NASA Pocket Statistics

NASA-TM-109730

(NASA-TM-109730) NASA POCKET STATISTICS (NASA) 191 p N94-71887

Unclas

00/82 0002369

January 1994

Following is a list of individuals who control the distribution of the NASA Pocket Statistics at their respective NASA Installations. Requests for additional copies should be made through the controlling office shown below.

NASA Headquarters
Dr. Roger D. Launius
NASA History Office, Code ICH

Ames Research Center
Ms. Lynda L. Haines, MS 200-1A
Staff Assistant to the Deputy Director

Dryden Flight Research Center Mr. Dennis Ragsdale Research Librarian. MS D2-149

Goddard Institute For Space Studies
Dr. James F. Hansen

Division Chief, Code 940

Goddard Space Flight Center Ms. Cindi Zaklan Code 200

Jet Propulsion Laboratory Mr. Robert Macmillin Mail Stop 186-120 Johnson Space Center
Ms. Rebecca Humbird
Printing Management Branch, Code JM8

JSC White Sands Test Facility
Mr. Richard Colonna, Manager
Code RA

Kennedy Space Center and KSC/WLOD Mr. Hugh W. Harris Public Affairs Office

KSC VLS Resident Office (Vandenberg AFB) Mr. Ted L. Oglesby, Manager

Langley Research Center Ms. Margaret W. Hunt Mail Stop 154

Lewis Research Center
Ms. Linda Dukes-Campbell, Chief
Office of Community and Media Relations

Marshall Space Flight Center Ms. Amanda Wilson, CN22 Management Operations Office

Michoud Assembly Facility
Mr. John R. Demarest, Manager

NASA Management Office -- JPL Mr. Kurt L. Lindstrom, Manager

John C. Stennis Space Center Mr. Roy S. Estess, Director Code AAOO

Sildell Computer Complex Mr. Bob Bradford, Manager

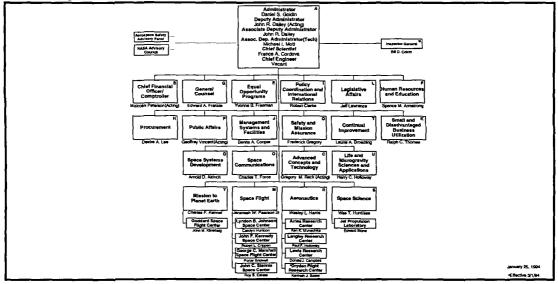
Wallops Flight Facility
Mr. Joseph McGoogan, Director
Management and Operations

Foreword

POCKET STATISTICS is published for the use of NASA managers and their staff. Included is Administrative and Organizational information, summaries of Space Flight Activity including the NASA Major Launch Record, and NASA Procurement, Financial and Manpower data.

The NASA Major Launch Record includes all launches of Scout class and larger vehicles. Vehicle and spacecraft development flights are also included in the Major Launch Record. Shuttle missions are counted as one launch and one payload, where free flying payloads are not involved. Satellites deployed from the cargo bay of the Shuttle and placed in a separate orbit or trajectory are counted as an additional payload.

> Published and Distributed by NATIONAL AERONAUTICS AND SPACE ADMINISTRATION DIVISION OF SPECIAL SERVICES NASA HISTORY OFFICE (CODE ICH) Washington, DC 20546


Contents

Section A - Administration and Organiza	ition	Section C - Procurement, Funding and Manp	ower	
NASA Organization NASA Administrators National Aeronautics and Space Act NASA Installations The Year in Review	A-2 A-3 A-4 A-6 A-11	Contract Awards by State Distribution of NASA Prime Contract Awards Procurement Activity Contract Awards by Type of Effort Distribution of NASA Procurements Principal Contractors Educational and Nonprofit Institutions	C-2 C-3 C-4 C-5 C-6 C-7 C-11 C-15	Section /
Section B - Space Flight Activity		NASA's Budget Authority in 1992 Dollars Financial Summary	C-16	Ì
Launch History Current Worldwide Launch Vehicles Summary of Announced Launches NASA Launches by Vehicle Summary of Announced Payloads Summary of USA Payloads Shuttle Approach and Landing Tests Soviet Spacecraft Designations Unofficial Tabulation of CIS (USSR) Payloads NASA Astronauts United States Manned Space Flight Shuttle Payloads and Experiments	B-2 B-3 B-4 B-6 B-8 B-10 B-12 B-13 B-14 B-16 B-23 B-26	RAD Funding SFC&DC Funding C of F Funding R&PM Funding R&PM Funding Personnel Summary NASA Civil Service Workforce Employment Trend Occupational Summary Women Employees Minority Employees	C-18 C-22 C-24 C-26 C-28 C-30 C-31 C-32 C-33	Section E
The Planets The Solar System USA Planetary Space Flights CIS (USSR) Planetary Space Flights USA Lunar Space Flights CIS (USSR) Lunar Space Flights NASA Major Launch Record	B-54 B-56 B-65 B-68 B-72 B-75 B-79			Section C

Section A

Administration and Organization

NASA Organization Chart

NASA Administrators | 179 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 President Elsenhower Kennedy Johnson Nixon Ford Carter Reagan Bush Clinton NASA Administrator Frosch Beggs Webb Paine Fletcher Fletcher Glennan Truly Goldin Acting Administrator Truly Dryden Lovelace Lovelace Graham Deputy Administrator Seamans Paine Lovelace Graham Myers Thompson Mark Low Dryden

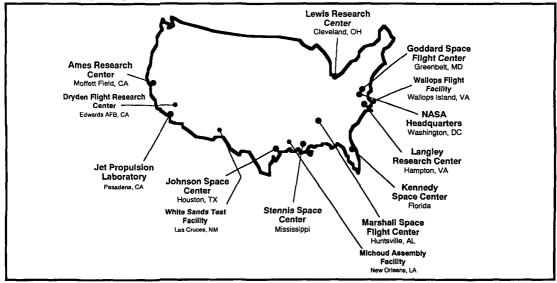
Excerpts From The National Aeronautics And Space Act Of 1958, As Amended

AN ACT To provide for research into problems of flight within and outside the Earth's atmosphere, and for other purposes.

Declaration Of Policy And Purpose

- Sec. 102 (a) The Congress hereby declares that it is the policy of the United States that activities in space should be devoted to peaceful purposes for the benefit of all markind.
 - (b) The Congress declares that the general welfare and security of the United States require that adequate provision be made for aeronautical and space activities. The Congress further declares that such activities shall be the responsibility of, and shall be directed by, a civilian agency exercising control over aeronautical and space activities sponsored by the United States, except that activities peculiar to or primarily associated with the development of weapons systems, military operations, or the defense of the United States (including the research and development necessary to make effective provision for the defense of the United States) shall be the responsibility of, and shall be directed by, the Department of Defense; and that determination as to which such agency has responsibility for and direction of any such activity shall be made by the President in conformity with section 201(e).
 - (c) The Congress declares that the general welfare of the United States requires that the National Aeronautics and Space Administration (as established by title II of this act) seek and encourage to the maximum extent possible the fullest commercial use of space.

- (d) The aeronautical and space activities of the United States shall be conducted so as to contribute materially to one or more of the following objectives:
 - (1) The expansion of human knowledge of the Earth and of phenomena in the atmosphere and space:
 - (2) The improvement of the usefulness, performance, speed, safety, and efficiency of aeronautical and space vehicles;
 - (3) The development and operation of vehicles capable of carrying instruments, equipment, supplies, and living organisms through space;
 - (4) The establishment of long-range studies of the potential benefits to be gained from, the opportunities for, and the problems involved in the utilization of aeronautical and space activities for peaceful and scientific purposes;
 - (5) The preservation of the role of the United States as a leader in aeronautical and space science and technology and in the application thereof to the conduct of peaceful activities within and outside the atmosphere:
 - (5) The making available to agencies directly concerned with national defense of discoveries that have military value or significance, and the furnishing by such agencies, to the civilian agency established to direct and control nonmilitary aeronautical and space activities, of information as to discoveries which have value or significance to that agency;


Excerpts From The National Aeronautics And Space Act Of 1958, As Amended

Declaration Of Policy And Purpose (Continued)

- (7) Cooperation by the United States with other nations and groups of nations in work done pursuant to this Act and in the peaceful application of the results thereof; and
- (8)
 The most effective utilization of the scientific and engineering resources of the United States, with close cooperation among all interested agencies of the United States in order to avoid unnecessary duplication of effort, facilities, and equipment.
- (e) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward ground propulsion systems research and development.
- (f) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed toward the development of advanced automobile propulsion systems.
- (g) The Congress declares that the general welfare of the United States requires that the unique competence in scientific and engineering systems of the National Aeronautics and Space Administration also be directed to assisting in bioengineering research, development, and demonstration programs designed to alleviate and minimize the effects of disability.
- (h) It is the purpose of this Act to carry out and effectuate the policies declared in subsections (a), (b), (c), (d), (e), (f), and (g).

Functions Of The Administration

- Sec. 203 (a) The Administration, in order to carry out the purpose of this Act, shall --
 - (1) plan, direct, and conduct aeronautical and space activities;
 - (2) arrange for participation by the scientific community in planning scientific measurements and observations to be made through use of aeronautical and space vehicles, and conduct or arrange for the conduct of such measurements and observations; and
 - (3) provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.
 - (b) (1) The Administration shall, to the extent of appropriated funds, initiate, support, and carry out such research, development, demonstration, and other related activities in ground propulsion technologies as are provided for in sections 4 through 10 of the Electric and Hybrid Vehicle Research, Development, and Demonstration Act of 1976.
 - (2) The Administration shall initiate, support, and carry out such research, development, demonstration, and other related activities in solar heating and cooling technologies (to the extent that funds are appropriated therefor) as are provided for in sections 5, 6 and 9 of the Solar Heating and Cooling Demonstration Act of 1974.

NASA HEADQUARTERS Washington, DC 20546

NASA Headquarters exercises management over the space flight centers, research centers, and other installations that constitute the National Aeronautics and Space Administration.

Responsibilities of Headquarters cover the determination of programs and projects; establishment of management policies; procedures and performance criteria; evaluation of progress; and the review and analysis of all phases of the aerospace program.

Planning, direction, and management of NASA's research and development programs are the responsibility of the program offices which report to and receive overall guidance and direction from an associate or assistant administrator

AMES RESEARCH CENTER Moffett Field, CA 94035

Ames Research Center was founded in 1939 as an aircraft research laboratory by the National Advisory Committee for Aeronautics (NACA) and was named for D. Joseph S. Ames, Chairman of NACA from 1927 to 1939. In 1958, Ames became part of NASA, along with other NACA installations and certain Department of Defense facilities. In 1981, NASA merged Ames with the Dryden Flight Research Facility.

Ames specializes in scientific research, exploration and applications aimed toward creating new technology for the nation.

The center's major program responsibilities are concentrated in computer science and applications, computational and experimental aerodynamics, flight simulation, flight research, hypersonic aircraft, rotorcraft and powered-lift technology, aeronautical and space human factors, life sciences, space sciences, solar system exploration, airborne science and applications, and infrared astronomy.

HUGH L. DRYDEN FLIGHT RESEARCH CENTER Edwards, CA 93523

Since 1947, Ames-Dryden has developed a unique and highly specialized capability for conducting flight research programs. Its test organization, consisting of pilots, scientists, engineers, technicians and mechanics, is unmatched anywhere in the world. This versatile organization has demonstrated its capability, not only with high-speed research aircraft, but also with such unusual flight vehicles as the Lunar Landing Research Vehicle and the wingless lifting bodies.

The facility's primary research tools are research aircraft, ranging from a B-52 carrier aircraft and high performance jet fighters to the X-29 forward swept wing aircraft. Ground-based facilities include a high temperature loads calibration laboratory that allows ground-based testing of complete aircraft and structural components under the combined effects of loads and heat, a highly developed aircraft flight instrumentation capability; a flight systems laboratory with a diversified capability for avionics system fabrication, development and operations; a flow visualization facility that allows basic flow mechanics to be seen of models or small components; a data analysis facility for processing of flight research data; a remotely piloted research vehicles facility and a test range communications and data transmission capability that links NASA's Western Aeronautical Test Range facilities at Ames-Morfett, Crows Landing and Ames-Dryden.

GODDARD SPACE FLIGHT CENTER Greenbelt, MD 20771

This NASA field center has put together a multitalented spaceflight team -- engineers, scientists, technicians, project managers and support personnel -- which is extending the horizons of human knowledge not only about the solar system and the universe but also about our Earth and its environment.

The Goddard mission is being accomplished through scientific research centered in six space and Earth science laboratories and in the management, development and operation of several near-Earth space systems.

After being launched into space, satellites fall under the 24-hour-a-day surveillance of a worldwide ground and spaceborne communications network, the nerve center of which is located at Goddard. One of the key elements of that network is the Tracking and Data Relay Satellite System (TDRSS) with its orbiting Tracking and Data Relay Satellite and associated ground tracking stations.

Goddard's tracking responsibility extends to its Wallops Flight Facility. Wallops prepares, assembles, launches, and tracks satellites and suborbital space vehicles and manages the National Scientific Balloon Facility in Palestine, Texas.

JET PROPULSION LABORATORY Pasadena, CA 91109

NASA's Jet Propulsion Laboratory (JPL) is a government-owned facility staffed by the California Institute of Technology. JPL operates under a NASA contract administered by the NASA Pasadena Office. In addition to the Pasadena site, JPL operates the Deep Space Communications Complex, a station of the worldwide Deep Space Network (OSN).

The laboratory is engaged in activities associated with deep space automated scientific missions — engineering subsystem and instrument development, and data reduction and analysis required by deep space flight.

The laboratory also designs and tests flight systems, including complete spacecraft, and provides technical direction to contractor organizations.

LYNDON B. JOHNSON SPACE CENTER Houston, TX 77058

Johnson Space Center was established in September 1961 as NASA's primary center for design, development and testing of spacecraft and associated systems for manned flight; selection and training of astronauts; planning and conducting manned missions; and extensive participation in the medical engineering and scientific experiments carried aboard space flichts.

Johnson has program management responsibility for the Space Shuttle program, the nation's current manned space flight program. Johnson also has a major responsibility for the development of the Space Station, a permanently manned, Earth-orbiting facility to be constructed in space and operable within a decade. The center will be responsible for the interfaces between the Space Station and the Space Shuttle.

JOHN F. KENNEDY SPACE CENTER Kennedy Space Center, FL 32899

Kennedy Space Center (KSC) was created in the early 1960's to serve as the launch site for the Apollo lunar landing missions. After the Apollo program ended in 1972, Kennedy's Complex 39 was used for the launch of the Skylab spacecraft, and later, the Apollo spacecraft for the Apollo Soyuz Test Project.

Kennedy Space Center serves as the primary center within NASA for the test, checkout and launch of payloads and space vehicles. This presently includes launch of manned and unmanned vehicles at Kennedy, the adjacent Cape Canaveral Air Force Station, and at Vandenberg Air Force Base in California.

The center is responsible for the assembly, checkout and launch of Space Shuttle vehicles and their payloads, landing operations and the turn-around of Space Shuttle orbiters between missions, as well as preparation and launch of unmanned vehicles.

LANGLEY RESEARCH CENTER Hampton, VA 23665-5225

Langley's mission is basic research in aeronautics and space technology. Major research fields include aerodynamics, materials, structures, flight controls, information systems, acoustics, aeroelasticity, atmospheric sciences, and nondestructive evaluation. Langley's goal is to develop technologies to enable aircraft to fly faster, farther, safer, and to be more maneuverable, quieter, less expensive to manufacture, and more energy efficient.

The majority of Langley's work is in aeronautics, working to improve today's aircraft and to develop concepts and technology for future aircraft. Over 40 wind tunnets, other unique research facilities, and testing techniques as well as computer modelling capabilities aid in the investigation of the full flight range, from ceneral aviation and transport aircraft through hyporsonic vehicles.

Researchers also study atmospheric and Earth sciences, develop technology for advanced space transportation systems, conduct research in laser energy conversion techniques for space applications and provide the focal point for design studies for large space systems technology and Space Station activities. Langley also manages an extensive program in atmospheric sciences to better understand the origins, chemistry, and transport mechanisms that govern the Earth's atmospheric data using aircraft, balloon, and land- and space-based remote sensing instruments designed, developed, and fabricated at Langley.

LEWIS RESEARCH CENTER Cleveland, OH 44135

Lewis Research Center was established in 1941 by the National Advisory Committee for Aeronautics (NACA). Named for George W. Lewis, NACA's Director of Research from 1924 to 1947, the center developed an international reputation for its research on jet propulsion systems.

Lewis is NASA's lead center for research, technology and development in aircraft propulsion, space propulsion, space power and satellite communication.

The center has been advancing propulsion technology to enable aircraft to fly faster, farther and higher and also focused its research on fuel economy, noise abatement, reliability, and reduced pollution.

Lewis has responsibility for developing the largest space power system ever designed to provide the electrical power necessary to accommodate the life support systems and research experiments to be conducted aboard the Space Station. In addition, the center will support the Station in other major areas such as auxiliary propulsion systems and communications.

Lewis is the home of the Microgravity Materials Science Laboratory, a unique facility to qualify potential space experiments. Other facilities include a zero-gravity drop tower, wind tunnels, space tanks, chemical rocket thrust stands, and chambers for testing jet engine efficiency and noise.

MARSHALL SPACE FLIGHT CENTER Marshall Space Flight Center, AL 35812

George C. Marshall Space Flight Center (MSFC) was formed on July 1, 1960, by the transfer to NASA of buildings and personnel comprising part of the U.S. Army Ballistic Missile Agency. Named for the farmous soldier and statesman, General of the Army George C. Marshall, it was officially dedicated by President Dwioth D. Eisenhower on September 8, 1960.

Marshall is a multiproject management, scientific and engineering establishment, with much emphasis on projects involving scientific investigation and application of space technology to the solution of problems on Earth.

In helping to reach the nation's goals in space, the center is working on many projects. Marshall had a significant role in the development of the Space Shuttle. It provides the orbiter's engines, the external tank that carries liquid hydrogen and liquid oxygen for those engines, and the solid rocket boosters that assist in lifting the Shuttle orbiter from the launch pad.

The center also plays a key role in the development of payloads to be flown aboard the Shuttle. One such payload is Spacelab, a reusable, modular scientific research facility carried in the Shuttle's cargo bay.

Marshall also is committed to the investigation of materials processing in space, which, in a gravity-free environment, promises to provide opportunities for understanding and improving Earth-based processes and for the formulation of space-unique materials. Exciting new techniques in materials processing have already been demonstrated in past Spacelab missions, such as the formation of alloys from normally immiscible products, and the growth of near-perfect large crystals impossible to grow on Earth.

MICHOUD ASSEMBLY FACILITY New Orleans, LA 70189

The primary mission of the Michoud Assembly Facility is the systems engineering, engineering design, manufacture, fabrication, assembly, and related work for the Space Shuttle external tank. Marshall Space Flight Center exercises overall management control of the facility.

JOHN C. STENNIS SPACE CENTER Stennis Space Center, MS 39529

The John C. Stennis Space Center (SSC) has grown into NASA's premier center for testing large rocket propulsion systems for the Space Shuttle and future generation space vehicles. Additionally, the center has developed into a scientific community actively engaged in research and development programs involving space, oceans, and the Earth.

The main mission of SSC is support the development testing of large propulsion systems for the Space Shuttle, Advanced Launch System, and the Advanced Solid Rocket Motor programs.

WALLOPS FLIGHT FACILITY Wallops Island, VA 23337

Established in 1945, Wallops Flight Facility, a part of the Goddard Space Flight Center, is one of the oldest launch sites in the world. Wallops manages and implements NASA's sounding rocket program and the Scientific Balloon Program. The facility operates and maintains the Wallops launch range and data acquisition facilities. Approximately 100 rocket launches are conducted each year from the Wallops Island site.

HST Servicing Mission Highlights 1993 Accomplishments

On five consecutive nights in December, astronauts aboard the Space Shuttle Endeavour thrilled the world with spacewalks to replace faulty components of the Hubble Space Telescope. They placed the telescope back into space on December 10. NASA expected orbital verification of the first servicing mission in March 1994, but focusing and alignment of the corrected optics for the telescope proved much less extensive than expected. Thus, already on Jan. 13, 1994, NASA officials and scientists were able to proclaim the repairs a complete success.

NASA's space science programs in 1993 delivered an enormous volume of data and discoveries about the planets, stars and cosmos. Unfortunately, a major disappointment occurred when the Mars Observer spacecraft, the first U.S. mission to Mars in 17 years, fell silent only days before entering orbit around the planet.

In March, NASA Administrator Daniel S. Goldin, on orders from the President, directed the agency to redesign the space station in order to make it more efficient, effective, and capable of producing greater returns on investment. In early December, the participating nations in the Space Station Program agreed to invite Russia to join in the program, and on Dec. 16, Vice President Gore and Russian Prime Minister Chernomyrdin confirmed the historic joining of the U.S. and Russian human space programs.

During 1993, NASA began to reinvigorate American investment in aeronautical research. The agency made progress in laying the foundation for a future supersonic airliner; continued to work to make tomorrow's aircraft and the nation's air traffic control system safer, more efficient, and more economical; and started efforts to foster educational programs that will help create a cadre of young, highly skilled aeronautical engineers for the next century.

Space Science

NASA's space science programs in 1993 kept up a vigorous pace in delivering a huge-volume of data, remarkable images, and often surprising discoveries about planets, stars, and the cosmos.

Hubble Space Telescope (HST)

After a one-day weather postponement, the STS-61 HST first servicing mission lifted off Pad 39B in a spectacular nightlime launch at 4:27 a.m. EST on Dec. 2, 1993. The Shuttle Endeavour pursued the observatory for several orbits, culminating in a precise and flawless rendezvous, grapple, and berthing of the telescope in the cargo bay. The Endeavour flight crew, in concert with controllers at Johnson Space Center, Houston, Tx., and Goddard Space Flight Center, Greenbelt, Md., completed all eleven servicing tasks during five extravehicular activities for full accomplishment of all STS-61 servicing objectives. This included installation of a new Wide Field & Planetary Camera and sets of corrective optics for all the other instruments, as well as replacement of faulty solar arrays, gyroscopes, magnetometers, and electrical components to restore the reliability of the

observatory subsystem. The Endeavour also provided HST with a reboost into a 321-nautical-mile, nearly circular orbit. Redeployment of a healthy HST back into orbit using the shuttle robotic arm occurred at 5:26 a.m. EST on Dec. 10, and the telescope was once again a tully operational, tree-flying spacecraft. Orbital verification of HSTs improved capabilities occurred in early Jan., well ahead of the Mar. schedule.

During the course of the year before the servicing mission, the HST:

Discovered a double nucleus resulting from the merging of two galaxies.

Discovered a remarkable pinwheel-shaped disk of gas in the heart of the galaxy surrounded by clusters of young stars born as a result of a collision of two galaxies. The HST finding provides strong evidence explaining the origin of galaxies.

Provided greatly refined measurements of the distance of a nearby galaxy, offering a more precise yardstick for measuring the size and age of the universe.

Discovered stars with "naked cores" representing an entire new population of very blue stars that apparently have been cannibalized of their outer gas layers by other passing stars.

Provided spectacular views of a shattered comet hurtling towards a Jul. 1994 collision with Jupiter, refining previous ground-based observations.

Found disks of dust around newly formed stars, confirming theories about the birth of planets.

Provided the earliest look at the rapidly ballooning bubble of gas blasted off an exploding star, known as a nova,

Cosmic Background Explorer (COBE)

Provided the most precise temperature measurements yet obtained of the radiant energy remaining from the explosion that began the universe according to the Big Bang theory-providing the toughest test yet of that theory.

Compton Gamma-Ray Observatory (GRO)

Yielded two major breakthroughs that will enable scientists to find remnants of old supernovae--the remains of exploded stars--buried deep in the Milky Way galaxy.

Pinpointed an unusual star as the source of mysterious gamma rays that have puzzled researchers since they were first detected more than 80 years ago.

Discovered a new physical phenomenon--rare flashes of gamma rays produced in the Earth's upper atmosphere above regions of intense storms, possibly associated with huge electrical discharges.

Provided new and stronger evidence that gamma-ray bursts do not originate in the Milky Way galaxy and therefore probably come from cosmological distances.

Roentgen Satellite (Rosat)

Discovered a huge concentration of so-called dark matter in space about 150 million light years (about 5.8 trillion miles) from Earth. The discovery appears to confirm that most dark matter in the universe is concentrated in and around small groups of galaxies. This dark matter is believed to constitute up to 95 percent of the mass of the universe.

Extreme Ultraviolet Explorer (EUVE)

Provided new information that will help astronomers understand the evolution of stars into the white-dwarf stage and the details of how stars like Earth's sun die.

International Ultraviolet Explorer (IUE)

Provided the first direct evidence that red supergiant stars—the largest known stars—end their existence in massive explosions known as supernovae.

Mars Observer

Just weeks after transmitting its first and only image of Mars from 3.6 million miles (5.8 kilometers) away, the mission to the Red Planet fell silent just as the spacecraft was preparing to enter orbit around Mars. NASA Administrator Goldin formed an independent panel to investigate why the spacecraft failed to reestablish communications following a propellant tank pressurization operation just two days before orbit insertion.

The investigating board reported just after the end of the calendar year that the most likely cause of the loss of communications with the spacecraft on Aug. 21, 1993, was rupture of the fuel pressurization side of the propulsion system, resulting in a leak that caused a catastrophic spin and disoriented the spacecraft. The mission was designed to provide a global map of Mars and voluminous surface and weather data over a full martian year.

Galilien

Encountered and provided high resolution images of the asteroid da in Aug. Ida is the second asteroid Galileo has flown on its way to explore Jupiter in 1995.

Magellan

Magellan completed the successful first attempt to "aerobrake" a spacecraft by dipping into the atmosphere of a planet when it did so at Venus in Aug. 1993. Magellan's orbit was changed from highly elliptical to nearly circular by this maneuver of draggling through the thick Venusian atmosphere repeatedly over a period of 70 days. From the new, lower, circular orbit the spacecraft was able to begin profiling the planet's gravity, especially in the polar regions, providing a better understanding of Venus' interior.

Gravity Wave Experiment

Three interplanetary spacecraft--Mars Observer, Galileo, and Ulysses--participated in an experiment attempting to prove the existence of elusive waves in the universe's gravitational field, marking the first time three spacecraft have ever made

observations simultaneously. Einstein predicted the existence of gravitational waves, but scientists have never detected one directly. They are studying the data from the three spacecraft to see what results they produce.

Ulysses

Became the first spacecraft to reach further south than the most southerty dip of the sun's magnetic equator. In this previously unexplored region, Ulysses observed that the fast-moving stream of charged particles called the solar wind is twice as fast as, but less dense than near the sun's equator.

Detected interstellar gas and micron-sized grains of interstellar dust flowing into the solar system. The mission is on its way to explore the polar regions of the sun.

Solar, Anomalous, and Magnetospheric Particle Explorer (Sampex)

Pinpointed the location of a new radiation belt around the Earth composed of cosmic rays, resulting from the solar wind's interaction with the thin gas between the stars.

Voyager

Detected radio waves believed to come from the long-soughtafter heliopause-the boundary that separates the solar system from interstellar space. Voyager 1, about 5 billion miles from the sun at the end of the year, and Voyager 2, about 4 billion miles from the sun, had been launched over 15 years ago.

Upper Atmospheric Airborne Research

NASA scientists, using a special low-light-level, all-sky camera aboard research aircraft, recorded for the first time unexpected huge flashes of lightning in the upper atmosphere that may affect atmospheric ozone.

Life and Biomedical Sciences

The Spacelab Life Sciences-2 (SLS-2) mission , the longest Space Shuttle mission to date (flown in October), carried 14 experiments concentrating on the cardiovascular/cardiopulmonary systems, neuroscience, regulatory physiology, and musculoskeletal systems of the body. The experiments performed on Columbia's crew and laboratory animals, along with data collected on the SLS-1 mission in June 1991, provided the most detailed and interrelated physiological measurements acquired in the space environment since the Skylab program in 1973 and 1974.

NASA established a U.S./Russian satellite telemedicine program known as "Spacebridge to Moscow." This cooperative effort was demonstrated to members of Congress in November. The demonstration linked clinical consultants on Capitol Hill by satellite with physicians in Russia and West Virginia.

Microgravity Sciences and Applications

NASA successfully launched STS-55 (Columbia) on April 26, 1993. Referred to as Spacelab D-2, this was a reimbursable mission

contracted by the German Space Agency. Experiments, some of which were collaborative with U.S. scientists, dealt with materials science, biology, and space technology. The orbiter carried a European Space Agency (ESA)-designed research facility to study the effects of weightlessness upon the human body.

In November, NASA announced that it will design and build the Space Station Furnace Facility, the first major element of Space Station scientific instrumentation and the focus of microgravity materials science.

Mission to Planet Earth (MTPE)

The Office of Mission to Planet Earth continued to collect and analyze data that ultimately will allow humans to make informed policy decisions about how their actions are affecting the global environment.

Ozone Studies

Using data from the Total Ozone Mapping Spectrometer (TOMS), scientists from the Goddard Space Flight Center in Apr. determined that ozone levels over the mid-latitudes of the Northern Hemisphere had reached record low levels in the second half of 1992. These low readings persisted into early 1993.

Other ozone studies, conducted by the Upper Atmosphere Research Satellite (UARS), showed ozone levels over the Arctic were depleted 10 to 20 percent from 1992. UARS also observed high, persistent levels of chlorine monoxide, a key gas involved in ozone depletion, over the Arctic.

Late in the year, scientists from NASA and the National Oceanic and Atmospheric Administration observed the lowest ozone values ever seen, recorded in the Antarctic "ozone hole" on Oct. 6.

TOMS aboard Nimbus-7 ceased operating in May. Launched in 1978, TOMS/Nimbus-7 provided more than 14 years of continuous data on global ozone levels. Data from TOMS and other U₁S, and international research programs provided the scientific underpinning for international agreements in the 1980s to phase out the use of ozone-depleting chemicals in electronics and other industries.

The global-ozone data set is being extended without interruption by the TOMS instrument aboard a Russian Moteor-3 satellite. Launched in 1991, TOMS/Meteor-3 will be complemented in 1994 with the launch of another TOMS on NASA's first Earth Probe satellite.

Deforestation

In June scientists from the Goddard Space Flight Center and the University of New Hampshire documented increasing threats to wildlife habitat in the Amazon Basin. Using data from the NASA-developed Landsat-4 and -5 satellites, the scientists showed that the physical extent of deforestation in the Brazilian Amazon Basin is less than had been estimated. However, the fragmentation of the rain forest and the "edge effects" on the perimeters of these forest fragments are greater than had been believed, potentially increasing the threat to biological diversity.

Volcanology

A study by scientists at the Langley Rasearch Center, Hampton, Va., using data from the spaceborne Earth Radiation Budget Experiment, indicated that the 1991 eruption of Mount Pinatubo in the Philippines slightly cooled the Earth well into 1992. This was the first unambiguous, direct measurement of changes in the Earth's climate as a result of a volcano.

In September, scientists and aircraft teams from the Jet Propulsion Laboratory (JPL), Pasadena, Calif., and the Stennis Space Center, Miss., took part in a mission using infrared instruments to conduct aerial surveys of volcanoes in the Kamchatka peninsula of eastern Russia. It yielded extensive data that will be used in joint U.S.-Russian studies. As part of the mission, a new direct air corridor was defined between Shemya Air Force Base, Alaska, and Elisova, Russia. For the first time since 1943, a Russian citizen flew as a crew member aboard a U.S. research aircraft.

Oceanography

The U.S.-French TOPEX/POSEIDON spacecraft continued its precision measurements of changes in global sea levels. In Feb., scientists used this data to predict correctly that the ongoing El Ni_o event would be strengthened, leading to wetter and colder-than-normal winters in the eastern U.S. In November, this data indicated conditions were primed for development of another El Ni_o event in the winter of 1993-94.

Using new, improved satellite-tracking technologies, along with more accurate measurements of the Earth's gravity field, TOPEX/POSEIDON is measuring global sea-level changes with unprecedented accuracy: approximately 2 inches for short-term changes and 0.4 inches for long-term changes. A cooperative program between NASA and the Centre National d'Etudes Spatiales (CNES), the French space agency, the satellite is providing data that will be used to achieve a better understanding of the oceans' role in climate change.

Space Flights

MTPE launched three space missions this year. April saw the flight of the second Almospheric Laboratory for Applications and Science (ATLAS-2), aboard Space Shuttle Discovery. ATLAS-2 consisted of seven instruments to study atmospheric chemistry and solar energy, focusing on the processes of ozone depletion.

ATLAS-2 continued the spacebourne segment of MTPE that began in 1991 with the launch of UARS. MTPE scientists continue to acquire and analyze data from UARS, TOPEX/POSEIDON, TOMS/Meteor-3, and the Earth Radiation Budget Satellite. MTPE scientists have also been analyzing data from out-of-service U.S. weather satellites and international spacecraft.

In Aug., NASA launched the NOAA-I satellite, an operational spacecraft used by NOAA in its weather observations. Contact with the spacecraft was lost on Aug. 21, with a failure review report due in early 1994.

Other Research Programs

Ongoing aircraft and ground-based studies complemented MTPE's space-based research. An international research program called Tropical Ocean Global Atmosphere/Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) studied how parts of the Pacific Ocean exchange energy and moisture with the atmosphere. These measurements, the most comprehensive ever gathered on this phenomenon, will provide new insights into the El Ni_o weather pattern and its worldwide effects.

An aircraft survey, using a NASA-developed remote-sensing platform, showed that areas of the Greenland ice sheet thickened by as much as 6 to 7 feet between 1980 and 1993. Scientists want to make repeated measurements of ice sheets and sea ice to see how they respond to changes in climate.

Applications and Technology

MTPE programs also found immediate applications to natural hazards in 1993. MTPE aircraft surveyed the summer floods in the American midwest and brush fires in Calif., helping federal and local officials estimate damage. Satellite data on African vegetation helped the U.S. Agency for International Development predict the likelihood of famine and locust plagues in some areas.

Technologically, MTPE continued to improve techniques used to gather environmental data, especially geological data. MTPE technology applied to European satellite data was used to map the 1992 Landers earthquake with an accuracy of approximately 0.4 inches, showing variations in seismic stress near the epicenter. Also, NASA-developed precision receivers for the Defense

Department's Global Positioning System were used in field studies in earthquake-prone areas to gain a better understanding of these natural hazards.

Space Station

This was an unprecedented year of change in the nine-year history of Space Station. On Mar. 9 Administrator Goldin notified all cognizant NASA participants that the President, while stating his support for development of a space station, had directed the agency to redesign Space Station Freedom in order to make it more efficient, effective, and capable of producing greater returns on our investment. The President also directed NASA to create an independent, senior-level review team to report and submit its findings to the Administration by early Jun. The resultant Advisory Committee on the Redesign of the Space Station was chaired by Dr. Charles Vest, President of MIT, who was appointed on Mar. 25. To assist the panel, NASA established a Redesign Team. The 45-member team, comprised of NASA employees and representatives from Freedom's international partners, beam work on Mar. 10.

On Jun. 7 the Redesign Team submitted its final report to the Vest Committee, proposing three technically-viable options for the new Space Station: "Option A," using a modular approach employing existing flight-proven hardware as well as costeffective Freedom systems; "Option B," derived from mature Space Station Freedom designs and making maximum use of Freedom systems; and "Option C," which would use a Shuttlederived launch vehicle to place a station into orbit with a single launch. Among management and organizational issues addressed

by the Redesign Team was one wherein the team recommended establishment of a 300-person core Program Office at a host NASA Center and the naming of a single prime contractor in place of Freedom's multi-prime contractors. The Administration approved these recommendations,

On Jun. 10 the Vest Committee submitted its final report and recommendations to the Administration. Seven days later, the White House announced the President's selection of "Option A" as the new Space Station design. On August 17 NASA announced the selection of the Johnson Space Center, as the Host Center for the new Space Station Program Office. It named the Boeing Defense and Space Group as the new Space Station Prime Contractor.

On Sep. 7 a NASA Transition Team delivered its "Alpha Station" Program Implementation Plan to the Administration. It provided cost and schedule information for "Alpha Station" to the Administration on Sep. 20 and an addendum to the implementation plan on Nov. 1, detailing potential Russian involvement in the program. The new plan reduced Civil Service support for the new Space Station by more than half. And by year's end, after unanimous invitation by all Space Station principals, Russia had agreed to become a full-fledged international partner in the effort. Vice President Gore and Russian Prime Minister Chernomyrdin confirmed the historic joining of the U.S. and Russian human space programs during a joint commission meeting in Moscow on Dec. 16.

Space Flight

On Shuttle mission STS-54 in Jan., the crew deployed the sixth in a series of NASA's Tracking and Data Relay Satellites. On STS-57

in Jun., NASA astronauts retrieved the EURECA satellite, which had spent almost a year in orbit. After being stowed in the cargo bay, it was brought back to Earth and the experiments aboard were delivered to the European Space Agency (ESA). During STS-51 in Sep. the Shuttle crew delivered a new Advanced Communications Technology Satellite (ACTS) into geostationary orbit.

Two Shuttle missions in 1993 carried the ESA-developed pressurized spacelab module allowing the Shuttle to become an orbiting laboratory. The STS-55/Spacelab D-2 mission, launched Apr. 26, saw the second flight of a mission devoted primarily to Germany for conducting a wide range of experiments in the microgravity environment of space. The STS-58/Spacelab Life Sciences-2 mission, launched Oct. 18, involved NASA astronauts continuing the agency's efforts to gain more knowledge of how the human body adapts in a weightless condition. The mission will also provide insight into medical problems experienced by people on Earth.

The Shuttle became an orbiting astronomical observatory on several missions during 1993. The Diffuse X-ray Spectrometer (DXS) payload carried on STS-54 in Jan., the Atmospheric Laboratory for Applications and Science-2 (ATLAS-2) payload carried on STS-56 in Apr., and the Orbiting and Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite (ORFEUS-SPAS) payload deployed and retrieved on STS-51 in Sep. investigated such Issues as the origin and nature of the matter that fills the space between stars, the relationship between the sun's energy output and Earth's atmosphere, and the life-cycle of stars.

A new era in commercial development of space began in Jun. during Shuttle Mission STS-57, when the privately-developed mid-deck augmentation module known as Spacehab was carried in the Shuttle's cargo bay. The module provides additional access to crew-tended, mid-deck lockers and experiments.

Extravehicular activities (EVAs) by astronauts during STSs-54 in Jan., -57 in Jun., and -51 in Sep. prepared for the extensive series of EVAs associated with the STS-61 Hubble servicing mission in Dec., already described. The five EVAs performed on STS-61 set a new record for most spacewalks on a single Shuttle flight, and STS-61 astronaut Tom Akers became the American with the most EVA time in space, with a total time to date of 29 hours, 40 minutes.

Aeronautics

In 1993 NASA began to reinvigorate American investment in aeronautical research. The agency made steady progress in laying the foundation for a future U.S. supersonic airliner, making air travel "better, faster, cheaper" for millions of pilots and passengers, and creating technology that industry can use to make its products even more competitive in the world marketplace.

High-Speed Research

In March NASA's Langley Research Center, Hampton, Va., got the assignment of leading the agency's multi-year High-Speed Research Program, which is developing technology for an economically practical, environmentally safe U.S. supersonic

airliner. Langley began to manage research in aerodynamics, airframe materials, and several other disciplines. The center also coordinates the efforts of other NASA facilities working on engine technology, high-allitude atmospheric research, and flight tests of new technology.

The start of fiscal year 1994 kicked off Phase II of the High-Speed Research Program. Phase II will move promising concepts out of the laboratory and closer to practical application. In Nov. NASA selected the nation's two leading aircraft engine manufacturers for negotiations leading to the first large Phase II contract award. The team of General Electric and Pratt & Whitney will develop critical propulsion component technologies under a contract estimated at just under \$300 million.

Better Planes, Safer Skies

Many of NASA's aeronautical highlights in 1993 were part of the agency's work to make tomorrow's alicraft and the nation's air traffic control system safer, more efficient, and more economical. In Apr., a NASA F-15 research plane based at Ames-Dryden Flight Research Facility, Edwards, Calif., made the first controlled landing using only engine power instead of normal flight controls. The successful touchdown was part of a NASA project to develop a computer-assisted engine system that lets a plane fly and land safely with its engines if normal plane control surfaces such as elevators, rudder, and ailerons are disabled. The system makes the aircraft turn, climb, descend, and eventually land by varying the speed of the engines, one at a time or simultaneously.

Among many other projects, in Oct. the F-18 started flight tests of a new control system using fiber optics--small bundles of light transmitting cables—that weigh less and take up less space than the copper wiring in today's aircraft. Fiber optics also have better immunity to signal interference, are free from short circuit arcing, and can carry more electronic signals.

At Ames Research Center, Mountain View, Calif., NASA did wind tunnel tests on a full-scale Advanced Ducted Propulsor that could lead to a new generation of quieter, more fuel-efficient passenger plane engines. The joint NASA/Pratt & Whitney project tested the large ducted fan engine under simulated landing conditions, with an emphasis on its ability to reverse thrust for stowing down during post-landing rollout.

In July NASA and the Federal Aviation Administration (FAA) unveiled the Center/TRACON Automation System (CTAS), a new, computerized tool that helps air traffic controllers schedule aircraft arrivals more efficiently. CTAS monitors incoming planes during the last 20 minutes of flight and develops a plan to handle the traffic according to the airport's spacing requirements. The FAA announced that it will put CTAS into operation at 12 selected U.S. airports and forecasts that the system will save airlines nearly \$600 million by the year 2000.

Weather Research and Development

At the end of September NASA and the FAA announced the development of three different types of sensors to detect windshear-sudden, violent changes in wind speed and direction. They also described several innovative new programs that will

let airports around the world handle more planes with fewer weather and traffic delays while maintaining today's high safety standards.

During the year, NASA finished tests of a new inflight weather data device for pilots. The Cockpit Weather Information Needs system, developed by Langley Research Center, draws on commercial data sources to generate in-cockpit maps of storms and lightning discharges. In simulations at Langley, pilots from 14 flight crews burned 5 percent less fuel and flew 5 percent fewer miles to avoid bad weather when using the system-numbers that translate into savings of about \$6 million per year for a typical airline.

In August, NASA's Lewis Research Center, Cleveland, wrapped up 10 weeks of icing tests on a one-sixth scale model of a Sikorsky Black Hawk helicopter, a design in wide use today. The tests, which covered a range of icing and forward flight conditions, will be used to develop reliable methods to reduce icing certification costs and time.

Partnership with Industry

In March, NASA and Learlet, Inc. announced an agreement to study aircraft size and aerodynamics, research that could let the company produce a new, economical business jet. Also, NASA and the nation's largest aerospace companies began working together in April 1993 to see how NASA computer programs can help industry design and produce airplanes more efficiently.

With technology flowing the other way, NASA adopted an existing high-tech x-ray system to improve inspections of aging aircraft. Langley Research Center began working with the system's developer, Digiray Corp., to modify it for inspections of wings, turbines, and propeller blades possibly affected by corrosion, cracks, and disbonding.

Partnership with Russia

NASA and the Russian State Committee for the Defense Branches of Industry signed a memortandum of understanding on Dec. 16 in Moscow to cooperate in eight areas of aeronautical science: transition and turbulence, composite structures and materials, chemically reacting flows, thermal protection system materials, environmental concerns in aviation, hypersonic technologies, experimental test facilities, and advanced aerospace materials.

"Better, Faster, Cheaper" Aeronautics Research

Among improvements in aeronautics research, engineers at Dryden came up with a design for a new engine inlet rake that is saving American taxpayers more than \$1 million on an aeronautics research project. The device, which will provide airflow data in a NASA F/A-18 that flies at high angles of attack, is more compact and requires many fewer changes to the aircraft than previous instruments.

In Nov., NASA revealed that Lewis researchers had invented a new silicon carbide crystal growth process called "site competition epitaxy" that can be used to produce superior semiconductors for electronics aboard aircraft, spacecraft, and ground vehicles.

In Apr., an SR-71 'Blackbird' based at Dryden did high-altitude astronomy studies with an ultraviolet camera from JPL. The Blackbird can carry scientific experiments on much shorter notice than satellites and sounding rockets. NASA is also using the plane for aeronautics studies in the High-Speed Research Program.

Engineers for Tomorrow

The Office of Aeronautics started three programs in 1993 to foster education for aeronautical engineers. Syracuse University, the University of Maryland, and the University of Texas at Arlington received NASA funding for centers that will concentrate on hypersonic aeronautics-flight at more than five times the speed of sound. The effort is important because hypersonic research is expected to increase, but the field is dominated by older engineers who may soon retire.

NASA also announced an initiative to create a formal concentration of aerospace engineering courses at the historically black Southern University and A&M College in Baton Rouge, La. And in November, the Office of Aeronautics picked 20 universities to receive grants for the first phase of a new multidisciplinary design and analysis training program.

Advanced Concepts and Technology

NASA was heavily involved in the commercial development of space technology through its Office of Advanced Concepts & Technology (OACT) established in October 1992 by a merger of the Office of Commercial Programs and the Space Technology

Directorate. Under its aegis, in January 1993 the robot Dante partially descended into the volcanic crater of Mt. Erebus in Antarclica until controllers aborted the mission due to a severed fiber optics cable, which resulted in the loss of communications between the robot and its control station. Developed by NASA and Carnegie Mellon University, Dante tested prototype robotic technologies for uncrewed planetary exploration and to advance scientific knowledge of the volcano. Despite the setback, the project successfully tested new telerobotic technologies and the remote operation of the robot via satellite communications with time delay. Dante was a model for performing missions better, faster, and cheaper, having been built in only 11 months under a \$2 million NASA grant to Carnegie Mellon University.

Other related robotic developments included use of a satellite link to maneuver a Russian-built robot in a Moscow laboratory in collaboration among NASA's Ames Research Center, McDonnell Douglas Space Systems, the Russian Academy of Sciences, the Institute for Space Research, and the Russian Space Agency. The rover robot was a prototype of a design Russian scientists hope to land on Mars in 1996. The objective of the project was to prove the feasibility of the teleoperator interface, developed at Ames, and used to steer the robot.

OACT began a three-year technology commercialization experiment in February 1993 by funding two Technology Commercialization Centers, one at Ames and the other at Johnson Space Center in an effort to foster new industry and create new jobs.

Jun. 1993 saw the maiden flight of the Spacehab module in the cargo bay of Space Shuttle Endeavour. Privately funded and developed by SPACEHAB, Inc. of Artington, VA, the module provides an additional 1,100 cubic feet of pressurized experimental space on the Shuttle, quadrupling the available working and storage volume. The first flight carried 15 commercial experiments. Four of NASA's Centers for the Commercial experiments of Space (CCDSs) and the Johnson Space Center collaborated with 24 industry affiliates to perform biotechnology experiments. Four other CCDSs and NASA's Langley Research Center collaborated with 11 industrial partners to perform experiments in materials science.

Among other OACT achievements in 1993, NASA joined forces with the NSF, DARPA, DOE's Defense Programs, DoT, and NIST to manage the Technology Reinvestment Project. Announced by President Clinton in Mar. 1993, this is a \$472-million effort to help U.S. industry respond to the twin challenges posed by decreased defense spending and increased global economic competition. One thrust of the project is to reorient the military/industrial base toward dual-use technologies, processes, and products. Companies, state and local governments submitted 2,800 proposals to the project during a two-month solicitation period ending in late Jul. Generally, proposals had to include provision for commercial application of the technology and for the company to provide at least 50 percent of the funding.

Also, NASA successfully faunched the Advanced Communications Technology Satellite (ACTS) from Space Shuttle Discovery in Sep. 1993. ACTS represents the next generation in communications satellites. Its fundamental goal is to test and prove advanced

communications technologies and to evaluate the potential applications of the technologies.

Also, the nation's top technology managers gathered in Anaheim, Calif., in Dec. 1993 at TECHNOLOGY 2003, the fourth national technology transfer conference and exposition. Sponsored by NASA, NASA Tech Briefs magazine, and the Technology Utilization Foundation, the event spotlighted leading edge technologies from NASA and other federal agencies that U.S. industry can use to develop new or improved products and processes. More than 8,000 attendees toured the more than 300 exhibits during the two-day conference.

Space Communications

NASA successfully launched the Tracking and Data Relay Satellite TDRS-6 in January aboard the Shuttle Endeavour. NASA's TDRS System (TDRSS) is a space-based satellite network developed to meet telecommunications needs essential to the success of Space Shuttle, Space Station, and other low Earth-orbiting spacecraft missions. TDRS-6 fulfilled the essential requirement of having two fully operational satellites and a fully operational "ready reserve" capability in Earth orbit. This ensures that NASA communications, telemetry, and data acquisition capabilities required by space missions would not be jeopardized by a single satellite failure.

Apr. 1993 marked the 10th anniversary of NASA's TDRSS. TDRSS began with the launch of the first satellite on April 4, 1983. At its highest capacity, the TDRSS is able to transfer in one second the equivalent of a 20-volume encyclopedia containing over 34 million words. Since becoming operationat, TDRSS has relayed

approximately 3.5 million minutes of data to the ground, and every subsequent Space Shuttle mission has required its resources.

NASA established a remote terminal in Australia to augment the scientific return from the Compton Gamma Ray Observatory (GRO) after failure of the on-board tape recorders. This facility will allow scientists to collect approximately 30 percent more data, depending on GRO's attitude. In addition, the facility will allow engineers to monitor the health of the spacecraft with better success.

NASA completed an Interfacility Fiber Optic Link (IFL), which connects the White Sands Ground Terminal and the second Tracking and Data Relay Satellite Ground Terminal in New Mexico. This link enhances the exchange of operational data between these sites, increases ground terminal capacity, and significantly improves the reliability of the expanded TDRS constellation that is being planned to meet the requirements for future data-intensive scientific missions.

The NASA Communications network (NASCOM) also implemented the German Space Operations Center multiplexer system, which was used for the German Spacelab mission (Spacelab D-2) on Apr. 26, 1993. NASCOM provided diversely routed circuits from the Goddard Space Flight Center to Germany, providing the data and voice capability for ground control operators in Germany to communicate with the astronauts on board the spacecraft to assure mission success.

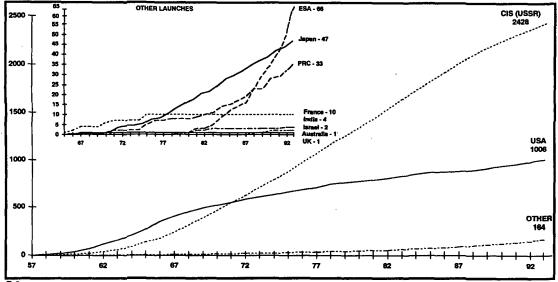
A new control center concept, called the Transportable Payload Operations Control Center (TPOCC), was successfully demonstrated with the launch of the first SAMPEX mission on Jul. 3, 1992. The lessons learned and software from the SAMPEX TPOCC were in the process of being applied to subsequent missions as the year ended. They have demonstrated a significant development cost savings through reuse of over 75 percent of existing software.

NASA's Ground Network facilities provided communications to a wide variety of NASA and international missions. These included Space Shuttle; a variety of Earth-orbiting spacecraft performing numerous Earth-observing missions; planetary orbiters; and deep space missions. Ground Network facilities also provided communications services during launch, flight, and recovery of high-altitude balloons and sounding rockets, used to enable research in such scientific disciplines as geophysics, astrophysics, and astronomy.

The worldwide capability further allowed ground-based controllers to navigate the spacecraft, to configure them for scientific observations, and to recover the resulting data. Notable events covered during the past year included the encounter of the spacecraft Galileo with the asteroid Ida and the recovery of pictures of this asteroid; likewise, the aerobraking of the spacecraft Magellan in orbit about Venus. Further uses of the Ground Network facilities included astronomical observations employing radio and radar.

This year, additional advances were made by the Deep Space Network (DSN). Beginning in Jan. 1993, JPL successfully conducted a Ka-band (33 GHz) Link Experiment (KaBLE) with the Mars Observer spacecraft. Using advanced technology, the DSN Research Station at Goldstone, Calif., simultaneously acquired and tracked this spacecraft at Ka-band and X-band (8 GHz) for over a seven month period. This was the first Ka-band experiment to receive telemetry from and perform ranging on a deep space mission. The lessons learned from KaBLE were evolving into the operational DSN as the year ended.

Safety and Mission Assurance


In order to prevent repeating past failures and to capitalize on past successes, NASA joined the Air Force, Navy, and FAA in what is fast becoming the interagency aerospace lessons learned system. This system already contains more than 5,800 lessons ready for immediate use. Additionally, NASA--in conjunction with the University of West Virginia--was in the process of bringing on line a new facility to support Independent Verification and Validation of software. This facility will provide a single NASA focal s upon the human body.

