable so as to

avoid dependence on any particular vendor, computer hardware system,

workstation, data base management system, operating system, network,

or application program. The interoperability features provided by the

SSE System remove much of the dependency on vendor-specific

hardware and software, minimizing the risk in that area"

Transformation Procedures Design Drivers

Maintainability; Once a vendor puts out a word-processing or graphic

package, there is no guarantee that when an update is released, the

vendor will have maintained the old format. The lack of control over

vendor output has forced the design of the transformation procedures

into a highly data-driven design, to reduce impact on the software when

the input file format changes.

N

B

I

!
D

I

m

I

w

m
m

m

Reusability; Each transformation procedure is structured in a similar

manner, using the same skeleton Ada package specifications, and

calling the same service procedures. When a new transformation

procedure is required, it is not developed from scratch, but rather

assembled from existing components and tailored for its new use.

Portability; The SSE requirement to support equivalent functionality on

each host architecture has driven the transformation procedures to

identify and isolate machine dependencies.

108

Reliability and Usability; The transformation procedures are used several

times daily by nearly all current SSE developers and testers; the PRC

developers have made reliability and usability the highest of design

priorities, the PRC testers have exercised creativity in the design of test
cases which attempt every unforeseen way of making the software fail.

i

= =

m

Implementation Details

Each transformation procedure is either a LALR(1) parser or a context sensitive,

recursive descent parser, which scans the input format and, based on parse

tables containing the syntax for the input format and action rules transforming

input constructs into output constructs, creates a file in the desired output format.

(An LALR(1) parser Looks Ahead from Left to Right 1 symbol) Rather than

writing each parser from scratch, a public domain parser generator (developed

for NASA Langley) was used to create the skeleton for each transformation

procedure and the parse tables to be used by the transformation. The parser

generator used was PARGEN, part of the MYSTRO suite of compiler-compiler

tools. PARGEN takes as its input a production grammar which describes the

transformations from one format to another in unambiguous terms. From this

grammar, the LALR(1) parse tables are built, along with procedures to do the

lexical analysis, or scanning, and the syntax-semantics synthesis.

¢

As SSE is required to be completely in Ada, PARGEN was modified to generate

Aria, and all host-resident transformation procedures are written in Ada. Due to

vendor restrictions on access to their proprietary formats and routines accessing

th.ese, formats, two transformation procedures, GEMINT was developed on the

IBM P/S 2, and PICTINT was developed on the Macintosh II; both in C.

lnteroperability Formats

Key to the design and implementation of the transformation procedures is the

definition of the interoperability formats. Each format (text and graphics)

attempts to define in a tool-independent format that functionality which is both

common to aTlbaselined_wor:ksta_t_o_n _ools_and=-_requim- d -by-the rnaj0dty of the

users. Both text and graphic interoperability are defined in Backus-Naur Form

109

I

(BNF), however the graphics interoperability format provides a, more extensive

object-oriented language, by virtue of the nature of graphics, and standard

manipulations on graphic objects. For example, drawing a rectangle filled with

your choice of patterns is a fairly standard capability for a graphics package.

w
M

I

Significant Challenges

Any integrated system (office automation, software development, etc) which

provides a set of tools with equivalent functionality should provide some means

for the interoperability of those tools and their outputs. It is worthwhile to review

some of the challenges that must be taken into considerati0n.

Parsing techniques; the development of the SSE transformation

procedures required an in-depth understanding of parsing techniques, at

least equivalent to the information provided in a typical compiler design

course. Properly managed, the entire team need not have this degree of

expertise in compiler construction, but should have mastery of the

fundamentals of the theories involved.

Determination of common functionality; Probably one of the most

con!roversial aspects to achieving interoperability is the definition of the

interoperability format. During this exercise, the common subset'of the

functionality provided by the baselined tools is defined formally as a

grammar. The main problem is dealing with users who would prefer the

interoperability format to provide a superset of all the functionality

provided by the tools.

J

I

w

m

z

m

m

m

m

J

I

m

Control of vendors; The SSE Program has no control over the schedule

of update releases from vendors, or the content of update releases. This

can create serious schedule problems, as the transformation developers

attempt to keep up with several package updates at once, especially as

an older package may cease to be available before the corresponding

transformation procedure or format has been updated for the updated

package. A second severe problem is the access to the vendor formats.

Not all vendors subscribe to 'open systems'; as a result some

transformation procedures must reside on the system on which the

vendors provide access _routines tO their proprietary formats. The ideal

110

w

D

w

= .

w

, solution to the problem of controlling vendors is to publish the

interoperability formats, for use by each vendor to provide their own
transformation procedures.

Plans for OI 3.0

Transformation Procedure Maintenance

No extensive enhancements in the word processing and graphic transformation

procedures are planned for SSE OI 3.0. Typical maintenance will consist of

making any changes necessitated by vendor updates, modify any undesirable

........ features, and analyze the widening of the interoperability formats.

Design Tool Interoperability

A significant enhancement to SSE tool interoperability is planned for OI 3.0

through the introduction of a new class of transformation procedures. PRC plans

to define an interoperability format and implement the transformation

procedures to bring about interoperability between the SSE baselined CASE

tools; Cadre's TEAMWORK on the Apollo, Excelerator on the IBM P/S 2, and

Iconix PowerTools on the Macintosh. Again, the most significant challenge will

be to determine the common required functionality and a means for

representing that functionality in a production grammar. The transformation

procedures themselves will be built upon the legacy of the word processing and
graphic transformation procedures.

w

111

I

R

D

m

m
I

B
m

_ • _ _ _ _ _ _ _ _ _ i_ _ _ _
m

B

[]

U

M

112

= =

w

!

t Session III

Developing Software Engineering
for Competitive Advantage-

Industry and Federal Government

m

_4

m

w

w

w

m

w

Session Co-Chair: John R. Garman

Session Co-Chair: Richard Kessinger

Speakers

Dana L. Hall

Jack Munson

|:J Howard L. Yudkin

Pl_C_it_ O,A SE aL_ NOT FK._E_

__lN_ 113

l

U

m

B

I

m

m
m

u

m
g

u

u

m

114

w

E

U

The Role of Software Engineering in

the Space Station Program

Dana L. Hall

(NOTES)

m

= =

i i

w

Jr

m

G BLAt_ NOT F_I_.EO

115

U

I

R

I

m
g

J

i
I

m

m

mu

116

- N94-71146

UNISYS' EXPERIENCE IN SOFTWARE

QUALITY AND PRODUCTIVITY MANAGEMENT

OF AN EXISTING SYSTEM

. .

m

By John B. Munson

Vice President and General Manager

Unisys Houston Operations

A summary of Quality Improvement techniques, implementation

and results in the maintenance, management and modification

of large software systems for the Space Shuttle Program,s

ground-based systems. i

I_GE BLANK NOT FILMED

UNISYS' EXPERIENCE IN SOFTWAREQUALITY AND PRODUCTIVITY

MANAGEMENT

For more than a quarter-century, the Johnson Space

Center (JSC) in Houston, Texas developed and operated large

computer systems to support manned spaceflight. Until three

years ago, JSC used ii contractors to develop, operate and

maintain these systems. Integration and management were

performed by government personnel.

In 1985, JSC decided to separate system development

from maintenance and operations. Unisys Houston Operations,

as part of the Rockwell STSOC team, was selected to manage,

modify and maintain the Space Shuttle Program's ground-

based, flight-support system$.:_ _

We are responsible for the Shuttle program's more

than 14 million lines of executable code, which was written

in 15 different programming languages. The code operates on

equipment made by eight manufacturers, and runs on 173

computers located in 13 separate JSC facilities.

The software spans the entire life cycle of every

mission, including flight planning, astronaut and flight

controller training, flight simulation, flight software

verification and flight support. Our Shuttle program

software responsibilities encompass JSC's:

o Flight and Mission Planning,

o Flight Software Verification

o Flight Simulation and Training, and

o Mission Control Center Operations and
Communications.

In addition, we support the integration and testing

of all associated software and its flight-to-flight

reconfiguration. Our software includes the code that:

o monitors the Shuttle's launch, orbit and

landing;

o maintains communications between JSC and

other NASA centers and flight support facilities, as well as

with the Shuttle itself;

o tracks the

and physical state; and

Orbiter's progress, performance

o calculates the amounts of oxygen, water,

fuel, electricity and other critical onboard resources for

every flight.

We must complete our work accurately the first time

and every time in order to attain the quality essential to

118

W

J

m

!

u

m

D

W

w

z

e_sure safe Shuttle operations, and to meet cost and
schedule requirements. Any error of a magni£ude sufficient

to affect a single system delivery will be propagated into

downstream systems and cause substantial cost and schedule

impacts. More importantly, any error in systems we support
could endanger astronauts, the Orbiter and Shuttle missions.

It is critical, of course, that we achieve the

highest degree of quality in every one of our tasks. We

constantly strive to make outstanding performance the
priority goal of every employee at every level.

....... At Unisys Houston Operations, this means we must

achieve excellence in all requirements of very large

software systems, including their design, code generation,
testing and verification, and system release management. We

must meet the same standards while retrofitting software

generated by third parties, and in our support activities
for flight simulation and training as well as for actual
missions themselves.

Attaining quality and productivity in all these

functions is a very large task in itself. We have learned

that an organization must strive to prevent defects in every
process and every job to accomplish this. We believe that

procedures similar to ones we've implemented could be used

by any company to reduce the size of the quality task. By
concentrating on a few simple quality concepts and

capitalizing on commonalities in their application the goal
can be achieved.

It was clear to us at the outset that we could

benefit from the knowledge of quality improvement experts.

Several of our managers attended the Phillip Crosby Quality
College in Or!ando, Fla. We understood that the courses gave

_neric training in quality concepts and that it would be up

us to apply these to our business. We began our Quality
Engineering Program by tailoring these guidelines to our
specific needs.

When we assumed responsibility for the Shuttle's

ground-based software systems,.we immediately instituted a
Quality impr0vement Process wlthin our organization. We

established a Quality Policy (see attachment) setting forth

our management commitment to Quality Improvement. The policy
includes Quality Training for every employee, the

d0cumentation and measurement of all software processes, and
an infrastructure consisting of quality improvement teams
and a formal, corrective action review process.

Our first step to implement the process was to

remove ambiguity from the concept of quality by giving it a

specific, easily understood definition. We define Quality as
conformance to requirements. We understand and practice

that preventing nonconformance while building a product is

more effective than finding and eliminating defects through
appraisals after the product is built. We measure the

effectiveness of our software processes in real terms,

rather than with indices, and we eliminate permanently
recurring nonconformances by correcting these processes. We

119

strive for 100% employee participation in all aspects of the

Quality Improvement Process.
W

How we achieve quality

The emphasis on qualitY_must flow from and to
management. Employees have deep motivations to fulfill

management expectations. When management emphasizes

quality improvement and provides the direction, resources
and goals to attain it, management commitment is visibly
demonstrated. It is essential that employees understand the

sincerity of our efforts. I personally participate in the

initial sessions and graduations of our Quality Education
classes.

Through this Quality Education for all employees, we

provide a hands-on training environment which assures that a

consistent set of quality principles and concepts will

develop an organizational mindset for quality improvement.

An infrastructure of Quality Improvement Teams, Steering

Committees, add Corrective Action Teams raises the level of

quality awareness and the effectiveness of the quality
improvement process. We also document all software

processes, standards and procedures we employ; measure

process-defect yields and their rates of occurrence; and
conduct formal, corrective action reviews.

We have instituted the Oregon Objectives Matrix as
an aid to record and report our measurements of quality and

productivity factors. The Oregon Objectives Matrix,

developed by the University of Oregon, is used extensively

in the Unisys Defense Systems Group, of which we are a

division. The matrix provides a graphic method to track and

report several measurements on just one page. This enables

managements to quickly see trends in the measurements, which

are tracked monthly.
Quality improvement is an integral part of

everything we do. There are two very important aspects of
our Quality Improvement Process - the Quality Engineering

Process and the Quality Assurance Process. These are two

distinctly different processes performed independently of
each other.

It is the responsibility of the engineering

departments to define, document and implement processes

assuring that we produce quality products, It is_ the

responsibility of the Quality Assurance Department to read,
understand and supervise implementation of the defined

processes. We have the capability to file nonconformance

reports against the engineering process when Pr0duct defects

are discovered, and within the engineering departments when

the correct processes are not followed.

In our software work, the engineering process begins
with the detection of nonconformances. We initiate a

thorough investigation to determine why the defect occurred,

then we correct it as soon as possible. In addition, we

120

g

m

llw

J

I

U

m

evaluate each new defect in the context of prior ones to

uncover commonalities or clues to root causes. We are
determined that no defect will recur. Our corrective action

process review then locates the defect's cause and

recommends action to correct the faulty process. This
correction of the process Permanently eliminates that classof defects.

÷

=2

How we achieve high reliability

We use the quality principles we've learned to maintain

the high reliability of our software systems. Through our
experience, we've found what we believe are fundamental

principles to ensure the dependability of large software

systems. First, such systems must be allowed to mature so

that indispensable knowledge of their operations can beacquired.

Also, no unnecessary changes should be made. In

fact, large areas of code may never need to be changed. We

identify these and set them aside to protect them from being
changed accidentally. We then concentrate on the small area
that remains, where most defects occur.

In addition, we:

o have identical software functions independently
developed to be able to compare results,

o control and manage the number and size of changes,

o use table-driven software to minimize software
changes,

I¢

o incorporate redundancy whenever possible,

o rigorously enforce software engineering standards,

o Submit our software releases to independent tests
and quality assurance audits,

o conduct extensive regression testing of unchanged

software plus structured hierarchical testing of
new software changes,

o exercise the software extensively prior to flight,and

o establish failure/recovery procedures.

121

u

R_sults to date

Our efforts in quality and reliability improvement

have yielded outstanding results, particularly in terms of

productivity, some Of our major accomplishments are =listed
below.

o Reduced our independent verification and testing

schedule by six days, saving 440 labor-hours for

each major software release

o Reduced the number_0f database trajectory

discrepancies attributable to database reconfig-
uration from 80% to 5%

o Reduced the mean-time to close discrepancies from

40 days to 2 days

o Achieved a 10% reduction in the backlog of change

requests

o Achieved a 40% reduction in the backlog of

discrepancy reports

O Reduced 0ur mean-time to evalute new changes

from 16 days to 9 days

U

m

mm

mm

Future pians

We will continue our Quality Improvement Process for

the length of our Space program software responsibilities.

We will continue to evaluate every software process that is

instituted_ In addition, we will:

o improve the quality characteristics of all

supported software bases,

o establish a requirements engineering program and a

test engineering program,

o consolidate and standardize wherever possible,

o refine and evolve our metrics for measurement

processes, and

o automate software support and operations whenever

possible.

The Quality Improvement Process we employ was adopted

virtually in toto from the renowned Crosby method. The

process is now used throughout our entire corporation, but

we at Unisys Houston Operations are proud we were one of

the first divisions to implement the process and are a

leader in its application.

w

122

O

UNISYS
Houston Operations

123

m

u

i

. ..:.=_ ÷ :

I

U

,r

roll

W

W

--=7, IIR

4

124

: .? ,

I

_ k

L HI

k.d

= =

tltd

Next Generation

Howard Yudkin

The synthesis process for incorporating reuse and prototyping ideas into large software system

development suggest how the acquisition process might be changed to support the new development

process.

(NOTES)

u

PtqB_E4_,NG PIAGE BLANK NOT FILMED

i_-_ m_NIU)NIIJJI 125rlrl-w

U

11

I

W

I

Ill

M
m

IIW

1ira

m

126

, Panel I

Software Engineering as an

Engineering Discipline

W

Panel Chair and Moderator: Glenn B. Freedman

===.

Panel

John Brackett

Ed V. Beard

Robert B. MacDonald

Norman Gibbs

PAGE BLAt_K HOT FELN'_E_

t_Nt._..,IItNTtON _.lJ I_i(iI 127

!

128

IIw

W

k

w

N94- 71147

Software Engineering as an

Engineering Discipline

Glenn B. Freedman

=

E

PAGE BLANK NOT FtL_,L_

129

W

m
W

w

W

m

J

1iv

ul

m

i

w

Ill

Iili

i

w

_z

iJ

W

r__

• m

130

illZ

0

E:>0Z

P
A

G
E

B
L

A
N

K
N

O
T

F
IL

M
E

D

•
'l[._J!_i(A

t
T

to
/#

,

131

IFIIWwwr_

Wm

132
...

mlira

J

133

Z0
¢
0

-
-

Z

•
-
-
_
i

.
.
.
.
.|
I
I
II
I
I

!

4_,
_Z

3
"_(_

._
C

U
L

_
_

::_
0

(,0
f.t)

"0
Q

-

L
L

_0
:

>
.E

'.S
_o

E
(,_

_

_
'
O
_
E
_(j

7
o

_
-

@
'
_
L
_

o

JIw

134

Lw-_m

wuD

(D

'_
135

0
0

(
I
)

,
.,
.
,
,
.
,

0%
.
.

Q
_

0
C
)
'
)

(
.
-

c
-

O,
L

(
i
)

0
"
)

0
c
-
"

0
-
_

0

0
"
_

c
D

-
-
-

(
'
-

O
0

.
.
.
.
.

r
N

(
i
)

_
-
o(I
)

-
'
-
-
"

_

_
rr_

-,-.
E

._<
(_<

N
(.9

C
W

,
,

t'70
,

,
,

,
,

,

136

mmWg=
=

mmwW=
__

W_wwmw
_

wmQ

O
9

•
m

o9o
U

)3
x..

•
m

-_,,
4-,,I

U
)')

0

(D

c,.)

,
i

c-"
0w

m..I-d

tD
3

(Dc'-

0L
-

"0

t.O
m

mt.O

mc"or)

t-"

Ek-.
w

m

Cm
mt"-
t"t_t'3O

r)

!---.

c-"

E(DU
)3

c"Ec-Ow
mt_

m
mt-Oc,.)

(.)
c'-

w
mO
_

XCe
_O
r
)

n

c
-

mC
-

O
r
)

-
0c
-

C
-
-

m
mc
-
c
-
c
_

lQ
_

00n

137

iil

0")

O
0

0

•
m

WO
0

t-E

o_<D

138

wmI

=

IimJWlwNWwWg

!r
,

Dw
.

,s

i_-¸!_

vw

O
9

OO
9

GQ
)

E
3

O(D
"OOC.mOO

_
O

_

o9
_.,

-.-_
-

E
O

_-'_O
"-"

00
(_

_-

(D
_-

O
O

O
c--

00m

......
o_'_
-_

w
_o

c-
0

I--
O

,
,

O
r)

CE
I

C
_

c
-

O00c
-

Om
m>0m00>0Cm
R00

0nCi
m

_
c0.

mc
-

O
_O

N
O

_

00
(D

E
N

O
r-

0Cc-
i-"

c-
cO

C
"

r-"
C

_
W

c-

o
(D

Q
)

(D
C

_.cz
_.o

c_c-
Ot-

.mo

o)
lz_

O
O

O
_

tnO
_

c-
00

OmO
O

04--
-O

.__
(D

O
Q

)
F-

00

139

I

140

gWugWm

t_E
_

E
t

L_
vI_.T

'

W

C
D

O
"-'

O

C

C
D

EOO
9

c-
OEcoc-

,m.4-,
O

00
_I

,
_

C
c_

O_L

"--
O

O
c-

O
..Q

_

a_o
-_

o
_a

o_,_
-_

•
141

III

•
•

o-
•

•
•

•

_
=

w_=IIIImJwIWw

142

mImg

r--

143

0

144

NUgIImJ=z

WWgVmIII

,,,.,.,.

.÷

iJvt_H

=
_

WwgJug_w

146

w

=v

C
_

C

.,._,
]47

W

lIB

Q

_F
m

g

lw

e= i
m

£ _,_ •5£ _

J

=: == J

m

=4

W

148

lmw

i

N94- 71148
f

Software Engineering /_ _?
_ :as an

Engineering Discipline
F..T='I

Edward V. Berard

EVB Software Engineering, Inc.

5320 Spectrum Drive
Frederick, M aryland 21701

(301) 695-6960

Software Engineering as an

Engineering Discipline

" Pr_Or_md a| "7

R41woh lnlltll_, for |

OOfl_g, Ilhd II_f_rrlUIon I

O_twm I

u,_,ay,_°_,t_. I 5320 Spectrum Driveo_., _,_ I
,, ,o.,m __I Frederick, Maryland 21701

(301) 695-6960 ,_

Edward V. Berard

EVB Software Engineering, Inc.

_.__r

P_NG PAGE BLANK NOT FK.MED

149

Deflalng Ilofiwam Enllln_rlno

What Is Software
Engineering?

_1 Early Use of the Term

I_1 1968 NATO Conference

O Barry Boehm's Definition

Four Requirements for Software Engineering

O Additional Criteria forSoftware Engineering

I G/14¢1111

Early Use Of the Term

C3 "Coder"- Early 1950s

C3 "Programmer" - Mid 1950s

i'3 "Programmer/An,,dyst"- 1960s

171 "Software Engineer" - 1980s (1963)

t

1968 NATO Conference on
Software Engineering

con_pu_r science ?
different fi'om

_1 If so, what does software engineeringentail ?