In November, NASA announced that it will design and build the Space Station Furnace Facility, the $\,$

Section B

Space Flight Activity

Launch History (Cumulative)

Current Worldwide Launch Vehicles

USA					A	\mathbb{A}	II/	IDIA	JAP	AN	C	HIN	IA
Payload Weight (Tons)											المتاتات المالا	المتعاضاته	
130 C70 C20		# 11 11 H	Delb D 3920 3.4 1.3	Contrar 33 41 14 24 04 13	72 to 13 J 4 J 4 J 2 J	734n 7 879 Contest 0 17.7 29.5 9.8 - 4.5 -	SLV e.o	ASLV	M-3S II 0.7 - -	H-1 1.0 1.2 0.6	Long March 2C 2.6	Long March 2-4L 	Long March -3 4.5 1,4 0.7
Payload Weight (Tons)	SSR)								ISR	AEL	ESA ASSESSED		
LEO GTO GEO	SL-8 1.9 -	SL-11 4,0	.SL/14 4.9 -	รม 63 - -	SL-4/6 7.5 2.1	Medium Litt	Proton 19.5 2.2	Energys 100	5h 0.	-	Arlan S 2 1	2.J	Arisno 441. 7.3 4.2 2.2

Summary of Announced Launches

							W	<u>orldwid</u>	e Laur	<u>iches</u>									
	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
Australia				_	_		_				1	0	0	0	0	0	0	0	(
CIS (USSR)	2	1	3	3	6	20	17	30	48	44	` 66	74	70	. 81	83	74	86	81	89
DOD,	-	5	6	11	19	34	27	35	39	42	32	26	19	17	17	13	10	8	٤
ESA	-			-				-		_	-	_		-		-		-	
France	-						_	-	1	1	2	0	0	2	1	. 0	0	0	
India	_	_		_	_			_				-		_	-				_
Israel	-	-		-			_	_	-					-					_
Japan	-			_										1	2	1	0	1	
NÁSA	-	2	5	5	10	18	11	22	24	31	26	19	21	12	15	18	13	16	19
PRC	-	-		-						_	-			1	1	ō	. 0	ā	
United Kingdom	_				_		-								1	ō	Ō	ŏ	
US Commercial						٠					-			~		-		_	
TOTAL	2	8	14	19	35	72	55	87	112	118	127	119	110	114	120	106	109	106	125
							ı	NASA L	aunche	12									
	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
NASA		2	5	5	10	15	9	20	21	. 26	18	12	13	6	6	9	9	2	10
Cooperative	_		_	_		. 2	ő	2	- 2	Õ	2	3	2	ŏ	5	1	ő	5	
DOD	_	-	_	_	_	_	1	ō	ō	1	ō	ō	ō	ŏ	ő	i	1	. 9	٠.
USA	_		_	_		1	- ;	ŏ	ĭ		ě	ă	ă	Ä	3	3	,	Ä	
Foreign	· <u>-</u>		_ =	_	_				<u> </u>			1_	2	_ 2	1	4	1	5	3
TOTAL		2	5	5	10	18	11	22	24	31	26	19	21	12	15	18	13	16	19

Summary of Announced Launches

							W	orldwic	le Lau	nches									
	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	TOTA
Australia	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	ò	0	0	0	
CIS (USSR)	99	98	88	87	89	98	101	98	97	97	91	95	90	74	75	59	54	60	2428
DOD	11	10	12	7	6	5	6	7	10	3	1	5	4	10	10	8	10	10	50
ESA	-			1	0	2	0	2	4	3	2	2	7	7	5	7	9	17	6
France	0	0	٥	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
India	_	_		-	1	1	0	1	0	0	0	0	0	0	0	0	1	0	
Israel									_	_	-		1	ō	1	Ō	0	Ō	
Japan	1	2	3	2	2	3	1	3	3	2	2	3	2	2	3	2	3	1	4
NASA	15	14	20	9	7	13	12	15	12	14	5	3	8	7	8	8	13	12	483
PRC	2	ò	-1	ñ	ò	1	1	1	3	1	2	2	4	ò	5	Ť	3	1	3
United Kingdom	ō	ō	ò	ŏ	ō	ó	Ó	ó	ō	ò	ō	ō	Ó	ŏ	ō	ò	ŏ	ó	•
US Commercial	_	-			_	-	-	_	_	_			_	1	9	1	2	5	18
TOTAL	128	124	124	106	105	123	121	127	129	120	103	110	116	101	116	86	95	106	3598
	NASA Launchea																		
	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	TOTAL
NASA		3	8	3	1		4	A	6	9	•	0	2	6	6	6	11	11	284
Cooperative	,	1	,	ŏ	ò	7	ŏ	7	ŏ	ő	ò	ŏ	1	ň	Ĭ	ň	';	- '4	35
DOD		- ;	- 1	2	2	3	ő		ĭ	2	Š	٠	, i	•	- ;	ĭ	- ;		31
USA	8		- 1	3	- 4		6		,	3	•	- 1	7	,	,	- ;	,	ŏ	92
Foreign	2	7	-	3	Ô	ń	2	•	7	0	'n	- 1	ò	ŏ	ŏ	ò	ő	ŏ	39
rureign							<u> </u>										<u> </u>		39
TOTAL	15	14	20	9	7	13	12	15	12	14	5	3	8	7	8	7	13	12	481

NASA Launches By Vehicle

	1957	1958	1959	<u> 1960</u>	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
Attas				_	2	3	1	0	0	1	0	0	, 0	0	0	0	0	٥	0
Atlas Agena	**				2	4	0	5	2	9	6	1	0	0	0	0	0	0	0
Atlas E/F								_						_		_	-		-
Atlas Centaur		_	-	-			1	1	1	4	4	3	3	0	3	4	3	1	2
Atlas II S/A		_					-				_		_	-					_
Delta		-					1	4	7	8	12	7	10	7	5	7	5	7	12
Juno II		1	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	٥	0
Saturn I								3	3	0	0	0	0	0	0	0	0	0	0
Saturn IB			-				-			1	0	2	0	0	0	0	3	0	1
Saturn V			_				-			_	1	2	4	1	2	2	1	0	0
Scout			_	-	2	1	2	6	4	1	2	4	2	2	5	5	1	6	2
Shuttle										_				_		-	-		
Thor Able	**	1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Thor Agena	-		_			1	0	2	2	2	1	0	2	2	0	0	0	٥	0
Thor Delta			_	2	3	9	6	0	0	0	0	0	0	0	0	0	0	٥	0
Titan II						-		1	5	5	. 0	0	0	0	0	0	0	0	0
Titan III				-			_			_									-
Titan Centaur		_				_				-				_		-		2	2
Vanguard		••	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL		2	5	5	10	18	11	22	24	31	26	19	21	12	15	18	13	16	19

NASA Launches By Vehicle

0 0 0 0 0 - 2 2 7 9 10 0 0 0 0 0 0 1 1 1		0 0 1 3 3 0 0 0	0 1 4 5 0 0	0 0 2 - 7 0 0	0 0 1 1 - 7 0 0	0 1 1 - 4 0 0	0 0 0 0 0 0	0 0 1 1 - 1 0	0 0 0 0 0 0 0 0	0 0 1 0 0 0	0 0 0 1 - 1 0 0 0	0 0 0 0 0 0	0 0 1 0 - 0 0 0	0 0 0 0 0 0 0 0	0 0 1 1 1 0 0 0	11 61 1 157
- 2 2 7 9 0 0 0 0 0 0	1 2 3 0 0 0	1 3 3 0 0 0	1 4 5 0	0 2 - 7 0 0 0	1 1 - 7 0	1 1 - 4	0 3 0 0	1 1 - 1 0 0 0	2 0 0	1 0 - 1 0 0	0 1 1 0 0	0 1 - 0 0 0	0 0 0	2 0	0 1 1 1 0 0	29 11 61 1 157 5
2 7 9 10 0 0 0 0	3 0 0 0	3 0 0 0	_	2 7 0 0 0	0	1 1 - 4 0 0 0	3 0 0 0	0	200	ŏ	1 - 1 0 0	0	0 0	0 2 0 0	1 1 1 0 0	61 1 157 5
9 10 0 0 0 0 0 0	3 0 0 0	3 0 0 0	_	7 0 0 0	0	1 - 4 0 0 0	0 0 0	0	2 0 0	ŏ	ō	0	0 0	2 0 0	1 1 0 0	1 157 5
0 0	0	0 0 0	_	0 0	0	- 4 0 0 0	0	0	0	ŏ	ō	0	0	0	1 1 0 0	5
0 0	0	0 0 0	_	0 0	0	4 0 0 0	0	0	0	ŏ	ō	0	0	0	1 0 0	5
0 0	0	0	_	0	ŏ	0 0 0	0	0	ŏ	ŏ	ō	ŏ	ō	ŏ	0	
o o	0	0	0	0	•	0 0 0	ŏ	ō	0	-	0	0		0	0	6
	ō	Ö	0	Ō	0	0	-		0	0	0	0	0	0	0	7
0 0		_	0		0	0	Λ.									
1 1	3	0	1					0	0	0	0	0	0	0	0	13
				0	1	1	2	1	1	4	0	1	1	2	1	68
		_	2	3	4	5	9	1	0	2	5	6	6	8	7	58
0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12
0 0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	21
0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 11
	_					-		-				-	_	1	0	1
2 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
0 0	. 0	0	0	0_	. 0	_0	. 0	0	. 0	0	. 0	0	0		0	. 2
-	0 0	0 0 0 2 0 0	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0												

Summary of Announced Payloads

	1957	1958	1959	1960	1961	1962	1963	1964	1965	1966	1967	1968	1969	1970	1971	1972	1973	1974	1975
Argentina AsiaSat	-	-	-							-			-						-
AsiaSat	_									-			-	-		-		-	
ASCO	-	_			-			-					-						_
Australia	-			-	_		-				1	0	0	1	0	0	0	0	0
Brazil	-	-			-		·			_					••				
Canada	_		·		-					-			-			1	1	0	1
China	_	_		-	-			-		_	-		-	1	1	0	0	0	3
CIS (USSR)	2	1	3	3	4	20	17	35	66	44	66	74	70	88	96	88	106	95	109
Cooperative *	_	_				2	0	2	3	0	2	3	2	0	6	1	1	7	2
Czechoslovakia		_		_	_		-	_											
ESA	_	_	_	_	~			_			_	1	1	0	0	3	0	0	1
France		-	-		~		_	-	1	1	2	Ó	0	2	1	1	Ó	Ö	5
Germany	_	-			-			-						1	0	0	0	1	0
India				-	~									-					1
Indonesia	-	_			-		_	_		_	_		-						
InMarSat	_				_			_											
Israel	_		-	_	~			_			_		-	_					
Italy				_	-			-		_	_	٠ ــ	_	-		_			
Japan	_	_									_		_	1	2	1	0	1	2
Korea	_							_								_			
Luxembourg	_			_				-		_						_			
Mexico		_	-					_			_								
NATO					_		_	_		_	-			1	1	0	0	0	0
Pakistan		_		_							_					**			
PanAmSat	_	_			-		_	_		_	_							-	
Saudi Arabia	-	_			~								_	-					
Spain	_							-						_				'	
Sweden	_			_	~			-			-								
United Kingdom	_			_	-						_		1	1	1	0	0	3	0
United States *		7	11	17	36	53	54	72	88	102	78	63	51	30	36	28	22	_ 15	26
TOTAL	2	8	14	20	40	75	71	109	158	147	149	141	125	126	144	123	130	122	150
* Separate Breakd							• •	.00	.00										

Summary of Announced Payloads

<u>ouimnary</u>			<u> </u>	/ 	4710														
	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	TOTAL
Argentina				_	_		_			_		**			1	0	0		1
AsiaSat	-							-					_		1	0	0	0	1
ASCO	-	-		-	-			-	-	2	0	0	0	0	0	0	0	0	2
Australia	0	0	0	0	0	0	0	0	0	2	0	1	0	0	0	0	2	0	7
Brazil	-				-					1	1	0	0	0	1	0	0	1	4
Canada .	0	0	1	0	0	0	2	1	1	1	0	0	0	0	0	2	1	0	12
China	2	0	1	0	0	3	1	1	3	1	3	1	3	0	5	1	2	1	33
CIS (USSR)	121	104	119	101	110	123	119	115	115	118	114	116	107	95	96	101	77	59	2897
Cooperative	2	2	2	0	0	1	0	2	0	0	0	0	1	0	3	5	3	1	53
Czechoslovakia	-	-	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	2
ESA	0	2	2	1	0	4	0	2	2	1	0	1	2	2	1	4	1	2	33
France	0	1	٥	0	0	0	0	0	1	1	1	0	1	1	2	6	3	2	32
Germany	0	0	٥	0	0	0	0	2	1	0	0	1	1	2	1	1	1	0	12
India	0	0	0	1	1	3	1	2	0	0	0	0	2	0	1	1	2	1	16
Indonesia	1	1	0	0	0	0	0	1	1	0	0	1	0	0	1	0	1	0	7
InMarSat	-				_		-	-		_			-		1	0	1	0	2
Israel	-			_			-				_		1	0	1	0	0	0	2
Italy	-	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	4
Japan	1	4	4	2	2	3	1	3	3	2	3	3	2	4	7	2	3	1	57
Korea	-	_			_			-		-			-				1	1	1
Luxembourg								_		_			-			_	-	1	1
Mexico		-		•	-		-	_	-	2	0	0	0	0	0	0	0	1	3
NATO	1	1	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1	8
Pakistan	-	-		-	_		-	-		_					1	0	0	0	1
PanAmSat	-				-		-	-			-		1	0	0	0	0	0	1
Saudi Arabia	-			_				-	-					_		-	1	0	1
Spain	-	-		_				_		-	-		_				1	1	2
Sweden	-	-									1	0	0	1	0	0	1	0	3
United Kingdom	0	0	O	1	0	1	0	o	2	ō	0	0	0	1	5	2	O	0	18
United States	27	17	29	17	13	19	17	22	32	33	9	9	15	22	31_	30	27	29	1187
TOTAL.	155	133	160	_123	126	157	142	151	161	164	132	133	136	129	159	157	128	104	4404

Summary of USA Payloads

		40-0	4050			4000		U.S. Pa	yloads 1965	1000	400=		4000	4000					
ANCAT	1957	1958	1959	1960	1961	1962	1963	1964	_	1966	1967	1968	1969	1970	<u> 1971</u>	1972	1973	1974	1975
AMSAT								-		-			-	=		1	0	1	Ō
AT&T					-	,	2	1	0	0	0	0	0	0	0	0	0	0	ó
ASC													••						
COMSAT					-				1	1	3	1	3	3	2	2	1	1	2
DOD		5	6	12	23	39	44	50	66	71	57	43	32	18	24	14	11	8	10
GTE							-											~	
Hughes												••				-		~	-
NASA		2	5	5	13	13	8	21	21	27	15	17	15	8	9	10	9	2	12
NOAA										3	3	2	1	1	1	1	1	1	1
N. Utah Univ					-			-										~	
RCA																_		-	1
SBS														_		_		-	
WU						••										_		2	0
TOTAL		7	11	17	36	53	54	72	88	102	78	63	51	30	36	28	22	15	26
								perative	Paylo	ads									
	1957	1958	1959	1960	1961	1962	1963	1964	1965	1968	1967	1968	1969	1970	1971	1972	1973	1974	1975
NASA/Canada						1	0	0	1	0	0	0	1	0	1	0	0	0	0
NASA/DOD		-					-				-					-	-		
NASA/ESA		_							••		-	2	0	0	0	0	0	0	0
NASA/France									1	0	0	0	0	0	2	0	1	Ó	Ó
France/Germany							_						-			_		1	1
NASA/Germany													1	0	0	1	0	- i	Ò
NASA/Italy				••		••		1	0	0	1	0	ò	ŏ	1	Ó	ō	1	ō
				_			_			_				_	-	_	_		
																		•	0
NASA/Japan				_															
NASA/Japan NASA/Netherlands				-			-			_	_		_	_		_	_	,	1
NASA/Japan NASA/Netherlands NASA/NOAA	-	-		-		 	-		 1	- 0	-			- 0	 1	- 0	-	1	1
NASA/Japan NASA/Netherlands NASA/NOAA NASA/NRL	-	-	 	-	-	 	-		1	- 0	- 0	1	0	0	1	- 0	- 0	1	1 0
NASA/Japan NASA/Netherlands NASA/NOAA NASA/NRL NASA/Spain	 	- - -	 	- - -	-		- - -	 	1	0	0	1	0	0	1	0	_	1 0	0
NASA/Japan NASA/Netherlands NASA/NOAA NASA/NRL	- - -	- - - -	 	- - -	- - - -	 1 2	 0	 1 2	 1 0	- 0 - 0		1 0 3	- 0 - 0 2	- 0 - 0	1 1 6	 0 0	 0 0	1 0 1 1	1 0 0 0

Summary of USA Payloads

									yloads										
	1976	_1977_	1978	1979	1980	1981	1982	1983	1984		1986	1987	1988	1989	1990	1991	1992	1993	TOTA
AMSAT	0	0	1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	5
AT&T	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	6
ASC				-	-		-	-		1	0	0	0	0	0	1	0	0	2
COMSAT	6	1	3	0	1	3	2	2	2	3	0	0	1	1	2	1	3	1	52
DOD	18	12	14	11	8	7	6	8	12	11	5	8	9	12	16	15	11	10	726
GTE				-		**	-		2	1	1	0	2	0	1	1	0	0	8
Hughes				_				2	3	2	0	0	0	Ö	1	0	2	1	13
NASA	1	3	10	3	1	5	4	6	9	12	1	0	2	9	7	11	11	11	318
NOAA	1	1	1	1	2	2	0	2	2	0	1	1	1	ō	0	1	0	1	32
N. Utah Univ		_	-				-	_		1	0	0	Ó	ō	0	0	0	Ó	- 1
RCA	1	0	0	1	0	1	2	2	0	1	1	ō	ŏ	ō	1	Ö	ō	ō	11
SBS	_			_	1	1	1	0	1	0	0	Ó	ō	Ď	1	Ó	Ó	ō	- 1
WU	0	0	0	1	0	0	2	0	1	Ō	ō	ō	ŏ	ŏ	Ó	Ō	ō	ō	
TOTAL	27	17	29	17	13	19	17	22	32	33	9	9	15	22	31	30	27	25	1163
							Co	operath		oads									
	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1986_	1987	1988	1989	1990	1991	1992	1993	TOTA
NASA/Canada	1	0	0	0	0	0	0	0	0	n	^	0	0	0	. 0	^	0	0	5
NASA/DOD									-	U	v					•			
			-	-			_	_	_	_	_		_	_	ž	2	ō	ŏ	4
NASA/ESA	0	2	2	0	ō	0	_ 0	0	0	-	- 0	0	-0	-	2	2	0	0 2	4
NASA/ESA NASA/France	0	2	2 0	0	0	 0 1	- 0 0	0	0	-	0 0	0	0	0	2 0 0	2 1 0	0	0 2 0	4 9 7
NASA/ESA NASA/France France/Germany	0	2 0 0	2 0 0	•	0	 0 1 0	- 0 0	0 1 0	0	-	000	0	0 0	0 0 0	0 0	2 1 0	0 0 1 0	0 2 0 0	4 9 7 2
NASA/ESA NASA/France France/Germany NASA/Germany	0 0 0 1	2 0 0	2 0 0	•	0 0	 0 1 0	0 0 0	0 1 0 0	0 0 0	-	0000	0000	0000	- 0000	2 0 0 0	2 1 0 0	0 0 1 0	0 2 0 0	4 9 7 2 5
NASA/ESA NASA/France France/Germany NASA/Germany	0 0 0 1	2000	2 0 0 0	•	0 0 0	 0 1 0 0	- 0 0 0	0 1 0 0	0 0 0	-	00000	0000	0 0 0 1	0000	2 0 0 1 0	1 0 0 0	0 0 1 0 0	0 2 0 0 0	4 9 7 2 5
NASA/ESA NASA/France France/Germany NASA/Germany NASA/Italy	0 0 1 0	0 0 0	0 0 0	•	0000	0 1 0 0	0000	0 1 0 0	0 0 0 0	-	0 0 0 0	0 0 0	0 0 0 1 -	0 0 0 0	2 0 0 1 0	1 0 0 0	0 0 1 0 0 1	0 0 0 0 0	4 9 7 2 5 6
NASA/ESA NASA/France France/Germany NASA/Germany NASA/Italy NASA/Japan	0 0 1 0 - 0	200000000000000000000000000000000000000	200000000000000000000000000000000000000	•	00000	0 1 0 0 0	-00000	0 1 0 0 0	00000	-	0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 1 - 0	0000	2 0 0 0 1 0 - 0	0000	0 0 1 0 0 1 1	0200000	4 9 7 2 8 6 1
NASA/ESA NASA/France France/Germany NASA/Germany NASA/Italy NASA/Japan NASA/Japan	0 0 1 0 - 0 0	20000	200000000000000000000000000000000000000	•	00000	0 1 0 0 0 0	-0000000000	0 1 0 0 0 -	00000	-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000	0 0 0 1 - 0 0	00000	2 0 0 0 1 0 - 0 0	00000	0 0 1 0 0 1 1 0	020000001	4 9 7 2 5 6 1 2
NASA/ESA NASA/France France/Germany NASA/Germany NASA/Italy NASA/Japan NASA/NOAA	0 0 0 0 0 0	20000	20000	•	00000	0 1 0 0 0 0 0 0	-00000	0 1 0 0 0 1 0	000000000000000000000000000000000000000	-	0 1 0 0 0 0 1 0 0 0	0000	0 0 0 0 1 - 0 0 0	100000	200010-000	210000	0 0 1 0 0 0	020000010	4 9 7 2 5 6 1 2 4
NASA/ESA NASA/France France/Germany NASA/Germany NASA/Italy NASA/Japan NASA/Netherlands NASA/NOAA NASA/NRL	0 0 0 0 0 0 0	20000	20000 0000	•	00000-0000	0 1 0 0 0 0 0 0 0	-00000-0000	0 1 0 0 0 1 0	00000	-	0 1 0 0 0 0 0 0 0 0		0000	- 00000 - 0000	200010-0000	210000-0100	001000	0200000100	44 89 77 22 56 11 22 44 33
NASA/ESA NASA/France France/Germany NASA/Germany NASA/Italy NASA/Japan NASA/NOtherlands NASA/NOAA	0 0 0 0 0 0 0	20000	2000010000	•	00000	01000	-00000100000	- 0 1 0 0 - 1 0 0		-	0 1 0 0 0 0 0 0 0 0		00001		200010-0000	210000 - 01001	1 0 0 0 0	020000000000000000000000000000000000000	4 9 7 2 5 6 1 2 4 3

Shuttle Approach and Landing Tests

Flight	Flight Date	Weight (kg)	Description of Flight
Captive Inert Flight 1	Feb 18, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to Shuttle Carrier Aircraft (SCA) to evaluate low speed performance and handling qualities of Orbiter/SCA combination. SCA Crew: Fitzhugh L. Futton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 10 minutes.
Captive Inert Flight 2	Feb 22, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to demonstrate flutter free envelope. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 3 hours 15 minutes.
Captive Inert Flight 3	Feb 25, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to complete flutter and stability testing. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 30 minutes.
Captive Inert Flight 4	Feb 28, 1977	64,717.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate configuration variables. SCA Crew: Fitzhugh L. Fulton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 2 hours 11 minutes.
Captive Inert Flight 5	Mar 2, 1977	65,142.0	Unmanned inert Orbiter (Enterprise) mated to SCA to evaluate maneuver performance and procedures. SCA Crew: Fitzhugh L. Futton, Jr., A. J. Roy, Vic Horton, and Skip Guidry. Fight Time: 1 hour 40 minutes.
Captive Active Flight 1A	Jun 18, 1977	68,462.3	First manned captive active flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned active Orbiter (Enterprise) mated to SCA for initial performance checks of Orbiter Flight Control System. SCA Crew. Fitzhugh L. Futton, Jr., Thomas C. McMurtry, Vic Horton, and Skip Guidry. Flight Time: 56 injuries.
Captive Active Flight 1	Jun 28, 1977	68,462.3	Manned captive active flight with Joe H. Engle and Richard H. Truty. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 1 hour 3 minutes.
Captive Active Flight 3	Jul 26, 1977	68,462.3	Manned captive active flight with Fred W. Haise, Jr. and C. Gordon Fullenton, Jr. Manned active Orbiter (Enterprise) mated to SCA to verify conditions in preparation for free flight. SCA Crew: Fitzhugh L. Futton, Jr. and Thomas C. McMurtry. Flight Time: 59 minutes.
Free Flight 1	Aug 12, 1977	68,039.6	First manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) with tailcone on, released from SCA to verify handling qualities of Orbiter. SCA Crew: Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 53 minutes 51 seconds.
Free Flight 2	Sep 13, 1977	68,039.6	Manned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) released from SCA to verify characteristics of Orbiter. SCA Crew: Fitzhugh L. Fufton, Jr. and Thomas C. McMurtry. Flight Time: 54 mirutes 55 seconds
Free Flight 3	Sep 23, 1977	68,402.4	Manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) released from SCA to evaluate Orbiter handling characteristics. SCA Crew. Fitzhugh L. Fulton, Jr. and Thomas C. McMurtry. Flight Time: 51 minutes 12 seconds.
Free Flight 4	Oct 12, 1977	68,817.5	Manned free flight with Joe H. Engle and Richard H. Truly. Manned Orbiter (Enterprise) with tailcone off and three simulated engine bells installed, released from SCA to evaluate Orbiter handling characteristics. SCA Crew: Fizhugh L. Fulton, Jr. and Thomas C. McMurty. Flight Time: 1 hour 7 minutes 48 seconds.
Free Flight 5	Oct 26, 1977	68,825.2	Manned free flight with Fred W. Haise, Jr. and C. Gordon Fullerton, Jr. Manned Orbiter (Enterprise) with tailcone off, released from SCA to evaluate performance of landing gear on paved nurway. SCA Crew: Fitzhugh L. Futton, Jr. and Thomas C. McMurtry. Flight Time: 54 minutes 42 seconds.

CIS (USSR) Spacecraft Designations

The Union of Soviet Socialist Republics (USSR) became the Confederation of Independent States (CIS) on December 25, 1991.

ALMAZ: Study geology, cartography, oceanography, ecology, and agriculture.

BURAN (Snowstorm): Reusable orbital space shuttle.

COSMOS: Designation given to many different activities in space.

EKRAN (Screen): Geosynchronous comsat for TV services.

ELEKTRON: Dual satellites to study the radiation belts.

FOTON: Scientific satellite to continue space materials studies.

GAMMA: Radiation detection satellite.

GORIZONT (Horizon): Geosynchronous comsat for international relay.

GRANAT: Astrophysical orbital observatory.

INFORMATOR: Collect and transmit information for the Ministry of Geology.

INTERCOSMOS: International scientific satellite.

ISKRA: Amateur radio satellite.

KRISTALL: Module carrying technical and biomedical instruments to MIR.

KVANT: MIR space station astrophysics module.

LUNA: Lunar exploration spacecraft.

MARS: Spacecraft to explore the planet Mars.

METEOR: Polar orbiting meteorological satellite.

MIR (Peace): Advanced manned scientific space station in Earth orbit.

MOLNIYA (Lightning): Part of the domestic communications satellite system.

NADEZHDA: Navigation satellite.

OKEAN: Oceanographic satellite to monitor ice conditions.

PHOBOS: International project to study Mars and its moon Phobos.

PION: Scientific satellite for research of the upper atmosphere.

POLYOT: Maneuverable satellite capable of changing orbits.

PROGNOZ (Forecast): Scientific interplanetary satellite.

PROGRESS: Unmanned cargo flight to resupply manned space stations.

PROTON: Scientific satellite to investigate the nature of Cosmic Rays.

RADIO: Small radio relay satellite for use by amateurs.

RADUGA (Rainbow): Geosynchronous comsat for telephone, telegraph, and domestic TV

RESURS: Earth resources satellite.

SALYUT: Manned scientific space station in Earth orbit.

SOYUZ (Union): Manned spacecraft for flight in Earth orbit.

SPUTNIK: Early series of satellites to develop manned spaceflight.

VEGA: Two spacecraft international project to study Venus and Halley's Comet.

VENERA: Spacecraft to explore the planet Venus.

VOSKHOD: Modified Vostok capsule for two and three Cosmonauts.

VOSTOK (East): First manned capsule; placed six Cosmonauts in orbit.

ZOND: Automatic spacecraft development tests. Zond 5 was the first

spacecraft to make a circumlunar flight and return safety to Earth.

Unofficial Tabulation of CIS (USSR) Payloads

	1957	1958	1959	1960	1961	1962	1963	1984	1965	1966	1957	1968	1969	1970	1971	1972	1973	1974	1975
Almaz	-	-	-			-			- '	-	_	-		-	-	-	-	-	-
Buran			-	••	-	-	-	-	-			-		-	-	-	-	-	-
Cosmos					-	12	12	27	52	34	61	64	55	72	81	72	85	74	85
Ekran	~	-			-		-	-	-	-	-	-	-		-		-	-	-
Electron			••	-	**	••		4	0	0	0	0	0	0	O	0	0	0	٥
Foton		_	•		-		_	-	-		-	-		-	-	-	-	-	-
Gamma		••		-	-		-	-	-	-	-	_		-	-	-	-	-	
Gorizont		-			-					-	_	-		-	-		-	-	-
Granat	-	-	••				-	-	-		-	-		_	-		-	_	-
Informator		-				_		-	-			-	2	2	1	3	2	2	2
ntercosmos	·	_		••	-		-	-	-	-	-	-		-	-		-	-	-
skra					_	-		_	-		-	-		-	-		-	-	
Kristall			••		-			-	-		-				-	_	_	-	_
Kvant					_			-	-		-	_		-	-	-	_	-	
Luna		-	3	0	0	0	1	0	4	5	0	1	1	2	2	1	1	2	0
Mars			_	-		1	0	0	0	o	0	Ó	٥	0	2	Ó	4	0	Ö
Meteor		-			-		-		-		_	_	2	4	4	3	2	5	4
Mir					_	-		-	-		-	-		-	-		-	_	
Moiniya					-	_	-	_	2	2	3	3	2	5	3	8	8	7	10
Nadezhda		_		-	_		-	_		-	_	_		_	-	_	_	_	
Okean		_			_			_	-		-	_		_	-		-	-	_
Phobos		_		_	-	••		-	_	••	-	_		_	-		_	_	-
Pion	-	_			_	_		_			-	_	_	-	-		_		_
Polyot		_			_		1	1	0	0	0	0	0	0	0	0	0	0	0
Prognoz		_			-		••	_	_	_	_	-		_	_	2	1	Ō	ī
Progress					_			-	_	-	-	-	_	-	-	_	_	_	-
Proton					_	-		-	2	1	0	1	0			٥	0	΄ ο	0
Radio	••	-		-	_	-	-	-		_	_	_	-	_	-		_	_	_
Raduga				-		-			_	-	-		-	-	-		_	_	1
Resurs	-	_	-		-	-	-		-			_	_	_			-	_	
Salyut		_	-				-		-	_		-	-	-	1	0	1	2	0
Soyuz		-	_	-	_		_		-		1	2	5	1	2	ō	ż	3	4
Sputnik	2	1	0	3	4	2	0	0	0	0	ó	ō	ŏ	ó	ō	ō	ō	ŏ	ō
Start	-		·	ŭ		Ξ.	_	-	_		_	-	_	-	_	-	-	_	
Vega		_	-	_	_	-	_	_	_	_	_		_	-	_	-		_	
Venera	-	_	_		_	_	-	_	2	0	1	ō	2	1	0	1	ä	0	2
Voskhod		-	-		_	_		1	ī	ŏ	Ó	ŏ	ō	ó	ŏ	ó	ă	ō	ō
Vostok	_						2	á	ó	á	ő	ő	á	ő	ó	ő	ő	ő	ŏ
Zond		_			_		-	ž	3	ŏ	ŏ	š	ĭ	ĭ	ŏ	ŏ	ŏ	ŏ	ň
Zona No Designation	-	-	-	-	-	-		ā	ŏ	š	ň	ň	á		ŏ	ă	ă	ă	ň
TOTAL	2		- 3			20	17_	35	66	44	66	74	70	ŘŘ.	98	88	108	95	_ 109

Unofficial Tabulation of CIS (USSR) Payloads

	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985	1966	1967	1988	1969	1990	1991	1992	1993	TOTAL
Almaz	••	-	-	-	-	-	-	-	-	-	-	-		_	-	1	0		1
Buran		_			-		-	-	-	-	_	-	1	0	0	0	0	0	1
Cosmos	101	86	96	79	88	94	97	94	94	99	96	97	79	68	66	54	55	38	2267
Ekran	1	1	0	2	2	1	2	2	2	- 1	1	2	2	0	٥	0	1	0	20
Electron	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4
Foton			-		-		_	-	_		-	-	1	1	1	1	1	0	5
Gamma		-	-	••	-		-	-	-	-		-	_	_	1	Ö	0	0	1
Gorizont		-	1	2	1	G	2	2	2	1	2	1	2	3	3	2	3	2	29
Granat		_			_			-			-	_	-	1	Ö	0	Ò	0	1
Intercosmos	2	1	1	2	0	2	0	0	0	0	0	0	0	1	Ó	í	ō	ō	24
Informator		_			-		-	_	-	_	_	_	_	_	_	•	ō	ō	- 1
lskra		_			-	1	2	0	0	0	0	• 0	0	0	0	ó	ő	ō	3
Kristall	-				-	_	_		-	_		-	_		ī	ă	ō	ŏ	1
Kvant		-			-			_	-	_	_	1	0	1	á	ň	ň	ň	ż
Luna	1	0	0	0	0	0	0	0	0	0	0	o.	õ	ń	ŏ	ň	ň	ň	24
Mars	Ò	ŏ	ŏ	ō	Ŏ	Ō	ŏ	ō	ŏ	ŏ	ō	ŏ	ŏ	ŏ	ň	ŏ	ň	ň	~7
Meteor	3	Ä	ō	ă	ō	ž	ō	ĭ	ī	ã	ĭ	ž	š	ž	š	5	ň	ī	57
Mir	_		_	-	Ξ.	⋤				-	i		7	7	7	ñ	ň	'n	٧,
Molniya	7	Ŕ	6	5	4	A	5	7	4	A	ż		ř	7	ě	ĕ	ĭ	ĕ	150
Nadezhda			_			-				Ĭ			- '-	- 7	- 4	- 4	7	ň	3
Okean		_	_				_	_	_					ò			ň	ň	3
Phobos		_	_		_	_		_	_	_	_	_	٠	ň	Ä	á	×	ň	š
Pion	-	_	_		_	_	_	_	_	-				×	_		š	ň	5
Polyot	0	ñ	0	_	ñ				_	0	_	_	~	_	~		•	Ň	2 -
Prognoz	ĭ	- 1	1	ň	- 1	ň	ň	- 1	ŏ	- 1	×	ă	×	×	×	×	×	×	10
Progress			i i	3	i i	ĭ	ă	,	ž	•	2	ž	ĕ	7	¥	,	ž		61
Proton	0	_	ň	ň	7	'n	7	ń	,	'n	á	ί.	2	7	7	•	2	0	9)
Radio			ž	ň	ň	ě	ň	ň	Ä	ň	×	×	ŭ	×	ž	×	×	×	- :
Raduga	•	1	7	ĭ	š	ž	ĭ	š	ž	ž	ž	ž	Ÿ	×	ž	×	×	×	32
Resura						-		•	•	-	-		,	,	•	- 2	,	- 4	20
Salyut	1		0	_	_	n	- 7	~		~		ñ		Š		•		,	7
Soyuz	à	· .	š	ĭ	ĕ	ă	ė	š	š	ž	ž	ž	ž	,	×	×	×	ž	72
Sputnik	ň	3	ň	7	ň	ň	ň	- 6	,	- 6	- 6	3	3	,	3	2	2	2	12
Start								·	U	U	U	U	U	U	U	0	U	٠	12
		-	-		-	-	_	-	-	_	-	-	_	=	_	=	-	1	2
Vega Venera		_			~				2	×	Ň	ŭ	0	Ď	0	ō	0	ŏ	.2
	×	Ž	5	ž	Ň	-	×	- 2	ŭ	×	ŭ	ŭ	0	ŭ	ŭ	0	· ·	ŭ	15
Voskhod	ŭ	ŭ	×	ŭ	X	×	Ň	Ň	Ŏ	Ň	ŏ		0	0	0	Ō	ō	ŏ	2
Vostok	ŭ	0		Ň	Ň	Ň	ŏ	0	0	0	0	0	0	0	0	0	0	0	. 4
Zond	ŭ	0	Ň	v	Ň	ŭ	ŭ	Ü	0	ų.	Ü	Q	0	0	0	0	o.	0	10
No Designation						400					 .								
TOTAL	121	104	119	101	110	123	119	115	115	118	114	116	107	95	96	81	77	59	2877

Name	Service	Mission	Position		EVA (hr:min)	Total Flight Time (hr:min:sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flight Time (hr:min:sec)
Acton, Loren W., PhD	Civ	STS-51F	PS	190:45:26		190:45:26	Blaha, John E., Col	USAF	STS-29	Plt	119:38:52		789:20:37
Adamson, James C. Lt.Col	USA	STS-28	MS	121:00:08		334:22:35			STS-33	Ptt	120:06:46		
		STS-43	MS	213:22:27					STS-43	Cdr	213:22:27		
Akers, Thomas D. Maj	USAF	STS-41	MS	98:10:03		671:26:16			STS-58	Cdr	336:12:32		
		STS-49	MŞ	213:17:38	16:14		Bluford, Guion S., Col	USAF	STS-8	MS	145.08:43		688:36:38
		STS-61	MS	259:58:35	13:25				STS-61A	MS	168:44:51		
Aldrin, Edwin E., Jr., Col.	USAF Ret	Gemini 12	Plt	94:34:31	05:37	289:53:06			STS-39	MŞ	199:23:17		
		Apollo 11	LMP	195:18:35	*02:15				STS-53	MS	175:19:47		
Allen, Andrew M., Maj.	USAF	STS-46	Plt	191:16:07		191:16:07	Bobko, Karol J., Col	USAF	STS-6	Pit	120:23:42		386:03:43
Allen, Joseph P. PhD	Civ	STS-5	MS	122:14:26		313:59:22	1		STS-51D	Cdr	167:55:23		
		STS-51A	MS	191:44:56	12:14				STS-51J	Cdr	97:44:38		
Al-Saud, Salman	Civ	STS-51G	PS	169:38:52		169:38:52	Bolden, Charles F., Col	USMC	STS 61-C	Pit	146:03:51		481:30:21
Anders, William A., B. Gen.	USAF	Apollo 8	LMP	147:00:42		206:00:01			STS-31	Pit	121:16:06		
Apt, Jerome PhD	Civ	STS-37	MS	143:32:45	10:49	334:03:08			STS-45	Cdr	214:10:24		
		STS-47	MS	190:30:23				Civ	STS-42	PS	193:15:43		193:15:43
Armstrong, Neil	Civ	Gemini 8	Cdr	10:41:26		206:00:01	Borman, Frank, Col.	USAF Ret		Cdr	330:35:01		477:36:13
		Apollo 11	Cdr	195:18:35	*02:32				Apollo 8	Cdr	147:00:42		
Bagian, James P. MD	Civ	STS-29	MS	119:38:52		337:54:06	Bowersox, Kenneth D., Lt. Cdr.	.USN	STS-50	Pit	331:30:04		591:28:39
		STS-40	MS	218:15:14					STS-61	Pit	259:58:35		
Baker, Ellen S., MD	Civ	STS-34	MS	119:39:20		451:09:24	Brand, Vance D.	Civ	Apollo Soyu		217:28:23		746:03:51
		STS-50	MS	331:30:04					STS-5	Cdr	122:14:26		
Baker, Michael A. Capt	USN	STS-43	Plt	213:22:27		450:18:40			STS-418	Cdr	191:15:55		
		STS-52	Pit	236:56:13					STS-35	Cdr	215:05:07		
Bartoe, John-David F., PhD	Civ	STS-51F	PS	190:45:26		190:45:26	Brandenstein, Daniel C., Captl.		STS-8	Plt	145:08:43		789:05:50
Baudry, Patrick, Lt. Col.	FAF	STS-51G	PS	169:38:52		169:38:52			STS-51G	Cdr	169:38:52		
Bean, Alan F., Capt	USN Ret	Apollo 12	LMP	244:36:24	*07:45	1666:47:33			STS-32	Cdr	261:00:37		
• •		Skytab 3	Cdr	1416:11:09	02:45				STS-49	Cdr	213:17:38		
									STS-51-F	Pt	190:45:26		190:45:26
							Brown, Curtis L.		STS-47	Pit	190:30:23		190:30:23
		*1 unar	Surface E	/A					** Subori	bital Fligh			

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flight Time (hr:min:sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flight Time (hr:min:sec)
Brown, Mark F., Lt. Col	USAF	STS-28	MS	121:00:08	······	249:27:51	Cockrell, Kenneth	Civ	STS-56	MS	222:08:16	ţy	222:08:16
DOWN, MARY ., C. 001	-	STS-48	MS	128:27:51		210.27.01	Collins, Michael, M. Gen	USAF	Gemini 10		70:46:39	01:30	266:05:14
Buchti, James F., Col	USMC	STS-51C	MS	73:33:23		490:24:57			Apollo 11	CMP	195:18:35		200.00.
		STS-61A	MS	168:44:51			Conrad, Charles (Pete), Capt	USN Ret	Gemini 5	Pit	190:55:14		1179:38:35
		STS-29	MS	119:38:52					Gemini 11	Cdr	71:17:08		
		STS-48	MS	128:27:51					Apollo 12	Cdr	244:36:24	407:45	
Bursch, Daniel W. Cdr	USN	STS-51	MS	236:11:11		236:11:11			Skytab 2	Cdr	672:49:49	05:51	
Cabana, Robert D., Lt. Col.	USMC	STS-41	Ph	98:10:03		273:02:14	Cooper, L. Gordon, Jr., Col.	USAF Ret	Faith 7	PR	34:19:49		225:15:03
	_	STS-53	Pit	175:19:47			• • • • • • • • • • • • • • • • • • • •		Gemini 5	Cdr	190:55:14		
Cameron, Kenneth D. Col.	USMC	STS-37	Ptt	143:32:45		365:41:01	Covey, Richard O., Col	USAF	STS-511	Pt	170:17:42		645:10:05
		STS-56	Cdr	222:08:16			•		STS-26	Pit	97:00:11		
Carpenter, M. Scott, Cdr.	USN Ret	Aurora 7	Cdr	4:56:05		4:56:05			STS-38	Cdr	117:54:27		
Carr, Gerald P., Col	USMC Re	Skytab 4	Cdr	2016:01:16	15:48	2016:01:16			STS-61	Cdr	259:58:35		
Carter, Manley, Cdr.	USN	STS-33	MS	120:06:46		120:06:46	Creighton, John O., Capt	USN	STS-51G	Pit	169:38:52		404:24:05
Casper, John H., Col	USAF	STS-38	Pti	106:18:22		249:56:41	•		STS-36	Cdr	106:18:22		
		STS-54	Cdr	143:38:19					STS-48	Cdr	128:27:51		
Cenker, Robert J.	Civ	STS-61C	PS	146:03:51		146:03:51	Crippen, Robert L, Capt	USN	STS-1	Pit	54:20:53		565:48:32
Ceman, Eugene A., Capt.	USN Ret	Gemini 9A	Plt	72:20:50	02:08	566:16:12			STS-7	Cdr	146:23:59		
		Apollo 10	LMP	192:03:23					STS-41C	Cdr	167:40:07		
		Apollo 17	Cdr	301:51:59	*22:04				STS-41G	Cdr	197:23:33		
Chang-Diaz, Franklin R., PhD.	. Civ	STS-61C	MS	146:03:51		456:59:18	Culbertson, Frank L., Capt.	USN	STS-38	Pk	117:54:27		354:05:38
•		STS-34	MS	119:39:20			· · ·		STS-51	Cdr	236:11:11		
		STS-46	MS	191:16:07			Cunningham, Walter	Civ	Apollo 7	LMP .	260:09:03		260:09:03
Chilton, Kevin P., Lt. Col.	USAF	STS-49	Ptt	213:17:38		213:17:38	Davis, N. Jan, PhD	Civ	STS-47	MS	190:30:23		190:30:23
Cleave, Mary L., PhD	Civ	STS-61B	MS	165:04:49		262:00:52	Delucas, Lawrence J., PhD	Civ	STS-50	PS	331:30:04		331:30:04
		STS-30	MS	96:56:28			Duffy, Brian K., Lt. Col.	USAF	STS-45	Pk	214:10:24		45:55:18
Clifford, M. Richard Lt. Col.	USA	STS-53	MS	175:19:47		175:19:47	,. ,		STS-57	Pit	239:44:54		.5100110
Coats, Michael L., Capt.	USN	STS-41D	Pit	144:56:04		463:58:13	Duke, Charles M., B. Gen.	USAF	Apollo 16	LMP	265:51:05	*20:14	*265:51:05
,		STS-29	Cdr	119:38:52					,			_3,,,	
		STS-39	Cdr	199:23:17									
		*Lunar	Surface E	VA					** Subc	rrbital Fligh	t		

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)		Name	Service	Mission !	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flight Time (hr:min:sec
Dunbar, Bonnie J., PhD	Civ	STS-61A	MS	168:44:51		761:17:32	Gemar, Charles D., Lt. Col	USA	STS-38	MS	117:54:27		246:22:18
		STS-32	MS	261:00:37					STS-48	MS	128:27:51		
		STS-50	MS	331:30:04			Gibson, Edward G., PhD	Civ	Skylab 4	Pk	2016:01:16	15:20	2016:01:16
Durrance, Samuel T., PhD	Civ	STS-35	PS	215:05:07		215:05:07	Gibson, Robert L., Cdr.	USN	STS-41B	Pit	191:15:55		632:55:46
Eisele, Donn F., Col.	USAF Re	t Apollo 7	CMP	260:09:03		260:09:03			STS-61C	Cdr	146:03:51		
England, Anthony W., PhD	Civ	STS-51F	MS	190:45:26		190:45:26			STS-27	Cdr	105:05:37		
Engle, Joe H., Col	USAF	STS-2	Cdr	54:13:12		244:30:54			STS-47	Cdr	190:30:23		
·		STS-511	Cdr	170:17:42			Glenn, John H., Jr., Col	USMCRet	Friendship :	7 Cdr	4:55:23		4:55:23
Evans, Ronald R., Capt	USN Ret	Apollo 17	CMP	301:51:59	01:06	301:51:59	Godwin, Linda M. PhD	Civ	STS-37	MS	143:32:45		143:32:45
Fabian, John M. Col.	USAF	STS-7	MS	146:23:59		316:02:51	Gordon, Richard F., Jr., Capt.	USN Ret	Gemini 11	Pit	71:17:08	01:57	315:53:32
		STS-51G	MS	169:38:52					Apollo 12	CMP	244:36:24		
Fettman, Martin J., Dr.	Civ	STS-58	PS	336:12:32		336:12:32	Grabe, Ronald J., Col	USAF	STS-51J	Pit	97:44:38		627:41:40
Fisher, Anna L., MD	Civ	STS-51A	MS	191:44:56		191:44:58			STS-30	Plt	96:56:28		
Fisher, William F., MD	Civ	STS-511	MS	170:17:42	11:51	170:17:42			STS-42	Cdr	193:15:43		
Foale, C. Michael, PhD	Civ	STS-45	MS	214:10:24		436:18:40			STS-57	Cdr	239:44:54		
		STS-56	MS	222:08:16			Gregory, Frederick D., Coi	USAF	STS-51B	Pk	168:08:46		455:07:59
Frimout, Dirk D., PhD	Civ	STS-45	PS	214:10:24		214:10:24			STS-33	Cdr	120:06:46		
Fullerton, C. Gordon, Col.	USAF	STS-3	Plt	192:04:46		382:50:12			STS-44	Cdr	168:52:27		
		STS-51F	Cdr	190:45:26			Griggs, S. David	Civ	STS-51D	MS	167:55:23	03:10	167:55:23
Furrer, Reinhard, PhD	Civ	STS-61A	PS	168:44:51		168:44:51	Grissom, Virgil I., Lt. Col.	USAF	*Liberty Be	II Pit	15:37		5:08:08
Gaffney, F. Drew Dr.	Civ	STS-40	PS	218:15:14		218:15:14			Gemini 3	Cdr	4:52:31		
Gardner, Dale A.,	USN	STS-8	MS	145:08:43		336:53:39	Gutierrez, Sidney M. Lt. Col.	USAF	STS-40	Pk	218:15:14		218:15:14
		STS-51A	MS	191:44:58	12:14		Haise, Fred W.	Civ	Apollo 13	LMP	142:54:41		142:54:41
Gardner, Guy S., Lt. Col.	USAF	STS-27	Ptt	105:05:37		320:10:44	Hammond, L. Blaine, Jr. Col	USAF	STS-39	Pit	199:26:17		199:26:17
		STS-35	Ptt	215::05:07			Harbaugh, Gregory J.	Civ	STS-39	MS	199:26:17	04:27	343:04:36
Gam, E. J. "Jake"	Civ	STS-51D	PS	167:55:23		167:55:23			STS-54	MS	143:38:19		
Garneau, Marc, PhD	Civ	STS-41G	PŠ	197:23:33		197:23:33	Harris, Bernard, Jr., Dr.	CIV	STS-55	MS	239:39:59		239:39:59
Garriott, Owen K., PhD	Civ	Skytab 3	Plt	1416:11:09	13:44	1663:58:33	Hart, Terry J	Čiv	STS-41C	MS	167:40:07		167:40:07
		STS-9	MS	247:47:24									
		*Lunar St	urface EVA							el Flight			

Hame	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (br:min)	Total Flight Time (hr:min:sec)	Name	Service	Mission	Position			Total Flight Time (hr:min:sec)
Hartsfield, Henry W.	USAFRe		Pit	169:09:31		482:50:26	Jernigan, Tamara E. PhD	Chv	STS-40	MS	218:15:14		455:11:27
		STS-41D	Cdr	144:58:04					STS-52	MS	236:56:13		
		STS-61A	Cdr	168:44:51			Kerwin, Joseph P., Capt	USN Ret	Skytab 2	Pit	672:49:49	03:30	672:49:49
Hauck, Frederick H., Capt	USN	STS-7	Pt	146:23:59		435:09:06	Lee, Mark C. Maj	USAF	STS-30	MS	96:56:28		287:26:51
		STS-51A	Cdr	191:44:56					STS-47	MS	190:30:23		
		STS-26	Cds	97:00:11			Leetsma, David C., Cdr	USN	STS-41G	MS	197:23:33	03:29	532:34:05
Hawley, Steven A., Ph	Civ	STS-41D	MS	144:58:04		412:16:01			STS-28	MS	121:00:08		
		STS-61C	MS	148:03:51					STS-45	MS	214:10:24		
		STS-31	MS	121:16:06			Lenoir, William B., PhD	Civ	STS-6	MS	122:14:28		122:14:28
Henize, Karl G., PhD	Civ	STS-51F	MS	190:45:26		190:45:26	Lichtenberg, Bryon K., PhD	Civ	STS-0	PS	247:47:24		461:57:48
Hennen, Thomas J.	USA	STS-44	PS	168:52:27		166:52:27	i i		STS-45	PS	214:10:24		
Helms, Susan, Maj.	USAF	STS-54	MS	143:38:19		143:38:19	Lind, Don Leslie, PhD	CIV	STS-51B	MS	168:08:46		168:08:46
Henricks, Terence T. Col.	USAF	STS-44	PR	166:52:27		406:32:28	Lounge, John M.	Ch/	STS-511	MS	170:17:42		482:23:00
		STS-55	PR	239:39:59			-		STS-26	MS	97:00:11		
Hieb, Richard J	Civ	STS-39	MS	199:26:17		412:43:55			STS-35	MS	215:05:07		
		STS-49	MS	213:17:38	17:42		Louema, Jack R., Cof	USMC	Skytab 3	Pit	1416:11:09	10:59	1608:15:55
Hilmers, David C., Lt. Col.	USMC	STS-51J	MS	97:44:38		494:18:54			STS-3	Cdr	192:04:46		
		STS-26	MS	97:00:11			Lovell, James A., Jr., Capt	USN Rat	Gemini 7	Pit	330:35:01		715:04:55
		STS-36	MS	106:18:22					Gemini 12	Cdr	94:34:31		
		STS-42	MS	193:15:43					Apollo 8	CMP	147:00:42		
Hoffman, Jeffery A., PhD	Civ	STS-51D	MS	167:55:23	03:10	834:15:12			Apollo 13	Cdr	142:54:41		
		STS-35	MS	215:05:07			Low, G. David	ΟW	STS-32	MS	261:00:37		714:07:58
		STS-46	MS	191:16:07					STS-43	MS	213:22:27		
		STS-61	MS	259:58:35	22:03				STS-67	PC	239:44:54	05:50	
Hughes-Fulford, Millie Dr.	Civ	STS-40	PS	218:15:14		218:15:14	Lucid, Shannon W., PhD	Civ	STS-51G	MS	169:38:52		838:53:11
Irwin, James B., Col	USAF Ret		LMP	295:11:53	48:35	295:11:53]		STS-34	MS	119:39:20		
Ivins, Marsha S.	Civ	STS-32	MS	261:00:37		452:16:44			STS-43	MS	213:22:27		
tvino, marona O.		STS-46	MS	191:16:07			l		STS-58	MS	336:12:32		
Jarvis, Gregory B	Civ	STS-51L	PS	N/A		N/A	Malerba, Franco, PhD	Civ	STS-48	PS	191:16:07		191:16:07
Jamison, Mae C., MD	Civ	STS-47	MS	190:30:23		190:30:23	manuse, · · · · · · · · · · · · · · · · · · ·	VIII	010-40		191.10.07		10.07
Jeniesuri, masi C., MD	OH .		Surface E			100.00.20			** Suborbi	had Ciliada			