DBarr.yBoehm's 1976
ehnltlon of Software

Englneer=ng

goftw_-e engNeer_g is the application
of science and mathematics by which the
capabilities of computer equipment are
made useful to man rio ,-,-......

." ,-v_,Jputer pro ianls/ procedures, and assoc,o,^_ -,- . g! '

,att;;;U uoctllllelltatlOll.

II iI, I_t/LI e,e_=..

I51

ira,

Four Major Requirements
for Software Engineering

1. Computer Science

2. Mathematics

3. Engineering Disciplines

4. Excellent Communication Skills

llg

lira

IIg

W

IIg

W

liw

Computer Science
0 Programming Topics: Algorithms, Programming Languages,

Programming Style, Debugging and Verification,
Applications

Software Organlzatlon: Computer Structure and

Organization, Data Representation, Symbolic Coding and
Assembly Systems, Addressing Teclnnques, Macros, Pt'ogram
Segmentation and Linkage, Linkers and Loaders, Systems and
Utility Programs

O Hardware Organlzatlon: Computer Systems Organization,
Logic Design, Data Representation and Transfer, Digital
Arithmetic, Digital Storage and Accessing, Control and 1/O,
Reliability

(71 Data Structures and File Processing: Data Structures,
Sorting and Searching, Trees, File Terminology, Sequential

__ Access, Random Access, File 1/O................. ,,,,, _V_--"
4E¥18M'lwlfo Enlll_, _ k_4., fOllT, _tU I O,_14.qMl..

152

t

tF_

(2 _(L __ _-_#_*b-] m l)tf#nlngO_twam ,nOfn_tlng

Mathemat,cs

0 Intogm'alCalculus i

I"I SpeciAl Functions 1

o D,._.o°..,_0.,io_, /
0 Limmr Algobra

(5 Dt*c_rete Mathem.tics

0 S¢t Th¢o_

[3 Oraph Thoory

O Num_ic_ An_ysts

0 Complex An_lyds

('l Probability

O Statistics

rl and mare,

. =

Engineering Disciplines
I_ Error Analysis

Metrics

0 Methodologies

Configuration Management

Quality Assurance

e' Testing

I/Debugging

V' Maintenance

V'Development

1_o,ject Management

+ irvFm_.--,

153

y I_)flnlng Oohw¢m ln(lin_tifi_ _ "
__ _'_'_/'_'_,_ I _,,,,

Communication Skills

Oral

_1 Written

"_,,, ,,,, ,,_T_
oE¥11il_wwt _Ip,,_F, tl. tae..toer. t_ t_st

u

B

g

J

I

Additional Skills N_ by_

Software Engineers

I"1 Creativity

C3 lngenuit 7

0 Interpersonal Communications

171 Analytical Thinking

I'1 Logteal Thinking

ID Organization

171 ... and more

- - "V aa_
12 III I I I.ILI .ll i

6H'Vil Ik_.,wt le,lle,_d_ t, lee., | aT, 'leel _lorz4._tll

'row

154

w

L_

= =

2

= =

Softw_e Engineering
=raining

Given that software engineering is at least
as involved, as technical, and as rapidly
evolving as more formally recognized forms
of engineering (e.g., electronics

engineering), it is far more appropriate to

speak of the need for software engineering
educat_en , than for the need for software
enghleering trNning .

A Healthy Dose of Reality
It is given that:

v' Software engineering education at the
university level is virtually non-existent

The need for properly educated
software engineers is enormous

There are literally hundreds of

thousands of "programmers" already inthe field

155

_r

Observations

13 "Scientific" programmers are far less likely to accept software
engineering as a discipline than are "business" programmers.

171 "Scientific" programmers are better equipped to handle the
mathematics and technical rigor associated with software
engineering than are their "business" counterparts.

D Europeans more readily accept the rigorously technical nature
of software engineering than do Americans.

L"J The Japanese will do whatever is required, but seem to prefer

rote methods as opposed to thinking.

131 The Japanese are far more willing to invest in the long temx
than are their American or European counterparts.

WB

g

lib

w

m
IlW

I

m
W

ai I O_'Tlww_krndln'_'=d"O 1'r=lnlnO _%_

Observations (Continued)

I_l Softwa_, engineering in the United States often involves the
]nsta[lauon and automation of technologies which are at least
ten (I0) years out of date.

I_1 The "half life" of software engineering technology seems to be
about three to four (3-4) years.

171 Computer Aided Software Engineering (CASE) is a very

frequently used term, but its actual implementation, in most
eases, involves little more than an automated graphic design
tool

171 People other than programmers, e,g., managers° are often
ignored by CASE.

O Many life-cycle activities are ignored by most CASE
environments, e.g., activities outside of development ,are often

ignored.
-v

QEVll II_e E_lne_(I. Ihe, lilT, tl, U t (V=4_L

i

156

L_w

%..J

|7

!

Observations
ed CASE environments not only automate

outdatcd technology, but often resemble a hedge podgc ofum'c]atcd tools.

1'3 Too many CASE environments are one-dimensional (e.g.,
UNIXrM), and too few are two-dimensional (e.g.,
Macintosh'-like).

171 Too few environments arc seamless (e.g., Rational rM).

["3 Little thought is given to integrating CASH tools with in-house

standards, govermnent standards, training, methodologies, and
development p]atforrns.

C1 Man.), colleges and universities i_,nore CAS _ ,,_...... ,-.....
!laa! do pay attention to CASE o_ten fail to real'_ze_t_7_ _ n°se
tools introduced to fr ""'''"_

¢shmen are often out-of-date before those
N_l'eshnicn graduate fou,' year_ later.

| Tmlnln {I

on
I Observatl S (Continued)

Many s.tudents, like many programmers (There are very few
practicing "software engineers."), have a reverence for both the
past and the difficult. They shun efforts to change the status
quo.

New technology is seldom what we expect it to be.

171 Most of the training given to software practitioners places too
much emphasis on coding and too little emphasis on software
engineering.

171 Those already in, and those just entering the softwm,e

community, are given little motivation to make use of such
things as CASE tools -- primarUy because software people
(managers and technlcal people alike) do n_,t
as o " ,....... view themselves

etng responsible for the.tr own actions.

" L,n -J

157

L_
W

Robert B. MacDonald

(NOTES)

lit

t

PAGE BLANK NOT FfLMEI_

_Oa
159

U

i _

J

J

J

J

W

160

L

U

/_5.._6t./

N94- 71149 ==

= .

V,..;

Software Engineering as an
Engineering Discipline

L.J

Norman Gibbs

=-3

I-4

U

= =

= =

PAGE EILArIK NOT FILMED

161

: =

i

i

|

i

I

1

lid

i

i

162

Ip

i

r--_

w

w

Education Program

Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense

,= 4

PIN,

C_r_o Mdon Ur'_as_y
Software Engineering Institute

Challenge

"The SEI shall develop and conduct courses and
seminars with respect to the evolving state of the
art and practice in software engineering for
mission-critical computer systems as well as the
results of its activities in technology transition. It
shall influence software engineering curricula
development throughout the education
community."

-SEI Charter

P,AC_ BLAt_K NOT FfLMEO

Nov l OEDneg1

163

C,unegleMellon Un_ver_

Software Engineering Institute

Education Program Goals

• Increase the number of highly qualified software
engineers

- new software engineers

- existing practitioners

• Be the leading center of expertise for software
engineering education and training

Nov 10EDne92

i

I

R

I

R

I

J

I

_m

Camegle MeffonUnlwrdty

Software Engineering Institute

Education Program Objectives

• Accelerate the development of software
engineering programs in academia to Increase the
quality and quantity of the next generation of
software engineers

• Enhance continuing education opportunities to
improve the quality of the current generation of
software engineers

Nov fOEDneg3

]64

I

m

= .

J

C_wr_jdeMelon Un_s_/

Software Engineering Inslitule

Problem Definition

* Substantial advances in thepractice of softwareengineering require a solid ducational foundation

• Rapid developments in software engineering vs.
enormous inertia of the educational system

• Need more new software engineers

• Need to improve productivity of current software
engineers

• Need more qualified educators

• Need more and improved educational materials

• Need to identify the fundamental principles of an
emerging discipline

• Must balance principles and current best practice

Nov lOEDneg4

==m

= :

C_negte MellonUr_v_dty

_S?fl_wa re E_ngine e ring Inslitule

Strategy

• Identify, organize, and document the body of
knowledge of software engineering

• Create and disseminate high-quality educational
support materials

• Design, develop, and keep current a model
cumculum for a graduate degree

• Promote the implementation and defivery of software
engineering curricula in academia, industry, and
government

• Increase the number of quality educators through
faculty development activities

• Explore the use of advanced technology for delivery
of software engineering education and training

Nov tOEDne95

165

:_ CarnegieMelon Unlv_'y
Software Engineering Inslitute

Education Program Projects

• Graduate Curriculum

• Undergraduate Software Engineering Education

• Video Dissemination

• Advanced Learning Technologies

Nov 10EDneg6

m

9

BB

N
BII

lib

IB

BB

CamegteMelon LIr_er,dty

$o_a=re Engineering Inslitute

Graduate Curriculum Project

Purpose:

• Promote graduate-level software engineering
education

Major goals:

• Identify, organize, and document the body of
knowledge that might be taught in graduate-level
software engineering programs

• Design, develop, and support a curriculum for a
Master of Software Engineering (MSE) degree

Nov 10EDneg7

i

u

i

BB

m

166
~

• i

t

Carneg/e Ide_,on Untvers_y

Software Engineering Instilule

Graduate Curriculum Project

• Module development

• Support material development

• MSE curriculum

• Ada artifact

• Addison-Wesley book series

Nov lOEDneg8

w

B a

Cameg_oMellon Unlve¢_y
Software Engineering Institule

Undergraduate Software Engineering
Education Project

Purpose:

• Influence existing computer science

undergraduate programs to increase the quality
and quantnty of software engineering content

Nov lOEDneg9

167

[

¢;_gle Mdcx_Unlv_

Software Engineering Instilule

Undergraduate Software Engineering
Education Project

• Providing support materials for teaching the senior
level software engineering project course

• Identifying the needs of educators and students
for more software engineering content

• Examining the use of Ada in the undergraduate
curriculum and Ada as a first programming
language

Nov l OEDneg 10

U

II

!1

III

m

m

II

m
II

II

[]

Camegle Melon University

Software Engineering Inslitute

Advanced Learning Technologies
Project

Purpose:

• Demonstrate the applicability to software
engineering of technologically advanced learning
media, such as

- interactive video discs

- intelligent tutors

- advice-giving expert systems

- compact disc read-only memory

- digital video interactive equipment

Nov 10EDneg 11

IB

im

m

168

= .

r==,_

. =

-=_

. .