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flight Time (hr:min:sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flight Time (hr:min:sec
Mattingly, Thomas K., Capt		Apollo 18	CMP	265:51:05	01:24	508:33:59	Musgrave, F. Story, MD, PhD	Civ	STS-6	MS	120:23:42	03:54	857:06:56
		STS-4	Cdr	169:09:31					STS-51F	MS	190:45:26		
		STS-51C	Cdr	73:33:23					STS-33	MS	120:06:46		
McArthur, William, Jr., Lt Col		STS-58	·MS	336:12:32		336:12:32			STS-44	MS	166:52:27		
McAuliffe, S. Christa		STS-51L	PS	N/A		N/A			STS-61	MS	259:58:35	22:03	
McBride, Jon A., Cdr USN		STS-41G	Ptt	197:23:33		197:23:33	Nagel, Steven R., Col.	USAF	STS-51G	MS	169:38:52		721:36:27
McCandless, Bruce, Capt		STS41-B	MS	191:15:55	11:37	191:15:55			STS-61A	Pit	168:44:51		
McCulley, Michael, Cdr	USN	STS-34	Ptt	119:39:20		119:39:20			STS-37	Cdr	143:32:45		
McDivitt, James A., B. Gen	'USAF Ret	Gemini 4	Cdr	97:56:12 .		338:57:06			STS-55	Cdr	239:39:59		
							Nelson, Bill	Civ	STS-61C	P\$	146:03:51		146:03:51
McMonagle, Donald R. Lt.Col.	USAF	STS-39	MS	199:23:17		343:04:36	Netson, George D., PhD	Civ	STS-41C	MS	167:40:07	10:06	410:44:09
		STS-54	Pft	143:38:19		-			STS-61C	MS	146:03:51		
McNair,Ronald E., PhD	Civ	STS-41B	MS	191:15:55		191:15:55			STS-26	MS	97:00:11		
		STS-51L	MS	N/A			Neri Vela, Rodolpho, PhD	Civ	STS-61B	PS	165:04:49		165:04:49
Meade, Carl J., Coi.		STS-38	MS	117:54:27		449:24:31	Newman, James H., Dr.	Civ	STS-51	MS	236:11:11	07:05	236:11:11
		STS-50	MS	331:30:04			Nicotlier, Claude, PhD	Civ	STS-46	MS	191:16:07		451:14:42
Metnick, Bruce E., Cdr		STS-41	MS	98:10:03		311:27:41			STS-61	ESA	259:58:35		
		STS-49	MS	213:17:38			Ochoa, Ellen, Dr.	Civ	STS-56	MS	222:08:16		222:08:16
Merbold, Ulf, PhD	Civ	STS-9	PS	247:47:24		441:03:07	Ockels, Wubbo J., PhD	Civ	STS-61A	PS	168:44:51		168:44:51
		STS-42	PS	193:15:43			O'Connor, Bryan O., Col	USMC	STS-61B	Plt	165:04:49		383:20:03
	Civ	STS-61A	PS	168:44:51		168:44:51	·		STS-40	Cdr	218:15:14		
Mitchell, Edger D., Capt	USN Ret	Apollo 14	LMP	216:01:58	*09:23	216:01:58	Onizuka, Ellison S., Lt. Col	USAF	STS-51C	MS	73:33:23		73:33:23
		STS-47	PS	190:30:23		190:30:23			STS-51L	MS	N/A		
Mullane, Richard M., Col	USAF	STS-41D	MS	144:56:04		571:25:10	Oswald, Steven S.	Civ	STS-42	Pit	193:15:43		415:23:59
		STS-27	MS	105:05:37					STS-56	Plt	222:08:16		
•		STS-36	MS	106:18:22			Overmyer, Robert F., Col	USMC	STS-5	Pit	122:14:26		290:23:12
		STS-35	MS	215:05:07			-		STS-51B	Cdr	168:08:46		
							Pailes, William A., Maj	USAF	STS-51J	PS	97:44:38		97:44:38
							Parise, Ronald A., PhD	Civ	STS-35	PS	215:05:07		215:05:07
		4	Surface E	VΔ			*		** Suborbi	at Flinte			

Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flight Time (hr:min:sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flight Time (hr:min:sec)
Parker, Robert A., PhD	Civ	STS-9 STS-35	MS MS	247:47:24 215:05:07		462:52:31	Scobee, Francis R. (Dick)	USAF Ret	STS-51L	Pit Cdr	167:40:07 N/A		167:40:07
	USAF USAF Ret	STS-51C	PS MS	73:33:23 120:23:42	03:54	73:33:23 120:23:42	Scott, David R., Col	USAF Ret	Gemini 8 Apollo 9	PIL CMP	10:41:26 241:00:54	01:01	546:54:13
	USAF Ret		Ph:	2016:01:16	13:34	2016:01:16			Apollo 15	Cdr	295:11:53	*19:08	
		STS-55	MS	239:39:59	10.01	239:39:59	Scully-Power, Paul D	Civ	STS-41G	P\$	197:23:33		197:33:23
Readdy, William F.	Civ	STS-42 STS-51	MS Pit	193:15:43 236:11:11		429:26:54	Seddon, M. Rhea, MD	Civ	STS-51D STS-40	MS MS	167:55:23 218:15:14		722:23:09
	USN Civ	STS-48 STS-41D STS-51L	PR MS MS	128:27:51 144:56:04 N/A		128:27:51 144:56:04	Shaw, Brewster H., Col	USAF	STS-58 STS-9 STS-61B	PC Pit Cdr	338:12:32 247:47:24 165:04:49		533:52:21
Richards, Richard N., Cdr	USN	STS-28 STS-41	Pft Cdr	121:00:08 98:10:03		550:40:15	Shepard, Alan B., Jr., R. Adm.	USN Ret	STS-28	Cdr	121:00:08 15:22		216:17:20
	•	STS-50	Cdr MS	331:30:04		040 47.00	Shepherd, William M., Capt	USN	Apollo 14 STS-27	Cdr MS	216:01:5 105:05:37	*09:23	440:11:53
Ride, Sally K.,PhD	Civ	STS-7 STS-41G	MS	146:23:59 197:23:33		343:47:32	эперпета, үчшат м., Сарг	USN	STS-41	MS	98:10:03		440:11:53
		Apollo14	CMP	216:01:58		216:01:58			STS-52	MS	236:56:13		
Ross, Jerry L., LI Col	USAF	STS-61B STS-27 STS-37	MS MS MS	165:04:49 105:05:37 143:32:45	12:20	413:43:11	Shertock, Nancy J., Capt. Shriver, Loren J., Col	USAF USAF	STS-57 STS-51C STS-31	MS Pit Cdr	239:44:54 73:33:23 121:16:06		239:44:54 386:05:36
Runco, Mario Jr., Lt Cdr	USN	STS-44 STS-54	MS MS	166:52:27 143:38:19	04:27	310:30:46	Slavton, Donald K. Mai	USAF RE	STS-46 TApollo Sovi	Cdr	191:16:07 217:28:23		217:28 :23
Searfoss, Richard, Mai	USAF	STS-58	Pit	336:12:32		336:12:32	Smith, Michael J, Cdr	USN	STS-51L	Pit	N/A		N/A
Schirra, Walter M., Jr., Capt	USN Ret	Sigma 7 Gemini 6A Apollo 7	Pti Cdr Cdr	9:13:11 25:51:24 260:09:03		295:13:38	Spring, Sherwood C., Lt Col Springer, Robert C., Col	USA USMC	STS-61B STS-29 STS-38	MS MS MS	165:04:49 119:38:52 117:54:27	12:20	165:04:49 237:33:19
Schlegel, Hans (German)	Civ	STS-55	PS	239:39:59		239:39:59	Stafford, Thomas P., Lt. Gen	USAF Ret	Gemini 6A	Pit	25:51:24		507:44:00
Schmitt, Harrison H., PhD	Civ	Apollo 17	LMP	301:51:59	*22:04	301:51:59			Gemini 9A	Cdr	72:20:50		
Schweickart, Russell	Civ	Apolio 9 *Lunar Surf	LMP	241:00:54	01:07	241:00:54			Apollo 10 Apollo Soyu	Cdr zz Cdr bital Fligh	192:03:23 217:28:23		

Name	Service	Mission	Position	Flight Time (hr:min:sec)		Total Flight Time hr:min:sec)	Name	Service	Mission	Position	Flight Time (hr:min:sec)	EVA (hr:min)	Total Flight Time (hr:min:sec)
Stewart, Robert L., Col	USA	STS-41B STS-51J	MS MS	191:15:55 97:44:38	11:37	289:00:33	Walker, David M., Capt	USN	STS-51A STS-30	Plt Cdr	191:44:56 96:56:28		484:01:11
Sullivan, Kathryn D., PhD	Civ	STS-41G STS-31 STS-45	MS MS MS	197:23:33 121:16:06 214:10:24	03:29	532:50:00	Walter, Ulrich (Germany) Walz, Carl E., Mai	Civ USAF	STS-53 STS-55 STS-51	Cdr PS MS	175:19:47 239:39:59 236:11:11	07:05	239:39:59 236:11:11
Swigert, John L., Jr.	Civ	Apollo 13	CMP	142:54:41		152:54:41	Wang, Taylor G., PhD	Civ	STS-51B	PS Pt	168:08:46		168:08:46
Thagard, Norman E., MD	Civ	STS-7 STS-30	MS MS	168:08:46 96:56:28			Weitz, Paul J., Capt		Skytab 2 STS-6	Cdr	672:49:49 120:23:42	01:44	793:13:31
Thornton, Kathryn	Civ	STS-42 STS-33	MS MS	193:15:43 120:06:46		593:23:00	Wetherbee, James, Cdr	USN	STS-32 STS-52	Ptt Cdr	261:00:37 236:56:13		497:56:50
	_	STS-49 STS-61	MS MS	213:17:38 259:58:35	7:45 13:25		White, Edward H., Lt. Col Williams, Donald E., Capt	USAF USN	Gemini 4 STS-51D	Pit Pit	97:56:12 167:55:23	00:23	97:58:12 287:34:43
Thornton, William E., MD	Civ	STS-8 STS-518	MS MS	145:08:43 168:08:46		313:17:29	Wisoff, Peter J. K., Dr.	Civ	STS-34 STS-57	Cdr MS	119:39:20 239:44:54	05:50	239:44:54
Thuot, Pierre J., Lt. Cdr	USG	STS-36 STS-49	MS MS	106:18:22 213:17:38	17:42	319:38:00	Wolf, David A., Dr Worden, Alfred M., Col	Civ USAF Ret	STS-58 Apollo 15	MS CMP	336:12:32 295:11:53	00:39	336:12:32 295:11:53
Truly, Richard H., Capt	USN	STS-2 STS-8	Pft Cdr	54:13:12 145:08:43		199:21:55	Young, John W., Capt	USN Ret	Gemini 3 Gemini 10	Ptt Cdr	4:52:31 70:48:39		835:41:55
van den Berg, Lodewijk, PhD	Civ	STS-51B	PS	168:08:46		168:08:46			Apollo 10	CMP	192:03:23		
van Hoften, James D., PhD	Civ	STS-41C STS-51I	MS MS	167:40:07 170:17:42	10:06 11:51	337:57:49			Apollo 16 STS-1	Cdr Cdr	265:51:05 54:20:53	*20:14	
Veach, Charles Lacy	USAF	STS-39 STS-52	MS MS	199:23:17 236:56:13		436:19:30			STS-9	Cdr	247:47:24		
Voss, James S. Lt.Col.	USA	STS-44 STS-53	MS MS	166:52:27 175:19:47		342:12:14							
Voss, Janice E., Dr.	Civ	STS-57	MS	239:44:54		239:44:54							
Walker, Charles D.	Civ	STS-41D STS-51D STS-61B	PS PS PS	144:56:04 167:55:23 165:04:49		477:56:16							
	_	*Lunar Su	rface EVA						■ Subo	rbital Fligh	t .		_

Summary of United States Manned Space Flight

Mission	Crew Members		Crew Hours (hr:min:sec)	Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min;sec)
MERCURY REDS	TONE (Suborbital)			APOLLO SATURN	ii -		
Freedom 7	Shepard	15:22	15:22	Apollo 7	Schirra, Eisele, Cunningham	260:09:03	780:27:09
Liberty Bell 7	Grissom	15:37	15:37	1			
Total Flights - 2		30:59	30:59	APOLLO SATURN	IV		
MERCURY ATLA	S (Orbital)			Apollo 8	Borman, Lovell, Anders	147:00:42	441:02:06
	, ,			Apollo 9	McDivitt, Scott, Schweickart	241:00:54	723:02:42
Friendship 7	Glenn	4:55:23	4:55:23	Apollo 10	Stafford, Young, Ceman	192:03:23	576:10:09
Aurora 7	Carpenter	4;56:05	4:56:05	Apollo 11	Armstrong, Collins, Aldrin	195:18:35	585:55:45
Sigma 7	Schirra	9:13:11	9:13:11	Apollo 12	Conrad, Gordon, Bean	244;36:24	733:49:12
Faith 7	Cooper	34:19:49	34:19:49	Apollo 13	Lovell, Świgert, Haise	142:54:41	428:44:03
Total Flights - 4		53:24:28	53:24:28	Apollo 14	Shepard, Roosa, Mitchell	216:01:58	648:05:54
-				Apollo 15	Scott, Worden, Irwin	295;11:53	885:35:39
				Apollo 16	Young, Mattingly, Duke	265:51:05	797:33:15
TOTAL MERCUR	Y FLIGHTS - 6	53:55:27	53:55:27	Apollo 17	Cernan, Evans, Schmitt	301:51:59	905:35:57
				Total Flights - 10	1	2241:51:34	6725:34:42
GEMINI TITAN				TOTAL APOLLO F	LIGHTS - 11	2502:00:37	7506:01:51
Gemini 3	Grissom, Young	4:52:30	9:45:02	SKYLAB SATURN	I IB		
Gemini 4	McDivitt, White	97:56:12	195:52:24	1			
Gemini 5	Cooper, Conrad	190:55:14	381:50:28	Skylab 2	Conrad, Kerwin, Weitz	672:49:49	2018:29:27
Gemini 6A	Schirra, Stafford	25:51:24	51:42:48	Skylab 3	Bean, Garriott, Lousma	1416:11:09	4248:33:27
Gemini 7	Borman, Lovell	330:35:01	661:10:02	Skylab 4	Carr, E. Gibson, Pogue	2016:10:16	6048:03:48
Gemini 8	Armstrong, Scott	10:41:26	21:22:52				
Gemini 9A	Stafford, Černan	72:20:50	144:41:40	TOTAL SKYLAB	FLIGHTS - 3	4105:02:14	12315:06:42
Gemini 10	Young, Collins	70:46:39	141:33:18	ſ			
Gemini 11	Conrad, Gordon	71:17:08	142:34:16	APOLLO SATURN	I IB		
Gemini 12	Lovell, Aldrin	94:34:31	189:09:02	Į.			
				ASTP	Stafford, Brand, Slayton	217:28:23	652:25:09
TOTAL GEMINI F	LIGHTS - 10	969:50:56	1939:41:52	l	•		

Summary of United States Manned Space Flight

Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)	Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)
STS-1 - Columbia	Young, Crippen	54:20:53	108;41:46	STS-511 - Discovery	Engle, Covey, van Hoften, Lounge, W. Fisher	170:17:42	851:28:30
STS-2 · Columbia	Engle, Truly	54:13:12	108:26:24	STS-51J - Atlantis	Bobko, Grabe, Hilmers, Stewart, Pailes	97:44:38	488:43:10
STS-3 - Columbia	Lousma, Fullerton	192:04:46	384:09:32	STS-61A · Challenger	Hartsfield, Nagel, Buchli, Bluford, Dunbar,	168:44:51	1349:58:48
	Mattingly, Hartsfield	169:09:31	338;19:02		Furrer, Messerschmid, Ockels		
STS-5 - Columbia	Brand, Övermyer, Allen, Lenoir	122:14:26	488:57:44	STS-61B - Atlantis	Shaw, O'Connor, Cleave, Spring, Ross,	165:04:49	1155:33:43
STS-6 - Challenger	Weitz, Bobko, Peterson, Musgrave	120:23:42	481:34:48		Neri Vela, C. Walker		
STS-7 - Challenger	Crippen, Hauch, Ride, Fabian, Thagard	146:23:59	731:59:55	STS-61C - Columbia	R. Gibson, Bolden, Chang-Diaz, Hawley,	146:03:51	1022:26:57
STS-8 - Challenger	Truly, Brandenstein, D. Gardner, Bluford,	145:08:43	725:43:35		G. Nelson, Cenker, B. Nelson		
	W. Thornton		- 1	STS-51L - Challenger	Scobee, Smith, Resnik, Onizuka, McNair,	N/A	N/A
STS-9 - Columbia	Young, Shaw, Garriott, Parker,	247:47:24	1486:44:24	_	Jarvis, McAuliffe		
	Lichtenberg, Merbold			STS-26 - Discovery	Hauck, Covey, Lounge, Hilmers, G. Nelson	97:00:11	485:00:55
STS-41B - Challenger	Brand, Gibson, McCandless, McNair,	191:15:55	956:19:35	STS-27 - Atlantis	R. Gibson, Gardner, Mullane, Ross, Shepherd	105:05:37	525:28:05
	Stewart			STS-29 - Discovery	Coats, Blaha, Bagian, Buchi, Springer	119:38:52	598:14:20
STS-41C - Challenger	Crippen, Scobee, van Hoften, G. Nelson, Hart	167:40:07	838:20:35	STS-30 - Atlantis	Walker, Grabe, Thagard, Cleave, Lee	96:56:28	484:42:20
STS-41D - Discovery	Hartsfield, Coats, Resnik, Hawley, Mullane,	144:56:04	869:36:24	STS-28 - Columbia	Shaw, Richards, Leetsma, Adamson, Brown	121:00:08	605:00:40
-	C. Walker			STS-34 - Atlantis	Williams, McCully, Baker, Chang-Diaz, Lucid	119:39:20	598:16:40
STS-41G - Challenger	Crippen, McBride, Ride, Sullivan, Leetsma,	197:23:33	1381:44:51	STS-33 - Discovery	Gregory, Blaha, Musgrave, K. Thornton, Carter	120:06:46	600:33:50
	Gameau, Scully-Power			STS-32 - Columbia	Brandenstein, Wetherbee, Dunbar, Ivins, Low	261:00:37	1305:03:05
STS-51A - Discovery	Hauck, D. Walker, Gardner, A. Fisher, Allen	191:44:56	958;49:40	STS-36 - Atlantis	Creighton, Casper, Hilmers, Mullane, Thuot	106:18:22	531:31:50
STS-51C - Discovery	Mattingly, Shriver, Onizuka, Buchli, Payton	73:33:23	367:46:55	STS-31 - Discovery	Shriver, Bolden, McCandless, Hawley, Sullivan	121:16:06	606:20:30
STS-51D - Discovery	Bobko, Williams, Seddon, Hoffman, Griggs,	167:55:23	1175:27:41	STS-41- Discovery	Richards, Cabana, Melnick, Shepard, Akers	98:10:03	490:50:15
	C. Walker, Garn			STS-38 - Atlantis	Covey, Springer, Meade, Culbertson, Gernar	117:54:27	589:35:15
STS-51B - Challenger	Overmyer, Gregory, Lind, Thagard,	168:08:46	1177:01:22	STS-35 - Columbia	Brand, Lounge, Hoffman, Parker,	215:05:07	1505:35:49
,	W. Thornton, van den Berg, Wang				G. Gardner, Parise, Durrance		
STS-51G - Discovery	Brandenstein, Creighton, Lucid, Fabian,	169:38:52	1187:32:04		Nagel, Cameron, Ross, Apt, Godwin	143:32:45	717:43:45
	Nagel, Baudry, Al-Saud		i	STS-39 - Discovery	Coats, Hammond, Harbaugh, Hieb, McMonagle,	199:23:17	1395:42:59
STS-51F - Chailenger	Fullerton, Bridges, Musgrave, England, Henize, Acton, Bartoe	190:45:26	1335:18:02		Bluford, Veach		

Summary of United States Manned Space Flight

Mission	Crew Members		Crew Hours (hr:min:sec)	Mission	Crew Members	Mission Duration (hr:min:sec)	Crew Hours (hr:min:sec)
STS-40 - Columbia	Gutierrez, Seddon, Bagian, Jernigan, Gaffney, Hughes-Fulford, O'Connor	218:15:14	1527:46:38	STS-61 - Endeavour	Covey, Bowersox, Musgrave, Akers, Hoffman, Thornton, Nicollier	259:58:35	1971:57:05
STS-43 - Atlantis	Blaha, Baker, Lucid, Low, Adamson	213:22:27	1066:52:15				
STS-48 - Discovery	Creighton, Reightler, Buchli, Brown, Gemar	128:27:51	642:19:15	TOTAL SHUTTLE FLI	GHTS - 58	9857:41:10	55519:35:38
STS-44 - Atlantis	Gregory, Henricks, Musgrave, Runco, Voss, Hennen	166:52:27	1001:14:42				
STS-42 - Discovery	Grabe, Oswald, Thagard, Readdy, Hilmers Bondar, Merbold	193:15:43	1352:50:01				
STS-45 - Atlantis	Bolden, Duffy, Sullivan, Leestma, Foale, Frimout, Lichtenburg	214:10:24	1499:12:48	}			
STS-49 - Endeavour	Brandenstein, Chilton, Hieb, Melnick, Thout, Thornton, Akers	213;30:04	1493:03:26				
STS-50 - Columbia	Richards, Bowersox, Dunbar, Meade, Baker Delucas	331:30:04	1989:00:24				
STS-46 - Atlantis	Shriver, Allen, Hoffman, Chang-Diaz, Nicollier, Wins, Malerba	191:16:07	1338:52:49				
STS-47 - Endeavour	Gibson, Brown, Lee, Davis, Jemison, Apt, Mohri	190:30:23	1333:32:41	l			
STS-52 - Columbia	Weatherbee, Baker, Shepherd, Jernigan, Veach	236:56:13	1184:41:05				
STS-53 - Discovery	Walker, Cabana, Bluford, Voss, Clifford	175:19:47	876:38:55				
STS-54 - Endeavour	Casper, McMonagle, Runco, Harbaugh Helms	143:38:19	718:11:35	ļ			
STS-56 - Discovery	Cameron, Oswald, Foale, Cockrell, Ochoa	222:08:24	1110:42:00	1			
STS-55 - Columbia	Nagel, Henricks, Precourt, Harris, Walter, Schlegel	239:39:59	1437:59:54				
STS-57 - Endeavour	Grabe, Duffy, Low, Sherlock, Wisoff, Voss	239:44:54	1438:16:36	1			
STS-51 - Discovery	Culbertson, Readdy, Newman, Bursch, Walz	236:11:11	1186:41:50	ì			
STS-58 - Columbia	Blaha, Searloss, Seddon, Lucid, Wolf, McArthur, Fettman	336:12:32	2023:27:42				

Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
Columbia	Apr 12, 1981 KSC ration: 54 hrs 20	Apr 14, 1981 DFRF O mins 53 secs	Cdr: Plt:	John W. Young Robert L. Crippen	Deployable Payloads: None Attached PLB Payloads: 1. Passive Sample Array 2. DFI (Development Flight Instrumentation) Pallet 3. ACIP (Aerodynamic Coefficient Identification Package)	GAS (Getaway Special): None Crew Compartment Payloads: None Special Payload Mission Kits: None
Columbia	Nov 12, 1981 KSC ration: 54 hrs 13	Nov 14, 1981 DFRF 3 mins 12 secs	Cdr: Pit:	Joe Henry Engle Richard H. Truly	Deployable Payloads: None Attached PLB Payloads: 1. OFT (Orbital Flight Test) Pallet a. MAPS (Measurement of Air Pollution From Satellite) b. SMIRR (Shuttle Mutilspectral Infrared Radiometer) c. SIR (Shuttle Inaging Radar) d. FILE (Features Identification and Location Experiment) e. OCE (Ocean Color Experiment) 2. DFI (Development Flight Instrument) Pallet 3. ACIP (Aerodynamic Coefficient Identification Package)	4. IECM (Induced Environment Contamination Monitor) 5. OSTA-1 (Office of Space and Terrestrial Applications) GAS (Getaway Special): None Crew Compartment Payloads: None Special Payload Mission Kits: 1. RMS (Remote Manipulator System (S/N 201)
STS-3 Columbia Mission Dur	Mar 22, 1982 KSC ration: 192 hrs	Mar 30, 1982 White Sands 4 mins 46 secs	Cdr: Pit:	Jack R. Lousma Charles G. Fullerton	Deployable Payloads: None 1. Pissma Diagnostic Package Attached PLB Payloads: 1. OSS (Office of Space Science)-1 Pallet a. Plant Lignification Experiment b. Plasma Diagnostic Package c. Vehicle Charging and Potential d. Space Shuttle Induced Atmosphere e. Thermal Canister f. Solar Flare X-ray Polarimeter g. Solar Ultraviolet and Spectral Irradiance Monitor h. Contamination Monitor Package i. Foll Microabrasion Package 7RMS deployed/berthed	DFI (Development Flight Instrument) Pallet AIDP (Aerodynamic Coefficient Identification Package) GAS (Getaway Special): Verification Canister Crew Compartment Payloads: MLR (Monodisperse Latex Reactor) HBT (Heftex Bloengineering Test) Special Payload Mission Kits: RMS (Remote Manipulator System (S/N 201)

Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
STS-4 Columbia Mission Du	Jun 27, 1982 KSC uration: 169 hrs 9	Jul 4, 1982 DFRF 9 mins 31 secs	Cdr: Ptt:	Henry W. Hansfield, Jr.	1. IECM (Induced Environment Contamination Monitor) deployed/reberthed by RMS Ontamination Monitor) deployed/reberthed by RMS Ontamination Monitor) deployed/reberthed PLB Payloade 1. DIP (Development Flight Instrument) Pallet Department of Defense 1. DOD 82-1 6. AS (Getaway Special): 1. Utah State University a. Drosophila Melanogaster (fruit fly) Growth Experiment b. Antamia (Brine Shrimp) Growth Experiment c. Surface Tension Experiments d. Composite Curing Experiment e. Thermal Conductivity Experiment f. Microgravity Soldering Experiment	g. Root growth of Lemna Minor L. (Duckweed) in Microgravity H. Homogeneous Alloy Experiment L. Algai Microgravity Bioassay Experiment Crew Compartment Payloads: MLR (Monodisperse Latex Reactor) Cress (Continuous Flow Electrophoresis System) SSIP (Shuttle Student Involvement Program) S404: Effect of Prolonged Space Travel on Levels of Trivalent Chromium in the Body S405: Effect of Dief, Exercise, and Zero Gravity on Lipoprotein Profiles 4. VPCF (Vapor Phase Compression Freezer) Special Payload Mission Kits: 1. RIMS (Remote Maringulator System (S/N 201).
STS-5 Columbia Mission Du	Nov 11, 1982 KSC uration: 122 hrs	Nov 16, 1982 DFRF 14 mins 26 secs	Cdr: Ph: MS: MS:	Vance DeVoe Brand Robert F. Overmyer Joseph P. Allen William B. Lenoir	Deployable Payloads: None 1. SIS-C/PAM-D (Satellite Business Systems/Payload Assist Module) 2. ANIK-C/PAM-D (relesat Canada, Ltd/Payload Assist Module) Attached PLB Payloads 1. DIP (Development Flight Instrument) Pallet a. EIOM (Effects of Interaction of Oxygen with Materials) b. ISAL (Investigation of STS Atmospheric Luminosities)	GAS (Getaway Special): 1. G-026: ERNO/Stability of Metallic Dispersions (JSC PIP 14021) Crew Compartment Payloads: 1. SSIP (Shuttle Student Involvement Program) a. SE81-5 - Copysal Formation in Zero Gravity b. SE81-9 - Convection in Zero Gravity c. SE81-2 - Growth of Porifera Special Payload Mission Kits: 1. Mission Specialist Seats (2)
STS-6 Challenger Mission Du	Apr 4, 1983 KSC uration: 120 hrs	Apr 9, 1983 DFRF 23 mins 42 secs	Cdr: Pit: MS: MS:	Paul J. Weitz Karol J. Bobko Donaki H. Peterson Story Musgrave	Deployable Payloads: None 1. TDRS-A/IUS (Tracking and Data Relay Satellite/Inertial Upper Stage) Attached PLB Payloads 1. CBSA (Cargo Bay Stowage Assembly) GAS (Getaway Special): 1. G-005: Asahi Shimban, Japan 2. G-049: U.S. Air Force Academy 3. G-381: Park Seed Company	Crew Compartment Payloads: 1. CFES (Continuous Flow Electrophoresis System) 2. MLR (Monodisperse Latex Reactor) 3. RME (Radiation Monitoring Experiment) 4. NOSL (NightDay Optical Survey of Lightning) Special Payload Mission Kits: 1. Mini-MADS (Modular Audiliary Data System) 2. EMU (Extravehicular Mobility Unit)

Flight Launch Date Landing Date	Crew	Payloads a	and Experiments
STS-7 Jun 18, 1983 Jun 24, 1983 Columbia KSC DFRF Mission Duration: 146 hrs 23 mins 59 secs	Cdr: Robert L. Crippen Plt: Frederick H. Hauck MS: John M. Fabian MS: Sally K. Ride MS: Norman E. Thagard	Deployable Payloads: None 1. ANIK-C/PAM-D (Telesat Canada Satellite) 2. Palapa-B1/PAM-D (Indonesian Satellite) 3. SPAS (Shuttle Patlet Satellite)-01 Unberthing/Berthing Tests Attached PLB Payloads:	G-009: Purdue University - Geotropism Fluid Dynamics and Nuclear Particle Velocity G-305: U.S. Air Force and National Research Labs - Ultraviolet Spectrometer G-012: RCA, Camden, NJ Schools - Ant Colony G-345: Goddard Space Flight Center and National
		OSTA (Office of Space and Terrestrial Applications)-2 CBSA (Cargo Bay Stowage Assembly) GAS (Getaway Special): G-033: California Institute of Tech - Plant Gravineception and Liquid Dispersion G-088: Edsyn, Inc Soldering of Material G-002: Kayser Threde, W. Germany - Youth Fair Experiment	Research Labs. Payload Bay Environment Crew Compartment Payloads: 1. CFES (Continuous Flow Electrophoresis System) 2. MLR (Monodisperse Latex Reactor) 3. SSIP (Shuttle Student Involvement Program) Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 201 2. TAGS (Text and Graphics System) 3. Mini-MADS (Modular Auxiliary Data System)
STS-8 Aug 30, 1983 Sep 5, 1983 Challenger KSC DFRF	Cdr: Richard H. Truly Plt: Daniel C. Brandenstei MS: Dale A. Gardner MS: Guion S. Bluford, Jr. MS: William E. Thornton	Deptoyable Payloads: 1. Insat/PAM-D: Indian National Satellite 2. PFTA (Payload Flight Test Article) Unberthing/ Berthing Tests Attached PLB Payloads:	Goddard Space Flight Center - Cosmic Ray Upset Experiment Crew Compartment Payloads: CFES (Continuous Flow Electrophoresis System) ICAT (Incubator-Cell Matchment Test)
Mission Duration: 145 hrs 8 mins 43 secs		DFI (Development Flight Instrumentation) a. Oxygen Interaction and Heat Pipe Experiment b. Postal Covers (2 boxes) CBSA (Cargo Bay Stowage Assembly) SPAS (Shuttle Pallet Satellite)-01 Umbilical Disconnect GAS (Getaway Special): U. U.S. Postal Service - 8 cans of philatelic covers C-475: Asahi Shimban - Artificial Snow Crystal Experiment G. 4348: Office of Space Science - Atomic Oxygen Erosion G. 4348: Office of Space Science - Atomic Oxygen Erosion G. 4348: Office of Space Science - Atomic Oxygen Erosion G. 4348: Office of Space Science - Atomic Oxygen Erosion G. 4348: Office of Space Science - Atomic Oxygen Erosion G. 4348: Office of Space Science - Atomic Oxygen Erosion G. 4348: Office of Space Science - Atomic Oxygen Erosion G. 4348: Office of Space Science - Atomic Oxygen Erosion G. 4348: Office of Space Science - Atomic Oxygen Erosion G. 4348: Office of Space Science - Atomic Oxygen Erosion	3. ISAL (Investigation of STS Atmospheric Luminosities) 4. AEM (Animal Enclosure Module) - Evaluation of AEM using rate 5. RME (Radiation Monitoring Experiment) 6. SSIP (Shuttle Student Involvement Program) - Biofeedback Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 201 2. MADS (Modular Auxiliary Data System) II 3. COMSEC (Communication Security) 4. TAGS (Text and Graphics System)

Flight	Launch Date	Landing Date		Crew	Payloads a	and Experiments
STS-9 Columbia Mission D	Nov 28, 1983 KSC	Dec 8, 1983 DFRF 47 mins 24 secs	Cdr: Plt: MS: MS: PS: PS:	John W. Young Brewster W. Shaw Owen K. Garriott Robert A. R. Parker Byron K. Lichtenberg Ulf Merbold	Deployable Payloads: None Attached PLB Payloads: 1. Spacelab -1: a. Spacelab Long Module b. Spacelab Pallet c. Tunnel d. Tunnel Extension e. Tunnel Adapter 2. Experiments a. Astronomy and Physics (6) b. Atmospheric Physics (4) c. Earth Observations (2)	d. Life Sciences (16) e. Materials Sciences (39) f. Space Plasma Physics (5) g. Technology (1) G. Getaway Special): None Crew Compartment Payloads: None Special Payload Mission Kits: 1. Cryogenic sets 4 and 5 2. Spacelab Utility Kit 3. TAGS (Text and Graphics System) 4. Galley
STS-41B Challenge Mission D		Feb 11, 1984 KSC 15 mins 55 secs	Cdr: Pit: MS: MS: MS:	Vance D. Brand Robert L. Gibson Bruce McCandless Robert L. Stewart Ronald E. McNair	Deployable Payloads: 1. Westar VVFAM-D - Western Union Communications Satellite/Payload Assist Module 2. Palapa-B/PAM-D - Indonesian Communications Satellite/Payload Assist Module 3. SPAS (Shuttle Pallet Satellite)-01 - Not Deployed due to RMS anomaly 4. IRT (Integrated Rendezvous Target) - Failed to interest but internal halbure Attached PLB Payloads: 1. MFR (Manipulator Foot Restraint) 2. SESA (Special Equipment Stowage Assembly) 3. Cinema 360 - High Quality Motion Picture Camera GAS (Gateway Special): 1. G-004: Utah State University/Aberdeen University 2. G-008: Utah State University/University of Utah/Brighton High School	3. G-051: General Telephone Labs 4. G-309: U.S. Air Force 5. G-349: Goddard Space Flight Center (re: flight STS-8) Crew Compartment Payloads: 1. ACES (Acoustic Containerless Experiment System) 2. IEF (Isoelectric Focusing) 3. Cinema 360 Camera 4. Studem Experiment SE81-10 - Effects of Zero g on Arthritis 5. MLR (Monodisperse Latex Reactor) 6. RME (Radiation Monitoring Experiment) 5pecial Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 201 2. MMU (Manned Maneuvering Unit) - 2 3. Mini-MADS (Modular Auxiliary Data System) 4. Galley

Flight Launch Date	Landing Date	Crew	Payloads a	Payloads and Experiments				
STS-41C Apr 6, 1984 Challenger KSC Mission Ouration: 167 hrs 4	DFRF	Cdr: Robert L. Crippen Pit: Francis R. Scobee MS: Terry J. Hart MS: James D. Van Hoften MS: George D. Nelson	Deployable Payloads: 1. LIDEF (Ling) Duration Exposure Facility) - Office of Aeronautics and Space Technology 2. SMM (Solar Maximum Mission) Spacecraft - Rendezvous/Retrieve/Repair/Deploy Attached PLB Payloads: 1. SMRM (Solar Maximum Repair Mission) - Flight Support System 2. Cinema 380 - High Quality Motion Picture Camera 3. CBSA (Cargo Bay Stowage Assembly) - Bay 2, starboard side GAS (Getaway Special): None	Crew Compartment Payloads: 1. RME (Radiation Monitoring Experiment) 2. IMAX Camera - Canadian Commercial Company color film camera using 70mm x 280mm film 3. SSIP (Shuttle Student Involvement Program) - Comparison of honeycomb structure of bees in low g and bees in 1g Special Payload Mission Kits: 1. MMU (Manned Maneuvering Units) - 2 2. EMU (Extravehicular Mobility Units) - 3 3. RMS (Remote Manipulator System) S/N 302				
STS-41D Aug 30, 1984 Discovery KSC Mission Duration: 144 hrs 5	EAFB	Cdr: Henry W. Hartsfield Pit: Michael L. Coats MS: Richard M. Mullane MS: Steven A. Hawley MS: Judith A. Resnik PS: Charles D. Walker	Deployable Payloads: 1. SBS/PAM-D (Satellife Business System/Payload Assist Module) 2. Syncom IV-2 (Leased to DOD for UHF and SHF communications, also called Leasat) 3. Telstar/PAM-D (American Telephone and Telegraph/Payload Assist Module) Attached PLB Payloads: 1. OAST-1 (Office of Aeronautics and Space Technology) a. SAE (Solar Array Experiment) b. DAE (Dynamic Augmentation Experiment) c. SCCF (Solar Cell Calibration Facility) GAS (Getaway Special): None	Crew Compartment Payloads: 1. CFES III (Continuous Flow Electrophoresis System) 2. IMAX Camera - IMAX System Corporation (Canadian Company) Tomm x 280mm film 3. RIME (Radiation Monitoring Experiment) USAF Space Division 4. Clouds - USAF Mikon F 3/T with 105mm lens 5. SSIP - (Shuttle Student Involvement Program) - Grow single crystal of Indium, Shawn Murphy, Hiram, OH; Rockwell Intl, Sporssor Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. MADS (Modular Audiliary Data System)				

Flight Launch D	te Landing Date	Crew	Payloads a	nd Experiments
STS-41G Oct 5, 198 Challenger KSC	KSĆ (Cdr: Robert L. Crippen Pit: Jon A. McBride MS: Kathryn D. Sullivan MS: Sally K. Ride MS: Sally K. Ride MS: Sally K. Ride PS: David D. Leetsma PS: Marc D. Garneau PS: Paul D. Scully-Power	Deployable Payloads: 1. ERBS (Earth Radiation Budget Satellite) Attached PLB Payloads; 1. OSTA-3 (Office of Space and Terrestrial Applications) a. SIR-8 (Shuttle Imaging Radar) b. FILE (Feature Identification and Location Experiment) c. MAPS (Measurement of Air Pollution from Satellite) 2. LFC (Large Format Camera) 3. ORS (Orbital Refuelling System Crew Compartment Payloads: 1. APE (Auroral Photography Experiment) 2. CANEX (Canadian Experiments) a. VISET b. ACOMEX c. OGLOW (Orbital Glow and Atmospheric Emissions) d. SPEAM (Sun Photometer Earth Atmosphere Measurement) e. SASSE (Space Adaptation Syndrome Stidoes Exp) 3. IMAX Camera 4. RIME (Radiation Monitoring Experiment) 5. TLD (Thermoluminescent Dosimeter)	GAS (Getaway Special): 1. G007: Alabama Space and Rocket Center - Soldification of lead-artimory; and aluminum-copper student experiment 2. G032: ASAHI National Broadcasting Corp. Japan - Surface tension and viscosity; and materials experiment 3. G306: Air Force and U.S. Naval Research Lab - Low Energy Heavy lors Search in the Inner Magnetosphere 4. G469: Goddard Space Flight Center - Cosmic Ray Upset Experiment (CRUX) 5. G038: Marshall-McShane - Vapor Deposition of Metals And Non-Metals 6. G074: McDonnell Douglas Company - Study Proposed Propellant Acquisition System 7. G013: Kayser Threde, West Germany - Verify Transport Mechanism in Halogen Lamps Performance in Extended Micro-g 6. G518: Utah State University - Study Solar Flux Seperation, Capillary Waves on Water Surface, and Thermo-Capillary Flow in Liquid Columns Special Psyload Mission Kits: 1. RMS (Remote Manipulator System) S/N 302 2. Galley 3. MMU (Manned Maneuvering Units) - 2 4. EMU (Extraverbicular Mobility Units) - 3 5. PSA (Provisions Stowage Assembly)

Filght	Launch Date	Landing Date		Crew	Payloads a	and Experiments
STS-51A Discovery	Nov 8, 1984 KSC	Nov 16, 1984 KSC	Cdr: Plt: MS: MS: MS:	Frederick H. Hauck David M. Walker Joseph P. Allen Anna L. Fisher Dale A. Gardner	Deployable Payloads: 1. Telesat-H (ANIK)-D2/PAM-D - Canadian 24 channel communications satellite. 2. Syncom N-1 - Synchronous Communications Satellite, also called Leasat, leased to U.S. Navy	GAS (Getaway Special): Mone Special Payload Mission Kits: 1. RMS (Femote Maniputator System) S/N 301 2. MMU (Manned Maneuvering Units) (2) 3. EMU (Extravehicular Mobility Units) (3)
	ration: 191 hrs 4	14 mins 56 secs			Retrieved Payloads: 1. Palapa-B2. Deployed during mission STS 41-B, failed to achieve proper transfer orbit due to PAM-D failure 2. Westar-VI - Deployed during mission 41-B, failed to achieve proper transfer orbit due to PAM-D failure Attached PLB Payloads: None Crew Compartment Payloads: 1. DMOS (Diffusive Mixing of Organic Solutions) 3M Corp 2. RME (Radiation Monitoring Experiment)	4. PSA (Provisions Stowage Assembly) (2) 5. Satellite Retrieval Handware: a. Modified Spacedab Pallet (2) b. MFR (Manipulator Foot Restraint) (2) c. Singer Adapter (2) d. Satellite Adapter Trunnion (2) e. Berthing A Frame
STS-51C Discovery	Jan 24, 1985 KSC uration: 73 hrs 3	Jan 27, 1985 KSC	Cdr: Plt: MS: MS: PS:	Thomas K. Mattingly Loren J. Shriver Ellison S. Onizuka James F. Buchli Gary E. Payton	Deployable Payloads: Data not available, DOD Classified Mission Attached PLB Payloads: Data not available, DOD Classified Mission GAS (Getaway Special): Data not available, DOD Classified Mission	Crew Compartment Payloads: Data not available, DOD Classified Mission Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. Other data not available, DOD Classified Mission
STS-51D Discovery	Apr 12, 1985 KSC	Apr 19, 1985 KSC	Cdr: Plt: MS: MS: MS: PS: PS:	Karol J. Bobko Donald E. Williams M. Rhea Seddon S. David Griggs Jeffrey A. Hoffman Charles D. Walker E. J. Garn	Deployable Payloads: 1. Syncom IV3 - Synchronous Communications Satellite, built by Hughes, third in a series of 4, leased to the Navy. Failed to activate after nominal deploy from Orbiter. 2. Telesatt (Anik C-1)/PAM-D - Canadian communications satellite. Placed in 3 year storage	G471 - Goddard Space Flight Center, Thermal Engineering Branch. Capillary Pump Loop (CPU) Priming Experiment Crew Compartment Payloads: CFES III (Continuous Flow Electrophoresis System) AFE (American Flight Echocardiograph) PPE (Phase Partitioning Experiment)
Mission Du	ration: 167 hrs !	55 mins 23 secs			orbit. Attached PLB Payloads: None GAS (Getaway Special): 1. G035 - Asahi National Broadcasting Corp, Japan a. Surface tension and viscosity b. Alloy, lead oxide and carbon fiber	SSIP (Shuttle Student Involvement Program) (2) a. Corn Statolith Brain Cell Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. PSA (Provision Stowage Assembly) MADS III (Modular Auxiliary Data System)

Flight Launch Dat	e Landing Date	Crew	Payloads a	and Experiments
STS-51B Apr 29, 1983 Challenger KSC Mission Duration: 168 h	ÓFRF F M M M F F	Cdr. R. F. Overmyer PP. D. Gregory MS: Don L. Lind MS: Norman E. Thagard MS: William E. Thornton PS: Lodewrik Vandenberg PS: Taylor Wang	Deployable Payloads: Refer to GAS Section Attached PLB Payloads: Spacelab 3 1. Materials Processing in Space a. Solution Growth of Crystals in Zero Gravity b. Mercuric lodide Crystal Growth, Vapor Crystal Growth System (VGGS) c. Mercury lodide Crystal Growth (MICG) 2. Technology a. Dynamics of Rotating and Oscillating Free Drops (OROP) 3. Environmental Observations a. Geophysical Fluid Flow Cell Experiment (GFFC) b. Atmospheric Trace Molecule Spectroscopy (ATMOS) c. Very Wide Field Galactic Camera (WWFGC) d. Aurora Observation 4. Astro Physics a Studies of the Ionization States of Solar and Galactic Cosmic Ray Heavy Nuclei (ION) 5. Life Sciences a. Research Animal Holding Facility (RAHF) b. Urine Monitoring Investigation (UM) c. Autogenic Feedback Training (AFT)	GAS (Getaway Special): 1. G010 - NUSAT, Northern Utah Satelliae. Weber State College, Utah, Utah State University, and New Mexico State University. First successful payload ejection from a GAS cansiser. 2. G303 - GLOMR, Global Low Orbäing Message Relay Satellite. Defense Systems, Inc., McLean, VA. Failed to eject from GAS canister. Crew Compartment Payloads: 1. UMS: Urine Monitoring System Special Payload Mission Kits: 1. Airlock 2. Long Transfer Tunnel 3. Galley 4. MPESS - Mission Peculiar Equipment Support Structure, carried ATMOS and ION.