Ir=,=,E

Cam_j_e Melon Unlvws_

Software Engineering inslilule

Advanced Learning Technologies
Project

• First prototype developed to demonstrate
feasibility

Producin.g. a course for demonstrating the
applicabil=ty of digital video interachve and

• compact disc read-only memory technologies

Nov lOEOneg f2

.= :

CarnegieMellonUn_v=s_y

Software Engineering Instilute

Video Dissemination Project
Purpose:

Produce and deliver courses on modern software
engineering methods to practitioners in
cooperation with the academic, government and
industrial communities.

Nov lOEOneg 13

169

C_e MellonUniversity

Soflware Engineering Institute

Video Dissemination Project

• Studio completed

• Pilot Course offered at CMU in January 1988

• Academic Series

- Formal Methods in Software Engineering

- Software Project Management

• Continuing Education Series

• Current Technology Series

Nov lOEOnecj14

m
m

m

I

m

ml

m

i

m

m

m

Ca.rn_eMellonU_

Software Engineering Institute

.Faculty Development Workshops

Purpose: To transition SEI educational materials to
educators

• Fall 1986 -- Pittsburgh -- 110 attendees

• Spring 1987 -- Pittsburgh -- 140 attendees
• Fall 1987 -- Pittsburgh -- 100 attendees

• Spring 1988 -- Fairfax, Virginia -- 156 attendees
• Winter 1988 -- Scottsdale, Arizona, January 6,7

• Summer 1989 -- Pittsburgh, week of July 17

Nov lOEDneg15

170

= _

I

w

=.--,

k

W

w

CarnegieMellon Un/vers_ty
Soflware Engineering lnstilute

(

Annual Software Engineering
Education Conference

Purpose: Promote an exchange of ideas and
methods among educators from academic,
government, and industrial education and trainingcommunities

• Spring 1987 - first SEI conference, 200 attendees

• Spring 1988 - second conference, first remote, 152
attendees

• Summer 1989 - Pittsburgh, week of July 17

Springer-Verlag contract for proceedings

Nov lOEDneg 16

i.==w

== _=

u
w

CarnegieMdon Ur_v_._ty

S° f!wa re Enginee_ring lnslitute

Academic Affiliates Function

• Provides a mechanism for interactions between
the SEI and the academic community

• Administered by the Education Program for the
entire SEI

Nov 10EDneg17

171

C_* Mellon Ur_=s_y
--_ Software Engineering Institute

Academic Affiliates

Accomplishments:

• 41 academic institutions are academic affiliates

• 25 scientists have worked at the SEI under the
visiting scientist program

• First MSE primary test site has been designated

Nov 10EDne 918

g

t

B
!

h
I

I

B

CaunegleMellonUnlver,dty

--_ Software Engineering Instilute

Affiliate Activity- 1

• Module Development
- Arizona State (3), Boston University, California

at Irvine, George Mason, Lehigh, Maryland,
Pittsburgh (3), Seattle (2), Stirling, Wichita State
(2), William and Mary, USC

• Support Material Development
- Arizona State, Pittsburgh, Stirling, Wayne State,

Wichita State (2)

• Video Pilot
- California State at Sacramento, East Tennessee

State, George Mason, North Carolina, Wichita
State

Nov iOEDrmg Ig

172

I

t

m
m

u

U

! ,t

C_n_jle Melk_ Unlv=dty

Software Engineering Instilute

Affiliate Activity- 2

• Other SEI Programs

- California at Sacramento, Columbia, Michigan

• Curriculum Design Workshop
- Arizona State, George Mason, SUNY at

Binghamton, Rochester Institute of Technology,
Wichita State, William and Mary

• Primary Test Site for MSE
- Wichita State

• Ada in Freshman Courses

- Arizona State, Maryland, Washington, West
Virginia

Nov 10EDneg20

Came_e Melon Univec_,y

Software Engineering Inslitute

Current Academic Affiliates
Air Force Institute of Technology

Arizona State University

Boston University

California Slate University, Sacramento

Clemson University

Columbia University

East Tennessee Slate University

George Mason University

Lehigh University

Naval Postgraduate School

Old Dominion University

Purdue University

Oueen's University at Kingston

Queen's University, Belfast

Rochester Institute of Technology

School of Informatics, Polytechnic University of
Madrid

Seattle University

Slate University of New York at Blnghamlon

Temple University

Texas A&M University

United States Air Force Academy

University of California, lrvine

University of Houston, Clear Lake

University of Illinois at Urbana-Champaign

University of Maryland

University of Michigan

University of North Carolina, Chapel Hill

University of Pittsburgh

University of Texas, Austin

University of Southern California

The University of Sliding

The University of Strathclyde

University of Tennessee, Knoxville

University of Washington

Virginia Polytechnic Institute and Slate
University

Wayne State University

The University of West Florida

West Virginia University

The Wichita State University

The College of William and Mary

Wright State University

Nov 10EDneg2!

173

C_e MellonUnlver=ay

Software Engineering Institute

Uniqueness

• International focus for software engineering
education

• Permanent staff in support of curricula effort

• Catalyst for new ideas

• Notion of an evolving curriculum

• Visiting scientists
• CMU connection

• A research infrastructure exists; we provide
educational infrastructure

• A center for expertise unlike that in any discipline

Nov fOEDneg22

U

I

U

in

m

w

m

Cam_j_e Mdon Unlvwdty

Software Engineering Institute

CMU MSE

• Two year program

• First year remote

six core courses
-- Software Systems Engineering
-- Specificiation of Software Systems
-- Principles and Applications of Software

Design
-- Software Generation and Maintenance
-- Software Verification and Validation
-- Software Project Management

- two electives

Nov fOEOneg2"3

174

mm

L_

1!

E
. .

|!

Can'_e Melon U_=lty

Software Engineering Inslitute

CMU MSE

Second year in residence

- admissions procedure

project in three phases -- planning, execution,
evaluation

- visits by leading software engineers plus
student tasks to study their work

- advanced courses

- advanced electives in software engineering
related topics

Nov 10EDneg24

w

fa=f

175

,= Panel II

Computer-Aided Software

Engineering Environments

for Real-Time Systems

U

Panel Chair and Moderator: Charles W. McKay

Panel

Migual A. Carrio, Jr.

E. Douglas Jensen

__ _ 177

" N94- 71i50

t,.,3

= .

A Conceptual Model for Evolving
Run Time Support of Mission and

Safety Critical Components in Large

Complex, Distributed Systems

t J

E

Charles W. McKay

L_

• j

E_

L_

pItFIGIOH_ I_1/- _L._'_'I_KN,UT F,H..MED

z==

179

w

tw

A Conceptual Model for

Evolving Run Time Support of

Mission and Safety Critical

Components in Large, Complex,
Distributed Systems

i i

L_

Charles W. McKay
SERC/HTL@UHCL

 NTRODUC !ON
• L , 1_

Large, complex, distributed systems should be evolved to
maximize life cycle support for non-stop operation of mission and

safety critical components. This paper outlines the key issues
and a recommended approach for tailoring a conceptual model of Ada

run time SUpport environments to meet the specific needs of such

anappiication. Prerequisite concepts for this model have been

described previously by this author (e.g., McKay, 1987) and are
summarized in Figures 1 through 9.

This model _ proposes upward-compatible extensions to a

previously published model of Ada run time environments from the

ARTEWG (Ada Run Time Environment Working Group). Whereas the

first model was used to identify Ada run time: requirements,
dependencies, issues, features, and options for single processor

applic@tions; the particular needs for distributed processing were
not explicitly described. The purpose of this extended model is

to address the needed systems software support for Ada application
programs in distributed computing environments.

OVERVIEW OF RELATED CONCEPTS AND TERMS

....._ • _..... "Overview,,

Consistent with earlier documents by ARTEWG, this model

supports mu!tiprogramming. Specifically, this model is intended

to Support not only the distribution of entities of a single Ada

program across a distributed processing environment but also to

support the distribution of entities of multiple Ada programs

acrosssuch an environment. The upward-compatible extensions to
the original ARTEWG model address a spectrum of needs found in:

multiprocessors, local area networks, wide area networks, wide

areanetworks of integrated local area networks, and other forms

of d_s£ribu-ted computing systems. Furthermore the extensibility
and tailorability of the model are intended to facilitate the

support of such operational requirements as: non-stop operation,
fault tolerance, multilevel security, and others.

From the perspective of an Ada application program which is to
have selected entities mapped to components of a distributed

computing system, the run time environment interface issues may be

P'_G_ _LA_4K NOT F_ME'C

]81

J

macroscopicaiiy divided into four sets. From the top-down view of

an Ada application program, the ordered sets are identified as:

Distributed Information Services (DIS), Distributed Communication

Services (DCS), Distributed Configuration Control Services (DCCS),

and Distributed Operating Systems (DOS). Not all applications

will need all four sets of services. Even those that do need all
b •four are likely to eneflt from tailoring to meet application

specific needs. Consistent with the philosophy underlying

previous ARTEWG work, such tailorability will be facilitated by

appropriate subsections of the Cataloa of Interfac_ F@atures and
Options for each set of services.

Figure i0 depicts a logical view of these services at a site

in a distributed computing system. Applications software

components and users share the perspective labeled Distributed

Applications Services (DAS) of the DIS, DCS, and the DCCS. Not

explicitly shown is the DOS which provides integrated support for
all of the other sets.

Before proceeding with an introduction to the four interface

sets, it will be helpful to clarify and distinguish four terms:

services, resources, architecture of computing systems, and bare

machine philosophy. Services refer to operations performed on

behalf of a user. Resources refer to items available to or from

an object or user where the resources are distinct from the

services that provide, consume, or affect them. For example_ in

the Ada statement "PUSH(x);" PUSH refers to the service and X
refers to _he reS0urce.

For purposes of this model, the architecture of computing
systems refers to:

The structural organization and the interrelationships of

the softQare, hardware, and operational interface elements

that comprise the system.

Also for purposes of this model, a bare machine philosophy

recommends that all source code for: applications software,

subsystems software, and systems software be written in Ada and

transformed into executable object code by the same compiler and

associated tools. This may exclude some small percentage of code

required to interface machine dependent idiosyncracies to the

kernel of the system software. The reader should note that the

bare machine philosophy is in sharp Contrast to the approach of

retrofitting Ada application software to systems and subsystems

software written in other languages and often representing older

models and paradigms which are inconsistent with the more modern _
software englneerlng principles embodled in Ada.

"Distributed Operating System"

The DOS encapsulates the system hardware. Three maj or

criteria for a good operating system, including DOS's, are:

J

mm

z
m

gg

I

g

m

mp

I

_W

gm

I

182 _.......

J

K_

L--

L_

u

--m

i.

2_

"An explicit set of policies for managing the integrated

_operation of all categories of system services and

resources which are to be sharable among independent
application program components and users.

An explicit set of management modules (software, hardware,
and operational interfaces) to implement and enforce the
policies.