Flight Launch Date	Landing Date		Crew	Payloads a	and Experiments
3TS-51G Jun 17, 1985 Iscovery KSC Alission Duration: 169 hrs	EDW	PIt: MS: MS:	Daniel Brandenstein John O. Creighton John M. Fabian Steven R. Nagel Shannon W. Lucid Patrick Baudy Prince Sultan Salman Ai-Saud	Deployable Payloads: 1. Teistar-3UPFAM-D: Hughes 376 Communications Satelfile with McDac Payload Assist Module Booster. Owned by AT&T Co. 2. ARABSAT-APFAM-D: Aerospatiale Communication Satellite with McDac Payload Assist Module Booster. Owned by Saudi Arabian Communications Organication 3. MORELOS-APPAM-D: Hughes 376 Communications Satellite with McDac Payload Assist Module Booster. Owned by Mexican Communications and Transportation Agency 4. Spartan-1: Shrutle Pointed Autonomous Research Tool for Astronomy a. SPSS: Spartan Flight Support Structure b. REM: Release/Engage Mechanism c. SEC: Scientific Experiment Carrier The SEC was released and retrieved using REM and RMS (Remote Manipulator System) Attached PLB Payloads: None	GAS (Getaway Special); 1. G007 - Alabama Space and Rocket Center/Marshall Amateur Radio Chub - a. Solidification of Metals b. Crystal Growth c. Radish Seed Root Study d. Radish Seed Root Study d. Radish Seed Root Study d. Radish Transmission Experiment 2. G025 - ERNO - Dynamic Behavior of Liquid Propellants in low-g 3. G027: DFVLR of West Germany - Slipcasting in micro-g. 4. G028: DFVLR of West Germany - Manganese - Bismuth production in micro-g. 5. G034: Dischshire Coors, Tevas High School Students a. 12 Biological/physical science experiments b. 1 Microprocessor controller 6. G314: USAF and USNRL - SURE (Space Ultraviolet Radiation Experiment) Crew Compartment Payloads: 1. ADSF - Automated Directional Solidification Furnace 2. FEE - French Echocardiograph Experiment 4. HPTE - High Procsion Tracking Experiment 5. Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. Galley

STS-51F Jul 29, 1985 Aug 6, 1985 Cdr: Charles Fullerton Challenger KSC EDW Ptt. Roy D. Bridges MS: F. Story Musgrave MS: Anthony W. England MS: Kaf G. Henize PS: Loren W. Acton Attached PLB Payloads: Spacelab 2	GAS (Getaway Special): None Crew Compartment Payloads: 1. Life Sciences a. Vitamin D Metabolites and Bone Demineralization (Εχρ 1) b. The Interaction of Oxygen and Gravity Induced
PS: John-David Bartoe Mission Duration: 190 hrs 45 mins 26 secs 1. Plasma Physics a. Deployable/Retrievable Plasma Diagnostic Package (PDP) (Exp 3) b. Plasma Depletion Experiments for ionospheric and Radio astronomical Studies (Exp 4) c. Astrophysical Research a. Small Hellum Cooled Infrared Telescope (IRT) (Exp 7) b. Hard X-ray Imaging of Cluster of Galaxies and Other Extended X-ray Sources (XRT) (Exp 7) c. Elemental Composition and Energy Spectra of Cosmic Ray Nuclei (CRNE) (Exp 4) c. Solar Astronomy a. Solar Magnetic and Velocity Field Measurement System (SOUP) (Exp 8) b. Coronal Helium Abundance Spacelab Experiment (CHASE) (Exp 9) c. High Resolution Telescope and Spectrograph (HTS) (Exp 10) d. Solar Ultraviolet Spectral Irradiance Monitor (SUSIM) (Exp 11) Technology a. Properties of Superfluid Helium Zero-g (SFHe) (Exp 13)	Lignification (Exp 2) C. Shuttle Amateur Radio Experiment (SAREX) Dispenser Technology Experiment Dispensing Carbonated beverages in Micro-g Protein Crystal Growth Special Payload Mission Kits: RMS (Remote Manipulator System) S/N 302 Galley

Flight Laune	ch Date	Landing Date		Crew	Payloads a	nd Experiments
STS-511 Aug 2 Discovery KS	SC .	EDW	Cdr: Plt: MS: MS: MS:	Joe H. Engle Richard O. Covey James van Hoften John M. Lounge William F. Fisher	Deployable Payloads: 1. ASC-1/PAM-D: American Satellite Company, first of two satellites built by RCA and owned by a partnership between Fairchild Industries and Continental Telecon Inc. PAM-D Payload Assist Module built by McDonnel Douglas. "O' indicates used for fightweight satellites, less than 2,250 lbs. 2. AUSSAT-1/PAM-D: Australian Communications Satellite, owned by Aussat Proprietary Ltd., built by Hughes Communications International, Model HS376. 3. SYNCOM IV-4: Synchronous Communications Satellite. Last in a series of four satellites built by Hughes Communication Services and leased to the Navy. Referred to as LEASAT when deployed. Failed to function after reaching correct geosynchronous orbit.	Attached PLB Payloads: None GAS (Getaway Special): None Crew Compartment Payloads: 1. PVTOS - Physical Vapor Transport Organic Solid Experiment, 3M Corporation. Special Payload Mission Kits: 1. RMS (Remote Manipulator System) S/N 301 2. Galley 3. Leasat-3 Salvage Equipment. Leasat-3 was successfully retrieved, repaired, and redeployed.
STS-51J Oct 3, Atlantis KS Mission Duration:	SC .	Oct 7, 1985 EDW mins 38 secs	Cdr: Plt: MS: MS: PS:	Karol Bobko Ronald J. Grabe Rote C. Stewart David C. Hilmers William A. Pailes	Deployable Payloads: Data not available, DOD Classified Mission Attached PLB Payloads: Data not available, DOD Classified Mission GAS (Getaway Special): Data not available, DOD Classified Mission	Crew Compartment Payloads: Data not available, DOD Classified Mission Special Payload Mission Kits: Data not available, DOD Classified Mission

STS-61A Oct 30, 1985 Nov 6, 1985 Cdr: Henry Hartsfield Challenger KSC EDW Pt: Steven Nagel MS: Bonnie Dunbar MS: James Buchti DAPPA. First launch attempt was on STS 518	BW-Biowissenschaften: Experiments relating to Life Sciences. Experiments include: a. Biological (1) b. Medical (2) c. Botanical (3)
MS: Guion Bluford PS: Emst Messerschmid PS: Reinhard Furrer PS: Wubbo Ockels Mission Duration: 168 hrs 44 mins 51 secs Mission Management mission under German Mission Management and Technology) and DFVLR (Doutsche Forschugs-und Versurchanstalt Fur Luft-und Raumfahrt). 1. WL-Werksch Labor; experiments relating to metallurgy, crystal growth, glasses/ceramics, and fluid physics. Experiment facilities include: a. Mirror Heating Facility b. Isothermal Heating Facility c. Gradient Heating Facility d. High Temperature Thermostat e. Fluid Physics Module f. Cryostat 2. PK-Progresskammer, experiment relating to Bubble Transport Media. Experiment facilities include: a. Holographic Interferometric Apparatus b. Managori Convention Boat c. Interdiffusion in Sati Melt 3. MD-MEDEA. A material science double rack. Experiment facilities include: a. Gradient Heating Facility b. Mon-ellipsoid Mirror Heating Facility c. High Precision Thermostat Facility	5. VS-Vestibular Sted: Experiments in Life Science regarding visio-vestibular coordination system and sensory perception process. Experiment facilities include: a. Mechanically accelerated sled b. Instrumented helmet 6. BR-Biorack: Multipurpose facility for biological research in cell development physiology, cell fertilization, and radiobiology. Facilities include: a. 2 Incubators b. Cooler freeze c. Glove box 7. NX-NAVEX: Navigation Experiment; located in payload bay attached to USS (Unique Support Structure) 8. ME-MEA: Materials Experiment Assembly: mounted on USS containing three materials, processing experiments. GAS (Getway Specials; None Crew Compartment Payloads: None Crew Compartment Payloads: None Special Payload Mission Kits: 1. Airlock 2. Long Transfer Tunnel 3. Galley 4. USS - Unique Support Structure 5. RMS (Remote Manipulator System) S(N 302

Flight	Launch Date	Landing Date		Crew		Payloads a	and	Experiments
STS-61B Atlantis	Nov 26, 1985 KSC stration: 165 hrs 4	Dec 3, 1985 EAFB	Cdr: Ptr: MS: MS: MS: PS: PS:	Brewster H. Shaw Bryan D. O'Connor Mary L. Cleave Sherwood C. Spring Jerry L. Ross Rudoffo Neri Vela Charles Walker	3. Atta. 1. 2. 3.	Dioyable Payloads: MORELOS-B/PAM-D: Hughes 376 Comm Satellife with MCDAC Payload Assist Module booster. Owned by Mexican Communications and Transportation Agency. AUSSAT-2/PAM-D: Hughes 376 Comm Satellife with McDAC Payload Assist Module booster. Owned by Aussat Proprietary Ltd SYNCOM KU-2/PAM-D: RCA buil/owned 16 channel Ku-band communication satellife. First of four satellifes. McDAC Payload Assist Module D2 is an uprated version of the PAM-D used for heavier payloads. EASE (Experiment Assembly of Structures in Extravehicular Activity): A study of EVA dynamics and human factors in construction of structures in space. An inverted tetrahedron consisting of six 12-feet beams was constructed by EV-1 and EV-2. ACCESS (Assembly Concept for Construction of Erectable Space Structures): A validation of ground based timelines based on simulations. A 45-feet truss was assembled/disassembled by the two EV crow members. ICBC (IMAX Cargo Bay Camera): A joint effort between the Canadian IMAX Corp and NASA, consists of a 70mm film camera in pressurized container used to document EASE/ACCESS experiments.	1. C 1. 2.	AS (Getaway Special): G-479 - Telesart-Canada a. Primary surface mirror production b. Metallic crystal production ceres Compartment Payloads: CFES (Continuous Flow Electrophoresis System): Owned by McDonnell Douglas, separates biological samples using electrophoretic process. Third flight of this experiment. DMOS (Diffusive Mixing of Organic Solutions): Sponsored by 3M Corporation, used to study organic crystal growth/kinetics, test molecular orbital model, and produce new materials for electro-optical applications. MPSE (Morelos Payload Specialist Experiments): includes experiments in transportation of nutrients inside bean plants, incoculation of group bacteria viruses, germination of three seed types, and medical experiments testing internal equilibrium and volume change of the leg due to fluid shifts in zero-g. OEX (Orbiter Experiments): An onboard experimental digital autopilot software package designed to provide precise station/keping capabilities between space vehicles. Food Warmers (2), galley not flown. RMS (Remote Manipulator System) S/N 301 PSA (Provision Stowage Assembly)

Flight Launch Date Landing Date	Crew	Payloads a	nd Experiments
Columbia KSC KSC	Cdr: Robert L Gibson Pit: C. F. Boden, Jr. S. F. R. Chang-Diaz MS. George D. Nelson MS: Steven A. Hawley PS: Robert J. Cenker PS: C. William Nelson	Deployable Payloads: 1. SATCOM KU-1/PAM D-2: RCA built/owned 16 channel Ku-band communications satellife. Second of four satellifes McDAC Payload Assist Module D2 is an uprated version of the PAM-D which is used for heavier payloads. Attached PLB Payloads: 1. MSL-2 (Materials Science Laboratory) consisting of MSL carrier, MPE (Mission Peculiar Equipment), and 3 experiments: a. 3AAL (3-Axis Acoustic Levitator) b. ADSF (Automated Directional Solidification Furnace) c. SEECM (Shuttle Environmental Effects of Coated Mirror) c. Hitchthiker G-1: A Gooddard Space Flight Center (GSFC) managed program consisting of 3 experiments: a. PACS (Particle Analysis Camera for Shuttle) b. CPL (Capillary Pump Loop) c. SEECM (Shuttle Environmental Effects of Coated Mirror) IR-IE (Intraed-Imaging Experiment) consisting of an RCA IR TV camera mounted in Orbiter CCTV parylift unit. GAS (Getaway Specia): 1. G-463: UVX (Uhraviolet Experiment), referred to as UCB University of California at Berkdey) contains a Bowyer UV spectrometer. GSFC experiment. 2. G463: UVX, referred to as JHU (John Hopkins University) contains a Fektman Spectophotometer. GSFC experiment ACCESS experiments. 3. G462: UVX, referred to as GAP (GSFC Avionics Package) contains Telemetry System. Tape Recorder, and Battery. GSFC experiments. 4. G007: Alabama Space and Rocket Center/Marshall Armateur club. Contains 3 student experiments and 1 radio transmission experiment. 5. G446: HPLC (High Performance Liquid Chromatography) analytical columns. All Tech Assoc. Inc.	Net Numbered: EMP (Environmental Monitoring Package measures the environment for GSFC. G481: Unprimed, Prepared linen and painted canvas reactions to space travel. Vertical Horzons. G062: 4 part experiment from PA State University/GE. G449: JULIE (Joint Utilization of Laser Integrated Experiments) 4 part experiment from PS Liste University/GE. High School and High School for Engineering, Houston, TX. G310: USAF Academy experiment. Note: Above 12 listed GAS canisters mounted on GAS Bridge Carrier. Integration of Carrier from School and High School for Engineering. Houston, TX. C310: USAF Academy experiment. Note: Above 12 listed GAS canisters mounted on GAS Bridge Carrier. To graph from the Market from GSFC and US Dept of Agriculture. Crew Compartment Payloads: I. IBSE (Initial Blood Storage Experiment) package in 4 middeck tockers. CHAMP (Comet Halley Active Monitoring Program) uses cameras, spectroscopic grating, and filters to observe comet through aft flight deck overtheat window. HPCG (Handheld Protein Crystal Growth) experiment SSIP (Shuttle Student Involvement Program)

Challenger KSC Pit: Michael J. Smith MS: Judih A. Resnik MS: Judih A. Resnik MS: Ellison S. Oricuka MS: Ronald E. McNair PS: Gregory Jarvis PS: Gregory Jarvis PS: Christa McAuliffe (Teacher) RMS: SPARTAN experiment packages using RMS: a. SPARTAN experiment package:	Phase Partitioning Experiment (PPE) dissolves two polymer solutions in water to observe their separation Teacher in Space: Six experiments inctuding hydrophonics, magnetism, Newton's laws, effervescence, chromatography, and simple machines SSIP (Shuffles Student Involvement Program) package
Mission Duration: N/A 1) 2 UV Spectrometers from Univ of Colorado 2) 2 Nikon F-3 Cameras 3) Optic Bench b. Halley's Comet Experiment; measure Halley's Comet composition/activity Attached PLB Payloads: None GAS (Getaway Special): None Crew Compartment Payloads: 1. Fluid Dynamics Experiment (FDE) - Hughes Aircraft Company Experiment composed of 6 experiments: a. Fluid position and ullage b. Fluid motion due to spin c. Fluid self-inertia d. Fluid motion due to payload deployment e. Energy dissipation due to fluid motion f. Fluid transfer Comet Halley Active Monitoring Program (CHAMP), second flight.	a. SE82-4: "The effects of weightlessness on grain formation and strength in metals" - L. Bruce, St. Louis, MO - Sponsor: McDonnell Douglas b. SE82-5: "Utilizing a semi-permeable membrane to direct crystal growth in zero gravity" - S. Cavou, Marlboro, NY - Sponsor: Union College c. 'Chicken Embryo Development in Space' - J. Vellinger, Lafayette, IN - Sponsor: Kentucky Fried Chicken Corporation vectal Payload Mission Kits: RMS (Remote Manipulator System) Galley MADS

Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
Discovery KSC EAFB Pit: Richard O. Covoy MS: John M. Lounge MS: John M. Lounge MS: David C. Hilmers MS: George D. Netson Mission Duration: 97 hrs 0 mins 11 secs STS-27 Dec 2, 1988 Dec 6, 1988 Cdr: Robert L. Gibson				Richard O. Covey John M. Lounge David C. Hilmers	Deployable Payloads: 1. TDRS-C/IUS: Tracking and Data Relay Satellite/ Inertial Upper Stage. Attached PLB Payloads: 1. OASIS-1: Orbiter Experiment Autonomous Supporting Instrumentation System measures and records payload bay environmental data. Crew Compartment Payloads: 1. PVTOS - Physical Vapor Transport of Organic Solids, 3M Corporation. Second flight Solids, 3M Corporation. Second flight Second Fight, test material solidification Furnace, MSFC, third flight, test material solidification in zero g. 3. IRCFE - Infrared Communication Flight Experiment, JSC, first flight. Test infrared transmitting crew headsets. 4. PCG - Protein Crystal Growth, MSFC, flown four previous flights in less complicated configurations to examine growth of protein crystals in zero g. 5. IEF - Isoelectric Focusing, MSFC, second flight, test isoelectric transport through a permeable membrane in	6. PPE - Phase Partitioning Experiment, MSFC, second flight, photograph fluid phase partitioning phenomena in zero g 7. ARC - Aggregation of Red Blood Cells, MSFC and Australia, investigate aggregation characteristics of human red blood cells in zero g 8. MLE - Mesoscale Lightning Experiment, MSFC, first flight, photograph atmospheric lightning activity from orbit. 9. ELRAD - Earth Limb Radiance Experiment, JSC, first flight, photograph earth limb radiance pre-sunrise/post-sunset. 10. Student Experiment SE82-4 - "Effects of weightlessness on Ti grain formation and strength." L. Bruce, St. Louis, MO, Sponsor: McDonnell Douglas 11. Student Experiment SE82-5 - "Ulizing a semi-permeable membrane to direct crystal growth in zero gravity." S. Cavou, Marlboro, NY, Sponsor: Union College GAS (Getaway Special): None Special Payload Mission Kits: 1. Galley 2. MADS
STS-27 Atlantis Mission Du	Dec 2, 1988 KSC	EAFB		Robert L. Gibson Guy S. Gardner Richard M. Mullane Jerry L. Ross William M. Shepherd	Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special): None Data not available, DOD Classified Mission.	Crew Compartment Payloads: Data not available, DOD Classified Mission. Spectal Payload Mission Kita: Data not available, DOD Classified Mission.

Flight	Launch Date	Landing Date		Crew	Payloads a	and Experiments
STS-29 Discovery Mission Du	Mar 13, 1989 KSC	Mar 17, 1989 EAFB 38 mins 52 secs	Cdr: Plt: MS: MS: MS:	Michael L. Coats John E. Blaha James P. Bagian James F. Buchli Robert C. Springer	Deployable Payloads: 1. TDRS-D/IUS: Tracking and Data Relay Satellite/ Inertial Upper Stage. One of four identical communications satellites providing support for STS and other customers. Attached PLB Payloads: 1. SHARE (Space Station Heat Pipe Advanced Radiator Element) 2. OASIS-1 (Orbiter Experiments Autonomous Supporting Instrumentation System	GAS (Getaway Special): None Crew Compartment Payloads: 1. Protein Crystal Growth (PCG-111-1) 2. Chromosome and Plant Cell Division in Space (CHROMEX) 3. IMAX Camera 4. Air Force Maui Optical Site Calibration Test (AMOS) 5. Chicken Embryo Development (CHIX) in space. 6. Effects of Weightlessness of Bones (SSIP 82-08) Special Payload Mission Kits: None
STS-30 Atlantis Mission Du STS-28 Columbia	May 4, 1989 KSC eration: 96 hrs 5 Aug 8, 1989 KSC	May 8, 1989 EAFB 6 mins 28 secs Aug 13, 1989 EAFB	Cdr: Plt: MS: MS: MS: Cdr:	David M. Walker Ronald J. Grabe Norman E. Thagard Mary L. Cleave Mark C. Lee Brewster H. Shaw Richard N. Richards	Deployable Payloads: 1. Magellan/IUS - Unmanned three-axis attitude-controlled exploration spacecraft containing systems required to achieve orbit of Venus and map its surface. Attached PLB Payloads: None Deployable Payloads: Data not available. DOD Classified Mission.	GAS (Getaway Special): None Crew Compartment Payloads: 1. Fluids Experiment Apparatus (FEA) 2. Mesoscale Lightning Experiment (MLE) 3. Air Force Maui Optical She Calibration Test (AMOS) Special Payload Mission Kits: None Crew Compartment Payloads: Data not available. DOD Classified Mission.
Mission Du	ration: 121 hrs	0 mins 8 secs	MS: MS: MS:	David C. Leetsma James C. Adamson Mark N. Brown	Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special): Data not available, DOD Classified Mission.	Special Payload Mission Kits: Data not available, DOD Classified Mission.
STS-34 Atlantis Mission Du	Oct 18, 1989 KSC ration: 119 hrs	Oct 23, 1989 EAFB 39 mins 20 secs	Cdr: Plt: MS: MS: MS:	Donald E. Williams Michael McCulley Ellen S. Baker Franklin R. Chang-Diaz Shannon W. Lucid	Attached PLB Payloads: 1. Shuttle Solar Backscatter Ultraviolet (SSBUV)	Crew Compartment Payloads: 1. Polymer Morphology 2. Growth Hormone Concentration & Distribution in Plants 3. Sensor Technology Experiment 4. IMAX Camera 5. Mesossale Lightning Experiment
					GAS (Getaway Special): 1. Zero Gravity Growth of Ice Crystals	Air Force Maui Optical Site Calibration Test (AMOS) Special Payload Mission Kits: None

Flight	Launch Date	Landing Date		Crew	Payloads at	nd Experiments
STS-33 Discovery	Nov 22, 1989 KSC aration: 120 hrs	Nov 27, 1989 EAFB	Cdr: Pit: MS: MS: MS:	Frederick D. Gregory John E. Blaha Manley L. Carter Franklin Musgrave Kathryn C. Thomton	Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special): Data not available, DOD Classified Mission.	Crew Compartment Payloads: Data not available, DOD Classified Mission. Special Payload Mission Kits: Data not available, DOD Classified Mission.
STS-32 Columbia	Jan 9, 1990 KSC	Jan 20, 1990 EAFB	Cdr: Pt: MS: MS: MS:	Daniel C. Brandenstein James D. Wetherbee Bonnie J. Dunbar Marsha S. Ivins G. David Low	Deployable Payloads: 1. Syncom IV-5, a geostationary communications satellite also known as Leasat; teased to U.S. Navy Attached PLB Payloads: None Returned Cargo:	Fluids Experiment Apparatus IMAX Camera Latitude/Longitude Locator (L3) Mesoscaele Lightning Experiment (MLE) Protein Crystal Growth (PCG)
Mission Du	uration: 261 hrs	0 mins 37 secs			LDEF, a non-powered space vehicle containing experiments - Deployed on STS-41 C. Crew Compartment Payloads: American Flight Echocardiograph (AFE) Air Force Maui Optical Site Calibration Test (AMOS) Characterization of Neurospora Circadian Rhythms (CNCR)	GAS (Getaway Special): None Special Psyload Mission Kits: 1. Remote Manipulator System (RMS) 2. Galley 3. MADS
STS-36 Atlantis	Feb 28, 1990 KSC	Apr 14, 1990 DFRF	Cdr; Plt: MS: MS: MS:	John D. Creighton John H. Casper David C. Hilmers Richard M. Mullane Pierre J. Thuot	Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, DOD Classified Mission. GAS (Getaway Special): Data not available, DOD Classified Mission.	Crew Compartment Payloads: Data not available, DOD Classified Mission, Special Payload Mission Kits: Data not available, DOD Classified Mission.
STS-31 Discovery	ration: 106 hrs. Apr 24, 1990 KSC	Apr 29, 1990 EAFB	Cdr: Plt: MS: MS: MS:	Loren J. Shriver Charles F. Bolden Bruce McCandless Steven A. Hawley Kathryn D. Sullivan		IMAX Camera Investigation into Polymer Membrane Processing (IPMP) Protein Crystal Growth (PCG) Radiation Monitoring Experiment (RME) Investigation of Arc and Ion Behavior in Microgravity (Student Experiment 82-16)
MISSIGN DO	iration, 121 jus	io mais o secs			GAS (Getaway Special): None Crew Compartment Payloads: 1. Air Force Maui Optical Site Calibration Test (AMOS)	Special Psyload Mission Kits: 1. Remote Manipulator System (RMS) 2. Galley 3. HST EVA Tools

Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
STS-41 Discovery Mission Du	Oct 6, 1990 KSC rration: 98 hrs 10	Oct 10, 1990 DFRF 0 mins 3 secs	Cdr: Plt: MS: MS: MS:	Richard N. Richards Robert D. Cabana Bruce E. Melnick William M. Shepherd Thomas O. Akers	Deployable Payloads: 1. Ulysses/IUS/AM-S Attached PLB Payloads: 1. Shuttle Solar Backscatter Ultraviolet (SSBUV) 2. Intelsat Solar Array Coupon (ISAC) - Attached to RMS arm GAS (Getaway Special): None Crew Compartment Payloads: 1. Chromosome and Plant Cell Division in Space (CHROMEX) 2. Solid Surface Combusion Experiment (SSCE)	Voice Command System (VCS) Physiological Systems Experiment (PSE) Radiation Monitor Experiment (RME-III) Investigation into Polymer Membrane Processing (IPMP) Air Force Maul Optical State (AMOS) Special Payload Mission Kits: Remote Manipulator System (RMS) Calley Radioisotope Generator (TRG) Cooling System
STS-38 Atlantis Mission Du	Nov 15, 1990 KSC ration: 117 hrs.	Nov 20, 1990 KSC 54 mins 27 secs	Ptt: MS: MS: MS:	Richard O. Covey Frank L. Culbertson Robert C. Springer Carl J. Meade Charles D. Gemar	Deployable Payloads: Data not available, DOD Classified Mission. Attached PLB Payloads: Data not available, OOD Classified Mission. GAS (Getaway Special): Data not available, DOD Classified Mission.	Crew Compartment Payloads Data not available, DOD Classified Mission. Special Payload Mission Kits: Data not available, DOD Classified Mission.
STS-35 Columbia Mission Du	Dec 2, 1990 KSC	Dec 11, 1990 DFRF	Cdr: Pt: MS: MS: MS: PS: PS:	Vance Brand Guy S. Gardner John M. Lounge Jeffrey A. Hoffman Robert A. R. Parker Ronald A. Parise Samuel T. Durrance	Deployable Payloads: None Attached PLB Payloads:	GAS (Getaway Special): None Crew Compartment Payloads: 1. Shuttle Amateur Radio Experiment (SAREX) 2. Air Force Maui Optical Site (AMOS) Special Payload Mission Kits: 1. Galley 2. Aerodynamic Coefficient Identification Package (ACIP)
STS-37 Atlantis	Apr 5, 1991 KSC uration: 143 hrs 2	Apr 11, 1991 EAFB	Cdr: Plt: MS: MS: MS:	Steven R. Nagel Kenneth D. Cameron Linda M. Godwin Jerome Apt Jerny L. Ross	its own two-axis pointing system (TAPS) Deployable Payloads: I Gamma Ray Observatory (GRO), an unmanned astronomical observatory designed to image objects at high energy (gamma ray) wavelengths. Attached PLB Payloads:	GAS (Getaway Special): None Crew Compartment Payloads: 1. Protein Crystal Growth (PCG)-II 2. Air Force Maul Optical Site (AMOS) 3. Radiation Monitoring Equipment (FIME)-III 4. Shuttle Antaleut Radio Experiment (SAFEX)-II 5. Bioserve/Instrumentation Technology 6. Associates Materials Dispersion Apparatus (BIMDA) Special Payload Mission Kits: 1. Remote Manipulator System (RMS) S/N 301

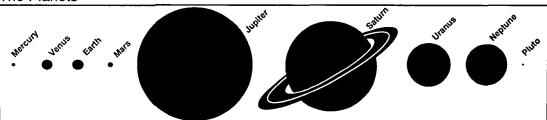
Flight	Launch Date	Landing Date		Crew	Payloads a	ind Experiments
Discovery	Apr 28, 1991 KSC ation: 199 hrs 2	May 6, 1991 EAFB 23 mins 17 secs	Cdr: Pit: MS: MS: MS: MS: MS:		Deployable Payloads: 1. Shuttle Payload Autonomous Satellite (SPAS)-II/ Infrared Background Signature Survey (IBSS) - SPAS-II/IBSS was designed to observe rocket plume firings at infrared wavelengths. Attached PLB Payloads: 1. Air Force Program (AFP)-675 - The objective of AFP-675 was to observe near-Earth space and celestial objects at infrared & ultraviolet wavelengths. 2. Space Test Payload (STP)-1 - Five USAF experiments mounted on a Hächbiker-M carrier.	Multi-Purpose Experiment Container (MPEC) - An additional USAF experiment mounted on STP-1. GAS (Getaway Special): None Crew Compartment Payloads: Cloud Logic to Optimize Use of Defense Systems (CLOUDS)-1A Radiation Monitoring Equipment (RME)-III Special Payload Mission Kits: Remote Manipulator System (RMS) S/N 301
Columbia	Jun 5, 1991 KSC KSC Atlant: 218 hrs	Jun 14, 1991 DFRF 15 mins 14 secs	Cdr: Pilt: MS: MS: MS: PS: PS:	Bryan O. O'Connor Sidney M. Gutierrez James P. Bagian Tamara E. Jernigan M. Rhea Seddon Drew F. Gaffney Millie Hughes-Fulford	Deployable Payloads: None Attached PLB Payloads: Spacelab Life Sciences (SLS)-1 a. Spacelab Long Module b. Tunnel c. Tunnel Extension d. Tunnel Adapter Experiments a. 6 Body Systems b. 6 Cardiovascular/Cardiopulmonary c. 3 Blood System d. 6 Musculoskeletal e. 3 Neurovestibular f. 1 Immune System g. 1 Renal/Endocrine System Gas Bridge Assembly (GBA)- 12 GAS experiments mounted on a truss structure in the PLB. GAS (Getaway Special): 12 Experiments on GBA 1. Solid State Microaccelerometer Experiment	2. Experiment in Crystal Growth 3. Orbital Bail Bearing Experiment 4. In-Space Commercial Processing 5. Foamed Ultralight Metals 6. Chemical Precipitate Formation 7. Microgravity Experiments 8. Flower and vegetable seeds exposure to Space 9. Semiconductor Crystal Growth Experiment 10. Active Soldering Experiments 11. Orbiter Stability Experiment 11. Orbiter Stability Experiment 11. Orbiter Stability Experiment 11. Profesto or cosmic Ray Radiation on Floppy Disks and Plant Seeds Exposure to Microgravity Crew Compartment Payloads: 1. Physiological Monitoring System (PMS) 2. Urine Monitoring System (UMS) 3. Animal Enclosure Modules (AEM) 4. Middeck Zero-Gravity Experiment (MODE) 5. Special Payload Mission Kits: 1. Airlock Transfer Tunnel

Flight	Launch Date	Landing Date	Crew	Payloads	and Experiments
STS-43 Atlantis	Aug 2, 1991 KSC	Aug 11, 1991 KSC	Cdr: John E. Blaha Plt: Michael A. Baker MS: James C. Adamson MS: G. David Low MS: Shannon E. Lucid	Deployable Payloads: 1. TDRS-E/IUS: Tracking and Data Relay Satellite/ Inertial Upper Stage. One of four identical communications satellites providing support for STS and other customers.	GAS (Getaway Special): 1. Tank Pressure Control Experiment (TPCE) Crew Compartment Payloads: 1. Air Force Maui Optical Site (AMOS) 2. Auroral Photography Experiment (APE)
	aration: 213 hrs :			Attached PLB Payloads: 1. Space Station Heatpipe Advanced Radiator Element (SHARE-II) 2. Shuttle Solar Backscatter Ultraviolet (SSBUV) 3. Optical Communications Through the Window (OCTW) Experiments 1. Gas Bridge Assembly (GBA)	3. Bioserve/Instrumentation Technology Associates Materials Dispersion Apparatus (BIMDA) 4. Investigations into Polymer Membrane Processing (IPMP) 5. Protein Crystal Growth (PCG) 6. Space Acceleration Measurement System (SAMS) 7. Solid Surface Combustion System (SSCS) 8. Ultraviolet Plume Instrument Special Payload Mission (Kts: None)
STS-48 Discovery	Sep 12, 1991 KSC	Sep 18, 1991 EAFB	Cdr: John O. Creighton Plt: Kenneth S. Reightler MS: Mark F. Brown MS: James F. Buchli MS: Charles D. Gernar	Deployable Payloads: 1. Upper Atmosphere Research Satellite (UARS) Attached PLB Payloads: Experiments 1. Gas Bridtoe Assembly (GBA)	Radiation Monitoring Experiment (RME) Investigations into Polymer Membrane Processing (IPMP) Protein Crystal Growth (PCG) Middeck 0-Gravity Dynamics Experiment (MODE) Shuttle Adviation Monitor (SAM)
Mission D	uration: 128 hrs	27 mins 51 secs		Crew Compartment Payloads: 1. Ascent Particle Monitor (APM) 2. Cosmic Radician Effects and Activation Monitor (CREAM)	Physiological and Anatomical Rodent Experiment (PARE) GAS (Getaway Special): None Special Payload Mission Kits: None
STS-44 Atlantis	Nov 14, 1991 KSC	Dec 1, 1991 EAFB	Cdr: Frederick D. Gregory Pt: Terence T. Henricks MS: F. Story Musgrave Mario Runco, Jr. MS: James S. Voss PS: Thomas J. Hennen	Deployable Payloads: 1. Defense Support Program/Inertial Upper Stage satellitic (DSP/IUS) Attached PLB Payloads: 1. Interim Operational Contamination Monitor (IOCM) Experiments	Air Force Maui Optical Sãe (AMOS) Cosmic Radiation Effects and Activation Monitor (CREAM) Shuttle Activation Monitor (SAM) Radiation Monitoring Experiment (RME-III) Visual Function Monitor (VFT-I)
Mission D	uration: 166 hrs	52 mins 27 secs		Gas Bridge Assembly (GBA) Crew Compartment Payloads: Terra Scout Military Man in Space (M88-1)	Ultraviolet Plume Instrument (UVPI) GAS (Getaway Special): None Special Payload Mission Kits: None

Flight Launch Date Landing Date Crew	Payloads and Experiments
STS-42 Jan 22, 1992 Jan 30, 1992 Cdr: Ronald J. Grabe Plt: Steven S. Oswald Ms. William F. Readdy MS: William F. Readdid Crystal Growth F. Readiliam F. Readdid Crystal Growth F. Readdid North F.	12. G-140 - Marangoni Convection in a floating zone 3. G-143 - Glass bubbles in glass melts 4. G-329 - Solidification of phenomena in metal alloys 5. G-336 - Measurement of diffuse zodiacal and galactic 6. G-337 - Performance of thermoacoustic refrigerator 6. G-537 - Gar-Sirugid separation under microgravity 7. G-457 - Gas-Sirugid separation under microgravity 8. G-609, G-610 - Ultraviolet observations of deep space 9. G-614 - Motion of debris under microgravity conditions: 10. Middeck 0-Gravity Dynamics Experiment (MODE) 11. GAS ballast payload no. 2 (GPB #2) 12. GAS ballast payload no. 2 (GPB #2) 13. Gelation of Sols: Applied Microgravity Research 14. Gelation of Sols: Applied Microgravity Research 15. Gelation of Sols: Applied Microgravity Research 16. Gelation of Sols: Applied Microgravity Research 17. Gelation of Sols: Applied Microgravity Research 18. Gelation of Sols: Applied Microgravity Research 18. Gelation of Sols: Applied Microgravity Research 18. Gelation of Sols: Applied Microgravity Research 19. Gelation of Sols: Applied Microgravity Research 19. Gelation of Sols: Applied Microgravity Research 19. Gelation of Sols: Applied

Deployable Payloads: None Attantis KSC
Tast scan television (FSTV) transmitted on 70 cm canability

Flight	Launch Date	Landing Date		Crew	Payloads a	and Experiments
STS-49 Endeavour		May 16, 1992 EAFB	Cdr: Plt: MS: MS: MS: MS: MS:	Daniel C. Brandenstein Kevin P. Chilton Richard J. Hieb Bruce E. Methick Pierre J. Thout Kathryn C. Thornton Thomas D. Akers	Deployable Payloads: 1. Intelsat VI F3 (International Telecommunications Satelfite)/perigee kick motor (PKM) Attached PLB Payloads: 1. Assembly of station by EVA methods GAS (Getaway Special): None	Crew Compartment Payloads: 1. Commercial protein crystal growth (CPGC) 2. Air Force Maul Optical Size Calibration (AMOS) 3. Ultraviolet Plume Instrument (UVPI) Special Payload Mission Kits: None
STS-50 Columbia	Jun 25, 1992 KSC	Jul 9, 1992 KSC 30 mins 04 secs	Cdr: Pit: MS: MS: MS: PS:	Richard N. Richards Keneth D. Bowersox Bonnie J. Dunbar Carl J. Meade Ellen S. Baker Lawrence J. DeLucas	Deployable Payloads: None Attached PLB Payloads: 1. U.S. Microgarvily Laboratory (USML-1) 2. Investigation into Polymer Membrane Processing (IPMP) 3. Shuttle Anateur Radio Experiment-II (SAREX-II) 4. Ultraviolet Plume Instrument (UVPI) 5. Orbital Acceleration Research Experiment (OARE) 6. Zeolite Cystal Growth (ZCG) 7. Astroculture 8. Generic Bioprocessing Apparatus (GBA) 9. Protein Cystal Growth (PCG) Block 1	GAS (Getaway Special): None Crew Compartment Payloads: 1. Zeolite Crystal Growth 2. Generic Bioprocessing Apparatus with 1 Refrigerator/Incubator Module (P/IIM) 3. Astroculture (ASC) 4. Protein Crystal Growth (PCG) Block 1 with 3 R/IMs 5. Investigation into Polymer Membrane Processing (IPMP) 6. Shuttle Amateur Radio Experiment-II (SAREX-II) 7. Ultravioler Plume Instrument (UVPI) Special Payload Mission Kits: None
STS-46 Atlantis Mission Dur	Jul 31, 1992 KSC ration: 191 hrs	Aug 8, 1992 KSC KSC	Cdr: Ptt: MS: MS: MS: PS:	Loren J. Shriver Andrew M. Allen Jeffrey A. Hoffman Franklin R. Chang-Diaz Claude Nicollier Claude Nicollier Martha S. Nins Franco Malerba	Deployable Payloads: 1. EURECA Attached PLB Payloads	GAS (Getaway Special): None Crew Compartment Payloads: 1. Gas Autonomous Payload Controller (GAPC) for Use in ICBC Operations 2. Pituitary Growth Hormone Cell Function (PHCF) 3. Air Force Maui Optical Site Calibration (AMOS) (Passive Requirements Only) 4. Ultraviolet Plume Instrument (UVPI) Special Payload Mission Kits: None


Flight	Launch Date	Landing Date		Crew	Payloads	Payloads and Experiments			
STS-47 Endeavour Mission Du STS-52 Columbia	Sep 12, 1992 KSC reation: 190 hrs : Oct 22, 1992 KSC	Sep 20, 1992 KSC 30 mins 23 secs Nov 1, 1992 KSC 58 mins 13 secs	Cdr: Plt: MS: MS: MS: MS: PS: Cdr: MS: MS: MS: MS:	Robert L. Gibson Curlis L. Brown Mark C. Lee N. Jan Davis Mae C. Jemison Jerome Apt Mamoru Mohri James D. Wetherbee Michael A. Baker William M. Sheperd Tamara E. Jernigan Charles L. Veach	Deployable Payloads: None Attached PLB Payloads: 1. Japanese Spacelab (Spacelab-J) Long Module Gas Bridge Assembly (GBA) with 12 Gas Canisters GAS (Getaway Special): None Deployable Payloads: None 1. Laser Geodynamics Satellite (LAGEOS) Attached PLB Payloads 1. United Stated Microgravity Payload (USMP-1) GAS (Getaway Special): None Crew Compartment Payloads: 1. Queens University Experiment in Liquid Metal Diffusion (QUELD) 2. Phase Partition in Liquid (PARLIC) 3. Sun Photo Spectrometer Earth Atmosphere Measurement 2: (SPEAM)	Crew Compartment Payloads: 1. Israeli Space Agency Investigation about Hornets (ISAIAH) 2. Shuttle Amateur Radio Experiment (SAREX) 3. Solid Surface Combustion Experiment (SSCE) 4. Ultraviolet Plume Instrument (UVPI) Payload of Opportunity Special Payload Mission Kits: None 4. Orbiter Glow-2 5. Commercial Materials Dispersion Apparatus Instrumentation Technology Associates Experiments (CMIX) 6. Crystal by Vapor Transport Experiment (CVTE) 7. Heat Pipe Performance (HPP) (CMIX) 8. Commercial Protein Crystal Growth (CPCG) 9. Shuttle Plume Impringement Experiment (SPIE) 10. Physiological System Experiment (PSE)			
STS-53 Discovery Mission Du	Jul 31, 1992 KSC uration: 175 hrs	Aug 8, 1992 EAFB 19 mins 47 secs	Cdr: Plt: MS: MS: MS:	Loren J. Shriver Andrew M. Allen Jeffrey A. Hoffman Franklin R. Chang-Diaz Claude Nicollier	Deployable Payloads: Attached PLB Payloads	GAS (Getaway Special): None Crew Compartment Payloads: Special Payload Mission Kits: None			

Flight	Launch Date	Landing Date		Crew	Payloads a	nd Experiments
STS-54 Endeavour Mission Du		Jan 19, 1993 KSC 38 mins 19 secs	Cdr: Pit: MS: MS: MS	John H. Casper Donald R McMonagle Marie Runco, Jr Gregory Harbaugh Susan Helms	Deployable Payloads: None 1. Tracking and Data Relay Satellite/Inertial Upper Stage(TDRS/IUS) Attached PLB Payload: 1. Diffuse X-Ray Spectrometer(DXS) GAS(Getaway Special): None Crew Compartment Payloads: 1. Chromosome and Plant Cell Division in Space(CHROMEX)	Commercial Generic Bioprocessing Apparataus(CGBA) Physiological and Anatomical Rodert Experiment(PARE) Solid Surface Combustion Experiment(SSCE) Special Payload Mission Kits: None
STS-56 Discovery Mission Du	Apr 8, 1993 KSC	Apr 17, 1993 KSC	Cdr: Pit: MS: MS: MS:	Kenneth Cameron Steven S. Oswald C. Michael Foale Kenneth Cockrell Ellen Ochoa	Deployable Payloads: 1. Shuffle Point Autonomous Research Tool for Astronomy - 201 (SPARTAN-201) Attached PiLB Payloads: 1. Atmospheric Laboratory for Applications and Science (ATLAS-2) GAS (Getaway Special): None Crew Compartment Payloads: 1. Solar Ultraviolet Spectrometer (SUVE) 2. Hand-Held, Earth-Oriented, ReafTime, Cooperative, User-Friendly, Location Targeting, and Environmental System(HERCULES) 3. Radiation Monitoring Equipment III (RME-III)	4. Cosmic Radiation Effects and Activation Monitor(CREAM) 5. Shuttle Amateur Radio Experiment II(SAREX II) 6. Commercial Materials Dispersion Apparatus ITA Experiments(CMIX) 7. Space Tissue Loss Experiment(STL) 8. Physiological and Anatomical Rodent Experiment(PARE) Spacial Psyload Mission Kits 1. Remote Manipulator System
Columbia	Apr 26, 1993 KSC uration: 239 hrs	May 6, 1993 EAFB 39 mins 59 secs	Cdr. Ptt. MS. MS. PS. PS	Steven R. Nagel Terence T. Hendricks Charles Precourt Bernard Hamis, Jr. Ulrich Walter Hans Schlegel	Deployable Payload: None Attached PLB Payload: 1 D2 payload user support structure: German(SPACELAB) 2. Material Science Autonomous Payload(MAUS) 3. Atomic Oxygen Exposure Tray(AOET) 4. Galactic Ultrawide Angle Schmidt System Camera(GAUSS) 5. Modular Opto-Electronic Multispectral Stereo Scanner (MOMS)	GAS (Gateway Special): 1. Reaction Kinetics in Glass Melts(RKGM) Crew Compartment Payload: 1. Crew Telesupport Experiment 2. Shuttle Amateur Radio Experiment(SARAX) Special Payload Mission Kits: None

Flight	Launch Date	Landing Date		Crew	Payloads a	and Experiments
STS-57 Endeavour	Jun 21, 1993 KSC ration: 239 hrs 4	Jul 1, 1993 KSC 4 mins 54 secs	Cdr: Plt: PC: MS: MS: MS:	Ronald J. Grabe Brian J. Duffly G. David Low Nancy J. Sherlock Peter J. K. Wisoff Janice E. Voss	Deployable Payloads: 1. EUPIECA Attached PLB Paylaods 1. Spacehab-1 a. Experiments(22) GAS (Getaway Spectal): 1. G-022: Pedriodic Volume Stimulus 2. G-324: Earth Photographs 3. G-399: Insulin/Artemia/Ion Expts 4. G-450: Crystal Growth/Fluid Transfer 5. G-452: Cystal Growth 6. G-453: Semiconductor/Boilling Expts	7. G-454: Crystal Growth 8. G-335: Pool Bolling 9. G-801: High Frequency Variations 10. G-87: Liquid Phase Electroepitaxy Crew Compartment Payloads: 1. SAREX-II (Shuffle Annateur Radio Experiment -II) 2. FARE (Fluid Acquisition and Resupply Experiment) 3. AMOS (AIr Force Maui Optical Site Calibration Test) Special Payload Mission Kits: 1. SHOOT. (Superfluid Helium On-Orbit Transfer) 2. CONCAP IV: (Consortium for Materials Development in Space Complex Autonomous Payload IV)
STS-51 Discovery Mission Du	Sept 12, 1993 KSC rration: 236 hrs 1	Sept 22, 1993 KSC	Cdr: Ph: MS: MS: MS	Frank Culbertson, Jr. William F. Readdy James H. Newman Daniel W. Bursch Carl E. Watz	Deployable Payloads: 1. ACTS: (Advanced Communication Technology Satellite) 2. TOS: (Transfer Orbit Stage) 3. CRFEUS/SPAS: (Orbiting Retrievable Far and Extreme Ultraviolet Spectrometer-Shuttle Pallet Satellite) 4. LDCE: (Limited Duration Space Environment Candidate Materials Exposure) Attached PLB Payloads: 1. IMAX: Camera 2. CPCG: (Commercial Protein Crystal Growth) 3. CHROMEX: (Chromosome and Plant Cell Division in Space) 4. HRSGS-A: (High Resolution Shuttle Glow Spectroscopy) 5. APE-B: (Auiroral Photography Experiment) 6. RME-III: (Radiation Monitoring Experiment) 7. IPMP: (Investigations into Polymer Membrane Processing) 8. AMOS: (Air Force Maii Optical Site Calibration Test) GAS (Getaway Special): None	Crew Compartment Payloads: Special Payload Mission Kits:

Flight	Launch Date	Landing Date	Crew		Payloads a	and Experiments
STS-58 Columbia Mission Du	Oct 18, 1993 KSC	Nov 1, 1993 EAFB	PC: Margare MS: Shannor MS: David A. MS: William I	Searfoss at Rhea Seddon n W. Lucid	Deployable Payloads: None Attached PLB Payloads: 1. Spacelab Life Sciences-2(SLS-2) a. Spacelab Long Module b. Spacelab Pallet c. Tunnel d. Tunnel Edension GAS (Getaway Special): None	Crew Compartment Payloads: 1. Urine Monitoring System (UMS) 2. Shurtle Amateur Radio Experiment (SAREX) Special Payload Mission Kits:
STS-61 Endeavour		Dec 13, 1993 KSC	Plt: Kenneth MS: F. Story MS: Thomas MS: Jeffery	D. Bowersox Musgrave D. Akers A. Hoffman C. Thornton	Deployable Payloads: 1. Hubble Space Telescope (HST) Service Mission - 01 a. Solar Array (SA) b. Wide FieldPlanetary Camera (WFPC) c. Corrective Optics Space Telescope Axial Replacement (COSTAR)	Crew Compartment Payloads 1. Hubble Space Telescope Special Tools 2. Shuttle Orbiter Repackaged Galley (SORG) 3. Electronic Still Camera Photography Test 4. Global Positioning System (GYS)
					Attached PLB Payloads: 1. MFR (Manipulator Foot Restraint) 2. SESA (Special Equipment Stowage Assembly) 3. IMAX Cargo Bay Camera (ICBC-04) 4. Air Force Maui Optical Site Calibration Test (AMOS)	Special Payload Mission Kits: None
					GAS (Getaway Special): None	

The Planets

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune	Pluto
Mean Distance from Sun					1				
Millions of Kilometers	57.9	108.2	149.6	227.9	778.3	1,429	2,875	4,504	5,900
Millions of Miles	36	67.2	93	141.6	483.6	888.2	1,786	2,799	3,666
Period of Revolution (in Earth time)	87.97 days	224.7 days	365.26 days	686.98 days	11.86 years	29.46 years	84.07 years	164.82 years	248.6 years
Period of Rotation (in Earth time)	58.65 days	243.01 days,	23 hrs	24 hrs	9 hrs	10 hrs	17 hrs	16 hrs	6.39 days,
		Retrograde	56 mins	37 mins	56 mins	40 mins	14 mins	6 mins	Retrograde
Inclination of Axis (Degrees)	0.0	177.3	23.5	25.2	3.08	26.7	97.9	29.6	122
Inclination of Orbit to Ecliptic (Deg)	7.0	3.39	0.0	1.85	1.31	2.49	0.77	1.77	17.15
Eccentricity (Degrees)	0.206	0.007	0.017	0.093	0.048	0.056	0.046	0.010	0.248
Equatorial Diameter						1			
Kilometers	4,878	12,104	12,755	6,790	142,796	120,660	51,118	49,528	2,300 Appx.
Miles	3,031	7,521	7,926	4,219	88,729	74,975	31,763	30,775	1,429 Appx.
Atmosphere	Essentially	Carbon	Nitrogen,	Carbon	Hydrogen,	Hydrogen,	Hydrogen,	Hydrogen,	Methane
	None	Dioxide	Oxygen	Dioxide	Helium	Helium	Helium	Helium	
Satellites	None	None	1	2	16	18	15	8	7
Rings	None	None	None	None	1	Thousands	11	5	Probably
l -	i	ļ		L	L	L			None

Our automated spacecraft have traveled to the Moon and to all the planets beyond our world except Ptuto; they have observed moons as large as small planets, flown by comets, and sampled the solar environment. The knowledge gained from our journeys through the solar system has redefined traditional Earth sciences like geology and meteorology and spawned an entirely new discipline called comparative planetology. By studying the geology of planets, moons, asteroids, and comets, and comparing differences and similarities, we are learning more about the origin and history of these bodies and the solar system as a whole. We are also gaining insight into Earth's complex weather systems. By seeing how weather is shaped on other worlds and by investigating the Sun's activity and its influence through the solar system, we can better understand climatic conditions and processes on Earth.

The Sun

Many spacecraft have explored the Sun's environment, but none have gotten any closer to its surface than approximately two-thirds of the distance from Earth to the Sun. Pioneers 5-11, the Pioneer Venus Orbiter, Voyagers 1 and 2, and other spacecraft have all sampled the solar environment. The Ulysses spacecraft, launched Oct 6, 1990, is a joint solar mission of NASA and the European Space Agency. After using Jupiter's gravity to change its trajectory, Ulysses will fly over the Sun's polar regions during 1994 and 1995 and will perform a wide range of studies using nine onboard scientific instruments.

The Sun dwarfs the other bodies in the solar system, representing approximately 99.86 percent of all the mass in the solar system. All of the planets, moons, asteroids, comets, dust, and gas add up to only about 0.14 percent. This 0.14 percent represents the material left over from the Sun's formation. One hundred and nine Earths would be required to fit across the Sun's disk, and its interior could hold over 1.3 million Earths.

As a star, the Sun generates energy by the process of fusion. The temperature at the Sun's core is 15 million degrees Celsius (27 million degrees Fahrenheit), and the pressure there is 340 billion times Earth's air pressure at sea level. The Sun's surface temperature of 5,500 degrees Celsius (10,000 degrees Fahrenheit) seems almost chilly compared to its core temperature. At the solar core, hydrogen can fuse into helium, producing energy. The Sun produces a strong magnetic field and streams of charged particles, extending far beyond the planets.

The Sun appears to have been active for 4.6 hillion years and has enough fuel for another 5 hillion years or so. At the end of its life, the Sun will start to fuse helium into heavier elements and begin to swell up, utilimately growing so large that it will swallow Earth. After a billion years as a 'red giant,' it will suddenly collapse into a 'white dwart' – the final end product of a star like ours. It may take a tillion years to cold for completely.

Mercury

Obtaining the first close-up views of Morcury was the primary objective of the Mariner 10 spacecraft, bunched Nov 3, 1973. After a journey of nearly 5 months, including a flyby of Venus, the spacecraft passed within 703 km (437 mt) of the solar system's innermost planet on Mar 29, 1974. Until Mariner 10, fittle was known about Mercury. Even the best telescopic views from Earth showed Mercury as an indistinct object lacking any surface detail. The planet is so close to the Sun that it is usually lost in solar glare. When the planet is visible on Earth's horizon just after sunset or before dawn, it is obscured by the haze and dust in our atmosphere. Only radar telescopes cave any hint of Mercury's surface conditions prior to the vowage of Mariner 10.

Mariner 10 photographs revealed an ancient, heavily cratered surface, closely resembling our Moon. The pictures also showed high ciffs crisscrossing the planet, apparently created when Mercury's interior cooled and shrank, buckling the planet's crust. The cliffs are as high as 3 km (2 mi) and as long as 500 km (310 mi).

Instruments on Mariner 10 discovered that Mercury has a weak magnetic field and a trace of atmosphere – a trillionth the density of Earth's atmosphere and composed chiefly of argon, neon, and helium. When the planet's orbit takes it closest to the Sun, surface temperatures range from 487 degrees Celsius (872 degrees Fahrenheit) on Mercury's sunits side to -183 degrees Celsius (-298 degrees Fahrenheit) on the dark side. This range in surface temperature is the largest for a single body in the solar system. Mercury titerally bakes and therezes at the same time.

Days and nights are long on Mercury. The combination of a slow rotation relative to the stars (59 Earth days) and a rapid revolution around the Sun (88 Earth days) means that one Mercury solar day takes 176 Earth days or two Mercury years, the time it takes Mercury to complete two orbits around the Sun.

Mercury appears to have a crust of light silicate rock like that of Earth. Scientists believe Mercury has a heavy iron-rich core making up slightly less than half of its volume. That would make Mercury's core larger, proportionally, than the Moon's core or those of any of the planets.

After the initial Mercury encounter, Mariner 10 made two additional flybys - on Sep 21, 1974, and Mar 16, 1975 - before control gas used to orient the spacecraft was exhausted and the mission was concluded. Each flyby took place at the same local Mercury time when the identical half of the planet was illuminated; as a result, we still have not seen one-half of the planet's surface.

Venus

Veiled by dense doud cover, Venus – our nearest planetary neighbor – was the first planet to be explored. The Mariner 2 spacecraft, launched Aug 27, 1962, was the first of more than a dozen successful American and Soviet missions to study the mysterious planet. On Docember 14, 1962, Mariner 2 passed within 34,839 kilometers (21,648 miles) of Venus and became the first spacecraft to scan another planet; coboard instruments measured Venus for 42 minutes. Mariner 5, launched in June 1967, flew much doser to the planet. Passing within 4,034 kilometers (2,544 miles) of Venus on the second American flyby, Mariner 5's instruments measured the planet's magnetic field, ionosphere, radiation belts, and temperatures. On its way to Mercury, Mariner 10 flew by Venus and transmitted ultraviolet pictures to Earth showing cloud circulation patterns in the Venusian atmosphere.

On Dec 4, 1978, the Pioneer Venus Orbiter became the first spacecraft to orbit the planet. Five days later, the five separate components making up a second spacecraft, the Pioneer Venus Multiprobe, entered the Venusian atmosphere at different locations above the planet. The four small probes and the main body radioed atmospheric data back to Earth during their descent loward the surface. Although designed to examine the atmosphere, one of the probes survived its impact with the surface and continued to transmit data for another hour.

Venus resembles Earth in size, physical composition, and density more closely than any other known planet. However, significant differences have been discovered. For example, Venus rotation (west to east) is retrograde (backward) compared to the east-to-west spin of Earth and most of the other planets.

Approximately 96.5 percent of Venus' atmosphere (95 times as dense as Earth's) is carbon dioxide. The principal constituent of Earth's atmosphere is nitrogen. Venus' atmosphere acts like a greenhouse, permitting solar radiation to reach the surface but trapping the heat that would ordinarily be radiated back into space. As a result, the planet's average surface temperature is 492 degrees Celsius (900 degrees Fahrenheit), not enough to mait lead.

A radio altimeter on the Pioneer Venus Orbiter provided the first means of seeing through the planet's dense cloud cover and determining surface features over almost the entire planet. NASA's Magellan spaceraft, launched on May 5, 1989, has orbited Venus since August 10, 1990. The spacecraft used radar-mapping techniques to provide uttarbitib-resolution images of the surface.

Magellan has revealed a landscape dominated by volcanic features, faults, and impact craters. Hugh areas of the surface show evidence of multiple periods of lava flooding with flows lying on top of previous ones. An elevated region named Ishtar Terra is a lava-filled basin as large as the United States. At one end of this plateau sits Maxwell Montes, a mountain the size of Mount Everest. Scarring the mountain's flank is a 100-km (62-m) wide, 25-km (1.5 m) deep impact crater named Cleopatra. (Almost all features on Venus are named for women: Maxwell Montes, Alpha Regio, and Beta Regio are the exceptions.) Craters survive on Venus for perhaps 400 million years because there is no water and very little wind erosion.

Extensive fault-line networks cover the planet, probably the result of the same crustal flexing that produces plate tectonics on Earth. But on Venus the surface temperature is sufficient to weaken the rock, which cracks just about everywhere, preventing the formation of major plates and large earthquake faults like the San Andreas Fault in California.

Venus' predominant weather pattern is a high-altitude, high-speed circulation of clouds that contain suffuric acid. At speeds reaching as high as 360 km (225 mi) per hour, the clouds circle the planet in only 4 Earth days. The circulation is in the same direction – west to east – as Venus' slow rotation of 243 Earth days, whereas Earth's winds blow in both directions – west to east and east to west – in six alternating bands. Venus' atmosphere serves as a simplified laboratory for the study of our weather.