3. A precise model of the operating system which provides

rules and guidelines for modifications including
extensions, regressions, and reconfigurations.

DOS's typically involve some combination of ten major
categories of system services and resources:

i.

2.

3.

Workload, jobs, processes, tasks, and processors

Memory: primary..secondary

Devices and buses

4. Data and information

5. Stable Interface Sets: Users and applications software

6. Stable Interface Sets: Major subsystems and systems
software, hardware, and operational interfaces

7. Communications: systems..applications

8. Configuration control:

• ' System services and resources..applications
software and users

• Normal processing..exception processing

9. Time and events

i0. Access control including security and integrity

"Distributed Information Services,,

Whenever an information or data resource or service is to be

shared by multiple application programs or users in a distributed,
on-line environment, the application access should be provided at

a virtual interface set known as the DIS. For example, access and

manipulation of elements of a distributed data base should depend
upon compilation visibility of the DIS to the applicationsoftware.

"Distributed Communications Services,,

Communications resources and services which are to be shared

183

I

among multiple application programs or users in a distributed, on-

line environment should be accessible to the application at a

virtual interface set (ie, the DCS). Note that the DCS may also

view the DIS as a user and vice versa. For example, a user

request from the DAS to the local DIS for a resource of data might
result in a transparent (to the user) request to the local DCS to
obtain the data resource from a remote site.

"Distributed Configuration Control

Services"

As shown in Figure i, the DCCS virtual interface set has

visibility of the: DAS, DIS, and DCS. This provides a unique

opportunity to exploit known semantics about the various

components that provide the services and resources of the t_ree in

order to monitor, manipulate, and control distributed processing.

For example, programs can be distributed dynamically, processes

can be advanced or blocked, parameterized performance monitoring

can be enabled or disabled, and interactive debugging and
reconfiguration can be supported among remote sites. The reader

should note that this is a much higher semantic level of

configuration control services than is typically found in
underlying operating systems•

CONCEPTUAL MODEL OF THE EXECUTION ENVIRONMENT OF A DISTRIBUTED
COMPUTING SYSTEM ARCHITECTURE

"Abstractions: Four Functional Layers

and Major Interface Sets"

As shown in Figure ii, the major interface sets extend from

the DIS through the DCS, DCCS, and DOS functional layers down to

the hardware. These virtual interface sets built from a common

Cataloq of Interface Features and 0Dtion_ provide a perspective of

a Portable Common Execution Environment (PCEE) to the application
program components and users.

"Issues Common to Each Layer"

Eight major issues common to all layers and major categories of
system services and resources are:

I.

•

3.

Five Management Responsibilities

a. Track the Status and Utilization of Each Service and
Resource

b. Enforce Policies

c. Schedule

d. Dispatch

e. Reclaim (e.g. Completion, Unrecoverable Fault,
Abortion, Preemption)

Measurement, Testing, Debugging

Abstractions: Objects, Messages, Semantic Models

184

IiW

w

J

J

w

Ul

II

u

'IP

= =

11w

m

w

Ill

Iiw

t

w

w

•

5.

6.

7.

8.

Synchronization

Protection

Errors and Faults

Naming and Identification

Baseline Modification

.......... "Issues with a Large

Potential Return-on-Investment

for Optimization Across Layers,,

Six issues with a high potential return-on-investment
optimization across layers are:

i. Reusability

for

.

3.

4.

Interoperability and Transportability

System Measurements, Testing, and Debugging

Optimum Location and Reconfiguration of
Resources Services and

5. Universal Scheduling

6. Universal State Consistency and Congruity

Unfortunately,
Safety

"Important Issues for

Supporting Mission and

Safety Critical Components,,

the difficult challenges of
Critical (MASC)

supporting Mission
and components in large, complex,
distributed systems are less understood than the issues identified

on the other axes. This is particularly true in applications with

requirements for non-stop operation, fault tolerance, and meeting
real time deadlines of both periodic and aperiodic processes. As

an example, twelve issues and components of one proposed model aregiven below.

Issues and Component s of the

Clear Lake Model for Run Time

Support of Mission and Safety
Critical Components:

i, A tailorable RTSE developed & sustained in Ada
machines

2. Software structuring which

upon bare

facilitates: firewalling,

185

g

layered recovery/capability, dynamic reconfiguration and
extensibil ity

•

Pools of processes and processors capable of non-stop
operation in a fault-tolerant environment

. A command language interface between the SIS of the

integration environment's PCEE and the SIS of the target
environment's PCEE

. System-wide, lifecycle-unique identification of all objects
and transactions/subtransactions

e
Dynamic, multilevel security in the integration & target
environments

Q

•

A message interface which supports three forms of

communication among clusters: asynchronous send/receive

with 'no waits', remote procedure call, Ada rendezvous

Hierarchical runtime structure of the threads-of-control

• A redundancy management subsystem for

resources which life and property depend upon

i0. A stable storage subsystem for each cluster

services and

ii. A management subsystem for distributed, nested transactions

12. A multiversion, fault-tolerant programming capability with

a granularity within any program which extends at least to

the subtransaction level and explicitly identifies the

recoverycapabilities at that level

FIRST LEVEL MAPPING TO AN IMPLEMENTATION MODEL

Figure 12 depicts an extension of the original ARTEWG model to

include support for distributing entities of Ada application

programs across components of a distributed computing system,

Scenarios are useful for explaining the model• Suppose an Ada

application programmer logs into an APSE (Ada Programming Support

Environment) to prepare a source code version of a program to be

deployed and operated in a distributed targe t environment. The

capabilities assigned to the programmer on this project determine

whether the DIS, DCS, DCCS, or DOS virtual interface sets are to

be available to this programmer. (Note that these features and

options are part of the extended runtime library --ie, XRTL--

which are documented in the CIFO and legally go beyond the minimum

set of components in the runtime library which are required for

validation --ie, RTL.) Along with imports from the explicitly
"with'ed" applications library, every shareable service and

resource available at the four interface sets of the XRTL may be
explicitly referenced within the application source code of the

186

lift

Wll

J

!!

III

w

I-

L-

I

F_

W

W

E

L--

W

E_

i =

W

l

authorfzed application programmer. (Note that the XRTL is an
instance of the CIFO.) Now the source code can be compiled and an

inventory of the references to the XRTL and RTL will partially
determine the Ada components which will be selected from these two

system level repositories to be transformed by the same compiler
: as the application code and exported to the bare machine.

._ However, two additional inputs are needed to determine the

remainder of the object code to be exported to the target
• environment. First, the project object base should be checked to

-determine if non-functional requirements which should be

transparent to the application programmer are to apply to this

program. For example, the program might be required to execute in
_ a B3 class, multilevel secure environment. These non-functional

transparent-to-the-source_code requirements may cause still

additional components from the XRTL and RTL to be transformed for

deployment. Finally, the idiosyncracies of the hardware itself

may cause a small percent of non-Ada code to be required for
export to the target environment.

ADDITIONAL WORK NEEDED TO FURTHER DEVELOP THE MODELS

Although this is a potentially very large and complex

!iundertaking which can benefit from work stimulated principally

_from issues on any one of the functional layers of this model, the
most crucial issues are believed to be the support of Mission and

Safety Critical components in distributed, embedded computing
_systems. An integrated approach to these interface sets with MASC

component support as the first priority should be developed andprototyped.

BIBLIOGRAPHY

McKay, C. "A Proposed Framework for the Tools and Rules to Support

the Life Cycle of the Space Station Program", _,TH0196-6/87/0000-0033.

L

187

I::::
i

lu,,,,q

oo

wiWIIw

188

v

LL--7

q
L

_

[
d

"

;r:4

,pu

E
_

e-
om

W

%

C
_

0
0

Q
_

om0
0

--'

c-

Ec-O-N>CILl0Q
.

c')

O
0

00C
D

_m_J00_D

Q
_

O
9

oj1...

C
_

L
I_

189

_gm

tm
u

_
0

_
0

04_
m

0

190

-.2Q
.

E

onI--

"D
O

9
.__W

w
u_m

w
l

IIIII

I191

,,q

0n0t--
mom

w
l

W

.....................................
':

,w
-61
>L
L

J
t4.-..

0¢-Qt_

O
g

o

"-J

ol
192

u'i

t,.,.

m
u

L
L

i
:

goa

0

%

193

t

=
w

"_ ?

W

195

[

EoE
o

0

.,

196

i

i

_I
"

"
"

)
-

,
I

L

v

F_

;
z

"el
I=

oc

im
ll

o_

198

m

emr,¢2
om

_l

Wwm

(D

199

L
L

L
_

i--

200
,I,

N94-71151 U

II

w

A NEW TECHNOLOGY PERSPECTIVE & ENGINEERING "FOOLS APPROACII

FOR LARGE, COMPI,EX & DISTRIBUTED MISSION AND SAFETY CRITICAl, SYSTEMS

COMPONENTS

m
lib

m

ill

=
m

g

W

w

W

Miguel A. Carrio

Teledyne Brown Engineering i

£2L

T-_

=

201

f

L_

L_

L_

___%

.a 202

A NEU TECHNOLOGY PERSPECTIVE & ENGINEERING TOOLS APPROACH

FOR LARGE, COMPLEX & DISTRIBUTED MISSION AND SAFETY CRITICAL SYSTEMS

COMPONENTS

ABSTRACT

Rapidly emerging technology and methodologies have out-paced the

systems development processes' ability to use them effectively, if at

all. At the same time the tools used to build systems are becoming

obsolescent themselves as a consequence of the same technology lag

that plagues systems development. The net result is that systems

development activities have not been able to take advantage of

available technology and have become equally dependent on aging and

ineffective computer-aided engineering tools. New methods and tools

approaches are essential if the demands of non-stop and Mission and

Safety Critical (HASC) components are to be met.

INTRODUCTION

Expectedly, the systems development management and technical

communities continue to remain slow and reluctant to accept change and

new approaches in spite of the overwhelming evidence in support of a

need for it, and the disappointing track record in systems development

of the last 30 years. The resistance to change in the midst of new

approaches and innovative concepts, is accompanied by a perceived

threat and expectation that there is now added risk to the ever

escalating cost of development by introducing new methods and tools.

The risk and added cost of development, unfortunately, result in not

accepting and implementing many of the recent approaches and methods

available in the marketplace and continuing to ignore them.

ISS_S
¢

Because of the following, it is strongly felt that new

approaches to modeling; tools design and conceptualization in the

initial life cycle phases (i.e., requirements analysis, allocation,

and design synthesis) are necessary.

I. Systems have become so large that the traditional concept o[

prototyping is not looked favorably upon due to the large costs,

expenditure of time, and complex issues raised in developing

prototypes.

II. It is a given and well known fact that the earlier in the life

cycle design weaknesses and errors are identified, the more cost

effective the design fix and less labor intensive.