Farth

As viewed from space, Earth's distinguishing characteristics are its blue waters, brown and green land masses, and white clouds. We are enveloped by an ocean of air consisting of 78 percent natrogen, 21 percent oxygen, and 1 percent other constituents. The only planet in the solar system

known to harbor life, Earth orbits the Sun at an average distance of 150 million km (93 million mi). Earth is the third planet from the Sun and the lifth targest in the solar system, with a diameter a few hundred kilometers larger than that of Venus.

Our planet's rapid spin and molten nickel-iron core give rise to an extensive magnetic field, which, along with the atmosphere, shields us from nearly all of the harmful radiation coming from the Sun and other stars. Earth's atmosphere protects us from meteors as well, most of which burn up before they can strike the surface. Active geological processes have left no evidence of the petting Earth atmost certainly received soon after it formed — about 4.6 billion years ago.

From our journeys into space, we have learned much about our home planet. The first American satellite – Explorer 1 – launched Jan 31, 1958, discovered an intense radiation zone, called the Van Allen radiation belts, surrounding Earth. Other research satellites revealed that our planet's magnetic field is distorted into a tear-drop shape by the solar wind. Weve learned that the magnetic field does not fade of into space but has definite boundaries. And we now know that our wispy upper atmosphere, once believed calm and uneventful, seethes with activity – swelling by day and contracting by night. Affected by changes in solar activity, the upper atmosphere contributes to weather and climate on Earth.

Besides affecting Earth's weather, solar activity gives rise to a dramatic visual phenomenon in our atmosphere. When charged particles from the solar wind become trapped in Earth's magnetic field, they collide with air molecules above our planet's magnetic poles. These air molecules then begin to glow and are known as the auroras or the northern and southern lights.

Satellities about 35,789 km (22,238 mi) out in space play a major role in daily local weather forecasting. These watchful electronic eyes warn us of dangerous storms. Continuous global monitoring provides a vast amount of useful data and contributes to a better understanding of Earth's complex weather systems.

From their unique vantage points, satellites can survey Earth's oceans, land use and resources, and monitor the planet's health. These eyes in space have saved countless lives, provided tremendous conveniences, and shown us that we may be altering our planet in dangerous ways.

The Moon

The Moon is Earth's single natural satellite. The first human footsteps on an alien world were made by American astronauts on the dusty surface of our airfess, lifeless companion. In preparation for the Apollo expeditions, NASA dispatched the automated Ranger, Surveyor, and Lunar Orbiter spacecraft to study the Moon between 1964 and 1968.

NASA's Apollo program left a large legacy of binar materials and data. Six 2-astronaut crews landed on and explored the lunar surface between 1969 and 1972, carrying back a collection of rocks and soil weighting a total of 382 km (942 lb) and consisting of more than 2,000 separate samples. From this material and other studies, scientists have constructed a history of the Moon that includes its irfanov.

Rocks collected from the lunar highlands date to about 4.0-4.3 billion years old. The first few million years of the Moon's existence were so violent that few traces of this period remain. As a motien outer layer gradually cooled and solidified into different kinds of rock, the Moon was bombarded by huge asteroids and smaller objects. Some of the asteroids were as large as Rhode Island or Detaware, and their collisions with the Moon created basins hundreds of kilometers across.

This catastrophic bombardment tapered off approximately 4 billion years ago, leaving the tunar highlands covered with huge, overlapping craters and a deep layer of shattered and broken rock. Heat produced by the decay of radioactive elements began to melt the interior at depths of about 200 km (125 mi) below the surface. For the next 700 million years, lava rose from inside the Moon and gradually spread out over the surface, flooding the large impact basins to form the dark areas that Galileo Galilei, an astronomer of the Italian Renaissance, called maria, meaning seas. As far as we can tell, there has been no significant volcanic activity on the Moon for more than 3 billion years. Since then, the lunar surface has been aftered only by micrometeorites, atomic particles from the Sun and stars, rare impacts of large meteorites, and spacecraft and astronauts.

The origin of the Moon is still a mystery. Four theories attempt an explanation: The Moon formed near Earth as a separate body; it was fron from Earth; it formed somewhere else and was captured by our planet's gravity, or it was the result of a collision between Earth and an asteroid about the size of Mars. The last theory has some good support but is far from certain.

Mars

Mars has long been considered the solar system's prime candidate for harboring extraterrestrial life. Astronomers studying the red planet through telescopes saw what appeared to be straight lines criss-crossing its surface. These observations, later determined to be optical illusions, led to the popular notion that intelligent beings had constructed a system of irrigation canals. Another reason for scientists to expect file on Mars was the apparent seasonal color changes on the planet's surface. This phenomenon led to speculation that conditions might support vegetation during the warmer mornity, and cause plant life to become dormant during colder periods.

Seven American missions to Mars have been carried out. Four Mariner spacecraft, three flying by the planet and one placed into mantian orbit, surveyed the planet extensively before the Viking Orbiters and Landers arrived. Mariner 4, launched in late 1964, flew past Mars on Jul 14, 1965, within 9,846 km (6,118 mi) of the surface. Transmitting to Earth 22 close-up pictures of the planet, the spacecraft found many craters and naturally occurring channels but no evidence of artificial canals or flowing water. The Mariners 6 and 7 flybys, during the summer of 1969, externed 201 pictures. Mariners 4, 6, and 7 showed a diversity of surface conditions as well as a thin, cold, dry atmosphere of carbon dioxide.

On May 30, 1971, the Mariner 9 Orbiter was bunched to make a year-long study of the martian suited ust. The spacecraft arrived 5-12 months after lifterft, only to find Mars in the midst of a planet-wide dust storm that made surface photography impossible for several weeks. After the storm cleared, Mariner 9 began returning the first of 7,329 pictures that revealed previously unknown martian features, including evidence that large amounts of water once flowed across the surface, etching river vallers and flood obins.

In Aug and Sep 1975, the Viking 1 and 2 spacecraft, each consisting of an orbiter and a lander, were launched. The mission was designed to answer several questions about the red planet,

including, is there life there? Nobody expected the spacecraft to spot martian cities, but it was hoped that the biology experiments would at least find evidence of primitive life, past or present.

Vixing Lander 1 became the first spacecraft to successfully touch down on another planet when it landed on Jul 20, 1976. Photographs sent back from Chyse Planita ("Plains of Gold") showed a bleak, rusty-red landscape. Panoramic images revealed a rolling plain, littered with rocks and marked by rippled sand dunes. Fine red dust from the martian soil gives the sky a salmon hue. When Viking Lander 2 touched down on Utopia Planitia on Sep 3, 1976, it viewed a more rolling landscape, one without visible dunes.

The results sent back by the laboratory on each Viking Lander were inconclusive. Small samples of the red martian soil were lested in three different experiments designed to detect biological processes. While some of the test results seemed to indicate biological activity, later analysis confirmed that this activity was inorganic in nature and related to the planet's soil chemistry. Is there life on Mars? No one knows for sure, but the Viking mission found no evidence that organic molecules exist there

The Viking Landers became weather stations, recording wind velocity and direction as well as atmospheric temperature and pressure. Few weather changes were observed. The highest temperature recorded by either spacecraft was -14 degrees Celsius (7 degrees Fahrenheit) at the Viking Lander 1 site in midsummer. The lowest temperature, -120 degrees Celsius (184 degrees Fahrenheit), was recorded in the more northerly Viking Lander 2 site during winter. Near-hurricane wind speeds were measured at the two martian weather stations during global dust storms, but because the atmosphere is so thin, wind force is minimal. Viking Lander 2 photographed light patches of frost, probably water-ice, during in second winter on the planet.

The martian atmosphere, like that of Venus, is primarily carbon dioxide. Nitrogen and oxygen are present only in small percentages. Martian air contains only about 11,000 as much water as our air, but this small amount can condense out, forming clouds that ride high in the atmosphere or swirl around the slopes of towering volcances. Patches of early morning fog can form in valleys. There is evidence that in the past a denser martian atmosphere may have allowed water to flow on the planet. Physical features closely resembling shorelines, gorges, riverbeds, and islands suggest that great rivers once marked the planet.

Mars has two moons, Phobos and Deimos. They are small and irregularly shaped and possess ancient, cratered surfaces. It is possible the moons were originally asteroids that ventured too close to Mars and were captured by its gravity.

The Viking Orbiters and Landers exceeded their design lifetimes of 120 and 90 days, respectively. The first to fall was Viking Orbiter 2, which stopped operating on Jul 24, 1978, when a leak depleted its attitude-control gas. Viking Lander 2 operated until Apr 12, 1980, when it was shut down due to battery degeneration. Viking Orbiter 1 quit on Aug 7, 1980, when the last of its attitude-control gas was used up. Viking Lander 1 ceased functioning on Nov 13, 1983. Despite the inconclusive results of the Viking biology experiments, we know more about Mars than any other planet except Earth. The Mars Observer mission, launched on Sept. 25, 1992, lost contact with Earth on April 2, 1993, lust 3 days before it was to enter orbit around Mars.

NASA will continue to explore Mars, which a new exploration strategey called the Mars Surveyor program, calls for start of development of a small orbiter that will be launched in November 1996 to study the surface of the red planet.

The Mars Surveyor orbiter will lay the foundation for a series of missions to Mars in a decadelong program of Mars exploration. The missions will take advantage of launch opportunities about every 2 years as Mars comes into alignamen with Earth.

The orbiter planned for launch in 1988 would be even smaller than the initial Mars Surveyor orbiter and carry the remainder of the Mars Observer science instruments. It would act as a communications relay satellite for a companion lander, launched the same year, and other landers in the future, such as the Russian Mars '96 lander. The U.S. Pathfinder lander, set to land on Mars in 1997, will operate independently of the Mars orbiter.

Asteroids

The solar system is populated by thousands of small planetesimals called asteroids that orbit the Sun in a broad belt between Mars and Jupiter. Some of these are of rocky composition, others are mainly iron and nickel; they are tragments and rocky splittlers generated by the same processes that built the planets some four and a half billion years ago. Metallic asteriods are thought to be fragments of the central cores of small short-lived planets that were broken up soon after they formed by massive collisions with other similar objects; some of the rocky splinters maybe pieces of the outer layers of such exploded planets while others could be primitive planet-building materials accumulated into rocks but that was never used in planet building.

The largest asteriod is called 1 Ceres (all asteriods have a number in their name) and is only 770km (480 mi) across; much smaller than the Moon. Most of the thousands of asteriods that are known are much smaller, in the 1 to 10 km size range. Innumerable, still small, fragments frequently collide with the Earth and, as they burn-up in the atmosphere, causing meteor trails. Some of the larger fragments reach the ground intact and become part of the meteorite collections in our museums. A few large asteriod collisions are recorded on the Earth's surface as craters. One of the best examples is the Baringer Meteor Crater near Winstow, Arizona. Someof the best preserved meteorities are bound on the ice appl of Antarotics; however, not all of thesecome from asteriods, some maybe debris from comets, and some pieces are thought to have originated on the surface of Mars.

The Galileo spacecraft passed twice through the asteriod belt on its six year journey from the Earth to Jupiter. On each occasioin it visited an asteroid and made scientific measurements impossible from the Earth. On October 29, 1991, Galileo encountered 951 Gaspra at a distance of 1600 km to reveal a conical shaped, scared and fractured, rock some 18 km long with a lightly cratered landscape; almost two years later, on August 28, 1993, Galileo passed by another larger asteroid. 243 Ida, at a distance of 2400 km to reveal an object of even more bizarre shape. In addition, the data from the spacecraft indicated that this asteroid may have a satellite in orbit around it. Ida itself is irregular in shape, some 56 km long and 24 km across. Its surface was found to be covered by a deep layer of rubble on which many craters, fractures and boulders are superposed. Before the Galileo encounters it was expected that Ida, which is a member of the Koronis family of asteroids (an asteriod family is a group of asteriods on very small orbits that formed as the result of a castastrophic collision that broke up the parent asteriod), was relatively young, that is , it formed as the result of a recent collision, while Gaspra was expected to be relatively old. The surprising result of the Galileo investigiations was to turn these ideas entirely around. Ida's densely crated surface proved it to be very old, perhaps 1-2 billion years. Gaspra's lightly crated surface showed it to have been formed relatively recently, a mere 200 million years and.

Jupiter

Beyond Mars and the asteroid beft, in the outer regions of our solar system, fie the giant planets of Jupiter, Saturn, Uranus and Neptune. In 1972, NASA sent the first of four spacecraft to conduct the Initial surveys of these colossal worlds of gas and their moons of ice and rock.

Pioneer 10, launched in March 1972, was the first spacecraft to penetrate the asteroid belt and travel to the outer regions of the solar system. In December 1973, it returned the first close-up images of Jupiter, flying within 132,252 km (2/178 mi) of the planet's banded could tops. Pioneer 11 followed a year later. Voyagers 1 and 2, launched in the summer of 1977, returned spectacular photographs of Jupiter and its family of satellites during flybys in 1979. These traveliers found Jupiter to be a whifting ball of liquid hydrogen and helium, topode with a colorful atmosphere composed mostly of gaseous hydrogen and helium. Ammonia ice crystals form white Jovian clouds. Suffur computs (and perhaps phosphorus) may produce the brown and orange hues that characterize Jupiter's armsoshere.

It is likely that methane, ammonia, water and other gases react to form organic molecules in the regions between the planet's trigid cloud tops and the warmer hydrogen ocean lying below. Because of Jupiter's atmospheric dynamics, however, these organic compounds, if they exist, are probably short-lived.

The Great Red Spot has been observed for centuries through telescopes on Earth. This hurricanalike storm in Jupiter's atmosphere is more than twice the size of our planet. As a high-pressure region, the Great Red Spot spiris in a direction opposite to that of low-pressure storms on Jupiter, it is surrounded by swifing currents that rotate around the spot and are sometimes consumed by it. The Great Red Spot might be a million years old.

Our spacecraft detected lightning in Jupiter's upper atmosphere and observed auroral emissions similar to Earth's northern lights at the Jovian polar regions. Voyager I returned the first images of a fairt, narrowing enricifuel pulpier. Largest of the solar system's planets, Jupiter rotates at a dizzying pace, once every 9 hours 55 minutes 30 seconds. The massive planet takes almost 12 Earth years to complete a journey around the Sun. With 16 known moons, Jupiter is something of a miniature solar system. A new mission to Jupiter, the Galileo Project, is underway. After a 6-year cruise that so far has taken the Galileo Orbiter once past Venus, twice past Earth and the Moon, and once past two asteroids, the spacecraft will drop an atmospheric probe rind Jupiter's cloud layers and relay data back to Earth. The Galileo Orbiter will spend 2 years circling the planet and flying close to Jupiter's large moons, exploring in detail what the two Pioneers and two Vorgaers revealed.

Galilean Satellites

In 1610, Galileo Galilei aimed his telescope at Jupiter and Spotted four points of light orbiting the planet. For the first time, humans had seen the moons of another world. In honor of their discoverer, these four bodies would become known as the Galilean satellites or moons. But Galileo might have happity traded this honor for one look at the dazzing photographs returned by the Voyager spacecraft as they flew past these planet-sized satellites.

One of the most remarkable findings of the Voyager mission was the presence of active volcances on the Galiban moon lo. Volcanic eruptions had never before been observed on a world other than Earth. The Voyager cameras identified at least nine active volcances on lo, with plumes of ejected material extending as far as 280 km (175 mi) above the moon's surface. Jo's pizza-colored ternain, marked by orange and yellow hues, is probably the result of suffur-rich materials brought to the surface by volcanic activity. Volcanic activity on this satellite is the result of tidal flexing caused by the gravitational tug-of-war between lo, Jupiter, and the other three Galibean moons.

Europa, approximately the same size as our Moon, is the brightest Galilean satellite. The moon's surface displays an array of streaks, indicating the crust has been fractured. Caught in a gravitational tug-dr-war like to, Europa has been heated enough to cause its interior ice to melt, producing a liquid-water ocean. This ocean is covered by an ice crust that has formed where water is exposed to the cold of space. Europa's core is made of rock that sank to its center. Like Europa, the other two Galilean moons – Garrymede and Gallisto – are worlds of ice and rock. Garrymede is the largest satellite in the solar system – larger than the planets Mercury and Pluto. The satellite is composed of about 50 percent water or ice and the rest rock. Garrymede's surface has areas of different brightness, indicating that, in the past, material oozed out of the moon's in terior and was deposited at various locations on the surface.

Callisto, only slightly smaller than Ganymede, has the lowest density of any Galliean satellite, suggesting that large amounts of water are part of its composition. Callisto is the most heavily cratered object in the solar system; no activity during its history has erased old craters except more impacts.

Detailed studies of all the Galilean satellites will be performed by the Galileo Orbiter.

Satum

No planet in the solar system is adorned like Saturn. Its expuisite ring system is unrivaled. Like Jupiter, Saturn is composed mostly of hydrogen. But in contrast to the vivid colors and wild turbulence found in Jovian clouds, Saturn's atmosphere has a more subtle, butterscotch hue, and its markings are muted by high-altitude haze. Given Saturn's somewhat placid-looking appearance, scientists were surprised at the high-velocity equatorial jet stream that blows some 1,770 km (1,100 mi) per hour.

Three American spacecraft have visited Satum. Pioneer 11 sped by the planet and its moon Titan in September 1979, returning the first close-up images. Voyager 1 followed in November 1980, sending back breathtaking photographs that revealed for the first time the complexities of Satum's ring system and moons. Voyager 2 flew by the planet and fits moons in August 1981.

The rings are composed of countless low-density particles orbiting individually around saturn's equator at progressive distances from the cloud tops. Analysis of spacecraft radio waves passing through the rings showed that the particles vary widely in size, ranging from dust to house-sized boulders. The rings are bright because they are mostly ice and frosted rock.

The rings might have resulted when a moon or a passing body ventured too close to Saturn. The object would have been from apart by great tidal forces on its surface and in its interior. Or the object may not have been fully formed and disintegrated under the influence of Saturn's gravity. A third possibility is that the object was shattered by collisions with larger objects orbiting the planet. Unable either to form into a moon or to drift away from each other, individual ring particles appear to be held in place by the gravitational pull of Salumn and its satellies. These complex gravitational interactions form the thousands of ringlets that make up the major rings.

Radio emissions quite similar to the static heard on an AM car radio during an electrical storm were detected by the Voyager spacocraft. These emissions are typical of lightning but are believed to be coming from Saturn's ring system rather than its atmosphere, where no lightning was observed. As they had at Jupiter, the Voyagers saw a version of Earth's auroras near Saturn's poles.

The Voyagers discovered new moons and found several satellites that share the same orbit. We learned that some moons shepherd ring particles, maintaining Saturn's rings and the gaps in the rings. Saturn's 18th moon was discovered in 1990 from images taken by Voyager 2 in 1991.

Vorager 1 determined that Titan has a nitrogen-based atmosphere with methane and argon one more like Earth's in composition than the carbon dioxide atmosphere of Mars and Venus. Titan's surface temperature of -179 degrees Celsius (-290 degrees Fahrenher) implies that there might be water-toe islands rising above oceans of ethane-methane liquid or studge. Unfortunately, Voyager 1's cameras could not penetrate the moor's dense clouds.

Continuing photochemistry from solar radiation may be conventing Titan's methane to ethane, acetylene and, in combination with nitrogen, hydrogen cyanide. These conditions may be similar to the atmospheric conditions of primeval Earth between 3 and 4 billion years ago. However, Titan's atmospheric temperature is believed to be too low to permit progress beyond this stage of organic chemistry.

A mission to Saturn, planned for launch in October 1997, may help answer many of the questions raised by the Voyager flybys about the Saturnian system. Cated Cassini, the joint U.S. European Space Agency mission consists of an Orbiter and an instrumented probe call thygens supplied by ESA. The mission is designed to complete an orbital surveillance of the planet and unveil Saturn's largest moon, Titan, by dropping the Huygens probe through Titan's intriguingly Earth-like strussphere.

Cassini will fly by Venus twice as well as by Earth and Jupiter before arriving at Saturn in November 2004 to begin a 4-year orbital tour of the ringed planet and its 18 moons. The Hurgens probe will descend to the surface of Tifan in June 2005.

Uranus

In January 1986, 4-1/2 years after visiting Saturn, Voyager 2 completed the first close-up survey of the Uranian system. The brief flyby revealed more information about Uranus and its moons than had been gleaned from ground observations since its discovery over 2 centuries ago by English astronomer William Herschel

Uranus, third largest of the planets, is an oddball of the solar system. Unlike the other planets (with the exception of Pluto), this giant lies tipped on its side with its north and south poles alternately facing the Sun during an 84-year swing around the solar system. During Voyager 2's flyby, the south pole faced the Sun. Uranus might have been knocked over when an Earth-sized object collided with it early in the life of the solar system.

Voyager 2 discovered that Uranus' magnetic field does not follow the usual north-south axis found on the other planets. Instead, the field is titled 60 degrees and offset from the planet's center. a phenomenon that on Earth would be like having one magnetic pole in New York City and the other in the city of Djakarta, on the island of Java in Indonesia.

Uranus' atmosphere consists mainly of hydrogen, with some 12 percent helium and small amounts of ammonia, methane, and water vapor. The planet's blue color occurs because methane in its atmosphere absorbs all other colors. Wind speeds range up to 580 km (380 mi) per hour, and temperatures near the cloud tops average 221 degrees Celsius (366 degrees Fahrenheit).

Uranus' sunift south pole is shrouded in a kind of photochemical 'smog' believed to be a combination of acetylene, ethane, and other sunlight-generated chemicals. Surrounding the planet's atmosphere and extending thousands of kilometers into space is a mysterious ultraviolet sheen known as "electroglow." Approximately 8,000 km (5,000 mi) below Uranus' cloud tops, there is thought to be a scalding ocean of water and dissolved ammonia some 10,000 km (6,200 mi) deep. Beneath this ocean is an Earth-sized core of heavier materials. Voyager 2 discovered 10 new moons, 16-169 km (10-105 ml) in diameter, orbiting Uranus. The five previously known - Miranda, Ariel, Umbriel, Titania, and Oberon - range in size from 520 to 1,610 km (320 to 1,000 ml) across. Representing a geological showcase, these five moons are half-ioe, half-rock spheres that are cold and dark and show evidence of past activity, including faultion and its flows.

The most remarkable of Uranus' moons is Miranda. Its surface features high cliffs as well as caryons, crater-pocked pains, and winding valleys. The sharp variations in terrain suggest that, after the moon formed, it was smashed apart by a collision with another body — an event not unusual in our solar system, which contains many objects that have impact craters or are fragments from large impacts. What is extraordinary is that Miranda apparently reformed with some of the material that had been in its interior excosed on its surface.

Uranus was thought to have nine dark rings; Voyager 2 imaged 11. In contract to Saturn's rings, composed of bright particles, Uranus' rings are primarily made up of dark, boulder-sized chunks.

Neptune

Voyager 2 completed its 12-year tour of the solar system with an investigation of Neptune and the planet's moons. On Aug 25, 1989, the spacecraft swept to within 4,850 km (3,010 mi) of Neptune and then flew on to the moon Triton. During the Neptune encounter, it became clear that the planet's atmosphere was more active than Uranus'.

Voyager 2 observed the Great Dark Spot, a circular storm the size of Earth, in Neptune's atmosphere. Resembling Jupiter's Great Red Spot, the storm spins counter-clockwise and moves westward at almost 1,200 km (745 m) per hour. Voyager 2 also noted a smaller dark spot and a fast-moving cloud dubbed the "Scooter," as well as high-altitude clouds over the main hydrogen and helium cloud deck. The highest wind speeds of any planet were observed, up to 2,400 km (1,500 m) per hour.

Like the other giant planets, Neptune has a gaseous hydrogen and helium upper layer over a liquid interior. The planet's core contains a higher percentage of rock and metal than those of the other gas giants. Neptune's distinctive blue appearance, like Uranus' blue color, is due to atmosoheric methane.

Neptune's magnetic field is titled relative to the planers spin axis and is not centered at the core. This phenomenon is similar to Uranus' magnetic field and suggests that the field of the two giants are being generated in an area above the cores, where the pressure is so great that liquid hydrogen assumes the electrical properties of a metal. Earth's magnetic field, on the other hand, is produced by its spinning metalic core and is only slightly tilled and offser relative to its center.

Voyager 2 also shed light on the mystery of Neptune's rings. Observations from Earth indicated that there were arcs of material in orbit around the giant planet. It was not clear how Neptune could have arcs and how these could be kept from spreading out into even, unclumped rings. Voyager 2 detected these arcs, but they were, in pact, part of thin, complete rings. A number of small moons could explain the arcs, but such bodies were not spotted.

Astronomers had identified the Neptunian moons Triton in 1846 and Nereki in 1949. Voyager 2 found six more. One of the new moons – Proteus – is actually targer than Nereki, but since Proteus orbits close to Neptune, it was lost in the planet's glare for observers on Earth.

Triton circles Neptune in a retrograde orbit in under 6 days. Tidal forces on Triton are causing it to spiral slowly toward the planet. In 10-100 million years (a short time in astronomical terms), the moon will be so close that Neptunian gravity will tear it apart, forming a spectacular ring to accompany the planet's modest current rings.

Triton's landscape is as strange and unexpected as those of lo and Miranda. The moon has more rock than its counterparts at Saturn and Uranus. Triton's mantlle is probably composed of waterice, but its crust is a thin verneer of nitrogen and methane. The moon shows two dramatically different types of terrain: the so-called "cantaloupe" terrain and a receding toe cap.

Dark streaks appear on the ice cap. These streaks are the fallout from geyser-fike volcanic vents that shoot nitrogen gas and dark, fine-grained particles to heights of 1-8 km (1-5 mi). Triton's thin atmosphere, only 1770,000th as thick as Earth's, has winds that carry the dark particles and deposit them as streaks on the ice cap — the coldest surface yet discovered in the solar system (-235 degrees Cetsius, -391 degrees Fahrenheit). Triton might be more like Pluto than any other object spacecraft have so far visited.

Pluto

Pluto is the most distant of the planests, yet the eccentricity of its orbit periodically carries it inside Neptune's orbit, where it has been since 1979 and where it will remain until March 1999. Pluto's orbit is also highly inclined – titled 17 degrees to the orbital plane of the other planets.

Discovered in 1930, Puto appears to be little more than a celestial snowball. The planet's diameter is calculated to be approximately 2.300 km (1,430 mt), only 23 the size of our Moon. Ground-based observations indicate that Pluto's surface is covered with methane ice and that there is a thin atmosphere that may freeze and fall to the surface as the planet moves away from the Sun. Observations also show that Pluto's spin axis is typed by 122 degrees.

The planer has one known satellite, Charon, discovered in 1978. Charon's surface composition is different from Plufo's: the moon appears to be covered with water-lear rather han methane ios. Its orbit is gravitationally locked with Pluto, so both bodies always keep the same hemisphere facing each other. Pluto's and Charon's rotational period and Charon's period of revolution are all 6.4 Earth days.

No spacecraft has ever visited Ptuto, however, a Ptuto Fast Flyby mission is being studied for a possible taunch in 1999-2000.

Comets

The outermost members of the solar system occasionally pay a visit to the inner planets. As asteroids are the rocky and metallic remnants of the formation of the solar system, comets are the icy debris from that dim beginning and can survive only far from the Sun. Most comet nuclei reside in the Oort Cloud, a loose swarm of objects in a halo beyond the planets and reaching perhaps hallway to the nearest star.

Comet nuclei orbit in this frozen abyse until they are gravitationally perturbed into new orbits that carry them close to the Sun. As a nucleus falls inside the orbits of the outer planets, the volatile elements of which it is made gradually warm; by the time the nucleus enters the region of the inner planets, these volatile elements are boiling. The nucleus itself is irregular and only a few miles across, and is made principally of water-lice with methane and ammont.

As these materials boil off of the nucleus, they form a coma or cloud-like "head" that can measure tens of thousands of kilometers across. The coma grows as the comet gets closer to the Sun. The stream of charged particles coming from the Sun pushes on this cloud, blowing it back and giving rise to the comet's fails." Gases and ions are blown directly back from the nucleus, but dust particles are pushed more slowly. As the nucleus continues in its orbit, the dust particles are left behind in a curved arc.

Both the gas and dust tails point away from the Sun; in effect, the comet chases its tails as it recodes from the Sun. The tails can reach 150 million km (93 million mi) in length, but the total amount of material contained it this dramatic display would fit in an ordinary suitcase. Comets—from the Latin cometa, meaning "long-haired"—are essentially dramatic light shows.

Some comets pass through the solar system only once, but others have their orbits gravitationally modified by a close encounter with one of the giant outer planets. These latter visitors can enter closed elliptical orbits and repeatedly return to the inner solar system. Halley's Cornet is the most famous example of a retairvely short period cornet, returning on an average of once every 76 years and orbiting from beyond Neptune to within Venus' orbit. Confirmed sightings of the cornet go back to 240 B.C. This regular visitor to our solar system is named for Sir Edmund Halley, because he plotted the corner's orbit and predicted its return, based on earlier sightings and Newtonian laws of motion. His name became part of astronomical lore when, in 1759, the cornet returned on schedule. Unfortunately, Sir Edmund did not five to see it

A comet can be very prominent in the sky if it passes comparatively close to Earth. Unfortunately, on its most recent appearance, Halley's Comet passed no closer than 62.4 million km (28.8 million mi) from our world. The comet was visible to the naked eye, especially for viewers in the southern hemisphere, but it was not spectacular. Comets have been so bright, on rare occasions, that they were visible during daytime. Historically, comet sightings have been interpreted as bad omens and have been artistically rendered as deagors in the sky.

Several spacecraft have flown by comets at high speed; the first was NASA's International Cometary Explorer in 1985. An armada of five spacecraft (two Japanese, two Soviet, and the Giotto spacecraft from the European Space Agency) flew by Halley's Comet in 1986.

USA Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Mariner 1	Venus Flyby	Jul 22, 1962	,	Destroyed shortly after launch when vehicle veered off course.
Mariner 2	Venus Flyby	Aug 27, 1962	Dec 14, 1962	First successful planetary flyby. Provided instrument scanning data. Entered solar orbit.
Mariner 3	Mars Flyby	Nov 5, 1964		Shroud failed to jettison properly; Sun and Canpous not acquired; spacecraft did not encounter Mars. Transmissions ceased 9 hours after launch. Entered solar orbit.
Mariner 4	Mars Flyby	Nov 28, 1964	Jul 14, 1965	Provided first close-range images of Mars, confirming the existence of surface craters. Entered solar orbit.
Mariner 5	Venus Flyby	Jun 14, 1967	Oct 19, 1967	Advanced instruments returned data on Venus' surface temperature, atmosphere, and magnetic field environment. Entered solar orbit. $^{\rm L}$
Mariner 6	Mars Flyby	Feb 24, 1969	Jul 31, 1969	Provided high-resolution photos of Martian surface, concentrating on equatorial region. Entered solar orbit.
Mariner 7	Mars Flyby	Mar 27, 1969	Aug 5, 1969	Provided high-resolution photos of Martian surface, concentrating on southern hemisphere. Entered solar orbit.
Mariner 8	Mars Orbiter	May 8, 1971		Centaur stage malfunctioned shortly after launch.
Mariner 9	Mars Orbiter	May 30, 1971	Nov 13, 1971	First interplanetary probe to orbit another planet. During nearly a year of operations, obtained detailed photographs of the Martian moons, Phobos and Deimos, and mapped 100 percent of the Martian surface. Spacecraft is inoperable in Mars orbit.
Pioneer 10	Jupiter Flyby	Mar 2, 1972	Dec 3, 1973	First spacecraft to penetrate the Asteroid Belt. Obtained first close-up images of Jupiter, investigated its magnetosphere, atmosphere and internal structure. Still operating in the outer Solar System.

USA Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer 11	Jupiter/Saturn Flyby	Apr 5, 1973	Dec 2, 1974 (Jupiter) Sep 1, 1979 (Saturn)	The successful encounter of Jupiter by Pioneer 10 permitted Pioneer 11 to be retargeted in flight to fly by Jupiter and encounter Saturn. Still operating in the outer Solar System.
Mariner 10	Venus/Mercury Flyby	Nov 3, 1973	Feb 5, 1974 (Venus) Mar 29, 1974 (Mercury) Sep 21, 1974 (Mercury) Mar 16, 1975 (Mercury)	First dual-planet mission. Used gravity of Venus to attain Mercury encounter. Provided first ultraviolet photographs of Venus; returned close-up photographs and detailed data of Mercury. Transmitter was turned off March 24, 1975, when attitude control gas was depleted. Spacecraft is inoperable in solar orbit.
Viking 1	Mars Orbiter and Lander	Aug 20, 1975	Jul 19, 1976 (in orbit) Jul 20, 1976 (landed)	First U.S. attempt to soft land a spacecraft on another planet. Landed on the Plain of Chryse. Photographs showed an orange-red plain strewn with rocks and sand dunes. Both Orbiters took a total of 52,000 images during their mission; approximately 97% percent of the surafce was imaged. Orbiter 1 operated until August 7, 1980, when it used the last of its attitude control gas. Lander 1 ceased operating on Nov 13, 1983.
Viking 2	Mars Orbiter and Lander	Sep 9, 1975	Aug 7, 1976 (in orbit) Sep 3, 1976 (landed)	Landed on the Plain of Utopia. Discovered water frost on the surface at the end of the Martian winter. The two Landers took 4,500 images of the surface and provided over 3 million weather reports. Orbiter 2 stopped operating on July 24, 1978, when its attitude control gas was depleted because of a leak. Lander 2 operated until April 12, 1980, when it was shut down due to battery degeneration.
Voyager 2	Tour of the Outer Planets	Aug 20, 1977	Jul 9, 1979 (Jupiter) Aug 25, 1981 (Saturn) Jan 24, 1986 (Uranus) Aug 25, 1989 (Neptune)	Investigated the Jupiter, Saturn and Uranus planetary systems. Provided first close-up photographs of Uranus and its moons. Used gravity-assist at Uranus to continue on to Neptune. Swept within 1280 km of Neptune on August 25, 1989. The spacecraft will continue into interstellar space.
Voyager 1	Tour of Jupiter and Saturn	Sep 5, 1977	Mar 5, 1979 (Jupiter) Nov 12, 1980 (Saturn)	Investigated the Jupiter and Saturn planetary systems. Returned spectacular photographs and provided evidence of a ring encircling Jupiter. Continues to return data enroute toward interstellar space.

USA Planetary Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer Venus 1	Venus Orbiter	May 20, 1978	Dec 4, 1978	Mapped Venus' surface by radar, imaged its cloud systems, explored its magnetic environment and observed interactions of the solar wind with a planet that has no intrinsic magnetic field. Provided radar altimetry maps for nearly all of the surface of Venus, resolving features down to about 50 miles across. Still operating in orbit around Venus.
Pioneer Venus 2	Venus Probe	Aug 8, 1978	Dec 9, 1978	Dispatched heat-resisting probes to penetrate the atmosphere at widely separated locations and measured temperature, pressure, and density down to the planet's surface. Probes impacted on the surface.
Magellan	Venus Radar Mapping	May 4, 1989	Aug 1990	Returned radar images that showed geological features unlike anything seen on Earth. One area scientists called crater farms; another area was covered by a checkered pattern of closely spaced fault lines running at right angles. Most intriguing were indications that Venus still may be geologically active. Will continue to map the entire surface and observe evidence of volcanic eruption into 1991. Magellan provided the first successful "aerobrake" manuver by a spacecraft, as it dragged through the Venus atmosphere to change its orbit from a highly elliptical to a new lower circular orbit.
Galileo	Jupiter Orbiter and Probe	Oct 18, 1989	Dec 8, 1990 (Earth) Feb 1991 (Venus)	A sophisticated two-part spacecraft; an Orbiter will be inserted into orbit around Jupiter to remotely sense the planet, its satellites and the Jovian magnetosphere and a Probe will descend into the atmosphere of Jupiter to make in situ measurements of its nature. Gallieo flew by Venus, conducting the first infrared imagery and spectroscopy below the planet's cloud deck and used the Earth's gravity to speed it on its way to Jupiter. It also encountered and provided high resolution images of the asteroid Ida in August of 1993.
Mars Observer	Mars Orbiter	Sep 25, 1992		Communication was lost with the Mars Observer on August 21, 1993, 3 days before the orbit insertion burn.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 1	Venus Probe	Feb 12, 1961		First Soviet planetary flight; launched from Sputnik 8. Radio contact was lost during flight; spacecraft was not operating when it passed Venus.
Sputnik 19	Venus Probe	Aug 25, 1962		Unsuccessful Venus attempt.
Sputnik 20	Venus Probe	Sep 1, 1962		Unsuccessful Venus attempt.
Sputnik 21	Venus Probe	Sep 12, 1962		Unsuccessful Venus attempt.
Sputnik 22	Mars Probe	Oct 24, 1962		Spacecraft and final rocket stage blew up when accelerated to escape velocity.
Mars 1	Mars Probe	Nov 1, 1962		Contact was lost when the spacecraft antenna could no longer be pointed towards Earth.
Sputnik 24	Mars Probe	Nov 4, 1962		Disintegrated during an attempt at Mars trajectory from Earth parking orbit.
Zond 1	Venus Probe	Apr 2, 1964		Communications lost. Spacecraft went into solar orbit.
Zond 2	Mars Probe	Nov 30, 1964		Passed by Mars; failed to return data. Went into solar orbit.
Venera 2	Venus Probe	Nov 12, 1965	Feb 27, 1966	Passed by Venus, but failed to return data.
Venera 3	Venus Probe	Nov 16, 1965	Mar 1, 1966	Impacted on Venus, becoming the first spacecraft to reach another planet. Failed to return data.
Venera 4	Venus Probe	Jun 12, 1967	Oct 18, 1967	Descent capsule transmitted data during parachute descent. Sent measurements of pressure, density, and chemical composition of the atmosphere before transmissions ceased.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 5	Venus Probe	Jan 5, 1969	Mar 16, 1969	Entry velocity reduced by atmospheric braking before main parachute was deployed. Capsule entered atmosphere on planet's dark side; transmitted data for 53 minutes while traveling into the atmosphere before being crushed.
Venera 6	Venus Probe	Jan 10, 1969	Mar 17, 1969	Descent capsule entered the atmosphere on the planet's dark side; transmitted data for 51 minutes while traveling into the atmosphere before being crushed.
Venera 7	Venus Lander	Aug 17, 1970	Dec 15, 1970	Entry velocity was reduced aerodynamically before parachute deployed. After fast descent through upper layers, the parachute canpoy opened fully, slowing descent to allow fuller study of lower layers. Gradually increasing temperatures were transmitted. Returned data for 23 minutes after landing.
Cosmos 359	Venus Lander	Aug 22, 1970		Unsuccessful Venus attempt; failed to achieve escape velocity.
Cosmos 419	Mars Probe	May 10, 1971		First use of Proton launcher for a planetary mission. Placed in Earth orbit but failed to separate from fourth stage.
Mars 2	Mars Orbiter and Lander	May 19, 1971	Nov 27, 1971	Landing capsule separated from spacecraft and made first, unsuccessful attempt to soft land. Lander carried USSR pennant. Orbiter continued to transmit data.
Mars 3	Mars Orbiter and Lander	May 28, 1971	Dec 2, 1971	Landing capsule separated from spacecraft and landed in the southern hemisphere. Onboard camera operated for only 20 seconds, transmitting a small panoramic view. Orbiter transmitted for 3 months.
Venera 8	Venus Lander	Mar 27, 1972	Jul 22, 1972	As the spacecraft entered the upper atmosphere, the descent module separated while the service module burned up in the atmosphere. Entry speed was reduced by aerodynamic braking before parachute deployment. During descent, a refrigeration system was used to offset high temperatures. Returned data on temperature, pressure, light levels, and descent rates. Transmitted from surface for about 1 hour.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Cosmos 482	Venus Lander	Mar 31, 1972		Unsuccessful Venus probe; escape stage misfired leaving craft in Earth orbit.
Mars 4 & 5	Mars Orbiters and Landers	Jul 21, 1973 Jul 25, 1973	Feb 10, 1974 Feb 12, 1974	Pair of spacecraft launched to Mars. Mars 4 retro rockets failed to fire, preventing orbit insertion. As it passed the planet, Mars 4 returned one swath of pictures and some radio occultation data. Mars 5 was successfully placed in orbit, but operated only a few days, returning photographs of a small portion of southern hemisphere of Mars.
Mars 6 & 7	Mars Orbiters and Landers	Aug 5, 1973 Aug 9, 1973	Mar 12, 1974 Mar 9, 1974	Second pair of spacecraft launched to Mars. Mars 6 lander module transmitted data during descent, but transmissions abruptly ceased when the landing rockets were fired. Mars 7 descent module was separated from the main spacecraft due to a problem in the operation of one of the onboard systems, and passed by the planet.
Venera 9	Venus Orbiter and Lander	Jun 8, 1975	Oct 22, 1975	First spacecraft to transmit a picture from the surface of another planet. The lander's signals were transmitted to Earth via the orbiter. Utilized a new parachute system, consisting of six chutes. Signals continued from the surface for nearly 2 hrs 53 mins.
Venera 10	Venus Orbiter and Lander	Jun 14, 1975	Oct 25, 1975	During descent, atmospheric measurements and details of physical and chemical contents were transmitted via the orbiter. Transmitted pictures from the surface of Venus.
Venera 11	Venus Orbiter and Lander	Sep 9, 1978	Dec 25, 1978	Arrived at Venus 4 days after Venera 12. The two landers took nine samples of the atmosphere at varying heights and confirmed the basic components. Imaging system failed; did not return photos. Operated for 95 minutes.
Venera 12	Venus Orbiter and Lander	Sep 14, 1978	Dec 21, 1978	A transit module was positioned to relay the lander's data from behind the planet. Returned data on atmospheric pressure and components. Did not return photos; imaging system failed. Operated for 110 minutes.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Venera 13	Venus Orbiter and Lander	Oct 31, 1981	Mar 1, 1982	Provided first soil analysis from Venusian surface. Transmitted eight color pictures via orbiter. Measured atmospheric chemical and isotopic composition, electric discharges, and cloud structure. Operated for 57 minutes.
Venera 14	Venus Orbiter and Lander	Nov 4, 1981	Mar 3, 1982	Transmitted details of the atmosphere and clouds during descent; soil sample taken. Operated for 57 minutes.
Venera 15	Venus Orbiter	Jun 2, 1983	Oct 10, 1983	Obtained first high-resolution pictures of polar area. Compiled thermal map of almost entire northern hemisphere.
Venera 16	Venus Orbiter	Jun 7, 1983	Oct 16, 1983	Provided computer mosiac images of a strip of the northern continent. Soviet and U.S. geologists cooperated in studying and interpreting these images.
Vega 1 & 2	Venus/Halley	Dec 15, 1984 Dec 21, 1984	Jun 11, 1985 (Venus) Mar 6, 1986 (Halley) Jun 15, 1985 (Venus) Mar 9, 1986 (Halley)	International two-spacecraft project using Venusian gravity to send them on to Halley's Comet after dropping the Venusian probes. The Venus landers studied the atmosphere and acquired a surface soil sample for analysis. Each lander released a helium-filled instrumented balloon to measure cloud properties. The other half of the Vega payloads, carrying cameras and instruments, continued on to encounter Comet Halley.
Phobos 1 & 2	Mars/Phobos	Jul 7, 1988 Jul 12, 1988	Jan 1989 (Mars) Jan 1989 (Mars)	International two-spacecraft project to study Mars and its moon Phobos. Phobos 1 was disabled by a ground control error. Phobos 2 was successfully inserted into Martian orbit in January 1989 to study the Martian surface, atmosphere, and magnetic field. On March 27, 1989, communications with Phobos 2 were lost and efforts to contact the spacecraft were unsuccessful.

USA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Pioneer 1	Lunar Orbit	Oct 11, 1958		Did not achieve lunar trajectory; launch vehicle second and third stages did not separate evenly. Returned data on Van Allen Belt and other phenomena before reentering on October 12, 1958.
Pioneer 2	Lunar Orbit	Nov 8, 1958		Third stage of launch vehicle failed to ignite. Returned data that indicated the Earth's equatorial region has higher flux and energy levels than previously believed. Did not achieve orbit.
Pioneer 3	Lunar Probe	Dec 6, 1958		First stage of launch vehicle cut off prematurely; transmitted data on dual bands of radiation around Earth. Reentered December 7, 1958.
Pioneer 4	Lunar Probe	Mar 3, 1959	Mar 4, 1959	Passed within 37,300 miles from the Moon; returned excellent data on radiation. Entered solar orbit.
Pioneer P-3	Lunar Orbit	Nov 26, 1959		Payload shroud broke away 45 seconds after liftoff. Did not achieve orbit.
Ranger 1	Lunar Probe	Aug 23, 1961		Flight test of lunar spacecraft carrying experiments to collect data on solar plasma, particles, magnetic fields, and cosmic rays. Launch vehicle failed to restart resulting in low Earth Orbit. Reentered August 30, 1961.
Ranger 2	Lunar Probe	Nov 18, 1961		Flight test of spacecraft systems for future lunar and interplanetary missions. Launch vehicle altitude control system failed, resulting in low Earth orbit. Reentered November 20, 1961.
Ranger 3	Lunar Landing	Jan 26, 1962		Launch vehicle malfunction resulted in spacecraft missing the Moon by 22,862 miles. Spectrometer data on radiation were received. Entered solar orbit.
Ranger 4	Lunar Landing	Apr 23, 1962	Apr 26, 1962	Failure of central computer and sequencer system rendered experiments useless. No telemetry received. Impacted on far side of the Moon.

USA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Ranger 5	Lunar Landing	Oct 18, 1962		Power failure rendered all systems and experiments useless; 4 hours of data received from gamma ray experiment before battery depletion. Passed within 450 miles of the Moon. Entered solar orbit.
Ranger 6	Lunar Photo	Jan 30, 1964	Feb 2, 1964	TV cameras failed; no data returned. Impacted in the Sea of Tranquility area.
Ranger 7	Lunar Photo	Jul 28, 1964	Jul 31, 1964	Transmitted high quality photographs, man's first close-up lunar views, before impacting in the Sea of Clouds area.
Ranger 8	Lunar Photo	Feb 17, 1965	Feb 20, 1965	Transmitted high quality photographs before impacting in the Sea of Tranquility area.
Ranger 9	Lunar Photo	Mar 21, 1965	Mar 24, 1965	Transmitted high quality photographs before impacting in the Crater of Alphonsus. Almost 200 pictures were shown live via commercial television in the first TV spectacular from the Moon.
Surveyor 1	Lunar Lander	May 30, 1966	Jun 2, 1966	First U.S. spacecraft to make a fully controlled soft landing on the Moon; landed in the Ocean of Storms area. Returned high quality images, from horizon views of mountains to close-ups of its own mirrors, and selenological data.
Lunar Orbiter 1	Lunar Orbiter	Aug 10, 1966	Aug 14, 1966	Photographed over 2 million square miles of the Moon's surface. Took first photo of Earth from lunar distance. Impacted on the far side of the Moon on October 29, 1966.
Surveyor 2	Lunar Lander	Sep 20, 1966	Sep 22, 1966	Spacecraft crashed onto the lunar surface southeast of the crater Copernicus when one of its three vernier engines failed to ignite during a mid-course maneuver.
Lunar Orbiter 2	Lunar Orbiter	Nov 6, 1966	Nov 10, 1966	Photographed landing sites, including the Ranger 8 landing point, and surface debris tossed out at impact. Impacted the Moon on October 11, 1967.

USA Lunar Space Flights

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Lunar Orbiter 3	Lunar Orbiter	Feb 4, 1967	Feb 8, 1967	Photographed lunar landing sites; provided gravitational field and lunar environment data. Impacted the Moon on October 9, 1967.
Surveyor 3	Lunar Lander	Apr 17, 1967	Apr 19, 1967	Vernier engines failed to cut off as planned and the spacecraft bounced twice before landing in the Ocean of Storms. Returned images, including a picture of the Earth during lunar eclipse, and used a scoop to make the first excavation and bearing test on an extraterrestrial body. Returned data on a soil sample. Visual range of TV cameras was extended by using two flat mirrors.
Lunar Orbiter 4	Lunar Orbiter	May 4, 1967	May 8, 1967	Provided the first pictures of the lunar south pole. Impacted the Moon on Oct 6, 1967.
Surveyor 4	Lunar Lander	Jul 14, 1967	Jul 17, 1967	Radio contact was lost 2-1/2 minutes before touchdown when the signal was abruptly lost. Impacted in Sinus Medii.
Lunar Orbiter 5	Lunar Orbiter	Aug 1, 1967	Aug 5, 1967	Increased lunar photographic coverage to better than 99%. Used in orbit as a tracking target. Impacted the Moon on January 31, 1968.
Surveyor 5	Lunar Lander	Sep 8, 1967	Sep 10, 1967	Technical problems were successfully solved by tests and maneuvers during flight. Soft-landed in the Sea of Tranquility. Returned images and obtained data on lunar surface radar and thermal reflectivity. Performed first on-site chemical soil analysis.
Surveyor 6	Lunar Lander	Nov 7, 1967	Nov 9, 1967	Soft-landed in the Sinus Medii area. Returned images of the tunar surface, Earth, Jupiter, and several stars. Spacecraft engines were restarted, lifting the spacecraft about 10 feet from the surface and landing it 8 feet from the original site.
Surveyor 7	Lunar Lander	Jan 7, 1968	Jan 9, 1968	Landed near the crater Tycho. Returned stereo pictures of the surface and of rocks that were of special interest. Provided first observation of artificial light from Earth.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 1	Lunar Impact	Jan 2, 1959		Intended to impact the Moon; carried instruments to measure radiation. Passed the Moon and went into solar orbit.
Luna 2	Lunar Impact	Sep 12, 1959	Sep 15, 1959	First spacecraft to reach another celestial body. Impacted east of the Sea of Serenity; carried USSR pennants.
Luna 3	Lunar Probe	Oct 4, 1959		First spacecraft to pass behind Moon and send back pictures of far side. Equipped with a TV processing and transmission system, returned pictures of far side including composite full view of far side. Reentered Apr 29, 1960.
Sputnik 25	Lunar Probe	Jan 4, 1963		Unsuccessful lunar attempt.
Luna 4	Lunar Orbiter	Apr 2, 1963		Attempt to solve problems of landing instrument containers. Contact lost as it passed the Moon. Barycentric orbit.
Luna 5	Lunar Lander	May 9, 1965	May 12, 1965	First soft landing attempt. Retrorocket malfunctioned; spacecraft impacted in the Sea of Clouds.
Luna 6	Lunar Lander	Jun 8, 1965		During midcourse correction maneuver, engine failed to switch off. Spacecraft missed Moon and entered solar orbit.
Zond 3	Lunar Probe	Jul 18, 1965		Photographed lunar far side and transmitted photos to Earth 9 days later. Entered solar orbit.
Luna 7	Lunar Lander	Oct 4, 1965	Oct 7, 1965	Retrorockets fired early; crashed in Ocean of Storms.
Luna 8	Lunar Lander	Dec 3, 1965	Dec 6, 1965	Retrorockets fired late: crashed in Ocean of Storms.