I

I

z

I

I

I

_z

I

w

w

PRB_IR)4HG PAGE BLANK NOT FtLML_
_3

I

I

L

= --

t_

"- 2

III. An inordinate amount of time and effort is expended on tile

softOare coding phase (one of the smallest life cycle cost drivers -

less than 10_). Ironically, the latest industry tool craze intended

to focus on life cycle productivity _ CASE, continues to focus on

software instead of systems. (Computer-Aided Software Engineering
instead of Computer-Automated Systems Engineering)-

IV. Requirements continue to change in any given systems development

and necessitate a "control or harness" mechanism to provide

disciplined management of them. The requirements instability,8/

together with scarce development resources is expected to result Tn
increased evolutionary and iterative system activities.

V. Design efforts require formal and global configuration

management (i.e., across life cycle phases) that does not presently

exist. If the cost of maintenance and support is to be significantly

reduced, design environments and tools must support configurationmanagement.

VI. The very large amounts of software generated in systems, require

that serious consideration be given to the need for automatic code

generation from a formal specification, in order to achieve any
significant _con}rol a9 d productivity gains.

Vii. Hardware and software engineering, as well as their associated

integration efforts continue to be treated separately for the most

part. The extensive amount of "requirements implementation dumping"
(RID) over the fence to software that occurs when a particular

hardware requirement cannot be implemented; for example, continues to
polarize these two communities.

VZZI. Host design methodologiesS/ that exist today and are

incorporated into the many development tools are homogeneous (e.g.,

either purely data-flow oriented or control-flow oriented), and system

directed or application specific in nature. Homogeneity is not a

negative aspect if sight is kept of the application and problem space

intended for. a particUlar methodology; and the discontinuities that

result uhe n a domain or boundary is crossed. The complex real-time

issues of today amplify these discontinuities when data and control

flow theory are integrated together. At best, when integration

attempts at-e--made, these homogeneous and domain specific methodologies

result in a loosely coupled effort achieving an "inefficient

bastardized methodology,, that sells products, never intended for the
solution needs of the systems they are supposed to assist.

ZX. Static and dynamic analyses are attempted via uncoupled and

informal design representations (i.e., using a natural language with

one Or more homogeneous methodologies), as opposed to using a formal
denign representation (i.e., using a formal syntax
language), or design

X. New life cycle models and paradigmsl,2/ must be employed if

qt, ality, high confidence, non-stop MASC compogents are to be designed
accompanied by high productivity rates.

204 - _ ->- '__ ":"

APPROACH

The ten points identified have served as requ{rements drivers in

molding Teledyne Brown Engineering's TAGS R technology aimed at solving

problems early in a cost effective manner. The approach has been to:

A. Focus on the initial phases of the life cycle to ferret out

design issues and capture requirements.

B. Adopt a systems engineering perspective that looks at the

entire picture (i.e., views hardware and software engineering

together and as driven by systems engineering).

C. View alternative life cycle models relative to the specific

development activity, using automation based paradigms.

D. Employ a heterogeneous systems methodology with integrated

configuration management elements.

E. Use a systems design language supported by a formal syntax.

F. Use/develop tools that support and embody items A through E.

These issues will be addressed, but as a consequence of their

interrelationships, they cannot be viewed independently. Thus, for

example, focusing on the early life cycle phases requires an

understanding of the relationships of the various life cycle phases and
activities inclusive of the maintenance and operational phases (later

phases). Furthermore, the iterative life cycle forms and types must

also be understood. Despite an awareness and extensive documentation of

the lower costs of detecting and correcting errors in the early life
cycle phases, 3/ program managers continue to ignore the early phases and

resources required to support them. The question should be repeatedly

asked of developers and tool builders - "Why haven't past and on-going
efforts focuse_ on the early phases to discipline and stabilize

requirements and design issues?" "Uhy haven't the tool builders
addressed the front or early life cycle phases, and provided the

marketplace with extensive tools in this area?" The number of

commercially available requirements generation and analysis tools that

exist or can be integrated with systems engineering design synthesis

tools are virtually non-existent. A basic tenet of the automation based

paradigms _S that early llfe cycle emphasis supported by=aUtomated tools

iS a must, if significant achievements in productivity and
maintainability are to be made.

The development processes and thus modeling and prototyping

efforts must be initially viewed and driven from a systems engineering

perspective. The systems engineering view will insure that premature

allocations of requirements to either hardware or software are deferred

until the proper time and more important into the proper allocated

design specification. A systems engineering view ensures that from the

W

g

m

W

W

W

w

205

13

very beginning, that the system to be synthesized and hierarchically
decomposed is related properly to its operational environment and system
interfaces, System interface identification also insures that
perturbations generated across them

can be proRerly accounted for and
cpntained. Encouragement to invoke reusability6/ at the architecture,

design, specification, algorithmic, logical and-code level as early as

possible in the life cycle insures maximum reuse yields. This approach

is nothing more than a return to classical systems engineering supported

by functional flow block analysis, hierarchical decomposition, input-
output flow integrity and structured design concepts all considered
together.

Additionally, this initial top-down design, through the iterative

nature established by the systems engineering approach also enables a

bottoms-up vie_ refinement that "kicks-in" as an overdrive when

requirements must be revisited and reallocated for whatever the reason
from hardware to software or vice-versa.

Embracing the concepts of automation based paradigms requires

that a formal executable design specification and prototype be

established. The design specification must also be formally
configuration manageable to enable the maintenance of requirements and

design. Formal maintenance of requirements and design envelopes

supported by executable prototypes based on the design provides

visibility into it, and assures the ability to maintain the resulting

system long after it has been built. Design enhancements, technology

insertion and preplanned product insertion activities are also vastly

facilitated by formal maintenance of the requirements and designbaselines.

The iterative nature of the different types of life cycles (e.g.,
spiral life cycle, technology life cycle_/), necessitates that

traditional forms (e.g., waterfall) be viewed in perspective and the new

ones viewed relative to the environment factors (i.e., evolutionary,
reusability, rapid prototype).

This brings us to a very important issue - a heterogeneous

systems methodology with integrated configuration management. Most

methodologies that have been developed over the last 30 years have been
tempered by functionality, applications or domain specific solutions

they were focused at to provide solutions. The HIS community has
benefitted tremendously from data flow methodologies for example.

However, different methodologies and views are required to

address the new solution spaces presented by non-stop and mission and

safety critical components in complex systems. The ability to view

simultaneously architecture, functionality, data flows, control flows

and timing requires an integrated heterogeneous methodological approach
that both represents and integrates these elements in a "unified field

theory". Furthermore, the ability to examine, compare, and analyze
these elements requires greater formalism of representation than ever

before. A cohesive binding (i.e. a formal syntax) is required of the

methodology representation if subsequent dynamic analyses of design and
simulation, via executable design prototypes are to be performed.

=

206

Additionally, if an executable prototype and formal design

repre'_entation is to be generated and analyzed, then the concept of the

need for an integrated heterogeneous methodology must be further

extended to capture and represent other process, logic and algorithmic

elements down to formal mathematical representations. Thus, what

emerges is a need to capture both the methodology and design elements

via a unified and extensive systems engineering vehicle capable of

representing the engineering processes in a formal representation. A

sample representation of this is a systems design language, of Backus
Naur Form, called the Input-Output Requirements Language (IORL). 7/ It

is a high order language comprised of a character set and a graphlcal

set of pictures that support both the systems engineering processes as

well as the methodology requirements to bring together the elements

needed for viable design synthesis•

AVAILABLE TECHNOLOCY/NDI

TAGS technology consists of three components - a methodology and

paradigm; a formal systems design language; and an environmental suite,

consisting at this time of nineteen integrated tools (figure i). The

workstation hosted environment is intended to support design teams in a

networked mode consisting of host, integration and target components.

III

IB

lm

If

W

W

i

TAGS APPLICATION SOFTWARE PACKAGES

IREOUIREMENTS 1 _ STORAGE
VERIFICATION i ANO

TOOL SET I RETRIEVAL

.-sEOU4alMIl_'ll |ITR&_MrI'ON T0¢¢ • O&T& FLOW
• ikgcl4JIIt|illLIdlr I[N_itT AND I.A||LINO TOOL • ¢ON111OL FLOW
• I[_gil(NT8 TIA_l_ I|TW[EN DOCUM|NT • OA1i D|FINI?IOH

• OTll ILMTlliV _ MIJIk'TI[NAN¢I[• D&TA |TFIUCTUll[
• 9T[PWISI[IQEFINEklENT

TAGS OATAOASE

• o...,"

• ,..ot.*"

• -'*

_¢MULATION

OMPILER . I

• OYNAUl¢ DESlON
ANAI.YS||

• OISCIt['| [VI[NT
SIMULATION

Figure 1

CONIrlOUR ATION I

MANAGEUENT I

• MULTIPLE llASEtlNL

Clll a, lION
• ACC(IIICNANG!

¢ONTiIOt.o,o.o.ToI
r I _Sv*T.: otsJo.

I I L| ANALYIII

I] • IDiTi OICTIONAIY

I I • I'tIT|M _,U04'+
I I *OOCUUENT piiOcESSOR

I I .FLOW ANAl.,SiS

I 'i coo_ I
I_-,_...O | HER A TO A]

• AID&

• VNOL

W

W

207

= =

t

• :=

= =

U

, The technology is intended to also enable distributed design and

simulation activities to occur concurrently and independently, emulating

target environment characteristics and operational modes. The

simulation compi]er supported by merge library utilities contained in

the Analysis Library enables paral]el execution modes that provide

insight into tile target environment performance. It's two-pa_s

simulation architecture enables the compiler to support the development

host activities on lesser capacity workstations, while enabling

simulation exportation to larger mainframes for execution of complex

problems requiring such (e.g., strategic defense type problems). In

this manner large complex and parallel simulations can be performed

efficiently, requiring less execution and simulation run times, whi]e
converging on target environment solutions.

gNVIRONHgNT COMPONENTS

TAGS consists of the following tools:

o A requirements verification tool set (RVTS) - to assist in

..... the management of requirements. The four tools comprising
this module enable requirements traceability within and

across specifications, establish parent-child relationship
between system/performance and derived requirements, allow

the establishment of function, subfunction and keyword

associations, provide a document trouble report capability,

enable the parsing of complex english sentences containing

multiple requirements references into unique requirements

statements, and provide the ability to automatically generate

different reports and trace matrices consistent with the
evolving specification tree hierarchies.

o

A storage & retrieval module (SR) - to allow the IORL page

creation, storage, retrieval modification, viewing, andU '

pdating; supported by menu-driven highly interactive

features. The SR module provides access to the IORL design

language and three levels of security to protect the design
pages. SR is the basic design module.

A configuration management module (CM) - provides system
integrity and formal Mil-Std configuration management to be

established on a single or multiple set of baselines. CM is

{}tllyjntegrated into the TAGS-IORL data base to insure full

management and control of design regardless of system
: complexity and network/team size.

A diagnostic analyzer (DA) - to provide static analyses of

the IORL design pages generated via the SR module. The

design is analyzed in a background mode, monitored via a

separate process so as to allow a continuation of the other

designer activities on a non-interference basis. Designed as

208 C

o

an incremental compiler, DA allows the completion of

individual pages or modules that can be integrated and

analyzed in a background mode with other completed design.

Error messages with unique reference numbers provide for a

rapid and efficient troubleshooting mode that can bc

supported by lesser experienced members of the design team.

DA performs static analysis (i.e., completeness, consistency

and closure checks on the design).

A simulation compiler (SC) - produces an executable discrete

event simulation of a system designed in IORL. The

simulation performs dynamic error analyses which can locate

problems such as timing and control faults; and errors that

cannot be found through static testing. Also, the resulting

execution trace listing assists the user in determining the

optimum system and processing algorithm designs as well a_

performance analysis.

An analysis library (AL) - consists of ten tools that fall

into three categories:

Auditing - to allow the user instant visibility into the

design database, and also provides for system partitioning

and ready identification of all system components.

Documentation Management - to allow the automatic generation

of data dictionaries, and provide a document processor

interface (e.g., POSTSCRIPT), The document processor

interface provides the user the ability to merge system

design text and graphics with 0ther commercial document

processors (e.g., Context R and Interleaf R) to further extend

the ability to generate automatic documentation and support

such standards as Mil Std-2167.

O

Reusability - to allow the reuse of design, architecture,

functionality, specifications and code. These tools greatly

support the reusability development paradigms and enable the

invocation of reusability concepts very early in the life

cycle.

An automatic code generator (ACG) - allowing the designer to

generate executable sour ce code from the IORL formal design

representation for transition and insertion into the target

environment. The code generator thus provides the capability

to support software first development, rapid prototype

paradigms and the early id-entification _ 0fls6urce code that

requires further optimization vla a lower level software

engineering environment. Currently, the only language the

code generator supports is Mi!-Std-1815A (Ada), with a VHSIC

Hardware Description Language (VHDL), IEEE Std 1076-1987 code

generator under development.

W

W

w

w

_ I

m

J

2O9

2 2

=

v_

:

W

L

OUAI_ITATIVE RESULTS USING THE TECHNOLOGY

Use of TAgs technology on two DoD programs has provided both

qualitative and quantitative results that are most encouraging and

support predictions of achievable and significantly higher productivity.

The development approach and environment have clearly establiM1ed

a direction that represents: a significant higher productivity yield,

life cycles with significantly reduced implementation time scales, lower

development costs (figure 2), and higher design confidence and quality

levels. The two BM/C 3 (Battle Management/Command Control

Communications) efforts, N-SITE and SIE, went from the requirements

phase thlough to integration, test and delivery of software end product

to the customer. The costs of investment and learning the new

technology are also factored in. ldhile the total source lines of code

for each o[the systems numbered in the 200-300K range, similar yields
equal to or greater are expected for larger systems of the type SDI or
NASA would encounter. Part of the rationale for this is derived from

the fact that program module size for manageability and optimization
require breakdown into smaller blocks of several thousand lines of code

(less than IOK LOC) independent of overall program size or use of
automatic code generators.

It slmuld be noted that these two DoD efforts did not utilize the

Ada Code Generator, since FORTRAN was identified by the user as the

implementation language. The simulation compiler and RVTS were not in

product form when these efforts were initiated some fifteen months ago.

Thtls, the expectation Of using the extended tool set in future efforts,

provides an even firmer basis for supporting higher productivity and
quality. Given the existence of a code generator and simulation

compiIer enables the developer to begin testing and integration earlier,
deemed essential to supporting higher confidence levels. The delivered

software, when used, performed satisfactorily as intended and as
specified in the user/operational environment.

210

PROJECT A (N-SiTE)
SOFTWARE DEVELOPMENT

METRIC

Lines of Code/Hour

Calendar Schedule

Effort (man-months)

Cost per LOC

Total Cost

i.

2.

3.

4.

INDUSTRY
STANDARD 1

0.77 LOC/hr 1

8.4 monthsl.Z

132 ram1

$45 to 503

1M

SOURCE

PROJECT
EXPERIENCE

2.26 LOC/hr 4

5.5 months

45 mm

514.57

$0.237M

COMPARISON
(%)

294

65.5

34

30.7

23.7

Base'd on Boehm: Software Engineering EconOmics

Compressed Schedule: Normal Schedule ,, tl.6 months

Based on $90K - 100K/man-year at 2,000 hr/yr

Converted 3.1K LOC of Project B Monitor and Control; Reused Potions
of Project S IORL e Design

PROJECT B (SIE)
SOFTWARE DEVELOPMENT COMPARISONS

AT BUILD 3

METRIC

Unes of Code/Hour

Calendar Schedule

Effort (man-months)

Cost per LOC

Total Cost

INDUSTRY
STANDARD I

'" "0:'69 LOC/hr 1

12 months1._

316 ram1

$45 to 503

$2.1M

SOURCE

PROJECT
EXPERIENCE

t.17 LOC/hr

g months

188 mm

S34

$1.02M

1. Based on Boehm: Software Engineering Economics
2. Compressed Schedule; Normal Schedule ,, 15 months

3. Based on Sg0K - 100KJman-year at 2,000 hrlyr

COMPARISON
(%)

170

75

59

72

49

111

m
II

n

J

El

Ill

II

w

z

'Ill

II

II

111

111

Actual Results obtained are shown in the

"Project Experience" column. The significant

drop in cost per lines of code (LOC) in

Project A resulted from the reuse of design

and algorithms from Project B.

Figure 2

W

211

=

2

[7 ¸

.,.,..

CONCLUSIONS

In the near future, resulting data from other on-going
development projects is expected to provide further credibility for use

of the approach, technology and environment. Invoking the approach and

paradigms, with the type of environment identified will almost certainly

result in higher levels of design confidence and integrity

accomplishable in significantly iesser times. Early results in using

the technoIogy on other on-going efforts continue to support existing
data. rt is recognized that the technology and approaches will

themselves continue to evolve to more mature forms. It is also

recognized that with continued use, new products and enhancements will

also occur in the environments either as a direct consequence of it or

as a result of integrating and interfacing other commercial products

with it. Furthermore, risk is less and certainly no more than that

which exists in on-going developments today. And, if expectations
should fall short for whatever the reason, the developer maintains his

status quo, with everything to gain by using what is presently available
and nothing to lose.

REFERENCES

i/ Balzer, Cheathem, Green - Computer, Vol. 16, No. 11, Nov. 83, pp.

39-_5. Subject: Software Technology in the 1990's: Using a New
Paradigm.

2/ Balzer, Robert - Proceedings of COMPSAC 84 Conference on Com uter

Software and Applications; Nov. 84, Chicago, Ill.; IEEE #0730-3157, pp.

471-475. Subject: Evolution as a New Basis for Reusability.

3/ Boehm, B. - Software Engineerin_ _ Economics; 1981, Prentice-Hal]
Inc, -- " ,

4/ Carrio, Miguel Proceedings of the 4th National Conference on
Ada TechngIo_ March 1986, Arlington, VA, pp. 75-81. Subject: The
T--ec-hn-o-olo-_ Life Cycle and Ada.

5/ Davis, Alan M. - Communications of the ACM, Vol. 31, No. 9, Sep.

88, pp. 1098-1115. Subject: A Comparison of Techniques for the
Specification of External System Behavior.

6/ Jones, G. - Proceedings of COMPSAC 84 Conference on Computer

Software and Applications; Nov. 84, Chicago, Ill., Library of Congress

No. 83-640060,--pp. 476-478. Subject: Software Reusability: Approaches& Issues.

7/ Sievert, G. & Mizell, T. - IEEE-Computer; Vol. 18, No. 4, Apr.

85, pp. 56-65. Subject: Specification-Based Software Engineering withTAGS.

8/ Yadav, Bravoco, Chatfield, Rajkumar - Communications of the ACM,
Vol. 31, No. 9, Sep. 88, pp. 1090-1097. Subject: Comparison of
Analysis Techniques for Information Requirement Determination.

RTAGS is a registered trademark of Teledyne Brown Engineering
RContext is a registered trademark of the Context Corporation

Rh_terleaf is a registered trademark of Interleaf Corporation

212

im

W

I

J

m
w

mr

m
ID

w

J

W

g

k

N94. 71152 - J

|

Alpha:

A Real-Time Decentralized Operating System

for Mission-Oriented System Integration and Operation

= .

E. Douglas Jensen

w

t

Concurrent Computer Corporation

Westford, MA

508-692-6200

edj@cs.cmu.edu, uunet.uu.net!masscomp!jensen

= ,

213

i

qll

Im

i

l

mm

J

mw

lira

R

I

II

1ii

Im

m

Iii

im

L .
Alpha:

A Real-Time Decentralized Operating System

for Mission-Oriented System Integration and Operation

= =

W

z

E. Dougl,'t_ Jensen

Concurrent Computer Corporation
: _ :=_ :_::_: _: • : _ " Wesfford, MA

L _
508 -692-6200

edj@cs.cmu.edu, uunet.uu.net!masscomp!jensen

Abstract ,,_ ,....... _

Alpha isa new kind of operating system, which is unique in two highly significant ways. First, it is decen-

tralized, providing _liable re_sgurcg_managemen t transparently across physically dispersed nodes, so that dis-

tributed-applications programming can be done largely as though it were centralized. And second, it provides

comprehensive, high technology support for real-time system integration and operation, an application area

which consists predominately of aperiodic activities having critical time constraints such as deadlines. Alpha

is extremely adaptable so that it can be easily optimized for a wide range of problem-specific functionality,

performance, and cost. Alpha is the first systems effort of the Archons Project, and the prototype was creat-
ed at Carnegie-Mellon University directly on modified Sun multiprocessor workstation hardware. It has becn

demonstrated with a real-time C 2 application written by General Dynamics Corp. Continuing research by
Concurrent Computer Corp. is leading to a series of enhanced follow-ons to Alpha; these are portable but ini-
tially hostt_l-on Concurrent's MASSCOMP line of multiproceSsor products. Both the initial and the subse-

quent versions of Alpha are sponsored by the USAF Rome Air Development Center and are in the publicdomain for government use.