SPACECRAFT	MISSION	ON LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 9	Lunar Lander	ander Jan 31, 1966	Feb 3, 1966	First successful soft landing; first TV transmission from lunar surface. Three panoramas of the lunar landscape were transmitted from the eastern edge of the Ocean of Storms.
Cosmos 111	Lunar Probe	Probe Mar 11, 1966		Unsuccessful lunar attempt. Reentered March 16, 1966,
Luna 10	Lunar Orbiter	Orbiter Mar 31, 1966		First lunar satellite. Studied lunar surface radiation and magnetic field intensity; monitored strength and variation of lunar gravitation. Selenocentric orbit.
Luna 11	Lunar Orbiter	Orbiter Aug 24, 1966		Second lunar satellite. Data received during 277 orbits. Selenocentric orbit.
Luna 12	Lunar Orbiter	Orbiter Oct 22, 1966		TV system transmitted large-scale pictures of Sea of Rains and Crater Aristarchus areas. Tested electric motor for Lunokhod's wheels. Selenocentric orbit.
Luna 13	Lunar Lander	Lander Dec 21, 1966	Dec 24, 1966	Soft landed in Ocean of Storms and sent back panoramic views. Two arms were extended to measure soil density and surface radioactivity.
Luna 14	Lunar Orbiter	Orbiter Apr 7, 1968		Studied gravitational field and "stability of radio signals sent to spacecraft at different locations in respect to the Moon." Made further tests of geared electric motor for Lunokhod's wheels. Selenocentric orbit.
Zond 5	Circumlunar	lunar Sep 15, 1968		First spacecraft to circumnavigate the Moon and return to Earth. Took photographs of the Earth. Capsule was recovered from the Indian Ocean on September 21, 1968. Russia's first sea recovery.
Zond 6	Circumlunar	lunar Nov 10, 1968		Second spacecraft to circumnavigate the Moon and return to Earth "to perfect the automatic functioning of a manned spaceship that will be sent to the Moon." Photographed lunar far side. Reentry made by skip-glide technique; capsule was recovered on land inside the Soviet Union on November 17, 1968.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 15	Lunar Sample Return	Jul 13, 1969	Jul 21, 1969	First lunar sample return attempt. Began descent maneuvers on its 52nd revolution. Spacecraft crashed at the end of a 4 minute descent in the Sea of Crises.
Zond 7	Circumlunar .	Aug 7, 1969	·	Third circumlunar flight. Far side of Moon photographed. Color pictures of Earth and Moon brought back. Reentry by skip-glide technique on August 14, 1969.
Cosmos 300	Lunar Probe	Sep 23, 1969		Unsuccessful lunar attempt. Reentered September 27, 1969.
Cosmos 305	Lunar Probe	Oct 22, 1969		Unsuccessful lunar attempt. Reentered October 24, 1969.
Luna 16	Lunar Sample Return	Sep 12, 1970	Sep 20, 1970	First recovery of lunar soil by an automatic spacecraft. Controlled landing achieved in Sea of Fertility; automatic drilling rig deployed; samples collected from lunar surface and returned to Earth on September 24, 1970.
Zond 8	Circumlunar	Oct 20, 1970		Fourth circumlunar flight. Color pictures taken of Earth and Moon. Russia's second sea recovery occurred on October 27, 1970, in the Indian Ocean.
Luna 17	Lunar Rover	Nov 10, 1970	Nov 17, 1970	Carrying the first Moon robot, soft landed in Sea of Rains. Lunokhod 1, driven by 5-man team on Earth, traveled over the lunar surface for 11 days; transmitted photos and analyzed soil samples.
Luna 18	Lunar Lander	Sep 2, 1971		Attempted to land in Sea of Fertility on September 11, 1971. Communications ceased shortly after command was given to start descent engine.
Luna 19	Lunar Orbiter	Sep 28, 1971		From lunar orbit, studied Moon's gravitational field; transmitted TV pictures of the surface. Selenocentric orbit.

SPACECRAFT	MISSION	LAUNCH DATE	ARRIVAL DATE	REMARKS
Luna 20	Lunar Sample Return	Feb 14, 1972		Soft landed in Sea of Crises. Used "photo-telemetric device" to relay pictures of surface. A rotary-percussion drill was used to drill into rock; samples were lifted into a capsule on ascent stage and returned to Earth on Feb 25, 1972.
Luna 21	Lunar Rover	Jan 8, 1973	Jan 15, 1973	Carried improved equipment and additional instruments; second Lunokhod rover soft landed near the Sea of Serenity. Lunar surface pictures were transmitted and experiments were performed. Ceased operating on the 5th lunar day.
Luna 22	Lunar Orbiter	May 29, 1974	Jun 2, 1974	Placed in circular lunar orbit then lowered to obtain TV panoramas of high quality and good resolution. Altimeter readings were taken and chemical rock composition was determined by gamma radiation. Selenocentric orbit.
Luna 23	Lunar Sample Return	Oct 28, 1974		Landed on the southern part of the Sea of Crises on November 6, 1974. Device for taking samples was damaged; no drilling or sample collection possible.
Luna 24	Lunar Sample Return	Aug 9, 1976	Aug 14, 1976	Landed in Sea of Crises on August 18, 1976. Carried larger soil carrier. Core samples were drilled and returned. U.S. and British scientists were given samples for analyses.

MISSION/	LAUNCH	LAUNCH		CURRENT C	RBITAL PARAME	TERS	WEIGHT	
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	ci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1958								1958
Pioneer I (U) Eta I	Thor-Able I 130 (U)	Oct 11			VN OCT 12, 1958		34.2	Measure magnetic fields a round Earth or Moon. Error in burnout velocity and angle; did not reach Moon. Returned 43 hours of data on extent of realistion band, hydromagnetic oscillations of magnetic field, density of micrometeors in interplanetary space, and interplanetary magnetic field.
Beacon I (U)	Jupiter C (U)	Oct 23		DID NOT ACHIEVE ORBIT				Thin plastic sphere (12-feet in diameter after inflation) to study atmosphere density at various levels. Upper stages and payload separated prior to first-stage burnout,
Pioneer II (U)	Thor-Able I 129 (U)	Nov 8		DID NOT ACHIEVE ORBIT				Measurement of magnetic fields around Earth or Moon. Third stage failed to ignite, its brief data provided evidence that equatorial region about Earth has higher flux and higher energy radiation than previously considered.
Pioneer III (U)	Juno II (U)	Dec 6		DOWN DEC 7, 1958				Measurement of radiation in space. Error in burnout velocity and angle; did not reach Moon. During its flight, discovered second radiation belt around Earth.
1959								1959
Vanguard II (U) Alpha 1	Vanguard (SLV-4) (U)	Feb 17	122.8	3054	557	32.9	9.4	Sphere (20 inches in diameter) to measure cloud cover. First Earth photo from satellite. Interpretation of data difficult because satellite developed precessing motion.
Pioneer IV (S) Nu 1	Juno II (S)	Mar 3		HELIOCENTRIC ORBIT				Measurement of radiation in space. Achieved Earth-Moon trajectory; returned excellent radiation data. Passed within 37,300 miles of the Moon on March 4, 1959.
Vanguard (U)	Vanguard (SLV-5) (U)	Apr 13		DID NOT ACHIEVE ORBIT				Payload consisted of two independent spheres: Sphere A contained a precise magnetometer to map Earth's magnetic field, Sphere B was a 30-inch inflatable sphere for optical tracking. Second stage failed because of damage at stage separation.
Vanguard (U)	Vanguard (SLV-6) (U)	Jun 22			OT ACHIEVE ORBIT		9.8	Magnesium alloy sphere (20 inches in diameter), to measure solar-Earth heating process which generates weather. Faulty second-stage pressure valve caused failure.
Explorer (S-1) (U)	Juno II (U)	Jul 16		DID N	OT ACHIEVE ORBIT		41.5	To measure Earth's radiation balance. Destroyed by Range Safety Officer 5-1/2 seconds after liftoff; failure of power supply to guidance system.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARAM	ETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	cl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 6 (S-2) (S) Delta 1	Thor-Able III 134 (S)	Aug 7			PRIOR TO JULY 1961		64.4	Carried instruments to study particles and meteorology. Helped in the discovery of three radiation levels, a ring of electric current circling the Earth, and obtained crude cloud cover images.
Beacon II (U)	Juno II (U)	Aug 14		DID N	IOT ACHIEVE ORBIT		4.5	Thin plastic inflatable sphere (12-feet in diameter) to study atmosphere density at various levels. Premature fuel depletion in first stage caused upper stage malfunction.
Big Joe (Mercury) (S)	Atlas 10 (S)	Sep 9		SUE	SORBITAL FLIGHT			Suborbital test of the Mercury Capsule. Capsule recovered successfully after reentry test. (WFF)
Vanguard III (S) Eta 1	Vanguard (SLV-7) (S)	Sep 18	127.4	3417	512	33.4	45.4	Solar-powered magnesium sphere with magnetometer boom; provided a comprehensive survey of the Earth's magnetic field, surveyed location location of lower edge of radiation belts, and provided an accurate count of micrometeorite impacts. Last transmission December 8, 1959.
Little Joe 1 (S)	Little Joe (L/V #6) (S)	Oct 4		SUB	SÖRBITAL FLIGHT			Suborbital test of the Mercury Capsule to qualify the booster for use with the Mercury Test Program.
Explorer 7 (S-1a) (S) lota 1	Juno II (S)	Oct 13		DOV	WN JULY 16, 1989		41.5	Provided data on energetic particles, radiation, and magnetic storms. Also recorded the first micrometeorite penetration of a sensor.
Little Joe 2 (S)	Little Joe (L/V #1A) (S)	Nov 4		SUE	SÖRBITAL FLIGHT			Suborbital test of Mercury Capsule to test the escape system. Vehicle functioned perfectly, but escape rocket ignited several seconds too late. WFF)
Pioneer P-3 (U)	Atlas-Able 20 (U)	Nov 26		DID N	OT ACHIEVE ORBIT		168.7	Lunar Orbiter Probe; payload shroud broke away after 45 seconds.
Little Joe 3 (S)	Little Joe (L/V #2)(S)	Dec 4		SUE	ORBITAL FLIGHT			Suborbital test of the Mercury Capsule, included escape system and biomedical tests with monkey (Sam) aboard, to demonstrate high altitude abort at max q. (WFF)
1960								1960
Little Joe 4 (S)	Little Joe (L/V #1B) (S)	Jan 21			SORBITAL FLIGHT			Suborbital test of Mercury Capsule included escape system and biomedical test with monkey (Miss Sam) aboard. (WFF)
Pioneer V (P-2) (S) Alpha 1	Thor-Able IV 219 (S)	Mar 11			OCENTRIC ORBIT			Sphere, 26 inches in diameter, to investigate interplanetary space between orbits of Earth and Venus; test long-range communications; and determine strength of magnetic fields.
Explorer (S-46) (U)	Juno II (U)	Mar 23		DID N	IOT ACHIEVE ORBIT		16.0	Analyze electron and proton radiation energies in a highly elliptical orbit. Telemetry lost shortly after first stage burnout; one of the upper stages failed to fire.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARAMI	TERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) In	cl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Tiros I (S) Beta 2	Thor-Able II 148 (S)	Apr 1	98.3	695	658	48.4	122.5	First successful weather-study satellite. Demonstrated that satellites could be used to survey global weather conditions and study other surface features from space. Transmitted 22,952 good-quality cloud-cover photographs.
Scout X (U)	Scout X (U)	Apr 18		SUB	ORBITAL FLIGHT			Suborbital Launch Vehicle Development Test with live first and third stages. Vehicles broke up after first-stage burnout.
Echo A-10 (U)	Thor-Delta (1) (U)	May 13		DID N	OT ACHIEVE ORBIT		75.3	100-foot passive reflector sphere to be used in a series of communications experiments. During coast period, attitude control jets on second stage failed.
Scout I (S)	Scout 1 (S)	Jul 1		SUB	ORBITAL FLIGHT			Launch Vehicle Development Test; first complete Scout vehicle. (WFF)
Mercury (MA-1) (U)	Atlas 50 (U)	Jul 29			OT ACHIEVE ORBIT			Suborbital test of Mercury Capsule Reentry. The Atlas exploded 65 seconds after launch.
Echo I (A-11) (S) lota 1	Thor-Delta (2) (S)	Aug 12		DOV	WN MAY 24, 1968		75.3	First passive communications satellite (100-foot sphere). Reflected a pre-taped message from President Eisenhower across the Nation, demonstrating feasibility of global radio communications via satellite.
Pioneer (P-30) (U)	Atlas-Able 80 (U)	Sep 25		DID N	OT ACHIEVE ORBIT		175.5	Highly instrumented probe, in lunar orbit, to investigate the environment between the Earth and the Moon. Second stage failed due to malfunction in oxidizer system.
Scout II (S)	Scout 2 (S)	Oct 4		SUB	ORBITAL FLIGHT			Launch Vehicle Development Test; second complete Scout vehicle, reached an attitude of 3,500 mi. (WFF)
Explorer 8 (S-30) (S) Xi 1	Juno II (S)	Nov 3	102.5	1361	395	49.9	40.8	Contained instrumentation for detailed measurements of the ionosphere. Confirmed the existence of a helium layer in the upper atmosphere.
Little Joe 5 (U)	Little Joe (L/V #5)(S)	Nov 8		SUB	ORBITAL FLIGHT			Suborbital test of Mercury Capsule to quality capsule system. Capsule did not separate from booster. (WFF)
Tiros II (S) Pl 1	Thor-Delta (3) (S)	Nov 23	96.3	614	549	48.5	127.0	Test of experimental television techniques and infrared equipment for global meteorological information system.
Explorer (S-56) (U)	Scout 3 (U)	Dec 4		DID N	OT ACHIEVE ORBIT		6.4	12-foot sphere to determine the density of the Earth's atmosphere. Second stage failed to ignife.
Pioneer (P-31) (U)	Atlas-Able 91 (U)	Dec 15		DID N	OT ACHIEVE ORBIT		175.9	Highly instrumented probe, in lunar orbit, to investigate the environment between the Earth and the Moon. Vehicle exploded about 70 seconds after lawnch due to malfunction in first stage.
Mercury (MR-1A) (S)	Redstone (S)	Dec 19		SUE	ORBITAL FLIGHT			Unmanned Mercury spacecraft, in suborbital trajectory, impacted 235 miles down range after reaching an attitude of 135 miles and a speed of near 4,200 mph. Capsule recovered about 50 minutes after launch.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT C	RBITAL PARAME	TERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Inc	deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1961								1961
Mercury (MR-2) (S)	Redstone (S)	Jan 31		· SUBC	ORBITAL FLIGHT		1315.0	Suborbital test of Mercury Capsule; 16-minute flight included biomedical test with chimpanzee (Ham) aboard.
Explorer 9 (S) Delta 1	Scout 4 (S)	Feb 16		DO	WN APR 9, 1964		6.8	12-foot sphere to determine the density of the Earth's Atmosphere. First spacecraft orbited by an all-solid rocket. (WFF)
Mercury (MA-2) (S)	Atlas 67 (S)	Feb 21		SUB	ORBITAL FLIGHT	·	1315.0	Suborbital test of Mercury Capsule; upper part of Atlas strengthened by an 8-inch wide stainless steel band. Capsule recovered less than 1 hour after launch.
Explorer (S-45) (U)	Juno II (U)	Feb 24		DID N	OT ACHIEVE ORBIT		33.6	Investigate the shape of the ionosphere. A malfunction following booster separation resulted in loss of payload telemetry; third and forth stages failed to ignite.
Little Joe 5A (U)	Little Joe (L/V #5A) (U)	Mar 18		SUBO	ORBITAL FLIGHT		1315.0	Suborbital test of Mercury Capsule. Escape rocket motor fired prematurely and prior to capsule release. (WFF)
Mercury (MR-BD) (S)	Redstone (S)	Mar 24		SUBORBITAL FLIGHT			1315.0	Suborbital test of launch vehicle for Mercury flight to acquire further experience with booster before manned flight was attempted.
Explorer 10 (S) Kappa 1	Thor-Detta (4) (S)	Mar 25		DOWN JUN 1968			35,8	Injected into highly elliptical orbit. Provided information on solar winds, hydromagnetic shock waves, and reaction of the Earth's magnetic field to solar flares.
Mercury (MA-3) (U)	Atlas 100 (U)	Apr 25	_	DID N	OT ACHIEVE ORBIT		907.2	Orbital flight test of Mercury capsule. Destroyed after 40 seconds by Range Safety Officer when the inertial guidance system failed to pitch the vehicle over toward the horizon.
Explorer 11 (S) Nu 1	Juno II (S) (4 stages)	Apr 27	14,5	1465	479	28.8	37.2	Placed in elliptical orbit to detect high energy gamma rays from cosmic sources and map their distribution in the sky.
Little Joe 5B (S)	Little Joe (L/V #5B)(S)	Apr 28		SUBG	DRBITAL FLIGHT		1315.0	Suborbital flight test to demonstrate the ability of the escape and sequence systems to function properly at max q. (WFF)
Mercury (S) (Freedom 7)	Mercury- Redstone-3 (S				ORBITAL FLIGHT DED MAY 5, 1961		1315.0	First manned suborbital flight with Alan B. Shepard, Jr. Pilot and spacecraft recovered after 15 minute 22 second flight.
Explorer (S-45a) (U)	Juno II (U)	May 24			OT ACHIEVE ORBIT		33.6	Investigate the shape of the ionosphere. Second stage ignition system malfunctioned.
Meteoroid Sat A Explorer (S-55) (U)	Scout 5 (U)	Jun 30		DID N	OT ACHIEVE ORBIT		84.8	Evaluate launch vehicle; investigate micrometeoroid impact and penetration. Third stage falled to ignite. (WFF)
Tiros III (S) Rho 1	Thor-Delta (5) (S)	Jul 12	100.0	791	723	47.9	129,3	Development of meteorological satellite system. Provided excellent photos and infrared data. Photographed many tropical storms during 1961 hurricane season; credited with discovering Hurricane Esther.

	~					
MISSION/	LAUNCH L			CURRENT ORBITAL PARAMETERS	WEIGHT	
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Mercury (S) (Liberty Bell 7)	Mercury- Redstone-4 (S	Jul 21 (SUBORBITAL FLIGHT LANDED JUL 21, 1961	1470.0	Second manned suborbital flight with Virgil I. Grissom. After landing, spacecraft was lost but pilot was rescued from surface of water. Mission Duration 15 minutes 37 seconds.
Explorer 12 (S-3) (S) Upsilon 1	Thor-Delta (6) (S)	Aug 16		DOWN SEP 1963	37.6	First of a series to investigate solar winds, interplanetary magnetic fields, and energetic particles. Identified the Van Allen Belts as a magnetosphere.
Ranger I (U) Phi 1	Atlas-Agena B 111 (U)			DOWN AUG 30, 1961	306.2	Flight test of lunar spacecraft carrying experiments to investigate cosmic rays, magnetic fields, and energetic particles. Agena failed to restart, resulting in low Earth orbit.
Explorer 13 (U) Chi 1	Scout 6 (U)	Aug 25		DOWN AUG 28, 1961	84.8	Evaluate launch vehicle; investigate micrometeoroid impact and penetration, Third stage failed to ignite. (WFF)
Mercury (MA-4) (S) A-Alpha 1	Atlas 88 (S)	Sep 13		DOWN SEP 13, 1961	1224.7	Orbital test of Mercury capsule to test systems and ability to return capsule to predetermined recovery area after one orbit. All capsule, tracking, and recovery objectives met.
Probe A (P-21) (S)	Scout 7 (S)	Oct 19		SUBORBITAL FLIGHT		Vehicle test/scientific Geoprobe. Reached altitude of 4,261 miles; provided electron density measurements. (WFF)
Saturn Test (SA-1) (S)	Saturn i (S)	Oct 27	-	SUBORBITAL FLIGHT		Suborbital launch vehicle development test of S-1 booster propulsion system; verification of aerodynamic/structural design of entire vehicle.
Mercury (MS-1) (U)	AF 609A Blue Scout (U)	Nov 1		DID NOT ACHIEVE ORBIT	97.1	Orbital test of the Mercury Tracking Network. First Stage exploded 26 seconds after liftoff; other three stages destroyed by Range Safety Officer 44 seconds after launch.
Ranger II (U) A-Theta 1	Atlas-Agena B 117 (U)	Nov 18		DOWN NOV 20, 1961		Flight test of spacecraft systems designed for future tunar and interplanetary missions. Inoperative roll gyro prevented Agena restart resulting in a low Earth orbit.
Mercury (MA-5) (S) A-lota 1	Atlas 93 (S)	Nov 29		DOWN NOV 29, 1961	1315.4	Final flight test of all Mercury systems prior to manned orbital flight; chimpanizee Enos on board. Spacecraft and chimpanizee recovered after two orbits.
1962						1962
Echo (AVT-1) (S)	Thor 338 (S)	Jan 15		SUBORBITAL FLIGHT	256.0	Suborbital Communications Test. Canister ejection and opening successful, but 135-foot sphere ruptured.
Ranger III (U) Alpha 1	Atlas-Agena B 121 (U)	Jan 26		HELIOCENTRIC ORBIT	329.8	Rough land instrumented capsule on the Moon. Booster malfunction resulted in the spacecraft missing the Moon by 22,862 miles and going into solar orbit. TV pictures were unusable.

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	ORBITAL F	PARAMET	rers	WEIGHT	REMARKS
inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Incl	(deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Tiros IV (S) Beta 1	Thor-Delta (7) (S)	Feb 8	99.9	812	694		48.3	129.3	Continued research and development of meteorological satellite system. U.S. Weather Bureau initiated international radio facsimile transmission of cloud maps based on data received.
Mercury (MA-6) (Friendship 7) (S) Gamma 1	Atlas 109 (S)	Feb 20		LAN	DED FEB 20,	1962		1354,9	First U.S. manned orbital flight. John H. Glenn, Jr. made three orbits of the Earth. Capsule and pilot recovered after 21 minutes in the water. Mission Duration 4 hours \$5 minutes 23 seconds.
Reentry I (U)	Scout 6 (S)	Mar 1		SUI	SORBITAL FL	GHT			Launch vehicle development test/Reentry test. Desired speed was not achieved. (WFF)
OSO-I (S) Zeta 1	Thor-Delta (8) (S)	Mar 7		DC	WN OCT 8, 1	981		207,7	Carried 13 instruments to study Sun-Earth relationships. Transmitted almost 1,000 hours of information on solar phenomena, including measurements of 75 solar flares.
Probe 8 (P-21a) (S)	Scout 9 (S)	Mar 29		SUE	ORBITAL FLI	GHT			Suborbital vehicle test/scientific geoprobe. Reached an attitude of 3,910 miles; provided electron density measurements. (WFF)
Ranger 4 (U) Mu 1	Atlas-Agena B (S)	Apr 23		IMPACTED	MOON ON AF	PR 26, 1962		331,1	Second attempt to rough land instrumented capsule on Moon. Failure of central computer and sequencer system rendered experiments useless. Impacted on far side of Moon after flight of 64 hours.
Seturn Test (SA-2) (S)	Saturn I (S)	Apr 25		SUI	SORBITAL FL	GHT			Suborbital launch vehicle test; carried 95 tons of ballast water in upper stages which was released at an altitude of 65 miles to observe the effect on the upper region of the atmosphere (Project High Water).
Ariel I (S) Omicron 1	Thor-Delta (9) (S)	Apr 26		DO	WN MAY 24,	1976			Carried six British experiments to study the ionosphere, solar radiation, and cosmic rays. First International Satellite. Cooperative with UK.
Centaur Test 1 (AC-1)(U)	Atlas-Centaur (F-1) (U)	May 8		SUI	SORBITAL FL	GHT			Launch vehicle development test. Centaur exploded before separation.
Mercury (MA-7) (Aurora 7) (S) Tau 1	Atlas 107 (S)	May 24		LAN	DED MAY 24,	1962		1349.5	Second orbital Manned Flight with M. Scott Carpenter. Reentered under manual control after three orbits. Mission Duration 4 hours 56 minutes 5 seconds.
Tiros V (S) A-Alpha	Thor-Delta (S)	Jun 19	99.4	889	573		58.1	129.3	Continued research and development of meteorological satellite system. Extended observations to higher latitudes. Observed ice breakup in northern latitudes and storms originating in these areas.
Telstar 1 (S) A-Epsilon	Thor-Delta (10) (S)	Jul 10	157.8	5642	947		44.B	77.1	First privately built satellite to conduct communication experiments. First telephone and TV experiments transmitted. Reimbursable (AT&T).
Echo (AVT-2) (S)	Thor-Delta (11) (S)	Jul 18		SUE	SORBITAL FLI	GHT		256.0	Suborbital communications test. Inflation successful; radar indicated that the sphere surface was not as smooth as planned.

								· · · · · · · · · · · · · · · · · · ·
MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT (DRBITAL PARAI	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Mariner I (P-37) (U)	Atlas-Agena B 145 (U)				OT ACHIEVE ORBI	ř	202.8	Venus Flyby. Vehicle destroyed by Range Safety Officer about 290 seconds after launch when it veered off course.
Mariner II (P-38) (S) A-Rho 1	Atlas-Agena B 179 (S)	Aug 27		HELIC	OCENTRIC ORBIT		202.8	Second Venus flyby. First successful interplanetary probe. Passed Venus on December 14, 1962, at 21,648 miles; 109 days after launch. Provided data on solar wind, cosmic dust density, and particle and magnetic field variations.
Reentry II (U)	Scout 13 (U)	Aug 31		SUB	ORBITAL FLIGHT			Reentry test at 28,000 fps: late third stage ignition; desired speed was not achieved. (WFF
Tiros VI (S) A-Psi 1	Thor-Delta (12) (S)	Sep 18	97.6	652	635	58.3	127.5	Provide coverage of the 1962 hurricane season. Returned high quality cloud cover photographs.
Alouette I (S) B-Alpha 1	Thor-Agena B (S)	Sep 29	105.2	1022	987	80.5	145.2	Designed and built by Canada to measure variations in the ionosphere electron density distribution. Returned excellent data to 13 Canadian, British, and U.S. stations. Cooperative with Canada.
Explorer 14 (S-3a)(S) B-Gamma 1	Thor-Delta (13) (S)	Oct 2		DOV	WN JULY 1, 1966		40.4	Monitor trapped corpuscular radiation, solar particles, cosmic radiation, and solar winds. Placed into a highly elliptical orbit; excellent data received.
Mercury(MA-8) (Sigma 7) (S) B-Delta 1	Atlas 113 (S)	Oct 3		LANI	DED OCT 3, 1962		1360.8	Manned Orbital Flight with Walter M. Schirra, Jr. Made six orbits of the Earth. Mission Duration 9 hours 13 minutes 11 seconds.
Ranger V (U) B-Eta 1	Atlas-Agena B 215 (S)	Oct 18		HELIC	OCENTRIC ORBIT		342.5	Rough land instrumented capsule on the Moon. Malfunction caused power supply loss after 8 hours 44 minutes. Passed within 450 miles of the Moon.
Explorer 15 (S-3b) (S) B-Lambda	Thor-Delta (14) (S)	Oct 27		DO	WN OCT 5, 1967		44.5	Study location, composition, and decay rate of artificial radiation bett created by high altitude nuclear explosion over the Pacific Ocean. Descin device failed: considerable useful data transmitted.
Saturn (SA-3) (S)	Saturn I (S)	· Nov 16		SUB	ORBITAL FLIGHT		86167.0	Suborbital launch vehicle development flight. Second *Project High Water* using 95 tons of water released at an altitude of 90 n.mi.
Relay I (S) B-Upsilon 1	Thor-Delta (15) (S)	Dec 13	185.1	7436	1323	47.5	78.0	Test intercontinental microwave communication by low-altitude active repeater satellite. Initial power failure overcome. Over 500 communication tests and demonstrations conducted.
Explorer 16 (S-55b) (S) B-Chi 1	Scout 14 (S)	Dec 16	104.1	1159	745	52.0	100.7	Measure micrometeoroid puncture hazard to structural skin samples. First statistical sample; flux level found to lie between estimated extremes. (WFF

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1963								196
Syncom I (U) 1963 04A	Thor-Delta (16) (S)	Feb 14		CURRENT EL	EMENTS NOT MA	INTAINED	39.0	First test of a communication satellite in geosynchronous orbit. Initial communication tests successful; all contact was lost 20 seconds after command to fire apogee motor.
Saturn Test (SA-4) (S)	Saturn I (S)	Mar 28		SUB	ORBITAL FLIGHT			Suborbital taunch vehicle development test. Programmed in-flight cutoff of one of eight engines; successfully demonstrated propellant utilization system function.
Explorer 17 (SA-4) (S) 1963 09A	Thor-Delta (17) (S)	Apr 3		DOV	VN NOV 24, 1966		183.7	Measure density, composition, pressure and temperature of the Earth's atmosphere. Discovered a belt of neutral helium around the Earth.
Telstar II (S) 1963 13A	Thor-Delta (18) (S)	May 7	225.3	10807	967	42.8	79.4	Conduct wideband communication experiments. Color and black and white television successfully transmitted to Great Britain and France. Reimbursable (AT&T).
Mercury (MA-9) (Faith 7) (S) 1963 15A	Atlas 130 (S)	May 15		LANE	DED MAY 16, 1963		1360.8	Fourth Orbital Manned flight with L. Gordon Cooper, Jr. Various tests and experiments were performed. Capsule reentered after 22 orbits. Mission Duration 34 hours 19 minutes 49 seconds.
RFD-1 (S)	Scout 19 (S)	May 22		SUB	ORBITAL FLIGHT		217.6	Suborbital reentry flight test; carried AEC Reactor mockup, Reimbursable (AEC). (WFF
Tiros VII (S) 1963 24A	Thor-Delta (19) (S)	Jun 19	92.7	415	398	58.2	134.7	Continued meteorological satellite development. Furnished over 30,000 useful cloud cover photographs, including pictures of Hurricane Ginny in its early stages in mid-October.
CRL (USAF) (S) 1963 26A	Scout 21 (S)	Jun 28		DOV	WN DEC 14, 1983		99.8	Cambridge Research Lab geophysics experiment test. Reimbursable (DOD). (WFF
Reentry III (U)	Scout 22 (U)	Jul 20		SUB	ORBITAL FLIGHT			Suborbital reentry flight demonstration test of an ablation material at reentry speeds. Vehicle failed. (WFF
Syncom II (S) 1963 31A	Thor-Delta (20) (S)	Jul 26		CURRENT EL	EMENTS NOT MA	INTAINED	39.0	Geosynchronous communication satellite test. Voice, teletype, facsimile, and data transmission tests were conducted.
Little Joe II Test (S)	Little Joe II #1 (S)	Aug 28		SUB	ORBITAL FLIGHT			Suborbital Apollo launch vehicle test. Booster qualification test with dummy payload. (White Sands
Explorer 18 (S) (IMP-A) 1963 46A	Thor-Delta (21) (S)	Nov 27		DOV	WN DEC 30, 1965		62.6	First in a series of Interplanetary Monitoring Platforms to observe interplanetary space over an extended period of the solar cycle. Discovered a region of high-energy radiation beyond the Van Allen beit reported stationary shock wave created by the interaction of the solar wind and geomagnetic field.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT (DRBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Centaur Test II (S) 1963 47A	Atlas-Centaur (AC-2) (S)	Nov 27	104.6	1485	468	30.4	4620.8	Launch vehicle development test. Instrumented with 2,000 pounds of sensors, equipment, and telemetry; performance and structural integrity test.
Explorer 19 (AD-A) (S) 1963 53A	Scout 24 (S)	Dec 19		DOV	VN MAY 10, 1981		7.7	Sphere, 12 feet in diameter, was optically tracked after tracking beacon failed, to obtain long-term atmospheric density data and study density changes. (WSMC)
Tiros VIII (S) 1963 54A	Delta 22 (S)	Dec 21	98.5	711	663	58.5	120.2	Continued meteorological satellite development; initial flight test of Automatic Picture Transmission camera system which made it possible to obtain local cloud cover pictures using inexpensive ground stations.
1964								
Relay II (S) 1964 03A	Delta 23 (S)	Jan 21	194.7	7535	1966	46.4	85.3	Modified communication satellite with a capability of TV or 300 one-way voice transmissions or 12 two-way narrowband communication. Completed more than 230 demonstrations and tests; also obtained over 600 hours of radiation data.
Echo II (S) 1964 04A	Thor-Agena B (S)	Jan 25			WN JUN 7, 1969		348.4	Rigidized sphere, 135 feet in diameter, to conduct passive communication experiments (radio, teletype, facsimile tests). Good experiment results obtained; data exchanged with USSR. (WSMC)
Saturn I (SA-5) (S) 1964 05A	Saturn I (S)	Jan 29			VN APR 30, 1966		17,554.2	Launch vehicle development test. Fifth flight of Saturn, first Block II Saturn, first live flight of the LOX/LH2 fueled second stage (S-IV). 11,146 measurements taken.
Ranger VI (U) 1964 07A	Atlas-Agena B 199 (S)	3 Jan 30		IMPACTEL	MOON ON FEB 2	2, 1964	364.7	Photograph lunar surface before hard impact. No video signals received. Impacted on west side of Sea of Tranquility, within 20 miles of target, after 65.9 hour flight.
Beacon Explorer A (S-66) (U)	Delta 24 (U)	Mar 19		DID N	OT ACHIEVE ORE	BIT	54.7	Provide data on ionosphere; conduct laser and Doppler shift geodetic tracking experiments. Vehicle third stage malfunctioned.
Ariel II (UK) (S) 1964 15A	Scout 25 (S)	Mar 27		DOV	VN NOV 18, 1967		74.8	Carried three British experiments to measure galactic radio noise. Cooperative with UK. (WFF)
Gemini I (S) 1964 18A	Titan II 1 (S)	Apr 8		DO	WN APR 12, 1964		3175.2	Qualification of Gemini spacecraft configuration/Gemini launch vehicle combination in launch environment through orbital insertion phase.
Fire I (S)	Atlas-Antares 263 (S)	Apr 14		SUB	ORBITAL FLIGHT		1995.8	Reentry Test to study the heating environment encountered by a body entering the Earth's atmosphere at high speed.
Apollo Abort A-001 (S)	Little Joe II (S)	May 13		SUB	ORBITAL FLIGHT			Vehicle development test to demonstrate Apollo spacecraft stmospheric abort system capabilities. (White Sands)

								,
MISSION/			PERIOD		ORBITAL PARA		WEIGHT	
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Saturn I (SA-6) (S) 1964 25A	Saturn I (SA-6) (S)	May 28			WN JUN 1, 1964		17644.9	Vehicle development test. First flight of unmanned model of the Apollo spacecraft. 106 measurements obtained.
Centaur Test III (S)	Atlas-Centaur (AC-3) (S)				ORBITAL FLIGHT			Launch vehicle development test; performance and guidance evaluation.
SERT I (S)	Scout 28 (S)	Jul 20			ORBITAL FLIGHT			Test ion engine performance in space. Confirmed that high prevalence ion beams could be neutralized in space. (WFF
Ranger VII (S) 1964 41A	Atlas-Agena B 250 (S)	Jul 28		IMPACTED	MOON ON JUL 31,	1964	364.7	Photograph lunar surface before hard impact. Transmitted 4,316 high quality photographs showing amazing detail before impacting in Sea of Clouds; flight time 68 hours 35 minutes 55 seconds.
Reentry IV (S)	Scout 29 (S)	Aug 18		SUB	ORBITAL FLIGHT			Reentry Test. Demonstrated the ability of the Apollo spacecraft to
Syncom III (S) 1964 47A	Delta 25 (S)	Aug 19		CURRENT ELEMENTS NOT MAINTAINED				withstand reentry conditions at 27,950 fps. Experimental geosynchronous communications satellite. Provided live TV coverage of the Olympic games in Tokyo and conducted various communications (ests.
Explorer 20 (S) 1964 51A	Scout 30 (S)	Aug 25	103.6	1001	855	79.9		Ionosphere Explorer to obtain radio soundings of upper ionosphere as part of the Topside Sounder program.
Nimbus I (S) 1964 52A	Thor-Agena B (S)	Aug 28		DOV	NN MAY 16, 1974			Improved meteorological satellite; Earth oriented to provide complete global cloud cover images. Returned more than 27,000 excellent photographs; APT system supplied daytime photos to low-cost ground stations.
OGO I (U) 1964 54A	Atlas-Agena B 195 (S)	Sep 4		CURRENT EL	EMENTS NOT MAI	NTAINED	487.2	Standardized spacecraft capable of conducting related experiments. Carried 20 instruments to investigate geophysical and solar phenomena Boom deployment anomaly obscured horizon scanner's view of Earth. Varying quality data received from all experiments.
Saturn I (SA-7) (S) 1964 57A	Saturn I (S)	Sep 18		DOV	WN SEP 22, 1964			Demonstrate Launch Vehicle/spacecraft compatibility and test launch escape system. Telemetry obtained from 131 separate and continuous measurements.
Explorer 21 (U) 1964 60A	Delta 26 (U)	Oct 4		DO	WN JAN 30, 1966			Interplanetary Monitoring Platform to obtain magnetic fields, radiation, and solar wind data. Failed to reach planned apogee; provided good data
RFD-2 (S)	Scout 31 (S)	Oct 9			ORBITAL FLIGHT			Reentry flight carried AEC Reactor Mockup. Reimbursable (AEC).
Explorer 22 (S) 1964 64A	Scout 32 (S)	Oct 10	104,3	1054	872	79.7		Beacon Explorer; to provide data on variations in the ionosphere's structure and relate ionospheric behavior to solar radiation. Low-cost ground stations throughout the world received uncoded radio signals, Laser tracking accomplished on October 11, 1964. (WSMC)

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT O	RBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE		Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Mariner III (U) 1964 73A	Allas-Agena D 289 (U)	Nov 5			CENTRIC ORBIT		260.8	Mars flyby. Fiberglass shroud failed to jettlison property, solar panels failed to extend, Sun and Canopus not acquired. Transmissions ceased 9 hours after launch.
Explorer 23 (S-55C) (S) 1964 74A	Scout 33 (S)	Nov 6		DOW	/N JUN 29, 1983			materials to penetration.
Explorer 24 (S) 1964 76A	Scout 34 (S)	Nov 21		DOW	N OCT 18, 1968		8.6	First dual payload (Air Density/Injun); two satellites provided detailed information on complex radiation-air density relationships in the upper
Explorer 25 (S) 1964 76B	(-)		114.6	2354	522	81.3	34.0	atmospheres. (WSMC)
Mariner IV (S) 1964 77A	Atlas-Agena D 288 (S)	Nov 28	_	HELIO	CENTRIC ORBIT		260,8	Second of two 1964 Mars flyby launches. Encounter occurred on July 14, 1965, with closest approach at 6,118 miles of the planet. Transmitted 22 pictures.
Apollo Abort A-002 (S)	Little Joe II (S)	Dec 8		SUBC	ORBITAL FLIGHT		42593.0	First test of Apollo emergency detection system at abort altitude. (White Sends)
Centaur 1964 82A	Atlas-Centaur (AC-4) (S)	Dec 11		DOW	N DEC 12, 1964		2993.0	Vehicle development flight carried mass model of Surveyor spacecraft; propulsion and stage separation test.
San Marco 1 (S) 1964 84A	Scout 35 (S)	Dec 15		DOW	/N SEP 13, 1965		115.2	Flight test of satellite to furnish data on air density and ionosphere characteristics. Launch vehicle provided by NASA; launched by Italian launch crew. Cooperative with Italy. (WFF)
Explorer 26 (S) 1964 86A	Delta 27 (S)	Dec 21		CURRENT ELEM	MENTS NOT MAIN	TAINED	45.8	on high-energy particles.
1965								1965
Gemini II (S)	Titan II 2 (S)	Jan 19		SUBC	ORBITAL FLIGHT		3133.9	Demonstrate structural integrity of reentry module heat protection during maximum heating rate reentry and demonstrate variable lift on reentry module.
Tiros IX (S) 1965 04A	Delta 28 (S)	Jan 22	118.9	2564	702	96.4	138.3	First "Cartwheel" configuration for Weather Bureau's Operational system. Provided increased coverage of global cloud cover with sictures of excellent quality.
OSO B-2 (S) 1965 07A	Delta 29 (S)	Feb 3		DOV	VN AUG 9, 1989		244.9	
Pegasus I (S) 1965 09A	Satum I (SA-9) (S)	Feb 16		DOW	/N SEP 17, 1978		1451.5	Obtained scientific and engineering data on the magnitude and direction of meteoroids in near-Earth orbit.

								<u> </u>
MISSION/	LAUNCH		PERIOD	CURRENT O	RBITAL PARA	METERS	WEIGHT	
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	inci (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Ranger VIII (S) 1965 10A	Atlas-Agena B 196 (S)	Feb 17		IMPAC	ED MOON ON FE	B 20, 1965	364.7	Photograph lunar surface before hard impact. Transmitted 7,137 high quality photographs before impacting in the Sea of Tranquility; flight time 64.54 hours.
Centaur Test (U)	Atlas-Centaur (AC-5) (U)			SUBO	RBITAL FLIGHT		2548.0	Vehicle development test; Atlas stage falled 4 seconds after liftoff.
Ranger IX (S) 1965 23A	Atlas-Agena B 204 (S)	Mar 21		IMPACTED M	OON ON MAR 24,	1965	364.7	Photograph lunar surface before hard impact, Transmitted 5,814 excellent quality pictures; about 200 pictures relayed live via commercial TV. Flight time 64.52 hours.
Gemini III (S) 1965 24A	Titan II 3 (S)	Mar 23			D MAR 23, 1965		3236.9	First manned orbital flight of the Gemini program, with astronauts Virgil I, Grissom and John W. Young. Manually controlled reentry after three orbits. Mission Duration 4 hours 52 minutes 31 seconds.
Intelsat 1 (F-1) (S) 1965 28A	Delta 30 (S)	Apr 6		CURRENT ELE	MENTS NOT MAIN	ITAINED	38.5	First operational satellite for Comsat Corp., to provide commercial trans-Atlantic communications. Reimbursable (Comsat).
Explorer 27 (S) 1965 32A	Scout 36 (S)	Apr 29	107.7	1312	929	41.2	60.8	Beacon Explorer; obtained data on Earth's gravitational field. Also carried laser tracking experiments.
Apollo Abort A-003 (U)	Little Joe II (U)	May 19		SUBO	RBITAL FLIGHT			Demonstration of abort capability of Apollo spacecraft. Launch escape vehicle at high attitude not accomplished due to malfunction of Little Joe Il Booster. (White Sands)
Fire II (S)	Atlas-Antares 264 (S)	May 22		SUBO	RBITAL FLIGHT		2005.8	Second Reentry Test to study heating environment encountered by a body entering the Earth's atmosphere at high speed.
Pegasus II (S) 1965 39A	Saturn I (SA-8) (S)	May 25		DOW	N NOV 3, 1979		1451.5	Micrometeoroid detection experiment confirmed lower meteoroid density than expected.
Explorer 28 (S) 1965 42A	Delta 31 (S)	May 29		DOW	/N JUL 4, 1968		59.0	Third Interplanetary Monitoring Platform, carrying eight scientiffic instruments, to measure magnetic fields, cosmic rays, and solar wind beyond the Earth's magnetosphere.
Gemini IV (S) 1965 43A	Titan II 4 (S)	Jun 3		LAND	ED JUN 7, 1965		3537.6	Second manned Gernini flight with James A. McDivitt and Edward H. White. During flight, White performed a 22 minute EVA using the Zero-Gintegral Propulsion Unit. Mission Duration; 97 hrs 56 mins 12 secs.
Tiros X (S) 1965 51A	Delta 32 (S)	Jul 1	100.1	807	722	98.8	127.0	First U.S. Weather Bureau-funded Tiros; obtained maximum coverage of 1965 hurricane and typhoon season.
Pegasus III (S) 1965 60A	Saturn I (SA-10) (S)	Jul 30		DOW	N AUG 4, 1969		1451.5	Final micrometeoroid detection experiment. Results of Pegasus program indicated that the flux of small particles was less than expected, the flux of large particles was more than expected, and the flux of medium-eized particles was about as predicted.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT C	RBITAL PARAM	IETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Scout Test (S) Secor (S) 1965 63A	Scout 37 (S)	Aug 10	122.2	2419	1134	69.2	20.0	Vehicle development test. Carried U.S. Army Secor geodetic satellite. Reimbursable (DOD).
Centaur Test (S) 1965 64A	Atlas-Centaur (AC-6) (S)				CENTRIC ORBIT		952.6	Vehicle development test. Carried Surveyor dynamic model. Direct-ascent test for guidance evaluation.
Gemini V (S) 1965 68A REP	Titan II 5 (S)	Aug 21			DED AUG 29, 1965 VN AUG 27, 1965		3175.2	Third manned orbital flight with L. Gordon Cooper and Charles Conrad, Jr. Ejected Rendezvous Evaluation Pod (REP) for simulated rendezvous maneuvers experiment; participated in communications and
1965 68C								other on-board experiments. Mission Duration: 190 hours 55 minutes 14 seconds.
oso-c (u)	Delta 33 (U)	Aug 25			OT ACHIEVE ORBIT		281.2	Third in a series to maintain continuity of observations during solar activity cycle. Vehicle third stage ignited prematurely.
OGO II (Ü) 1965 81A	Thor-Agena D (S)	Oct 14		DOV	VN SEP 17, 1981		507.1	Carried 20 experiments to investigate near-Earth space phenomena on an interdisciplinary basis. Failure of primary launch vehicle guidance resulted in higher than planned orbit. Nineteen experiments returned useful data. (WSMC)
Gemini VI (U)	Atlas-Agena E 5301 (U)	Oct 25		DID N	OT ACHIEVE ORBIT			Agena target vehicle. Simultaneous countdown of the Gemini spacecraft and Attas-Agena Target Vehicle. Telemetry was lost 375 seconds after launch of the target vehicle; Gemini launch was terminated at T-42 minutes.
Explorer 29 (S) 1965 89A	Delta 34 (S)	Nov 6	120.3	2274	1113	59.4		geodetic data about the Earth.
Explorer 30 (S) 1965 93A	Scout 38 (S)	Nov 18	100.4	881	664	59.7	56.7	Monitor solar X-rays and ultraviolet emissions during final portion of IQSY. Data acquired by NRL and foreign stations in 13 countries. Cooperative with NRL.
Explorer 31 (S) 1965 98B	Thor-Agena B (S)	Nov 29	120.0	2859	501	79.8	98.9	Make related studies of ionospheric composition and temperature variations. Provided excellent data from regions of the ionosphere
Alouette II (S) 1965 98A	• •		118.3	2708	501	79.8	146.5	never before investigated. Cooperative with Canada. (WSMC)
Gemini VII (S) 1965 100A	Titan II 6 (S)	Dec 4			DED DEC 18, 1965		3628.8	Fourth manned mission with Frank Borman and James A. Lovell, Jr. Astronauts flew part of the mission without wearing pressure suits, Mission Duration: 330 hours 35 minutes 01 seconds.
French 1A (S) 1965 101A	Scout 39 (S)	Dec 6	98.8	708	696	75.9	71.7	Study VLF wave propagation in the ionosphere and magnetosphere and measure electron densities. Cooperative with France. (WSMC)

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	DRBITAL PARAM	ETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) II	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Gemini VI-A (S) 1965 104A	Titan II 7 (S)	Dec 15		LANI	DED DEC 16, 1965		3175.2	Fifth manned mission with Walter M. Schirra, Jr. and Thomas P. Stafford. First rendezvous in space accomplished with Gemini VII spacecraft. Mission Duration 25 hours 51 minutes 24 seconds.
Pioneer VI (S) 1965 105A	Delta 35 (S)	Dec 16		HELI	OCENTRIC ORBIT		63.5	Operated in solar orbit to provide data on solar wind, interplanetary magnetic fields, solar physics, and high-energy charged particles and magnetic fields.
1966								
Apolio Abort A-004 (S)	Little Joe II (S)	Jan 20		SVE	ORBITAL FLIGHT	•	4989.0	Apollo development flight to demonstrate launch escape vehicle performance. Last unmanned ballistic flight. (White Sands
ESSA I (S) 1966 08A	Delta 36 (S)	Feb 3	99.7	806	684	97.8	138.3	Sun-synchronous orbit permitted satellile to view weather in each area of the globe sech day, photographing a given area at the same local time every day. First Advanced Vidicon Camera System provided valuable information about weather patterns and conditions. [WSMC]
Reentry V (S)	Scout 42 (S)	Feb 9		SUE	ORBITAL FLIGHT		95.0	Test to investigate the heating environment of a body reentering the Earth's atmosphere at 27,000 fps. (WFF
Apollo Saturn (AS-201) (S)	Saturn IB (S)	Feb 26		SUE	ORBITAL FLIGHT		20820.1	Launch Vehicle development flight; carried unmanned Apollo spacecraft.
ESSA II (S) 1966 16A	Delta 37 (S)	Feb 28	113,4	1412	1352	101.0	131.5	Provided direct readout of doud cover photos to local users. Along with ESSA I, completed the initial global weather satellite system. Reimbursable (NOAA). (WSMC
Gemini VIII (U) 1966 20A	Titan II 8 (S)	Mar 16			DED MAR 17, 1966		3788.0	Agena Target Vehicle launched from Complex 14 and manned Gemini launched from Complex 19. Astronauts Neil A. Armstrong and David
GATV (S) 1966 19A	Atias-Agena (5302 (S)	O Mar16		DO!	WN SEP 15, 1967			R. Scott accomplished rendezvous and docking. Aftitude and maneuver thruster malfunction caused the docked spacecraft to tumble Astronauts separated the vehicles and terminated the mission earry; EVA was not accomplished. First Pacific Ocean landing. Mission Duration 10 hours 41 minutes 26 seconds.
Centaur Test (U) 1966 30A	Atlas-Centaur (AC-8) (U)	Apr 8		DO	WN MAY 5, 1966		784.7	Launch vehicle development flight; carried Surveyor model. Second Centaur Engine firing unsuccessful.
OAO I (U) 1966 31A	Atlas-Agena E 5002C (S)		100,6	793	783	35.0	1769.0	Carried four experiments to study UV, X-ray and gamma-ray regions. Primary battery malfunctioned.
Nimbus II (S) 1966 40A	Thor-Agena D D 5303 (S)	May 14	108.0	1174	1091	100.6	413.7	Provided global weather photography on 24-hour basis for meteorological research and operational use. (WSMC)

MISSION/	LAUNCH L	AUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Gemini IX (U)	Atlas-Agena D 5303 (U)	May 17			OT ACHIEVE OR	BIT	3252.0	Target vehicle for Gemini IX, vehicle failure caused by a short in the serve control circuit.
Explorer 32 (S) 1966 44A	Delta 38 (S)	May 25			WN FEB 22, 1985		224.5	Atmosphere Explorer; carried 8 experiments to measure temperatures, composition, density and pressures in the upper atmosphere.
Surveyor I (S) 1966 45A	Atlas-Centaur (AC-10) (S)	May 30		LANDED	HUL HOOM HO	2, 1966	995.2	Achieved soft tunar landing in Ocean of Storms. Performed engineering tests and transmitted photography. Landing pads penetrated the lunar surface to a maximum depth of 1 inch.
Gemini IXA (U)	Titan II 9	Jun 3		LAN	DED JUN 6, 1966		3705.3	Seventh manned mission with Thomas P. Stafford and Eugene A.
1966 47A GATV (U) 1966 46A	(S) Atlas-Agena D 5304 (S)	Jun 1	_	DO	WN JUN 11, 1966			Cernan. Target vehicle shroud failed to separate; docking was not achieved. EVA was successful, but evaluation of AMU was not achieved. Mission Duration 72 hours 20 minutes 50 seconds.
OGO III (S) 1966 49A	Atlas-Agena B 5601 (S)	Jun 7		_	EMENTS NOT M	AINTAINED	514.8	Carried 21 experiments to obtain correlated data on geophysical and solar phenomena in the Earth's atmosphere. First 3-axis stabilization in highly elliptical orbit.
OV-3 (S) 1966 52A	Scout 46 (S)	Jun 9	142.9	4703	645	40.8	173.0	Radiation research satellite for the USAF. Reimbursable (DOD). (WFF
Pageos I (S) 1966 56A	Thor-Agena D (S)	Jun 23	177.0	5599	2533	84.5	56.7	Sphere, 100 feet in diameter, to determine the location of continents, land masses, and other geographic points using a world-wide triangulation network of stations. (WSMC
Explorer 33 (S) 1966 58A	Detta 39 (S)	Jul 1		CURRENT EI	EMENTS NOT MA	AINTAINED	93.4	Interplanetary Monitoring Platform to study, at lunar distance, the Earth's magnetosphere and magnetic tail. Planned anchored lunar orb was not achieved; useful data obtained from Earth orbit.
Apollo Saturn AS-203 (S) 1966 59A	Saturn (B (S)	Jul 5		DC	WN JUL 5, 1966		2635.4	Launch vehicle development flight to evaluate the S-IVB stage vent and restart capability.
Gemini X (S) 1966 66A	Titan II 10 (S)	18 انبل			DED JUL 21, 1966		3762.6	Eighth manned mission with John W. Young and Michael Collins. Performed first docked vehicle maneuvers; standup EVA of 89
GATV (S) 1968 65A	Atlas-Agena D 5305 (S)				WN DEC 29, 1966			minutes; umbilical EVA of 27 minutes. Mission duration 70 hours 46 minutes 39 seconds.
Lunar Orbiter I (S) 1968 73A	Atlas-Agena D 5801 (S)	Aug 10		DO	WN OCT 29, 1966		385.6	Photograph landing sites for Apollo and Surveyor missions from lunar orbit. Photographed over 2 million square miles of the Moon's surface; took the first two photos of the Earth from the distance of the Moon. Demonstrated maneuverability in lunar orbit.