A Decentralized OS is New

Alpha is oriented towards systems-having on the order of 10 to 100 nodes which are physically disper_d on

the order of I to I00 meters (longer distances are possible). Alpha is for the most demanding kind of situa-

tion: mission-oriented systems where all nodes are contributing to the same application, not simply for thc

network case of individual users at each node doing unrelated computations. Our focus is on having nodes be

logically integrated together rather than autonomous. Alpha provides this logical integration by executing on

the bare hardware and managing resources in the same sense as a uniprocessor OS doe.s, not by being just a
"UNiX-style" user process and providing standard application interfaces and protocols for simple inter-node
resource ShYing like_b.onven_onai computer network style distributed OSs do. Resources must often be man-

aged by Alpha across node bounces in the best interests of the whole application, not just on the usual per-

node basis. This necessital_s that Alpha also accept responsibility for handling certain fundamental asyn-

chronous concurrency and reliability issues which arise in distributed systems, instead of passing them all up

to tlie users for recurring, lower performance solutions. Alpha provides mechanisms which are necessary and
sufficient to maintain consistency of data and correcmess of operation at both the OS and application levels

despite concurrent execution, and node or communication path failures, using techniques similar to tho_ nor-

maUy found far above the os:in distributed database systems--e.g., nested atomic transactions, replication

With Alpha, the nodes collectively form a single computer, not a computer network; thus, distributed appli-

cation software can be written as= though it were for a conventional uniprocessor--without even knowing
about, much less having to manage, distributed resources.

Alpha is decentralized in another valuable and difficult sense. It does not depend on the existence of any phys-

P_ PAGE IBLANK NOT F_LMED

215

mJ

ically or even,logically centralized resource management entity or service, such as a "location broker."

"Real-Time" is Different in the System Integration and Operation Context

The term "real-time" is usually intended to mean "deterministic behavior" and "faster is better", particular

ly in the area of interrupt handling and context swaps. Real-time control in this sense applies only to com-

puter systems which simply do low-level sensor/actuator _mpled-data loop applications, and :ire traditional-
ly designed to have rigidly periodic behavior. But real-time system integration and operation is far more diffi-

cult because it encompasses not just such static periodicity but also predominantly dynamic and apcriodic
activities which nonetheless have critical time constraints, such as deadlines. Then constraints are part of the

correctness criteria of the computation, and failure to meet them is a threat to the systems's mission and to

survival of property and human life. Alpha personnel invented a novel approach whereby the application's

time constraints are expressed in terms of the value to the system of completing each activity as a function of
its completion time (deadlines are a simple special case--a step function). In addition, activities have relativc

importances which are also time-dependent. These time value functions and importances are dynamic and must
be continuously re-evaluated. Every evaluation is performed for all executing and pending activities collcc-

tively so as to maximize the total value to the system across the whole time period represented by the expe_ct
cd durations of all these activities. This sophisticated and explicit treatment of re',d time has been conclusive-

ly shown in both theory and practice to be exceedingly cost-effective. The conventional and seemingly sim-

pler notions of "priority" in real-time systems are zero'th order approximations which extensive experience
has consistently demonstrated introduces massive and uncontrollable complexity into all but the most trivial

real-time systems. Alpha employs this new real-time management technique to resolve all contention for

resources such as processor cycles, communication access, secondary storage, and synchronizers (e.g.,

semaphores, locks). Time constraints and importance are among the attributes propagated with comput:_tionn

which cross node boundaries so that resource management can be global. The ubiquitous client/server model is
unsuitable in this respect since it does not maintain such essential correspondences between the servicc and

client on whose behalf that service is being provided.

Alpha exhibits a fundamental philosophy which is contrary to that of OSs for other application environ-
ments. Instead of optimizing performance of the normal cases at the expense of infrequent ones, it does the

opposite. It is in the exception cases such as emergencies (e.g., being in danger due to attack or failure) when

a real-time OS must be depended upon to perform best, even if the system's routine behavior must be compro-
mised to ensure that. This is one of the principal reasons why real-time UNIXs are inherently limited.

Of course, Alpha also has all the features usually sought in real-time operating systems, including a fully pre-

emptable kernel, synchronizalion, asynchronous notification, i/o directly to/from user space, contiguous flies

on disk, memory-locked objects, pre-allocatable resource pools, low interrupt latency and services times, etc.

Extraordinary "Adaptability" is FAsential tO Real-Time System Integration and Operation

Real-time system integration and operation applications are very complex, and are not (perhaps cannot be)

wcll understood; in addition, the environment and technology are always in a state of flux. Thus, the func-

tional and performance requirements for their computers evolve continuously throughout the entire life cycle

of the system, which can be decades. Alpha accommodates this situation through a variety of techniques, many

of which are quite innovative. Its design is kernelized and strictly adheres to the principle of poli;
cy/mechanism separation. Specific OS policies are carefully excluded from its kernel level mechanisms so that

a wide range of different service facilities, and indeed entire DOSs, can be effectively constn_ctcd using

Alpha's kernel, in accordance with application needs. For example, Alpha's kernel provides atomicity, serial-
izability, and permanence as orthogonal mechanisms. Conventional atomic transaction facilities bundle all

three properties together, with correspondingly high overhead, as the only choice of policy regardless of need

and affordability. But the client layers of Alpha's kernel can base their policies on other combinations of

thcso mechanisms. For example, there are many instances in real-time systems when problem-specific consis-

tency constraints yicld correct results more efficiently than serializability would, or when permanence is not

worth its cost. This _me l)hilosophy is followed in _heduling, communications, and all other tYln_S of

216

Ill

I

lid

!

I

m

I

mB

n

=

= =

L_

i

| . .

i

i

: 7

_ _w

a....

I

.2 i

resource n_an;igement.

Computers embedded in real-time systems usually must produce the highest possible performance from the

allowable hardware size, weight, and power, including ,nemory space fo¢_k" OS. A general-purpose COmlmt-

er system can easily be an order of magnitude lower performance than a :Special-puri_ose one for a p:uticular

application. Thus, to achieve fl_e balance of performance and flexibility needed for cost-effectiveness in a mul-

tiplicity of changing system integration and operation applications, Alpha is general-purpo_ but unusually

malleable so as to exploit all the problem-specific static and dynamic information available from the applica-

tion. In addition, application functionality can readily Ix: migrated downward into the OS, and even into its

kernel, for increased pcrfom_ance when necessary.

Alpha's internals are organized so that its subsystems such as scheduling, communications, secondary storage,

etc. can all execute tndy concurrently at each node. We intend that these separate hardware points of control

within Alpha are a mixture of dynamically assigned general-purpose processors (i.e., each node in the decen-
tralized computer can be a multiprocessor) and algorithmically specialized hardware accelerators (co-proces-

sors ,and other forms of augmentation). Alpha extends to its client applications the same opportunities for

taking advantage of multiple special-purpose as well as general-purpose processori; at each node.

Alpha presents a programming model which is object oriented, in the sense of abstract data types. This impos-

es a structure and discipline conducive to modular software at both the DOS and application levels, as well ;t,;

improving fault isolation. The active entity, or unit of logical computation, is a thread stringing through

objects via operation invocation, without regard for address spaces or node boun&_ries; fundamental distribu-

tion and reliability issues are the responsibility of Alpha instead of tim user. This network uniformily and

transparency greatly aids the creation and modification of distributed applications.

,qtattns

Alpha Release 1 (done at CMI_I) has been demonstrated to DoD agencies since late 1987 with a real-time C 2

application written by General Dynamics Corporation. Concurrent Computer Corporation is creating Releases

2 and 3 of Alpha which are significantly enhanced and commercial quality; these will be available for experi-

mental use on their multiprocessor products by the Fall of 1989 and 1990, respectively. Alpha is an open

operating system in the sense, of being both intended and designed for portability to multiple vendors' hard-

ware, and has begun to emerge as the de facto standard for next-generation mission-oriented real-time operat
ing systems.

Acknowledgment

Alpha is funded jointly by the USAF Rome Air Development Center and Concurrent Computer Corporation,
with additional support from General Dynamics Corporation and others.

References

N¢_rthct, tt, J. D., Clark, R. K., Shipman, S. E., Maynard, D. P., Lindsay, D. C., Jensen, E. D., Smilh, J. M.,
Kegley, R. B., Keleher and Zimmerman, B. A.

Alpha Preview: A Briefing and Technology Demonstration for DoD.

Archons Project Technical Report #88031, Department of Computer Science, Carnegie-Mellon University,
March, 1988.

Jensen, E. D., Northcutt, J. D., Clark, R. K., Shipman, S. E., Maynard, D. P. and Lindsay, D.C.
The Alpha Operating System: An Overview.

Archons Project Technical Report #88121, Department of Computcr Science, Carnegie-Mellon Unive|sity,
December 1988.

Northcuu, J. D.

The Alpha Operating System: Requirements and Rationale

.... w

217

Archons Project Technical Report #88011, Department of Computer Science, Carnegie-Mellon University, Jan-uary, 19_8.

Northcuu, J. D. and Clark, R. K.

The Alpha Operating System: Programming Model

Archons Project Technical Report #880211 Department of Computer Science, Carnegie-Mellon University,February, 1988.

No_thcutt, L D., Clark, R. K., Shipman, S. E. and Lindsay, D. C.

The Alpha Operating System: System�Subsystem Specification.

Archons Project Technical Report #88122, Department of Computer Science, Carnegie-Mellon University,December 1988.

Northcutt, J. D.

The Afpha Operating System: Kernel Programmer's lnte_ace Manual.

Archons Project Technical Report #88111, Department of Computer Science, Carnegie-Mellon UniversityNovember 1988.

Trull, J. E., Northcutt, J. D., Clark, R. K., Shipman, S. E. and Lindsay, D. C.
An Evaluation of Alpha Real-Time Scheduling Policies.

Archons Project Technical Report #88123, Department of Computer Science, Carnegie-Mellon University,December 1988.

Clark, R. K., Kegley, R. B., Keleher, P. J., Maynard, D. P., Northcutt, J. D., Shipman, S. E. and Zimmerman,B.A.

An Example Real-Time Command and Control Application on Alpha.

Archons Project Technical Report #88032, Department of Computer Science, Carnegie-Mellon UniversityMarch, 1988.

Northcutt, J. D. and Shipman, S. E.

The Alpha Operating System: Program Maintenance Manual.

Archons Project Technical Report #88123, Department of Computer Science, Carnegie-Mellon University,December 1988.

N0rthcuu, 3. D. :_nd Shipman, S. E. "

The Alpha Operating System: Programming Utilities.

Archons Project Technical Report #8g_7, Departmem_of _Computer Science, Carnegie-Mellon University,April, 1988.

Northcutt, J. D.

The Ipha Distributed Computer System Testbed.A " "

Archons Project Technical Report #88033, Department of Computer Science, Carnegie-Mellon University,March, 1988.

Northcutt, .I.D.

Mechanisms for Reliable, Distributed Real-Time Operating Systems: The Alpha Kernel.
Academic Press, 1987.

= =

I
I

i

I

I

I

I

I

I

?

I

218

f.-._L

_'U. 5. GOVEI_NM._HTPRTNTINO, OFFICE : 19glB-66-'1-008/806,e7