MISSION/	LAUNCH L	AUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)		Perigee (km)		(kg)	(All Launches from ESMC, unless otherwise noted)
Pioneer VII (S) 1966 75A	Delta 40 (S)	Aug 17			IOCENTRIC ORBIT		63.5	Second in a series of interplanetary probes to provide data on solar wind, magnetic fields, and cosmic rays.
Apollo Saturn AS-202 (S)	Saturn IB (S)	Aug 25			BORBITAL FLIGHT		25809.7	Apollo launch vehicle/spacecraft development flight to test Command Module heat shield and obtain launch vehicle and spacecraft data.
Gemini XI (S) 1966 81A	Titan II 11 (S)	Sep 12		LAN	IDED SEP 15, 1966		3798.4	Ninth manned mission with Charles Conrad, Jr. and Richard F. Gordon, Jr. Rendezvous and docking achieved. Umbilical and standup EVA
GATV (S) 1966 80A	Atlas-Agena D 5306 (S)	Sep 12		DO	WN DEC 30, 1966			performed and as well as tethered spacecraft experiment. Mission Duration 71 hours 17 minutes 8 seconds.
Surveyor II (U) 1966 84A	Atlas-Centaur (AC-7) (S)	Sep 20		IMPACTED	MOON ON SEP 23	1966	1000.2	Second soft lunar landing planned. One vernier engine did not fire for midcourse correction, sending the spacecraft into a four flight. Crashed southeast of crater Copernicus after 62.8 hour flight.
ESSA III (S) 1966 87A	Delta 41 (S)	Oct 2	114.5	1483	1384	100.9	147.4	Replaced ESSA in Tiros Operational Satellite (TOS) system. Sophisticated cameras and sensors provided valuable information about the world's weather patterns/conditions. Reimbursable (NOAA), (WSMC)
Centaur Test (AC-9) (S) 1966 95A	Atlas-Centaur (AC-9) (S)	Oct 26		00	OWN NOV 6, 1966		952.6	Launch vehicle development flight; Surveyor model injected into simulated lunar transfer orbit. Demonstrated two-burn parking orbit operational capability.
Intelsat II F-1 (U) 1966 96A	Delta 42 (S)	Oct 26	717.7	37229	3123	16.9		Comsat commercial communications satellite, Apogee monitor malfunction resulted in elliptical orbit. Reimbursable (Comsat).
Lunar Orbiter 2 (S) 1966 100A	Atlas-Agena D 5802 (S)	Nov 6		DC	WN OCT 11, 1967		385.6	Photographed lunar landing sites from lunar orbit; provided new data on lunar gravitational field; photographed Ranger VIII landing point and surface debris tossed out at impact.
Gemini XII (S) 1966 104A	Titan II 12 (S)	Nov 11			DED NOV 15, 1966		3762.1	Tenth and last manned Gemini flight with James A. Lovell, Jr. and Edwin E. Aldrin, Jr. Rendezvous and docking achieved. Two EVA's
GATV (S) 1966 103A	Atlas-Agena D 5307 (S)	Nov 11			WN DEC 23, 1966			performed. Mission duration 94 hours 34 minutes 31 seconds.
ATS I (S) 1966 110A	Atlas-Agena D 5101 (S)	Dec 7	1436.0	35817	35750	14.3	703.1	Perform various communication, meteorology, and control technology experiments and carry out scientific measurements of orbital environment. Experiments results outstanding. Spin-scan cloud camera photographed changing weather patterns; air-to-ground and air-to-air communications demonstrated for the first time.
Biosatellite I (U) 1966 114A	Detta 43 (S)	Dec 14		DC	OWN FEB 15, 1967		426.4	Carried biological specimens to determine the effects of the space environment on life processes. Reentry vehicle separated but rocket failed, leaving the capsule in orbit. No useful scientific data obtained.

MISSION/		_AUNCH	PERIOD	CURREN'	FORBITAL I	PARAM	ETERS	WEIGHT	REMARKS
Intl Design	(VEHICLE	DATE	(Mins.)	Apogee (kn	n) Perigee	(km) Ir	cl (deg)	_(kg)	(All Launches from ESMC, unless otherwise noted)
1967									1967
Intelsat I F-2 (S) 1967 01A	Delta 44 (S)	Jan 11		CURRENT	ELEMENTS NO	MAIN"	TAINED	87.1	Cornsat commercial communication satellite. Reached intended location on February 4, 1967. Reimbursable (Comsat).
ESSA IV (S)	Delta 45	Jan 26	113.4	1437	1323		102.0	131.5	Replaced ESSA II in TOS system. Provided daily coverage of local
1967 06A	(S)						_		weather systems to APT receivers. Shutter malfunction rendered one camera inoperative. Reimbursable (NOAA). (WSMC)
Lunar Orbiter 3 (S)	Atlas-Agena D	Feb 5			OWN OCT 9, 1	967		385.6	Photographed lunar landing sites from lunar orbit; also returned
1967 08A	5803 (S)								600,000 sq. mi. of front and 250,000 sq. mi. of back side lunar
									photography; provided gravitational field and lunar environment data.
OSO III (S)	Delta 46	Mar 8			OWN APR 4, 1	1982		284.4	Carried 9 experiments to study structure, dynamics and chemical
1967 20A	(S)								composition of the outer solar atmosphere through X-ray, visible, and
				OU SECTION	E. E. 45. E	******			UV radiation measurements.
intelsat II F-3 (S) 1967 26A	Delta 47 (S)	Mar 22			ELEMENTS NO	_	IAINED	87.1	Comsat commercial communication satellite. Completed Intelsat II system. Reimbursable (Comsat).
ATS II (U)	Atlas-Agena D	Apr 6		Ę	DOWN SEP 2, 1	1969		324.3	Test of the gravity gradient control system; carried microwave
1967 31A	5102 (U)								communications, meteorological cameras, and eight scientific
									experiments. Second stage failed to restart, resulting in an elliptical orbit. Limited data obtained.
Surveyor (II (S)	Atlas-Centaur	Apr 17		LANDE	ON MOON A	DD 20 10	¥67	1035.6	Vernier engines failed to cut off as planned; spacecraft bounced twice
1967 35A	(AC-12) (S)	ript 17		DAINDLI	J OIT INCOMA	11120, 10		1000.0	before landing. Surface sampler was used for pressing, digging,
1307 3311	(10-12) (0)								trenching, scooping, and depositing surface material in view of the
									camera. Returned over 6,300 photographs, including pictures of the
									Earth during lunar eclipse.
ESSA V (S)	Delta 48	Apr 20	113.5	1419	1352		102.0	147.4	Replaced ESSA III in TOS System. Furnished daily global coverage of
1967 36A	(S)	•					_		weather systems. Reimbursable (NOAA). (WSMC)
San Marco II (S)	Scout 52	Apr 26		D	OWN OCT 14,	1967		129.3	First satellite launch attempt from a mobile sea-based platform in the
1967 38A	(S)								Indian Ocean; launched conducted by Italian crew. Provided continuous
						_			equatorial air density measurements. Cooperative with Italy. (SM)
Lunar Orbiter IV (S)	Atlas-Agena D	May 4			OWN OCT 6, 1	967		385.6	Lunar orbit achieved. Photographed 99% of the Moon's front side and
1967 41A	5804 (S)				OUT DEC. 44	1070			additional back side areas.
Ariel III (S)	Scout 53	May 5		D	OWN DEC 14,	1970		102.5	First UK-built satellite to extend atmospheric and ionospheric
1967 42A	(S)	May 04			OWN MAY 3. 1	000		73.9	investigations. Cooperative with UK. (WSMC) Fifth in Interplanetary Monitoring Platform series to study Sun-Earth
Explorer 34 (S) 1967 51A	Delta 49	May 24		L.	OWN MAY 3, 1	208		73.9	relationships. Elliptical orbit achieved, Useful data returned. (WSMC)
1967 51A	(S)								relationships. Emplicar orbit actiteved. Useful data returned. (WSMC)

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ESRO II-A (U)	Scout 55 (U)	May 29		DID	NOT ACHIEVE OR	ВІТ	89.1	Carried 7 experiments to study solar and cosmic radiation. Third stage vehicle failure. Cooperative with ESRO. (WSMC)
Mariner V (S) 1967 60A	Atlas-Agena D 5401 (S)			HEL	IOCENTRIC ORBI	T	244.9	Venus flyby. Returned data on planet's atmosphere, radiation, and magnetic field environment.
Surveyor IV (U) 1967 68A	Atlas-Centaur (AC-11) (S)	Jul 14		IMPACTE	MOON ON JUL	17, 1967	1037.4	Lunar soft landing mission. All systems were normal until 2 seconds before retro rocket burnout (2-1/2 minutes before touchdown) when the signal was abruptly lost.
Explorer 35 (S) 1967 70A	Delta 50 (S)	Jul 19		SEL	ENOCENTRIC ORE	SIT .	104.4	Interplanetary Monitoring Platform to study solar wind and interplanetary fields at funar distances. Lunar orbit achieved. Results indicated no shock front precedes the Moon, no magnetic field, no radiation betts or evidence of lunar ionosphere.
OGO IV (S) 1967 73A	Thor-Agena D (S)				OWN AUG 16, 1972			Study relationship between Sun and Earth's environment. Near-polar orbit achieved, 3-axis stabilized. (WSMC)
Lunar Orbiter V (S) 1967 75A	Atlas-Agena D 5805 (S)	Aug 1		D	DWN JAN 31, 1968		385.6	Fifth and final mission to photograph potential landing sites from lunar orbit. Increased lunar photographic coverage to better than 99%.
Biosatellite II (S) 1967 83A	Delta 51 (S)	Sep 7		D	OWN SEP 9, 1967		425.4	Carried 13 experiments to conduct biological experiments in low Earth orbit. Reentry initiated 17 orbits early because of communications difficulties and storm in recovery area. Air recovery successful.
Surveyor V (S) 1967 84A	Atlas-Centaur (AC-13) (S)	Sep 8		LANDED	ON MOON SEP 11	, 1967	1006.1	Lunar soft landing accomplished; returned TV photos of lunar surface and data on chemical characteristics of lunar soil.
Intelsat II (S) 1967 94A	Delta 52 (S)	Sep 28		CURRENT 6	LEMENTS NOT M	AINTAINED	87.1	Comsat commercial communications satellite to provide 24-hour transoceanic service. Reimbursable (Comsat).
OSO-IV (S) 1967 100A	Delta 53 (S)	Oct 18		DO	OWN JAN 15, 1982		276.7	Continuation of OSO program to better understand the Sun's structure and determine the solar influence upon the Earth. Obtained the first pictures made of the Sun in extreme ultraviolet.
RAM C-1 (S)	Scout 57 (S)	Oct 19		SU	BORBITAL FLIGHT		116.6	Reentry test to investigate communications problems experienced during reentry. (WFF)
ATS (II (S) 1967 111A	Atlas-Agena D 5103 (S)	Nov 5	1436.1	35844	35730	14.2	714.0	Further development of experiments and concepts in useful applications of space technology to communications, meteorology, navigation, and Earth resources management.
Surveyor VI (S) 1967 112A	Atlas-Centaur (AC-14) (S)	Nov 7		LANDED	ON MOON NOV 1	0, 1967	1008.3	Lunar soft landing achieved; pictures and soil analysis data transmitted. Vernier engines restanted, liftling spacecraft 10 feet from the surface and landing 8 feet from the original landing ste, performing the first rocket- powered takeoff from the lunar surface.

	AUNCH L	AUNCH	PERIOD	CURRENT C	RBITAL PARAM	AFTERS	WEIGHT	REMARKS
Intl Declar VI							MEIGH	I LEMANS
uu Dasigu 🔰 🕻 🔻	EHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Apollo 4 (S) Sa	aturn V	Nov 9			VN NOV 9, 1967			Launch vehicle/spacecraft development flight. First launch of the
1967 113A AS	S-501 (S)							Saturn V; carried unmanned Apollo Command/Service Module.
	elta 54	Nov 10	114.8	1482	1407	102.2	129.7	Replaced ESSA II and ESSA IV in the TOS system; used in central
1967 114A (S)								analysis of global weather. Reimbursable (NOAA). (WSMC)
	elta 55	Dec 13		HÉLIC	CENTRIC ORBIT			
1967 123A (S))							wind, magnetic fields, and cosmic rays. Carried TETR-1, the first NASA
TETR-1 (S)				DOW	/N APR 28, 1968		20.0	piggyback payload.
1967 123B								
1968								1968
	las-Centaur	Jan 7		LANDED C	N MOON JAN 9, 19	68	1040.1	Lunar soft landing achieved; provided pictures of lunar terrain, portions
1968 01A (A	C-15) (S)							of spacecraft, experiment operations, stars, planets, crescent Earth as it
								changed phases, and first observation of artificial light from the Earth.
	elta 56	Jan 11	112.2	1572	1079	105.8		GEOS spacecraft to provide precise information about the size and
1968 02A (S))							shape of the Earth and strength of an variations in its gravitational field;
								part of the National Geodetic Program. (WSMC)
	atum IB	Jan 22		DOV	VN JAN 24, 1968			First flight test of the Lunar Module; verified the ascent and descent
	S-204 (S)							stages, propulsion systems, and restart operations.
	las-Agena D	Mar 4		CURRENT ELE	MENTS NOT MAINT	AINED		Provided measurements of energy characteristics in the Earth's
	02A (S)				#1.1/01/1.0 1000			radiation belts; first evidence of electric fields in the bow shock.
	out 60	Mar 5		DOW	/N NOV 16, 1990			Solar Explorer to provided data on selected solar X-ray and ultraviolet
1968 17A (S)	aturn V	Apr 4		- DOM	VN APR 4, 1968			emissions. Cooperative with NRL. (WFF) Launch vehicle and spacecraft development flight. Launch vehicle
		Apr 4		DOV	WN APR 4, 1900			
	S-502 (U) cout 61 (S)	Apr 27			ORBITAL FLIGHT			engines malfunctioned; spacecraft systems performed normally. Turbulent heating experiment to obtain heat transfer measurements at
Reality VI (3) 30	DUI 61 (3)	Apr 27		3080	ADDITAL PLIGHT			20,000 fps. (WFF)
ESRO (IB (S) So	out 62 (S)	May 17		DOV	VN MAY 8, 1971			Carried seven experiments to study solar and cosmic radiation in the
1968 41A	2001 OZ (O)	may		501	111 111111 0, 1071			lower Van Allen bett. Cooperative with ESRO. (WSMC)
	or-Agena D	May 18		DID NO	OT ACHIEVE ORBIT			Experimental meteorological satellite; also carried Secor 10 (DOD) as a
Secor 10 (U) (U)		, 10		5.5 11		20.4		secondary payload. Booster malfunctioned; destruct signal sent by
	,							Range Salety Officer. (WSMC)
Explorer 38 (S) De	elta 57 (S)	Jul 4	224.2	5869	5825	120.8		Radio Astronomy Explorer to monitor low-frequency radio signals
1968 55A	1-7							originating in our own solar system and the Earth's magnetosphere and
								radiation belts.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	RBITAL PARAM	IETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) 1	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 39 (S) 1968 66A	Scout 63 (S)	Aug 8			VN JUN 22, 1981		9.3	Dual payload (Air Density/Injun Explorers) to continue the detailed scientific study of the density and radiation characteristics of the
Explorer 40 (S) 1968 66B			117.9	2494	677	80.7	69.4	Earth's upper atmosphere. (WSMC)
ATS IV (U) 1968 68A	Atlas-Centaui (AC-17) (U)	Aug 10		DOV	VN OCT 17, 1968		390.1	Evaluate gravity-gradient stabilization, simultaneous transmission of voice, TV, telegraph, and digital data. Centaur failed to reignite for second burn; spacecraft remained in parking orbit attached to Centaur.
ESSA VII (S) 1968 69A	Delta 58 (S)	Aug 16	114.9	1471	1428	101.4	147,4	Replaced ESSA V as the primary stored data satellite in the TOS system. Reimbursable (NOAA). (WSMC)
RAM CII (S)	Scout 64 (S)	Aug 22		SUBO	ORBITAL FLIGHT		122.0	Measure electron and ion concentrations during reentry. (WFF)
Intelsat III F-1 (U)	Delta 59 (U)	Sep 18		DID N	OT ACHIEVE ORBIT		286.7	Comsat commercial communications satellite. Vehicle failure. Reimbursable (Comsat).
ESRO IA (S) 1968 84A	Scout 65 (S)	Oct 3		DOV	VN JUN 26, 1970		85.8	Carried eight experiments to measure energies and pitch angles of particles impinging on the polar ionosphere during magnetic storms and quiet periods. Cooperative with ESRO. (WSMC)
Apollo 7 (S) 1968 89A	Saturn IB AS-205 (S)	Oct 11		LAND	ED OCT 22, 1968		51,655.0	First manned flight of the Apollo spacecraft with Walter M. Schirra, Jr., Donn F. Eisele, and Walter Cunningham. Performed Earth orbit
Pioneer IX (S) 1968 100A	Delta 60 (S)	Nov 8			OCENTRIC ORBIT		66.7	operations. Mission Duration 260 hours 9 minutes 3 seconds. Deep space probe to collect scientific data on the electromagnetic and plasma properties of interplanetary space. Carried TETR 2 as a
TETR 2 (S) 1968 100B				DOV	VN SEP 19, 1979			secondary payload.
HEOS A (S) 1968 109A	Delta 61 (S)	Dec 5		DOV	VN OCT 28, 1975		108.8	Study interplanetary magnetic fields and solar cosmic ray particles. Reimbursable (ESA).
OAO II (S) 1968 110A	Atlas-Centau (AC-16) (S)	r Dec 7	99.9	759	750	35.0	2016.7	Perform astronomy investigations of celestial objects in the ultraviolet region of the electromagnetic spectrum.
ESSA VIII (S) 1968 114A	Delta 62 (S)	Dec 15	114.6	1461	1411	101.8	136.1	Meteorologica) satellite for ESSA. Reimbursable (NOAA), (WFF)
Intelsat III F-2 (S) 1968 116A	Delta 63 (S)	Dec 18		CURRENT EL	EMENTS NOT MAIN	TAINED	286.7	Initial increment of first global commercial communications satellite system for Comsat. Reimbursable (Comsat).
Apollo 8 (S) 1968 118A	Saturn V AS-504 (S)	Dec 21		LÄNC	DED DEC 27, 1968		516\$5.0	First manned Saturn V flight with Frank Borman, James A. Lovell, Jr., and William A. Anders. First manned lunar orbit mission; provided a close-up look at the Moon during 10 lunar orbits. Mission Duration 147 hours 0 minutes 42 seconds.

			_					·
MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT O	RBITAL PARA	METERS	WEIGHT	
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1969				<u> </u>				196
OSO V (S)	Delta 64	Jan 22		DOV	VN APR 2, 1984		288.5	Continuation of OSO program to study Sun's X-rays, gamma rays, and
1969 06A	(S)							radio emissions.
ISIS-A (S)	Delta 65	Jan 30	127.7	3471	574	88.4	235.9	Satellite built by Canada: carried 10 experiments to study the
1969 09A	(S)							ionosphere, Cooperative with Canada. (WSMC
Intelsat III F-3 (S)	Detta 66 (S)	Feb 5		CURRENT ELE	MENTS NOT MA	INTAINED	286.7	Second increment of Cornsat's operational commercial communication
1969 11A								satellite system. Reimbursable (Comsat).
Mariner VI (S)	Atlas-Centau	r Feb 25		HELIO	CENTRIC ORBIT		411.8	
1969 14A	(AC-20) (S)							surface. Closest approach was 2.120 miles on July 31, 1969.
ESSA IX (S)	Delta 67	Feb 26	115.2	1503	1422	101.4	157.4	Ninth and last in the TOS series of meteorological satellites.
1969 16A	(S)				CD 111D 10 100		54055.5	Reimbursable (NOAA).
Apollo 9 (S)	Saturn V	Mar 3		LAND	ED MAR 13, 1969	,	51655.0	
1969 18A	SA-504 (S)							Schweickart. First flight of the lunar module. Performed rendezvous, docking, and EVA. Mission Duration 241 hours 0 minute 54 seconds.
Mariner VII (S)	Atlas-Centau	r Mar 27		NEI IO	CENTRIC ORBIT		411.8	
1969 30A	(AC-19) (S)	Mar 2/		HELIO	CENTRIC ORBIT		411.0	_surface. Closest approach was 2,190 miles on August 5, 1969,
Nimbus III (S)	Thor-Agena	Apr 14	107.2	1128	1069	100.0	676 C	Provided night and day global meteorological measurements from
1969 37A	(S)	Apr 14	107.2	1120	1003	100.0	3/3.6	space. Secor (DOD) provided geodetic position determination
Secor 13 (S)	(4)		107.2	1127	1067	100.0	20.4	measurements. (WSMC
1969 37B							20.7	The state of the s
Apollo 10 (S)	Saturn V	May 18		LAND	ED MAY 26, 1969		51655.0	Manned lunar orbital flight with Thomas P. Stafford, John W. Young.
1969 43A	SA-505 (S)	,						and Eugene A. Cernan to test all aspects of an actual manned tunar
								landing except the landing. Mission Duration 192 hrs 3 mins 23 secs.
Intelsat III F-4 (S)	Delta 68	May 21		CURRENT ELE	MENTS NOT MAI	NTAINED	143.8	Third increment of Comsat's operational commercial communication
1969 45A	(S)							satellite system. Reimbursable (Comsat).
OGO VI (S)	Thor-Agena	Jun 5		DOW	N OCT 12, 1979		631.8	
1969 51A	(S)							characteristics in the Earth's radiation belts; provided the first evidence
								of electric fields in the bow shock. (WSMC
Explorer 41 (S)	Delta 69	Jun 21		DOW	N DEC 23, 1972		78.7	
1969 53A	(S)							the environment within and beyond Earth's magnetosphere. (WSMC
Biosatellite III (U)	Delta 70	Jun 28		DOV	VN JUL 7, 1969		696.3	Conduct intensive experiments to evaluate effects of weightlessness
1969 56A	(S)							with a pigtail monkey onboard. Spacecraft deorbited after 9 days
								because the monkey's metabolic condition was deteriorating rapidly.
								Monkey expired 8 hours after recovery, presumably from a massive
								heart attack brought on by dehydration.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	DRBITAL PARAM	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)		Perigee (km) I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Apolio 11 (5) 1969 59A	Saturn V SA-506 (S)	Jul 16			DED JUL 24, 1969		51655.0	First manned lunar landing and return to Earth with Neil A. Armstrong, Michael Collins, and Edwin A. Aktrin. Landed in the Sea of Tranquillity on July 20, 1989; deployed TV camera and EASEP experiments, performed Junar surface EVA, returned lunar soil samples. Mission Duration 195 hours 18 minutes 35 seconds.
Intelsat III F-5 (U) 1969 64A	Delta 71 (S)	Jul 26		DOV	VN OCT 14, 1988		146.1	Fourth increment of Comsat's operational commercial communication satellite system. Third-stage mattunctioned; satellite did not achieve desired orbit. Reimbursable (Comsat).
OSO VI (S) 1969 68A	Delta 72 (S)	Aug 9		DO	WN MAR 7, 1981		173.7	Continuing study of Sun's X-rays, gamma rays, and radio emissions. Carried PAC experiment to stabilize spent Delta stage.
PAC (S) 1969 68B	• • • • • • • • • • • • • • • • • • • •			DOV	VN APR 28, 1977		117.9	
ATS V (U) 1969 69A	Atlas-Centaur (AC-18) (S)	Aug 12	1447.5	36031	35986	13.9	432.7	Evaluate gravity-gradient stabilization for geosynchronous satellites. Anomaly after apogee motor firing resulted in counterclockwise spin; gravity-gradient booms could not be deployed. Nine of 13 experiments returned useful data.
Pioneer E (U) (TETR C) (U)	Delta 73 (U)	Aug 27		DIDN	OT ACHIEVE ORBIT	18.1	67.1	Deep space probe to study magnetic disturbances in interplanetary space. Vehicle malfunctioned; destroyed 8 minutes 3 seconds into powered flight by Range Safety Officer.
ESRO 1B (S) 1969 83A	Scout 66 (S)	Oct 1		DOV	VN NOV 23, 1969		85.8	Fourth European-designed and built satellite to study ionospheric and auroral phenomena over the northern polar regions. Reimbursable (ESA). (WSMC
GRS-A (S) 1969 97A	Scout 67 (S)	Nov 7	110.8	2155	371	102.8	72.1	Study the inner Van Allen belt and auroral zones of the Northern Hemisphere, Cooperative with Germany. WSMC
Apollo 12 (S) 1969 99A	Saturn V SA-507 (S)	Nov 14		LANI	DED NOV 24, 1969		51655.0	Second Manned lunar landing and return with Charles Conrad, Jr., Richard F. Gordon, and Alan F. Bean. Landed in the Ocean of Storms on November 19, 1969; dellyoyed TV camers and ALSEP experiments; two EVA's performed; collected core sample and lunar materials; photographed and retrieved parts from Surveyor III spacecraft. Mission duration 244 hours 36 minutes 24 seconds.
Skynet A (S) 1969 101A	Delta 74 (S)	Nov 21		ELEM	ENTS NOT AVAILAB	ILE	242.7	Communication satellite for the United Kingdom. Reimbursable (UK).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	AMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1970			<u> </u>		J	·	1	1970
Intelsat III F-6 (S) 1970 03A	Delta 75 (S)	Jan 14		CURRENT E	LEMENTS NOT MA	AINTAINED	155.1	Part of Comsat's operational commercial communication satellite system. Reimbursable (Comsat).
ITOS I (S)	Delta 76	Jan 23	115.0	1477	1431	101.3	306.2	Second generation meteorological satellite to provide daytime and
1970 08A	(S)							nighttime cloud cover observations in both direct and stored modes.
Oscar 5 (S) 1970 08B			115.0	1475	1431	101.3	9.1	Oscar (Australia), carried as a piggyback, was used by radio amateurs throughout the world. (WSMC)
SERT II (U) 1970 09A	Thor-Agena (S)	Feb 3	106.0	1044	1038	99.2	503.5	lon engine test. Fell short of mission duration objective by less than 1 month. (WSMC)
NATOSAT I (S) 1970 21A	Delta 77 (S)	Mar 20	1436.2	35798	35779	12.9	242.7	Communications satellite for NATO. Reimbursable (NATO).
Nimbus D (S) 1970 25A	Thor-Agena (S)	Apr 8	107.1	1096	1086	99.9	619.6	Stabilized, Earth-oriented platform to test advanced systems for collecting meteorological and geological data. TOPO, carried as a
TOPO 1 (S) 1970 25B	,		106.9	1084	1082	99.8	21.8	piggyback, performed triangulation exercises. (WSMC)
Apolio 13 (U) 1970 29A	Saturn V SA-508 (S)	Apr 11		LAN	DED APR 17, 1970		51655.0	Third manned lunar landing attempt with James A. Lovell, Jr., John L. Swigert, Jr., and Fred W. Haise, Jr. Pressure lost in SM oxygen system; mission aborted; LM used for life support. Mission Duration 142 hours 54 minutes 41 seconds.
Intelsat III F-7 (S) 1970 32A	Delta 78 (S)	Apr 22		CURRENT E	LEMENTS NOT MA	AINTAINED	290.3	Part of Comsat's operational commercial communication satellite system. Reimbursable (Comsat).
Intelsat III F-8 (U) 1970 55A	Delta 79 (S)	Jul 23	1408.2	36634	33842	13.9	290.3	Part of Comsat's operational commercial communication satellite system. Malfunction during apogee motor firing; failed to achieve desired orbit. Reimbursable (Comsat).
Skynet 2 (U) 1970 62A	Delta 80 (S)	Aug 19		CURRENT E	LEMENTS NOT MA	INTAINED	242.7	Communication satellite for the United Kingdom. Telemetry terminated following apogee motor failure. Reimbursable (UK).
RAM CIII (S)	Scout 69 (S)	Sep 30		SUE	SORBITAL FLIGHT		134.0	Reentry test of radio blackout.
OFO I (S) 1970 94A	Scout 70 (S)	Nov 9		DO	WN MAY 9, 1971	-	132.9	Orbiting Frog Otolith (OFO) in which frogs were used to study the effects of weightlessness on the inner ear, which controls balance.
RMS (S) 1970 94B				DOWN FEB 7, 1971			21.0	Radiation Meteoroid Spacecraft (RMS) provided data on radiation belts. (WFF)
OAO B (U)	Atlas-Centau (AC-21) (U)	Nov 30		DID	OT ACHIEVE ORE	SIT	2122.8	Perform stellar observations in the UV region. Centaur nose fairing failed to separate; orbit not achieved.

MISSION/	LAUNCH			CURRENT				WEIGHT	REMARKS
inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Incl	(deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ITOS A (S)	Detta 81	Dec 11	114.8	1471	1421		101.5	306.2	To augment NOAA's satellite world-wide weather observation
1970 106A	(S)								capabilities. Reimbursable (NOAA), (WSMC)
Explorer 42 (S)	Scout 71	Dec 12		DO	WN APR 5, 1	979		142.0	Small Astronomy Satellite to catalog celestial X-ray sources within and
1970 107A	(S)								outside the Milky Way. First X-ray satellite. (San Marco)
1971									1971
Intelsat IV F-2 (S)	Atlas-Centaur	Jan 25		ELEM	IENTS NOT A	VAILABLE		1387.1	Fourth generation satellite to provide increased capacity for Comsat's
1971 06A	(AC-25) (S)								global commercial communications network. Reimbursable (Comsat).
Apolio 14 (S)	Saturn V	Jan 31		LAN	IDÉD FEB 9,	1971		51655.0	Third Manned lunar landing with Alan B. Shepard, Jr., Stuart A. Roosa,
1971 08A	SA-509 (S)								and Edgar D. Mitchell. Landed in the Fra Mauro area on February 5,
									1971; performed EVA, deployed lunar experiments, returned lunar
									samples. Mission duration 216 hours 1 minute 58 seconds.
NATOSAT 2 (S)	Delta 82	Feb 2	1436.1	35830	35744		13.7	242.7	Second communications satellite for NATO. Reimbursable (NATO)
1971 09A	(S)								
Explorer 43 (S)	Delta 83	Mar 13		DC	OWN OCT 2, 1	974		288.0	Second generation Interplanetary Monitoring Platform to extend man's
1971 1 <u>9A</u>	(S)								knowledge of solar-lunar relationships,
ISIS B (S)	Delta 84	Mar 31	113.5	1421	1355		8.2	264.0	Study electron production and loss, and large scale transport of
1971 24A	(S)								ionization in the ionosphere. Cooperative with Canada. (WSMC)
San Marco C (S)	Scout 72	Apr 24		DO	WN NOV 29,	1971		163.3	Study atmosphere drag, density, neutral composition, and
1971 36A	(S)			0.0.1	NOT ACHIEVE	CODIT		007.0	temperature. Cooperative with Italy. (SM)
Mariner H (U)	Atlas-Centau	r May 8		יו טוט	NO! ACHIEVE	URBII		997.9	Mariner Mars '71 Orbiter mission to map the Martian surface. Centaur
Mariner I (S)	(AC-24) (U) Atlas-Centau	r May 30		AED	OCENTRIC C	DDIT		997.9	stage malfunctioned shortly after launch. Second Mariner Mars '71 Orbiter mission to map the Martian surface.
1971 051A	(AC-23) (U)	r May 30		AEA	OCEN1 HIC	INDII		997.9	Achieved orbit around Mars on November 13, 1971. Transmitted 6,876
19/10314	(AC-23) (U)								pictures.
PAET (S)	Scout 73 (S)	Jun 20		6116	ORBITAL FL	CHT		62.1	Test to determine the structure and composition of an atmosphere from
FAE1 (5)	3000173 (3)	Juli 20		300	ONBITALTE	idill		02.1	a probe entering at high speed.
Explorer 44 (S)	Scout 74	Jul 8		no	WN DEC 15.	1979		115.0	Solar radiation spacecraft to monitor the Sun's X-ray and ultraviolet
1971 58A	(S)	ou. o		50	,,,,			110.0	emissions. Cooperative with NRL. (WFF)
Apollo 15 (S)	Saturn V	Jul 26		LAN	IDED AUG 7.	1971		51655.0	Fourth manned lunar landing with David R. Scott, Alfred M. Worden,
1971 63A	SA-510 (S)								and James B. Irwin. Landed at Hadley Rille on July 30, 1971;
P&F Subsat (S)	SM	Aug 4		IMPACTI	ED MOON JU	L 30. 1971		36.3	performed EVA with Lunar Roving Vehicle; deployed experiments.
1971 63D		y ¬		11111 71011		, , , , , ,		00.0	P&F Subsatellite spring-launched from SM in lunar orbit. Mission
									Duration 295 hours 11 minutes 53 seconds.

MISSION/	LAUNCH	AUNCH	PERIOD	CURREN	T ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (k	m) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
CAS/EOLE (S)	Scout 75	Aug 16	99.7	837	652	50.2	85.0	Obtain data on winds, temperatures, and pressures using
1971 71A	(S)							instrumented balloons launched from Argentina and a satellite. Cooperative with France. (WFF)
BIC (S)	Scout 76 (S)	Sep 20			UBORBITAL FLIGHT		31.7	Barium Ion Cloud Project to study the Earth's magnetic field.
5.0 (0)	0000.70 (0)	Oop Lo			O O O TION NE NE CONTRA		•	Cooperative with Germany, (WFF)
OSO H (S)	Delta 85	Sep 29			DOWN JUL 9, 1974		635.0	
1971 83A	(S)			_				the Earth and its space environment.
TETR4 (S)					DOWN SEP 21, 1978		20.4	
1971 83B ITOS B (U)	Detta 86	Oct 21			DOWN JUL 21, 1972		31.7	To augment NOAA's satellite world-wide weather observation
1971 91A	(U)	Ouzi			DOWN 30L 21, 1912		31.7	capabilities. Second stage failed, Reimbursable (NOAA). (WSMC)
Explorer 45 (S)	Scout 77	Nov 15			DOWN JAN 10, 1992		50.0	Small Scientific Satellite to study magnetic storms and acceleration of
1971 96A	(S)				·			charged particles within the inner magnetosphere, (San Marco)
UK-4 (S)	Scout 78	Dec 11		(DOWN DEC 12, 1978		102.4	Study the interactions between plasma and charged particle streams in
1971 109A	(S)							the atmosphere. Cooperative with UK. (WSMC)
Intelsat IV F-3 (S)	Atlas-Centaur	Dec 20	1445.5	36013	35928	10.3	1387.1	Fourth generation satellite to provide increased capacity for Comsat's
1971 116A 1972	(AC-26) (S)							global commercial communications network. Reimbursable (Comsat). 1972
Intelsat (V F-4 (S)	Atlas-Centaur	Jan 22	1442.4	35921	35896	9.7	1387.1	Fourth generation satellite to provide increased capacity for Comsat's
1972 03A	(AC-28) (S)	Jan 22	1442.4	33321	33696	5.7	1307.1	global commercial communications network. Reimbursable (Comsat).
HEOS A-2 (S)	Delta 87	Jan 31			DOWN AUG 2, 1974		117.0	
1972 05A	(S)							organizations to investigate particles and micrometeorites in space.
								Reimbursable (ESA). (WSMC)
Pioneer 10 (S)	Atlas-Centaur	Mar 2		SOLAR SY	STEM ESCAPE TRAJ	ECTORY	258.0	Jupiter Flyby. First spacecraft to flyby Jupiter and return scientific data.
1972 12A	(AC-27) (S)	11 -11			DOM: 14110 4000		470.0	W
TD-1 (S) 1972 14A	Delta 88 (S)	Mar 11			DOWN JAN 9, 1980		470.8	Western European satellite to obtain data on high-energy emissions from stellar and galactic sources. Reimbursable (ESA). (WSMC)
Apollo 16 (S)	Saturn V	Apr 16			ANDED APR 27, 1972		5655.0	Fifth manned lunar landing mission with John W. Young, Ken Mattingly.
1972 31A	SA-511 (S)	, φ		_			5555.5	and Charles M. Duke. Landed at Descartes on Apr 20, 1972. Deployed
P&F Subsat (S)	SM	Apr 16		IMPAC	TED MOON MAY 29,	1972	36.3	camera and experiments; performed EVA with lunar roving vehicle.
1972 31D								Deployed P&F Subsatellite in lunar orbit. Mission Duration 265 hours 51 minutes 5 seconds.
Intelsat IV F-5 (S) 1972 41A	Atlas-Centaur (AC-29) (S)	Jun 13	1438.6	35858	35811	10.7	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Relimbursable (Comsat).

LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
VEHICLE	DATE	(Mins.)					(All Launches from ESMC, unless otherwise noted)
Delta 89	Jul 23	103.0	908	896	99.3	941.0	Demonstrate remote sensing technology of the Earth's surface on a
(S)							global scale and on a repetitive basis. (WSMC
	Aug 13		DC	WN NOV 2, 1979		206.4	Meteoroid Technology Satellite to measure meteoroid penetration
							rates and velocity. (WFF
	Aug 21	99.2	725	713	35.0	2200.0	Study interstellar absorption of common elements in the interstellar.
							gas, and investigate ultraviolet radiation emitted from young hot stars.
	Sep 2	99.9	796	707	90.0	94.0	Navigation Satellite for the U.S. Navy, Reimbursable (DOD). (WSMC
	0 00		OUDDENT C	CHENTO NOT MA	NTAINED	075.0	The last transfer of the last
	Sep 22		CORRENTE	LEMEN IS NOT MAI	NIAINED	3/5.9	Interplanetary Monitoring Platform; an automated space physics lab to study interplanetary radiation, solar wind, and energetic particles.
	Oct 15	1149	1453	1446	102.0	34.5	To augment NOAA's satellite world-wide weather observation
	0		1100	14.0	.02.0	04.5	capabilities. Oscar, an amateur radio satellite, was carried as a
\- /	Oct 15	114.9	1452	1446	102.0	15.9	piggyback. Reimbursable (ITOS/NOAA; Oscar/AMSAT). (WSMC
							(1000)
Delta 92	Nov 9	1457.1	36258	36136	10.8	544.3	First of a series of domestic communications satellites for Canada.
(S)							Reimbursable (Canada). (WSMC
	Nov 15		DO	WN AUG 20, 1980			Small Astronomy Satellite; carried a gamma ray telescope in a bulbous
(S)							dome to study gamma rays. Launched by an Italian crew from San
							Marco. (SM
	NOV 21		DO	WN APR 15, 1974			Carried five experiments to investigate the ionosphere, the near
(S)							magnetosphere, auroral, and solar particles. Reimbursable (ESA). (WSMC
Saturn V	Dec 7		LAN	DED DEC 19 1972		51655.0	Sixth and last manned lunar landing mission in the Apollo series with
	D00 /		D44	DED DEG 13, 1372			Eugene A. Cernan, Ronald E. Evans, and Harrison H. (Jack) Schmitt.
0,1012 (0)							Landed at Taurus-Littrow on Dec 11., 1972. Deployed camera and
							experiments; performed EVA with lunar roving vehicle. Returned lunar
							samples. Mission duration 301 hours 51 minutes 59 seconds.
Delta 93	Dec 11	107.1	1099	1086	99.8		Stabilized, Earth-oriented platform to test advanced systems for
(S)							collecting meteorological and geological data. (WSMC
Scout 83	Dec 16		DO	WN AUG 22, 1973		125.7	Study the state and behavior of the upper atmosphere and
(S)							ionosphere. Cooperative with Germany. (WSMC
							1973
	Apr 5		SOLAR SYS	TEM ESCAPE TRA.	ECTORY		Investigate the interplanetary medium beyond the orbit of Mars, the
(AC-30) (S)							Asteroid Belt, and the near-Jupiter environment.
	VEHICLE Detta 89 (S) Scout 79 (S) Atlas-Centaur (AC-22) (S) Detta 90 (S) Detta 91 (S) Detta 91 (S) Scout 81 (S) Scout 82 (S) Saturn V SA-512 (S) Detta 93 (S) Atlas-Centaur Atlas-Centaur Atlas-Centaur Atlas-Centaur	VEHICLE DATE	VEHICLE DATE (Mins.)	VEHICLE DATE (Mins.) Apogee (km)	VEHICLE DATE (Mins.) Apogee (km) Perigee (km) Detta 89	VEHICLE	VEHICLE DATE (Mins.) Apogee (km) Perigee (km) Incl (deg) (kg)

MISSION/	LAUNCH	LAUNCH		CURRENT	ORBITAL PARAM	METERS	WEIGHT	
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Telesat B (ANIK-2) (S) 1973 23A	Delta 94 (S)	Apr 20	1443.0	35970	35873	9.4	544.3	Second domestic communications satellite for Canada. Reimbursable (Canada).
Skylab Workshop (S) 1973 27A	Saturn V SA-513 (S)	May 14			OWN JUL 11, 1979		71500.0	Unmanned launch of the first U.S. Space Station. Workshop incurred damage during launch. Repaired during follow-on manned missions.
Skylab 2 206/CSM-118 (S) 1973 32A	Saturn IB SA-206 (S)	May 25		LAN	IDED JUN 22, 1973		29750.0	First manned visit to Skylab workshop with Charles (Pete) Conrad, Jr., Joseph P. Kerwin, and Paul J. Weitz. Deployed parasot-like thermal blanket to protect the hull and reduce temperatures within the workshop; freed solar wing that was jammed with debris. Mission duration 672 hours 49 minutes 49 seconds.
Explorer 49 (S) 1973 39A	Delta 95 (S)	Jun 10		SELE	ENOCENTRIC ORBIT		328.0	Radio Astronomy Explorer to measure low frequency radio noise from galactic and extragalactic sources and from the Sun. Earth and Jupiter.
ITOS E (U)	Delta 96 (U)	Jul 16			NOT ACHIEVE ORBIT		333.8	Augment NOAA's satellite world-wide weather observation capabilities. Vehicle second stage malfunctioned. Reimbursable (NOAA). (WSMC)
Skylab 3 207/CSM-117 (S) 1973 50A	Saturn IB SA-207 (S)	Jul 28		LAN	DED SEP 25, 1973		29750.0	Second manned visit to Skylab Workshop with Alan L. Bean, Owen K. Garrictt, and Jack R. Lousma. Performed systems and operational tests, conducted experiments, deployed thermal shield. Mission Duration 1416 hours 11 minutes 9 seconds.
Intelsat IV F-7 (S) 1973 58A	Atlas-Centaur (AC-31) (S)	Aug 23	1452.4	36138	36072	9.7	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Reimbursable (Comsat).
Explorer 50 (S) 1973 78A	Delta 97 (S)	Oct 25		ELEME	ENTS NOT AVAILABL	Ē	397.2	Last Interplanetary Monitoring Platform to investigate the Earth's radiation environment.
Transit (S) 1973 81A	Scout 84 (S)	Oct 30	105.2	1123	885	89.9	95.0	Navigation satellite for the U.S. Navy. Reimbursable (DOD). (WSMC)
Mariner 10 (Mariner/Venus/ Mercury) (S) 1973 85A	Atlas-Centaur (AC-34) (S)	Nov 3		HEL	IOCENTRIC ORBIT			Venus and Mercury (Nty) mission; Itris dual-planet mission. Photographed the Earth and the Moon on its flight to Venus; Venus encounter (at 5,800 km) on February 5, 1973; Mercury encounter (at 704 km) on March 29, 1974; second Mercury encounter (at 82,068 km) on September 21, 1974; third Mercury encounter (at 327 km) on March 16, 1975. Engineering tests conducted before attitude control gas was depleted and transmitter commanded off on March 24, 1975.
ITOS F (S) 1973 86A	Delta 98 (S)	Nov 6	116.1	1508	1499	116.1		To augment NOAA's satellite world-wide weather observation capabilities, Reimbursable (NOAA), (WSMC)
Skylab 4 (S) 1973 90A	Saturn 1B SA-208 (S)	Nov 16		LA	NDED FEB 8, 1974		29,750.0	Third manned visit to Skylab Workshop with Gerald P. Carr, Edward G. Gibson, and William R. Pogue. Performed inflight experiments; obtained medical data on crew, performed four EVA's. Mission duration; 2016 hours 1 minute 16 seconds.

MISSION/		LAUNCH	PERIOD		TORBITAL PARA		WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (kn	n) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Explorer 51 (S)	Delta 99	Dec 16			OWN DEC 12, 1978		663.0	Atmosphere Explorer; carried 14 instruments to study energy transfer,
1973 101A	(S)							atomic and molecular processes, and chemical reactions in the
								atmosphere, (WSMC)
1974								1974
Skynet II-A (U)	Delta 100	Jan 18		D	OWN JAN 25, 1974		435.5	Communication satellite for the United Kingdom. Short circuit in
1974 02A	(U)			_				electronics package caused vehicle failure. Reimbursable (UK).
Centaur Proof	Titan IIIE	Feb 11		DID	NOT ACHIEVE ORBIT	Г		Launch vehicle development test of the Titan IIIE/Centaur (TC-1);
Flight (U)	Centaur (76) ((U)						carried simulated Viking spacecraft and Sphinx. Liquid oxygen boost
								pump failed to operate during Centaur starts. Destruct command sent
								748 seconds after liftoff.
San Marco C-2 (S)	Scout 85	Feb 18		£	OWN MAY 4, 1976		170.0	Measure variations of equatorial neutral atmosphere density,
1974 09A	(S)							composition, and temperature, Cooperative with Italy. (San Marco)
UK-X4 (S)	Scout 86	Mar 8	100.3	867	677	97.9	91.6	
1974 13A	(S)							involved in the design and manufacture of this type platform for use on
								small spacecraft. Reimbursable (UK). (WSMC)
Westar A (S)	Delta 101	Apr 13	1441.6	35907	35907	9.1	571.5	Domestic communications satellite for Western Union.
1974 13A	(S)							Reimbursable (WU).
SMS A (S)	Delta 102	May 17		ELEM	ENTS NOT AVAILABL	E	628.0	
1974 33A	(S)							visible and IR spectrum. First weather observer to operate in a fixed
170 5 10	T. 111.0				05100	- 40.5	4400.0	geosynchronous orbit about the Equator. Cooperative with NOAA.
ATS F (S)	Titan III C	May 30	1412.1	35440	35190	12.5	1403.0	
1974 39A	Centaur 79 (S	i)						signals to small, inexpensive ground receivers. Carried over 20
E	Scout 87	Jun 3			OWN APR 28, 1978		26.6	technology and science experiments. "Hawkeye" spacecraft to investigate the interaction of the solar wind
Explorer 52 (S)		Jun 3		U	OWN APH 28, 1978		20.0	with the Earth's magnetic field. (WSMC)
1974 40A AEROS B (S)	(S) Scout 88	Jul 16			OWN SEP 25, 1975		125.7	
1974 55A	(S)	Jul 16		U	OWN SEF 23, 1975		123.7	atmosphere and ionosphere. Reimbursable (Germany). (WSMC)
ANS A (S)	Scout 89	Aug 30			OWN JUN 14, 1977		129.8	
1974 70A	(S)	Aug 30		U	OTTH JUN 14, 1977		123.0	Cooperative with the Netherlands. (WSMC)
Westar B (S)	Delta 103	Oct 10	1442.2	35928	35883	8.9	571.5	Domestic communications satellite for Western Union.
1974 75A	(S)	OG 10	1-42.2	33520	VV.	0.5	511.5	Reimbursable (WU).
UK-5 (S)	Scout 90	Oct 15			OWN MAR 14, 1980		130.3	Measure the spectrum, polarization and pulsar features of non-solar
1974 77A	(S)	Ou 15		U	OTTIT MICE 14, 1500		130.5	X-ray sources. Cooperative with UK. (San Marco)
1017110	19/							A ray socious. Composition mail ort. (Odif market)

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	RAMETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ITOS-G (S) 1974 89A	Delta 104 (S)	Nov 15	114.9	1457	1442	101.9	345.0	ITOS-G - To augment NOAA's satellite world-wide weather observation capabilities. Reimbursable (NOAA).
Intasat (S) 1974 89B			114.8	1457	1439	101.9	20.4	Intasat - Conduct worldwide observations of ionospheric total electron counts. Cooperative with Spain.
Oscar (S) 1974 89C			114.8	1457	1437	101.9	28.6	Oscar - provide communications capability for amateur radio enthusiasts around the world. Reimbursable (AMSAT) (WSMC)
Intelsat IV F-8 (S) 1974 93A	Atlas-Centaur (AC-32) (S)		1443.0	35949	35894	8.1	1387.1	Fourth generation satellite to provide increased capacity for Cornsat's global commercial communications network. Reimbursable (Comsat).
Skynet II-B (S) 1974 94A	Delta 105 (S)	Nov 22	1436.9	35828	35775	11.6	435.0	Communication satellite for the United Kingdom. Reimbursable (UK).
Helios A (S) 1974 97A	Titan IIIE Centaur 83 (S				OCENTRIC ORE	uT	370.0	Study the Sun from an orbit near the center of the solar system. Cooperative with West Germany.
Symphonie A (S) 1974 101A	Detta 106 (S)	Dec 18	1440,6	35896	35853	11.9	402.0	Joint French-German communications satellite to serve North and South America, Europe, Africa and the Middle East. Reimbursable (France/Germany).
1975								1975
Landsat 2 (S) 1975 04A	Delta 107 (S)	Jan 22	103.1	911	899	98.8	953.0	Second Earth Resources Technology Satellite to locate, map, and measure Earth resources parameters from space and demonstrate the applicability of this approach to the management of the worlds resources. (WSMC)
SMS-B (S) 1975 11A	Delta 108 (S)	Feb 6			NTS NOT AVAIL		628.0	Together with SMS-A, provide cloud-cover pictures every 30 minutes to weathermen at NOAA. Cooperative with NOAA.
Intelsat IV F-6 (U)	Atlas-Centaur (AC-33) (U)	Feb 20		DID N	OT ACHIEVE O	RBIT	1387.1	Fourth generation satellite to provide increased capacity for Comsat's global commercial communications network. Launch vehicle matturctioned. Reimbursable (Comsat).
GEOS C (S) 1975 27A	Delta 109 (S)	Apr 9	101.6	851	815	115.0	340.0	Oceanographic and geodetic satellite to measure ocean topography, sea state, and other features. (WSMC)
Explorer 53 (S) 1975 37A	Scout 91 (S)	May 7			WN APR 9, 1979			the Milky Way gataxy. (Sen Marco)
Telesat C (S) 1975 38A	Delta 110 (S)	May 7	1439.5	35872	35833	8.2		Third domestic communications satellite for Canada. Reimbursable (Canada).
Intelsat IV F-1 (S) 1975 42A	Atlas-Centaur (AC-35) (S)	May 22	1450.8	36133	36015	8.1	1387.1	Fourth generation satellite to provide increased capacity for Comsat's commercial communications network. Last of the IV series. Reimbursable (Comsat).

MISSION/		AUNCH			DRBITAL PARA		WEIGHT	
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Nimbus F (S)	Delta 111	Jun 12	107.4	1111	1098	99.8	827.0	Stabilized, Earth-oriented platform to test advanced systems for
1975 52A	(S)							collecting meteorological and geological data. (WSMC
OSO I (S)	Delta 112	Jun 21		DOV	WN JUL 9, 1986		1088.4	Observe active physical processes on the Sun and how it influences
1975 57A	(S)							the Earth and its space environment.
Apolio Soyuz	Saturn IB	Jul 15		DOW	/N JUL 24, 1975		14,856.0	Manned Apollo spacecraft with Thomas P. Stafford, Vance D. Brand ar
Test Project (S)	SA-210 (S)							Donald K. Slayton Rendezvoused and docked with Soyuz 19 spacecra
1975 66A								(also launched July 15, 1975) with Aleksey Leonov and Valeriy Kubaso
								on July 17, 1975. Mission Duration 217 hours 28 minutes 23 seconds.
COS B (S)	Delta 113	Aug 8		CURRENT ELEI	MENTS NOT MAINT	AINED	277.5	Cosmic ray satellite to study extraterrestrial gamma radiation.
1975 72A	(S)							Reimbursable (ESA). (WSMC
Viking A Orbiter(S)	Titan IIIE	Aug 20		AERO	CENTRIC ORBIT		2324.7	Mars Orbiter and Lander mission to conduct systematic investigation
1975 75A	Centaur 88 (S)							of Mars. U.S. first attempt to soft land a spacecraft on another planet
√iking A Lander (S)				LANDED C	ON MARS JUL 20, 19	976	571.5	
1975 75C								another planet.
Symphonie B (S)	Delta 114	Aug 29	1440.4	35880	35861	12.1	402.0	Second joint French-German communications satellite to serve North
1975 77A	(S)							and South America, Europe, Africa and the Middle East. Reimbursable
								(France/Germany).
Viking B Orbiter(S)	Titan IIIE	Sep 9		AEHO	CENTRIC ORBIT		2324.7	Second Mars Orbiter and Lander mission to conduct systematic
1975 83A	Centaur 89 (S)	1					571.5	investigation of Mars. Soft landed on Mars on September 3, 1976. Returned excellent scientific data.
Viking 8 Lander 1975 83C				LAND	ED ON MARS SEP	3, 1976	5/1.5	Heturned excellent scientific data,
Intelsat IVA F-1 (S)	Atlas-Centaur	Sept 25	1441.0	35914	35852	8.1	1515.0	Improved satellite with double the capacity of previous Intelsats for
1975 91A	(AC-36) (S)	Sopi 23	1441.0	00514	JJOOL	0.1	1313.0	Comsat's global commercial communications network. Reimbursable
1973 914	(40-30) (3)							(Comsat).
Explorer 54 (S)	Delta 115	Oct 6		DOW	N MAR 12, 1976		675.0	Atmosphere Explorer to investigate chemical processes and energy
1975 96A	(S)	out		50			0,0.0	transfer mechanisms which control the Earth's atmosphere. (WSMC
Transit (S)	Scout 92	Oct 12		DOW	/N MAY 26, 1991		161.9	Second in a series of improved navigation satellite for the U.S. Navy.
1975 99A	(S)							Reimbursable. WSMC
SMS-C/GOES A (S)	Delta 116	Oct 16	1435.7	35801	35756	7.6	628.0	First operational satellite in NOAA's geosynchronous weather satellite
1975 100A	(S)	,-						system. Reimbursable (NOAA).
Explorer 55 (S)	Delta 117	Nov 20		DOW	/N JUN 10, 1981		719.6	Atmosphere Explorer to investigate the chemical processes and
1975 107A	(S)							energy transfer mechanisms which control Earth's atmosphere.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARAM	ETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) I	ncl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Dual Air Density	Scout 93	Dec 5		DID N	OT ACHIEVE ORBIT		35.3	Measure global density of upper atmosphere and lower exosphere.
Explorer (U)	(U)							Malfunction during third stage burn resulted in loss of vehicle control; destroyed by Range Safety Officer at 341 seconds. (WSMC)
RCA A (S)	Delta 118	Dec 13	1445.8	36084	35873	8.2	867.7	First RCA domestic communications satellite. Reimbursable (RCA).
1975 117Á	(S)							
1976							,	1976
Helios B (S)	Titan IIIE	Jan 15		HELI	OCENTRIC ORBIT		374.7	Carried 11 scientific instruments to study the Sun. Cooperative with
1976 03A	Centaur 93 (S	3)						Germany.
CTS (S) 1976 04A	Delta 119 (S)	Jan 17	1437,1	35887	35726	12.2	347.0	Experimental high-powered communication satellite to provide communications in remote areas. Cooperative with Canada.
Intelsat IVA F-2 (S)	Atlas-Centaur	Jan 29	1444.5	35968	35933	8.3	1515.0	
1976 10A	(AC-37) (S)							Intelsats for Comsat's global commercial communications network. Reimbursable (Comsat).
Marisat A (S)	Delta 120	Feb 19	1436.1	35797	35777	10.4	655.4	Comsat Maritime Satellite to provide rapid, high-quality communications
1976 17A	(S)							between ships at sea and home offices. Reimbursable (Comsat).
RCA B (S) 1976 29A	Delta 121 (S)	Mar 26	1460.1	36501	36010	7.8	867.7	Second RCA domestic communications Satellite. Reimbursable (RCA).
NATO IIIA (S)	Delta 122	Apr 22	1442.3	36008	36806	10.1	670.0	Third-generation communications satellite for NATO.
1976 35A	(S)	•						Reimbursable (NATO)
LAGEOS (S) 1976 39A	Delta 123 (S)	May 4	225.4	5945	5838	109.9	411.0	Solid, spherical passive satellite to provide a reference point for laser ranging experiments. (WSMC)
Comstar 1A (S) 1976 42A	Atlas-Centaur (AC-38) (S)	May 13	1442.6	35921	35905	8.0	1490.1	First domestic communications satellite for Comsat. Reimbursable (Comsat).
Air Force P76-5 (S) 1976 47A	Scout 94 (S)	May 22	105.4	1044	981	99.6	72.6	Evaluate propagation effects of disturbed plasmas on radar and communications systems. Reimbursable (DOD). (WSMC)
Marisat B (S) 1976 53A	Delta 124 (S)	Jun 9	1436.1	35813	35760	9.5	655.4	Second Comsat Maritime Satellite to provide rapid, high-quality communications between ships at sea and home offices. Reimbursable (Comsat).
Gravity Probe A (S)	Scout 95 (S)	Jun 18		SÚE	ORBITAL FLIGHT		102.5	Scientific probe to test Einstein's Theory of Relativity. (WFF)
Palapa A (S) 1976 66A	Delta 125 (S)	Jul 8	1439.1	35867	35821	8.0	573.8	Communication Satellite for Indonesia. Reimbursable (Indonesia).
Comstar B (S) 1976 73A	Atlas-Centaur (AC-40) (S)	Jul 22	1436.2	35791	35784	7.9	1490.1	Second domestic communications satellite for Comsat. Reimbursable (Comsat).

MISSION/		LAUNCH	PERIOD	CURREN'	T ORBITAL F	PARAMETE	RS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (kn	n) Perigee (km) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
ITOS H (S) 1976 77A	Delta 126 (S)	Jul 29	116.2	1518	1505		02.1	345.0	Second generation satellite for NOAA's world-wide weather observation. Reimbursable (NOAA). (WSMC
TIP III (S) 1976 89A	Scout 96 (S)	Sep 1		D	OWN MAY 30,	1981		166.0	Improved Transit Navigation Satellite for the U.S. Navy. Reimbursable (DOD). (WSMC
Marisat C (S) 1976 101A	Delta 127 (S)	Oct 14	1436.0	35791	35779		10,9	655.4	Third Comsat Maritime Satellite to provide rapid, high-quality communications between ships at sea and home offices. Reimbursable (Comsat).
1977									1977
NATO IIIB (S) 1977 05A	Delta 128 (S)	Jan 27	1436.2	35789	35788		9.9	670.0	Third-generation communications satellite for NATO. Reimbursable (NATO).
Palapa B (S) 1977 18A	Delta 129 (S)	Mar 10	1439.5	35873	35831		6.9	573.8	Second Communication Satellite for Indonesia. Reimbursable (Indonesia).
GEOS/ESA (U) 1977 29A	Delta 130 (U)	Apr 20	734.1	38283	2874		26.6	571.5	ESA scientific satellite; carried seven experiments to investigate the Earth's magnetosphere. Mattunction during second stage(third stage spinup placed GEOS in unusable orbit. Reimbursable (ESA).
Intelsat IVA F-4 (S) 1977 41A	Atlas-Centau (AC-39) (S)	May 26	1448.1	36075	. 35966		7.0	1515.0	Improved satellite with double the capacity of previous Intelsats for Comsat's global commercial communications network. Reimbursable (Comsat).
GOES/NOAA (S) 1977 48A	Delta 131 (S)	Jun 16	1435.8	35797	35762		10.2	635.0	Visible/infrared spin-scan radiometer provided day and night global weather pictures for NOAA. Reimbursable (NOAA).
GMS (S) 1977 65A	Delta 132 (S)	Jul 14	1451.0	36152	36001		10.4	669.5	Operational weather satellite; Japan's contribution to the Global Atmosphere Research Program (GARP). Reimbursable (Japan).
HEAO A (S) 1977 75A	Atlas-Centaul (AC-45) (S)	r Aug 12		D	OWN MAR 15,	1979		2551.9	High Energy Astronomy Observatory to study and map X-rays and gamma rays.
Voyager 2 (S) 1977 76A	TITAN III E Centaur 106	Aug 20 (S)		SOLAR SYS	TEM ESCAPE	TRAJECTOR	Y	2086.5	Investigate the Jupiter and Saturn planetary systems and the interplanetary medium between the Earth and Saturn. Jupiter flyby occurred on July 9, 1979; Saturn flyby occurred on August 25, 1981; Uranus flyby occurred on January 24, 1986; and Neptune flyby occurred on August 25, 1989. Will continue Into interstellar space.
SIRIO (S) 1977 80A	Detta 133 (S)	Aug 25	1438.7	35925	35750		8.3	398.0	Italian scientific satellite to study the propagation characteristics of radio waves transmitted at super high frequencies during adverse weather. Reimbursable (Italy).

MISSION/	LAUNCH	LAMBION	PERIOD	CHOOSE	T ORBITAL PAR	ANTERO	WEIGHT	DEMARKS
							WEIGHT	
Inti Design	VEHICLE	DATE	(Mins.)		m) Perigee (km		(kg)	(All Launches from ESMC, unless otherwise noted)
Voyager 1 (S) 1977 84A	Titan III E Centaur 107	Sep 5 (S)		н	ELIOCENTRIC ORBI	π	2088.5	Investigate the Jupiter and Saturn planetary systems and the interplanetary medium between the Earth and Saturn. Jupiter flyby occurred on March 5, 1979; Saturn flyby occurred on November 12, 1980; departed Saturn at a high angle to the ecliptic plane to observe the large cloud-covered moon Tizan. Will not be involved in any more
ESA/OTS (U)	Delta 134 (U)	Sep 13		DI	NOT ACHIEVE OF	BIT	865.0	planetary encounters. ESA experimental communications satellite. Vehicle exploded at 54 seconds after liftoff. Reimbursable (ESA).
Intelsat IVA F-5 (U)	Atlas-Centau (AC-43) (U)	Sep 29		DI	D NOT ACHIEVE OF	RBIT	1515.0	Improved satellite with double the capacity of previous Intelsats for Comsat's global commercial communications network. Laurech vehicle falled. Reimbursable (Comsat).
ISEE A/B 1977 102A (S) 1977 102B (S)	Delta 135 (S)	Oct 22			DOWN SEP 26, 1987 DOWN SEP 26, 1987		329.0 157.7	Dual payload International Sun Earth Explorer to the study interaction of the interplannetary medium with the Earth's immediate environment. Cooperative with ESA.
Transat (S) 1977 106A	Scout 97 (S)	Oct 27	106.8	1096	1060	89.7	93.9	Improved Transit navigation satellite for the U.S. Navy. Reimbursable (DOD). (WSMC)
Meteosat (S) 1977 108A	Delta 136 (S)	Nov 22	1435.9	35815	35748	11.3	695.3	ESA Meteorological satellite; Europe's contribution to the Global Atmospheric Research Program (GARP), Reimburgable (ESA),
CS/Japan (S) 1977 118A	Delta 137 (S)	Dec 14	1455.8	36182	36162	9.8	677.0	Experimental communication satellite for Japan. Reimbursable (Japan).
1978								1978
Intelsat IVA F-3 (S) 1978 02A	Atlas-Centaus (AC-46) (S)	Jan 6	1441.4	35901	35877	6.5	1515.0	Provide increased telecommunications capacity for intelsat's global network. Reimbursable (Comsat).
IUE-A (S) 1978 12A	Delta 138 (S)	Jan 26	1435.6	41343	30210	33.8	698.5	International Utraviolet Explorer to obtain high resolution data of stars and planets in the UV region of the spectrum. Cooperative with ESA.
Fitsatcom-A (S) 1978 16A	Atlas-Centaus (AC-44) (S)	Feb 9	1436,1	35798	35776	10.5	1863.3	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD).
Landsat-C (S) 1978 26A	Delta 139 (S)	Mar 5	103.1	916	894	98.8	900.0	Third Earth Resources Technology Satellite to study the Earth's natural resources; measure water, agricultural fields, and mineral
Oscer-8 (S) 1978 268	\ - ,		103.0	904	893	99.2	27.3	deposits. Carried Lewis Research Center Plasma Interaction Experiment (PIX-I) and AMSAT Oscar Ameteur Radio communications
PIX-I (S) 1978 26C				α. 	IRRENT ELEMENTS	NOT MAINTAIN	IED 34.0	relay satellite. Reimbursable (Oscar/AMSAT).
Intelsat IVA F-6 (S) 1978 35A	Atlas-Centaur (AC-48) (S)	Mar31	1435.6	35801	35753	6.5	1515.0	Provide increased telecommunications capacity for intelsat's global network. Reimbursable (Comsat).

BSE/Japan (S)	from ESMC, unless otherwise noted) Satelite/Experimental for conducting TV s. Reimbursable (Japan). g Mission to test the feasibility of measuring to temperatures. (WSMC) c conduct communications experiments for ESA.
1978-39A	s. Reimbursable (Japan). ng Mission to test the feasibility of measuring 's temperatures. (WSMC)
HCMM/AEM-A (S) Scout 98 Apr 26 DOWN DEC 22, 1981 134.3 Heat Capacity Mappin variations in the Earth (S) 1978 41A (S) Delta 141 May 11 1452.6 36124 36092 8.5 965.0 Orbital Test Satellife to Reimbursable (ESA). 1978 44A Heart Capacity Mappin variations in the Earth (S) Reimbursable (ESA). Reimbursable (ESA).	ng Mission to test the feasibility of measuring (WSMC)
1978 41A (S) variations in the Earth OTS-B (S) Delta 141 May 11 1452.6 36124 36092 8.5 865.0 Orbital Test Satellile to Reimbursable (ESA). 1978 44A Reimbursable (ESA). Reimbursable (ESA).	's temperatures. (WSMC)
OTS-B (5) Delta 141 May 11 1452.6 36124 36092 8.5 965.0 Orbital Test Satellite to 1978 44A Reimbursable (ESA).	
1978 44A Reimbursable (ESA).	o conduct communications experiments for ESA.
Pioneer Venue Attenue Anteur May 20 FLEMENTS NOT AVAILABLE 582.0 One of two Pioneet flic	
	ghts to Venus in 1978; was placed in orbit
	ote sensing and direct measurements of the
1978 51A planet and its surround	
	network of geostationary environmental
	arth imaging, monitor the space environment, and
	ata to users. Reimbursable (NOAA).
	es for global monitoring of oceanographic
	res. After 106 days of returning data, contact was
	it drained all power from the batteries. (WSMC)
	unications satellite for Comsat.
1978 68A (AC-41) (S) Reimbursable (Comsa	
	ic field lines to study the magnetosphere and
1978 71A (S) correlate data with gro	ound station, balloon, and sounding rocket
	to Venus in 1978 to determine the nature and
	nosphere of Venus. All four probes and the bus
	lata. The large probe, north probe, and night
	impact; the day probe continued to transmit for
68 minutes after impac	
	eristics of solar phenomena about 1 hour before
	knowledge of how the Sun controls the Earth's
	ent. The spacecraft was renamed ICE in 1985 and
	to encounter the Comet Giacobini-Zinner on
	Cooperative with ESA.
	orbiting environmental spacecraft to provide
	cal and environmental data. Operated by NOAA.
, ,	(WSMC)

				т —				
MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	T ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (ki	m) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Nimbus-G (S) 1978 98A	Delta 145 (S)	Oct 24	104.0	955	940	99.1	987.0	Carried advanced sensors and technology to conduct experiments in pollution monitoring, oceanography, and meteorology. ESA received
Cameo 1978 98B			104.0	966	924	99.6		and processed data direct. After separation from Nimbus-G, the Delta vehicle released lithium over Northern Scandinavia and barium over Northern Alaska as part of Project CAMEO (Chemically Active Material Ejected in Orbil).
HEAO-B (S) 1978 103A	Atlas-Centaur (AC-52) (S)	Nov 13		Ĭ	OWN MAR 25, 1982		3152.0	Second High Energy Astronomical Observatory; carried a large X-ray telescope to study the high energy universe, pulsars, neutron stars, black holes, guasars, radio galaxies, and supernovas.
NATO IIIC (S) 1978 106A	Delta 146 '(S)	Nov 18	1462.2	36307	36283	6.9	706.0	Third-generation communications satellite for NATO. Reimbursable (NATO).
Telesat D (S) 1978 116A	Delta 147 (S)	Dec 15	1442.7	35943	35887	5.8	887.2	Fourth domestic communications satellite for Canada. Reimbursable (Canada).
1979				<u> </u>				1979
SCATHA (S) 1979 07A	Delta 148 (S)	Jan 30	1418.4	42737	. 28140	9.4	. 658.6	Spacecraft Charging at High Altitudes (SCATHA) carried 12 experiments to investigate electrical static discharges that affect satellites. Reimbursable (DOD).
SAGE/AEM-2 (S) 1979 13A	Scout 99 (S)	Feb 18		ī	OOWN APR 11, 1989		127.0	Stratospheric Aerosol and Gas Experiment Applications Explorer Mission, to map vertical profiles of ozone, aerosol, nitrogen dioxide, and Rayleight molecular extinction around the globe. (WFF)
Fitsatcom B (S) 1979 38A	Atlas-Centaur (AC-47) (S)	May 4	1461.3	36334	36222	9.2	1876.1	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD). (WFF)
UK-6 (S) 1979 47A	Scout 100 (S)		-		DOWN SEP 23, 1990		154.5	Measure ultra-heavy cosmic ray particles and study low-energy cosmic X-rays. Reimbursable (UK). (WSMC)
NOAA-6 (S) 1979 57A	Atlas-F (S)	Jun 27	100.7	801	786	98.6		To provide continuous coverage of the Earth and high-accuracy world-wide meteorological data. Reimbursable (NOAA), (WSMC)
Westar C (S) 1979 72A	Delta 149 (S)	Aug 9	1441.0	35889	35874	4.6	571.5	Domestic communications satellite for Western Union. Reimbursable (WU)
HEAO 3 (S) 1979 82A	Atlas-Centaur (AC-53) (S)				DOWN DEC 7, 1981		2898.5	High Energy Astronomy Observatory carried two cosmic ray experiments and one gamma ray spectrometer to obtain data on cosmic rays observed across the far reaches of space.
MAGSAT/AEM-3 (S) 1979 94A	Scout 101 (S)	Oct 30			OOWN JUN 11, 1980		183.0	Magnetic Field Satellite, Applications Explorer Mission to map the magnetic field of the Earth. (WSMC)
RCA-C (U) 1979 101A	Delta 150 (S)	Dec 6	788.9	35423	8385	8.2	895.4	Third RCA domestic communications satellite. Contact was lost shortly after apogee motor firing. Reimbursable (RCA).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	IT ORBITAL P	ARAMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (k	m) Perigee (I	km) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1980								1980
Fitsatcom C (S) 1980 04A	Atlas-Centaur (AC-49) (S)	Jan 17	1436.7	35885	35710	8.4	1864.7	Provide communications capability for the USAF and the USN for fleet relay and fleet broadcast. Reimbursable (DOD).
SMM-A (S)	Delta 151	Feb 14			DOWN DEC 2, 1	989	2315.0	Solar Maximum Mission; first solar satellite designed to study specific
1980 14A	(S)							solar phenomena using a coordinated set of instruments; performed a
								detailed study of solar flares, active regions, sunspots, and other solar
								activity. Also measured the total output of radiation from the Sun.
NOAA-7 (U)	Atlas 19F	May 29			DOWN MAY 3, 1	961	1405.0	A companion to TIROS N to provide continuous coverage of the Earth
1980 43A	(U)							and provide high-accuracy worldwide meteorological data. Launch
								vehicle malfunctioned; failed to place satellite into proper orbit.
								Reimbursable (NOAA). (WSMC)
GOES D (S)	Delta 152 (S)	Sep 9	1451.3	36713	35453	8.6	832.0	Part of NOAA's global network of geostationary environmental
1980 74A								satellites to provide Earth imaging, monitor the space environment, and
								relay meteorological data. Reimbursable (NOAA).
Fitsatcom D (S)	Atlas-Centaur	Oct 30	1436.1	35798	35775	8.5	1863.8	Provide communications capability for the USAF and the USN for fleet
1980 87A	(AC-57) (S)		11105	05010				relay and fleet broadcast. Reimbursable (DOD).
SBS-A (S)	Delta 153	Nov 15	1442.5	35946	35878	5.3	1057.0	Satellite Business Systems (SBS) to provide fully switched private
1980 91A	(S)							networks to businesses, government agencies, and other organizations
I-1-1-10 A F 0 (0)	An O	-	1436.2	05000	05700		10000	with large, varied communications requirements. Reimbursable (SBS).
Intelsat V-A F-2 (S)	Atlas-Centaur	Dec 6	1436.2	35806	35769	3.8	1928.2	
1980 98A	(AC-54) (S)							telecommunications capacity for Intelsat's global network. Reimbursable
1981								(Comsat).
Comstar D (S)	Atlas-Centeur	Feb 21	1436.2	35791	35785	6.4	1484.0	Fourth domestic communications satellite for Comsat.
1981 18A	(AC-42) (S)	F60 21	1400.2	35/91	35/65	0.4	1404.0	Reimbursable (Comsat).
STS-1 (S)	Shuttle (S)	Apr 12			NDED AT DERF	ADD 14 1001		First Manned orbital test flight of the Space Transportation System with
1981 34A	(Columbia)	Apr 12			WOED AT DEAF	AFR 14, 1301		John W. Young and Robert L. Crippen to verify the combined
1301 344	(columns)							performance of the Space Shuttle Vehicle. Mission duration 54 hours 20
								minutes 53 seconds.
NOVA-1 (S)	Scout 102	May 15		E	LEMENTS NOT	AVAILABLE	166.9	Improved Transit satellite for the Navy's operational navigation system.
1981 44A	(S)			_			. 00.0	Reimbursable (DOD).
GOES E (S)	Delta 154	May 22	1436.6	35808	35785	5.7	837.0	Part of NOAA's Geostationary Operational Environmental Satellite
1981 49A	(S)				50.00	•		system to provide near continual, high resolution visual and infrared
	1-7							imaging over large areas. Reimbursable (NOAA).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURREN	T ORBITAL PARA	AMETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (ki	n) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
Intelsat V-8 F-1 (S)	Atlas-Centaur	May 23	1438.2	35856	35799	4.4	1928.2	Advanced series of spacecraft to provide increased telecommunications
1981 50A	(AC-56) (S)							capacity for Intelsat's global network. Reimbursable (Comsat).
NOAA-C (S)	Atlas 87F	Jun 23	101.7	847	829	98.9	1405.0	To provide continuous coverage of the Earth and provide high-accuracy
1981 59A	(S)							worldwide meteorological data, Reimbursable (NOAA) (WSMC)
DE A & B(S)	Delta 155	Aug 3						Dynamic Explorer (DE-A & B); dual spacecraft to study the Earth's
1981 70A (S)			410.4	23286	505	88.8	424.0	electromagnetic fields. (WSMC)
1981 70B (S)					OWN FEB 19, 1983		420.0	
Fitsatcom E (U)	Atlas-Centaur	Aug 6	1460.4	36311	36209	8.1	1863.8	Provide communications capability for the USAF and the USN for fleet
1981 73A	(AC-59) (S)							relay and fleet broadcast. Reimbursable (DOD).
SBS-B	Delta 156	Sep 24	1436.2	35797	35778	4.4	1057.0	Satellite Business Systems (SBS) to provide fully switched private
1981 96A	(S)							networks to businesses, government agencies, and other organizations
								with large, varied communications requirements. Reimbursable (SBS).
SME (S)	Delta 157	Oct 6		1	DOWN MAR 5, 1991		437.0	Solar Mesosphere Explorer, an atmospheric research satellite to study
1981 100A	(S)							reactions between sunlight, ozone and other chemicals in the
UoSAT 1 (S)					OWN OCT 13, 1989		52.0	atmosphere. Carried UoSat-Oscar 9 (UK) Amateur Radio Satellite as
1981 100B					***			secondary payload. Reimbursable (UoSat-Oscar 9)
STS 2 (S)	Shuttle (S)	Nov 12		LANDE	D AT DFRF NOV 14,	1981		Second Manned orbital test flight of the Space Transportation System
1981 111A	(Columbia)							with Joe E. Engle and Richard H, Truly to verify the combined
								performance of the Space Shuttle vehicle. OSTA-1 payload
								demonstrated capability to conduct scientific research in the attached
								mode. Mission duration 54 hours 13 minutes 12 seconds.
RCA-D (S)	Delta 158	Nov 19	1438.6	35846	35826	1.8	1081.8	Fourth RCA domestic communications satellite.
1981 114A	_(S)							Reimbursable (RCA).
Intelsat V F-3 (S)	Atlas-Centaur	Dec 15	1436.1	35801	35770	3.4	1928.2	Advanced series of spacecraft to provide increased telecommunications
1981 119A	(AC-55) (S)							capacity for Intelsat's global network. Reimbursable (Comsat).
1982								1982_
RCA C' (S)	Delta 159	Jan 16	1446.0	35988	35970	1.1	1081.8	RCA domestic communications satellite.
1982 04A	(S)							Reimbursable (RCA).
Westar IV (S)	Delta 160	Feb 25	1443.4	35934	35923	1,1	1072.0	Second generation domestic communications satellite for Western
1982 14A	(S)							Union. Reimbursable (WU).
Intelsat V-D F-4 (S)	Atlas-Centaur	Mar 4	1435.3	35791	35751	3.4	1928.2	
1982 17A	(AC-58) (S)							capacity for Intelsat's global network. Reimbursable (Comsat).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PA	RAMETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km	n) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 3 (S) 1982 22A	Shuttle (S) (Columbia)	Mar 22		LANDED AT	WHITE SANDS I	MAR 30, 1982		Third Manned orbital test flight of the Space Transportation System with Jack R. Lousma and C. Gordon Fullerton to verify the combined performance of the Space Shuttle vehicle. OSS-1 scientific experiments conducted from the cargo bay. Mission duration 192 hrs 4 mins 46 secs.
Insat 1-A (U) 1982 31A	Delta 161 (S)	Apr 10	1434.2	35936	35562	0.1	1152,1	Multipurpose telecommunications/meteorology spacecraft for India. Reimbursable (India)
Westar V (S) 1982 58A	Delta 162 (S)	Jun 8	1451.4	36149	36023	0.8	1105.0	Western Union domestic communications satellite, Reimbursable (WU).
STS 4 (S) 1982 65A	Shuttle (S) (Columbia)	Jun 27		LAND	ED AT DFRF JU	L 4, 1982		Fourth and last manned orbital test flight of the Space Transportation System with Thomas K. (Ken) Mattingly II and Henry W. Hartsfield to verify the combined performance of the Space Shuttle vehicle. Carried first operational Getaway Special canister for Ulah State University and payload DOD 82-1. Mission duration 159 hours 9 minutes 31 seconds.
Landsat D (S) 1982 72A	Delta 163 (S)	Jul 16	98.8	705	693	98.3	1942,0	Earth Resources Technology Satellite to provide a continuing Earth remote sensing data. Instruments included a multispectral scanner and thematic mapper. (WSMC)
Telesat G (S) 1982 82A	Delta 164 (S)	Aug 25	1438.5	35851	35814	1.5	1238,3	Commercial communications satellite for Canada. Reimbursable (Canada).
Intelsat V-E F-5 (S) 1982 97A	Atlas-Centaur (AC-60) (S)	Sep 28	1436.1	35819	35754	2.9	1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Carried Maritime Communications Services (MCS) package for INMARSAT. Reimbursable (Comsat).
RCA-E (S) 1982 105A	Delta 165 (S)	Oct 27	1436.2	35795	35779	1.7	1116.3	RCA domestic communications satellite. Reimbursable (RCA)
STS 5 (S) 1982 110A	Shuttle (S) (Columbia)	Nov 11		LAND	ED AT DERF NO	OV 16, 1982		First operational flight of STS with Vance Brand, Robert Overmeyer, Joseph Allen and William Lenoir. Two satellites deployed:
SBS-C (S) 1982 110B	,	Nov 11	1436.2	35799	35776	1.2	3344.8	SBS-C (Reimbursable - SBS) and Telesat-C (Reimbursable - Canada). Demonstrated ability to conduct routine space operations. Mission
Telesat-E (S) 1982 110C		Nov 12	1436.1	35796	35796	01.3	4443.4	duration 122 hours 14 minutes 26 seconds.
1983								
IRAS (S) 1983 04A	Delta 166 (S)	Jan 25	102.9	903	884	99.0	1075.9	Infrared Astronomical Satellite to make the first all-sky survey for objects that emit infrared radiation and to provide a catalog of infrared sky maps.
PIX II (S) 1983 04B			102.3	882	851	100.0	- <u>-</u>	Cooperative with the Netherlands. Lewis Research Center Plasma Interaction Experiment (PIX), to investigate interactions between high voltage systems and space environment, activated by Delta after IRAS separation.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
NOAA-8 (S) 1983 22A	Atlas 73E (S)	Mar 28	101.0	817	793	98.5	1712.0	Advanced Tiros spacecraft to provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data. Reimbursable (NOAA). (WSMC)
STS 6 (S)	Shuttle (S)	Apr 4		LAN	DED AT DFRF APR	9, 1983		Second operational flight of the STS with Paul Weitz, Karol Bobko,
1983 26A	(Challenger)							Donald Peterson, Story Musgrave. Deployed Tracking and Data Relay
TDRS-A (S)		Apr 4	1436.1	35797	35777	6.6	17014.0	Satellite (TDRS) to provide improved tracking and data acquisition
1983 26B								services to spacecraft in low Earth orbit; performed EVA. Mission
								duration 120 hours 23 minutes 42 seconds.
RCA F (S) 1983 30A	Delta 167 (S)	Apr 11	1442.0	35956	357847	0,1	1116.3	RCA domestic communications satellite. Reimbursable (RCA).
GOES 6 (S)	Delta 168	Apr 28	1435.4	35785	35758	4.5	838.0	Part of NOAA's Geostationary Operational Environmental Satellite
1983 41A	(S)							system to provide near continual, high resolution visual and infrared imaging over large areas. Reimbursable (NOAA),
Intelsat V-F F-6 (S)	Atlas-Centaur	May 19	1436.2	35797	35779	1.9	1928.2	Advanced series of spacecraft to provide increased telecommunications
1983 47A	(AC-61) (S)							capacity for Intelsat's global network. Carried Maritime Communications
								Services (MCS) package for INMARSAT. Reimbursable (Comsat),
EXOSAT (S)	Delta 169	May 26		D	OWN MAY 6, 1986		500.0	
1983 51A	(S)							Reimbursable (ESA),
STS 7 (S)	Shuttle (S)	Jun 18		LAN	DED AT OFRF JUN 2	24, 1983		Third operational flight of STS with Robert L. Crippen, Frederick H.
1983 59A	(Challenger)							Hauck, John M. Fabian, Sally K. Ride (first woman astronaut), and
Telesat-F (S)		Jun 18	1436.1	35793	35780	1.2	4443.4	
1983 59B								(Reimbursable - Canada) and Palapa (Reimbursable - Indonesia).
Palapa-B-1 (S)		Jun 18	1436.1	35790	35784	2.4	4521.5	
1983 59C		b 40			RIEVED JUN 24, 198			(Reimbursable - Germany). Mission duration 146 hours 23 minutes 59
SPAS-01 (S)		Jun 18		HEI	MIEVED JUN 24, 198	S .		seconds.
1983 59F AF P83-1 (S)	Scout 103	Jun 27	100.6	819	754	82.0	112.6	Air Force HILAT satellite to evaluate propagation effects of disturbed
1983 63A	(S)	Jun 21	100.0	019	104	02.0	112.0	plasmas on radar and communication systems. Reimbursable (DOD).
Galaxy 1 (S)	Delta 170	Jun 28	1436.1	35791	35782	0.0	519.0	Hughes Communications, Inc. communications satellite.
1983 65A	(S)							Reimbursable (Hughes).
Tetsat 3A (S)	Delta 171	Jul 28	1436.2	35796	35780	0.1	635.0	AT&T communications satellite. Reimbursable (AT&T).
1983 77A	(S)							

MISSION/			PERIOD		ORBITAL PAR		WEIGHT	
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km	Perigee (km) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 8 (S) 1983 89A INSAT-B (S)	Shuttle (S) (Challenger)	Aug 30 Aug 31	1436.2	35811	DED AT DFRF SE 35765	P 5, 1983 3.0	3391.0	Fourth operational flight of STS with Richard H. Truly, Daniel C. Brandenstein, Dale A. Gardner, Guion S. Bluford (first black astronaut), and William E. Thornton. First night launch and landing. Deployed
1983 89B								satellite, INSAT (Reimbursable - India), performed tests and experiments. Mission duration 145 hours 8 minutes 43 seconds.
RCA G (S) 1983 94A	Delta 172 (S)	Sep 8	1436.2	35803	35772	0.0	1121.3	RCA domestic communications Satellite. Reimbursable (RCA).
Galaxy 2 (S) 1983 98A	Delta 173 (S)	Sep 22	1436.2	35792	35783	0.0	579.0	Hughes Communications satellite. Reimbursable (Hughes).
STS-9 (S) Spacelab-1 1983 116A	Shuttle (S) (Columbia)	Nov 28		LANI	DED AT DFRF DE	C 8, 1983		Fifth operational flight of STS with John W. Young, Brewster W. Shaw, Jr., Owen K. Garriott, Robert A. R. Parker, Byron K. Lichtenberg, and Ulf Merbold (ESA). Spacelab-1, a multi-discipline science payload, carried in Shuttle Cargo Bay. Cooperative with ESA. Mission Duration 247 hours 47 minutes 24 seconds.
1984								1984
STS 41-B (S) 1984 11A	Shuttle (S) (Challenger)	Feb 3		LANI	DED AT KSC FEB	11, 1984		Fourth Challenger flight with Vance D. Brand, Robert L. Gibson, Bruce McCandless, Ronald E. McNair and Robert L. Stewart, Deployed
Westar 6 (U) 1984 11B	` ' '	Feb 3		RET	RIEVED NOV 16,	1984 (51-A)	3309.0	Westar (Reimbursable - WU), and Palapa B-2 (Reimbursable - Indonesia). Both PAM's failed; both satellites retrieved on STS 51-A
IRT (S) 1984 11C		Feb 3		DC	WN FEB 11, 198	4	234.0	mission. Rendezvous tests performed with IRT, using deflated target. Evaluated Manned Maneuvering Unit (MMU) and Manipulator Foot
Palapa B-2 (U) 1984 11D		Feb 6		RET	RIEVED NOV 16,	1984 (51-A)	3419.0	Restraint (MFR). First STS landing at KSC. Mission duration 191 hours 15 minutes 55 seconds.
Landsat 5 (S) 1984 21A	Delta 174 (S)	Mar 1	98.8	703	695	98.2	1947.0	Earth resources technology satellite to provide continuing Earth remote sensing data. Instruments included a multispectral scanner and
UoSAT (S) 1984 21B			98.0	670	653	97.8	52.0	thematic mapper. Reimbursable (NOAA). UoSAT sponsored by AMSAT (Reimbursable - AMSAT). (WSMC)
STS 41-C (S) 1984 34A	Shuttle (S) (Challenger)	Apr 6		LAN	DED AT DERF AP	R 13, 1984		Fifth Challenger flight with Robert L. Crippen, Frances R. Scobee, Terry J. Hart, George D. Nelson and James D. Van Hoften. Deployed
LDEF (S) 1984 34B		Apr 6		RETR	EVED JAN 20, 19	90 (STS-32)	9670.0	LDEF; SMM retrieved and repaired in Cargo Bay; redeployed April 12. Mission duration 167 hours 40 minutes 7 seconds
Intelsat V-G F-9 (U) 1984 57A	Atlas-Centau (AC-62) (U)	r Jun 9		DOWN OCT 24, 1984			1928.2	Advanced series of spacecraft to provide increased telecommunications capacity for Intelsat's global network. Carried Maritime Communications Services (MCS) package for IMMARSAT. Vehicle failed to place satellit in useful orbit. Reimbursable (Comsat).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT C	RBITAL PARA	AMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
AMPTE CCE (S) 1984 88A	Delta 175 (S)	Aug 16	730.9	39217	1784	64.4	242.0	Three active magnetospheric particle tracer explorers: Charge Composition Explorer (CCE) provided by the U.S.; ion Release Module (IRM) provided by the Federal Republic of Germany; and the United
IRM (S) 1984 88B UKS (S)			2653.4	113818	402	27.0	605.0	Kingdom Subsatellite (UKS) provided by the UK; to study the transfer of mass from the solar wind to the magnetosphere. International Cooperative.
1984 88C			2659.6	113417	1002	26.9	77.0	COOPEIANTE.
STS 41-D (S)	Shuttle (S)	Aug 30			D AT EAFB SEP		17.0	First Discovery flight with Henry W. Hartsfield, Michael L. Coats, Richard
1984 93A SBS-4 (S) 1984 93B	(Discovery)	Aug 31	1436.2	35795	35780	0.0	3344.0	M. Mullane, Steven Hawley, Judith A. Resnik, and Charles D. Walker. Deployed SBS (Reimbursable - SBS), Leasat (Reimbursable - Hughes), and Telstar (Reimbursable - AT&T), carried out experiments
Syncom (V-2 (S) 1984 93C		Aug 31	1463.0	35787	35779	04.1	6889.0	including OAST-1 solar array structural testing. Mission duration 144 hours 56 minutes 4 seconds.
Telstar 3-C (S) 1984 93D		Sep 1	1436.2	35793	35783	0.0	3402.0	THOSE SO THINKING TO SOCIALS.
Galaxy C (S) 1984 101A	Delta 176 (S)	Sep 21	1436.2	35793	35782	0.1	519.0	Hughes Communications Satellite. Reimbursable (Hughes).
STS 41-G (S) 1984 108A ERBS (S) 1984 108B	Shuttle (S) (Challenger)	Oct 5 Oct 5	96.4	EANDS 590	ED AT KSC OCT 1 578	13, 1984 57.0	2449.0	Sidth Challenger flight with Robert L. Crippen, Jon A. McBride, Kathryn D. Sullivan, Sally K. Ride, David C. Lesstme, Paul D. Scully-Power, and Marc Garneau (Canada). Deployed ERBS to provide global measurements of the Sun's radiation reflected and absorbed by the Earth; performed scentific experiments using OSTA'S and other instruments. Mission duration 197 hours 23 minutes 33 seconds.
NOVA III (S) 1984 110A	Scout 104 (S)	Oct 11	108.9	1199	1149	89.9	173.7	Improved Transit Navigation Satellite for the U.S. Navy. Reimbursable (DOD). (WSMC)
STS 51-A (S) 1984 113A	Shuttle (9) (Discovery)	Nov 8		LAND	D AT KSC NOV 1	16, 1984		Second Discovery flight with Frederick H. Hauck, David M. Walker, Joseph P. Allen, Anna L. Fisher, Dale A. Gardner, Deployed Telesat
Telesat-H (S) 1984 113B	(=,	Nov 9	1436.2	35796	35780	0.0	3420.0	(Reimbursable - Canada) and Syncom IV-1 (Reimbursable - Hughes). Retrieved and returned Palapa B-2 and Westar 6 (Launched on 41-B).
Syncom IV-1 (S) 1984 113C		Nov 10	1466.8	36427	36341	2.8	6889.0	Mission duration 191 hours 44 minutes 56 seconds.
NATO III-D (S) 1984 115A	Delta 177 (S)	Nov 13	1436.2	35796	35780	1.4	761.0	Fourth in a series of communication satellites for NATO. Reimbursable (NATO).
NOAA-9 (S) 1984 123A	Atlas 39E (S)	Dec 12	101.8	854	834	99.1	1712.0	Advanced TIROS-N spacecraft to provide continuous coverage of the Earth and provide high-accuracy worldwide meteorological data, Reimbursable (NOAA). (WSMC)

MISSION/	LAUNCH L	AUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1985								1985
STS 51-C (S) 1985 10A DOD (S)	Shuttle (S) (Discovery)	Jan 24			DED AT KSC JAN 2 EMENTS NOT AVA			Third Discovery flight with Thomas K. Mattingty, Loren J. Shriver, Ellison S. Onizuka, James F. Buchli, and Gary E. Payton. Deployed unannounced payload for DOD. (Reimbursable - (DOD)).
1985 10B Intelsat V-A F-10 (S) 1985 25A	Atlas-Centaur (AC-63) (S)	Mar 22	1436.1	35807	35768	0.0	1996.7	Mission duration 73 hours 33 minutes 23 seconds. First in a series of improved Commercial Communication satellites for Intelsat, Reimbursable (Comsat).
STS 51-D (S) 1985 28A	Shuttle (S) (Discovery)	Apr 12		LAN	DED AT KSC APR	19, 1985		Fourth Discovery flight with Karol K. Bobko, Donald F. Williams, M. Rhea Seddon, S. David Griggs, Jeffrey A. Hoffman, Charles D.
Telesat-I (\$) 1985 28B		Apr 13	1436.1	35796	35778	0.0	3550.0	Walker, and E. J. "Jake" Garn (U.S. Senator). Deployed Syncom (Reimbursable - Hughes) and Telesat (Reimbursable - Canada).
Syncom IV-3 (S) 1985 28C		Apr 12	1436.2	35803	35772	3.3	6889.0	Syncom Sequencer failed to start, despite attempts by crew; remained inoporable until restarted by crew of 51-1 (August 1985). Mission duration 167 hours 55 minutes 23 seconds.
STS 51-B (S) Spacelab-3 1985 34A	Shuttle (S) (Challenger)	Apr 29		DO	LANDED AT DFRF MAY 6, 1985 DOWN DEC 15, 1986			Sixth Challenger flight with Robert F. Overmeyer, Frederick D. Gregory, Don Lind, Norman E. Thagard, William E. Thornton, Lodewijk Vanderberg, and Taylor Wang. Spacelab-3 (Cooperative with ESA) mission to conduct applications, science and technology experiments. Deployed Northern Utah Settlite (NUSAT) (Reimbursable - Northern Utah University). Global Low Orbiting Message Relay Satellite (GLOMR) (Reimbursable - DOD) failed to deploy and was returned. Mission duration 188 hours 8 minutes 46 seconds.
STS 51-G (S) 1985 48A	Shuttle (S) (Discovery)	Jun 17		LANI	DED AT EAFB JUN	24, 1985		Fifth Discovery flight with Daniel C. Brandenstein, John O. Creighton, Shannon W. Lucid, John M. Fabian, Steven R. Nagel, Patrick Baudry
Morelos-A (S) 1985 48B	(= · · //	Jun 17	1436.1	35793	35781	0.0	3443.0	(France), and Prince Sultan Salman Al-Saud (Saudi Arabia). Deployed Morelos (Reimbursable - Mexico), Arabsat (Reimbursable - ASCO)
ARABSAT-A (S) 1985 48C		Jun 18	1434.4	35891	35614	1.0	3499.0	and Telstar (Reimbursable - AT&T). Deployed and retrieved Spartan 1. Mission duration 169 hours 38 minutes 52 seconds.
TELSTAR 3-D (S) 1985 48D		Jun 19	1436.1	35789	35783	0.0	3437.0	
SPARTAN 1 (S) 1985 48E		Jun 20		RET	RIEVED JUN 24, 19	85	2051.0	
Intelsat VA F-11 (S) 1985 55A	Atlas-Centaur (AC-64) (S)	Jun 29	1436.1	35804	35769	0.1	1996.7	Second in a series of improved Commercial Communications Satellites for Intelsat. Reimbursable (Comsat).

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS 51-F (S) Spacetab-2	Shuttle (S) (Challenger)	Jul 29		LAN	DED AT EAFB AUG	3 6, 1985		Seventh Challenger flight with Charles G. Fullerton, Roy D. Bridges, Jr., Karl G. Heinze, Anthony W. England, F. Story Musgrave, Loren W. Acton, and John-David F. Berlow/. Conducted experiments in
1985 63A PDP (S) 1985 63B				RET	RIÉVED JUL 29, 19	985		Action, and John-David P. Barrowy. Conducted experiments in Spacelab-2 (Cooperative with ESA). Deployed Plasma Diagnostic Package (PDP) which was retrieved 6 hours later. Mission duration 190 hours 45 minutes 26 seconds.
Navy SOOS-I	Scout 105	Aug 2					•	Two Navigation Satellites for the U.S. Navy. Reimbursable (DOD).
1985 66A (S) 1985 66B (S)	(S)		107.9 107.9	1255 1256	999 999	89.9 89.9	64.2 64.2	(WSMC)
STS 51-I (S) 1985 76A	Shuttle (S) (Discovery)	Aug 27		LAN	DED AT EAFB SEF	•		Sixth Discovery flight with Joe H. Engle, Richard O. Covey, James D. VanHoften, William F. Fisher, John M. Lounge. Deployed Aussat
Aussat-1 (S) 1985 76B		Aug 27	1436.1	35798	35777	0.0	3445.5	(Reimbursable - Australia), ASC (Reimbursable - American Satellite Co.), and Syncom IV-4 (Reimbursable - Hughes). After reaching
ASC (S) 1985 76C		Aug 27	1436.1	35794	35778	0.0	3406.1	Geosynchronous Orbit, Syncom IV-4 ceased functioning. Repaired Syncom IV-3 (launched by 51-D, April 1985). Mission duration 170
Syncom IV-4 (U) 1985 76D		Aug 29	1430.1	35843	35809	3.2	6894.7	hours 17 minutes 42 seconds.
Intelsat VA F-12 (S) 1985 87A	Atlas-Centau (AC-65) (S)	Sep 28	1436.1	35801	35772	0.1	1996.7	Third in a series of improved commercial Communications Satellites for Intelsat, Reimbursable (Comsat).
STS 51-J (S) (DOD) 1985 92A	Shuttle (S) (Atlantis)	Oct 3		LAN	DED AT EAFB OC	T 7, 1985		First Atlantis flight with Karol J. Bobko, Ronald J. Grabe, Robert A. Stewart, David C. Hilmers, and William A. Palles. DOD mission. Mission duration 97 hours 44 minutes 38 seconds.
STS 61-A (S) Spacelab D-1 1985 104A	Shuttle (S) (Challenger)	Oct 30		LAN	DED AT EAFB NO	V 6, 1985		Eighth Challenger flight with Henry W. Hartsfield, Steven R. Nagel, Bonnie J. Dunbar, James F. Buchli, Guion S. Bluford, Ernst Messerschmid (Germany), Reinhard Furrer (Germany), and Wubbo
GLOMR (S) 1985 104B				DC	WN DEC 26, 1986		267.6	Ockels (Dutch). Spacelab D-1 mission (Cooperative with ESA) to conduct scientific experiments. Deployed GLOMR (Relimburable - DOD). Carried Materials Experiment Assembly (MEA) for on-orbit processing of materials science experiment specimens. Mission duration 168 hours 44 minutes 51 seconds.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)		Perigee (km)		(kg)	(All Launches from ESMC, unless otherwise noted)
STS 61-B (S)	Shuttle (S)	Nov 26	(DED AT EAFB DEC		1 (6.9)	Second Atlantis Flight with Brewster H. Shaw, Bryan D. O'Conner,
1985 109A	(Atlantis)				020711 20000	0, 1000		Mary L. Cleave, Sherwood C. Spring, Jerry L. Ross, Rudolfo Neri Vela
Morelos-B (S)	' '	Nov 27	1436.1	35793	35780	0.0	4539.6	(Morelos), Charles D. Walker (MDAC). Deployed Morelos
1985 109B								(Reimbursable - Mexico), Aussat (Reimbursable - Australia), and
Aussat-2 (S)		Nov 27	1436.2	35796	35779	0.0	4569.1	Satcom (Reimbursable - RCA). Demonstrated construction in space
1985 109C								by manually assembling EASE and ACCESS Experiments. Deployed
Satcom (S)		Nov 28	1436.2	35797	35779	0.0	7225.3	Station Keeping Target (OEX) to conduct advanced Station Keeping
1985 109D								Tests, Mission duration 165 hours 4 minutes 49 seconds.
OEX Target								
1985 109E	Scout 106	D 45		DC	OWN MAR 2, 1987			Al-Fred Hard State of the Control of
AF-16		Dec 12						Air Force instrumented test vehicle, (Dual Payload) Reimbursable (DOD). (WF)
1985 114A (S) 1985 114B (S)	(S)				WN MAY 11, 1989 DWN AUG 9, 1987			Reimbursable (DOD). (WFI
1986					JWN AUG 9, 1967			198
STS 61-C (S)	Shuttle (S)	Jan 12			DED AT EAFB JAN	10 4000		Seventh Columbia flight with Robert L. Gibson, Charles F. Bolden, Jr.,
1986 03A	(Columbia)	Jan 12		LAN	DED AT EACH JAM	10, 1900		Franklin R. Chang-Diaz, George D. Nelson, Steven A. Hawley, Robert
SATCOM (S)	(Columbia)	Jan 12	1436.2	35796	35780	0.0	7225.3	J. Cenker (RCA), and C. William Nelson (Congressman). Deployed
1986 03B		GEN 12	1400.2	33780	33700	0.0	1220.0	Satcom (Reinibursable - RCA). Evaluated material science lab payloe
1300 000								carrier and processing facilities. Carried HHG-1 to accommodate GAS
								payloads. Mission duration 146 hours 3 minutes 51 seconds.
STS 51-L (U)	Shuttle (U)	Jan 28		DID	NOT ACHIEVE ORE	आ		Ninth Challenger flight with Francis R. Scobee, Michael J. Smith,
TDRS-B (U)	(Challenger)						2103.3	Judith A. Resnik, Ellison S. Onizuka, Ronald E. McNair, Gregory Jarvis
, ,								(Hughes), S. Christie McAuliffe (Teacher). Approximately 73 seconds
								into flight, the Shuttle exploded.
GOES-G (U)	Delta 178 (U)	May 5		DID	NOT ACHIEVE ORE	BIT	840.0	Provide systematic world-wide weather coverage for NOAA. Vehicle
								failed, Reimbursable NOAA).
DOD (U)	Delta 180	Sep 5		DC	WN SEP 28, 1986			Carried DOD experiment. Reimbursable (DOD).
1986 69A	(U)							
NOAA-G (S)	Atlas 52E	Sep 17	101.0	816	796	98.5	1712.0	Operational environmental satellite for NOAA. Included ERBE
								instrument to complement data being acquired by ERBS, launched in
								1984. Carried search and rescue instruments provided by Canada and France, Reimbursable (NOAA). (WSMC
								France, Reimbursable (NOAA). (WSMC

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
AF P87-11 (S) Polar Bear 1986 88A	Scout 107 (S)	Nov 13	104.8	1014	954	89.6		Scientific satellite to study the atmospheric effect on electromagnetic propagation. Reimbursable (DOD). (WSMC)
Fitsatcom (F-7) (S) 1986 96A	Atlas-Centaur (AC-66) (S)	Dec 4	1436.2	35849	35728	0.4	1128.5	Provide communication between aircraft, ships, and ground stations for DOD. Reimbursable (DOD).
1987								1987
GOES-H (S) 1987 22A	Delta 179 (S)	Feb 26	1436.2	35800	35775	0.4	840.0	Operational environmental satellite to provide systematic worldwide weather coverage. Reimbursable (NOAA).
Palapa B2-P 1987 29A	Delta 182	Mar 20	1436.2	35788	35788	0.0	652.0	Provide communication coverage over Indonesia and the Asian countries. Reimbursable (Indonesia).
Fitsatcom (F-6) (U)	Atlas-Centaur (AC-67) (U)	Mar 26		DID	IOT ACHIEVE ORB	siT	1038,7	Part of the workfwide communications system between aircraft, ships, and ground stations for the DOD. Telemetry lost shortly after launch; destruct signal sent at 70.7 seconds into flight. An electrical transient, caused by a lighting strike on the launch vehicle, most probable cause of loss. Reimbursable (DOD).
SOOS-2	Scout 108	Sep 16						Two Transit navigation satellites in a stacked configuration for the U.S.
1987 80A (S)	(S)		107.1	1178	1011	90,4	64.5	Navy. Reimbursable (DOD). (WSMC)
1987 80B (S)			107.2	1180	1010	90.4	64.5	
1988								1988
DOD (SDI) (S) 1988 08A	Delta 181 (S)	Feb 8		DO	WN MAR 1, 1988			Strategic Defense Initiative Organization (SDIO) Payload. Reimbursable (DOD).
San Marco D/L (S) 1988 26A	Scout 109 (S)	Mar 25		DO	WN DEC 6, 1988		273.0	Explore the relationship between solar activity and meteorological phenomena. Cooperative with Italy. (San Marco)
S00S-3	Scout 110	Apr 25					129.6	Two Transit navigation satellites in a stacked configuration for the U.S.
1988 33A (S)	(S)		108.5	1302	1013	90.3		Navy, Reimbursable (DOD). (WSMC)
1988 33B (S)			108.5	1300	1012	90.3		
Nova II	Scout 111	Jun 16	108.9	1199	1149	90.0	170.5	Improved Transit Navigation Satellite for the U.S. Navy.
1988 52A	(S)							Reimbursable (DOD). (WSMC)
SOOS-4	Scout 112	Aug 25					128.2	
1988 74A (S)	(S)		107.3	1175	1030	89.9		Navy. Reimbursable (DOD). (WSMC)
1988 74B (S)			107.3	1173	1031	89.9		
NOAA-H (S) 1988 89A	Atlas 63E (S)	Sep 24	101.9	855	838	99.1	1712.0	Operational environmental satellite for NOAA. Carried Search and Rescue instruments provided by Canada and France. Reimbursable (NOAA). (WSMC)

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km)	incl (deg)	_(kg)	(All Launches from ESMC, unless otherwise noted)
STS-26 (S)	Shuttle (S)	Sep 29			ED AT EAFB OCT			Sixth Discovery flight with Frederick H. Hauck, Richard O. Covey,
1988 91A	(Discovery)	_		_				John M. Lounge, David C. Hilmers, and George D. Nelson. Deployed
TDRS-3 (S) 1988 91B		Sep 29	1436.2	35804	35772	0.1	2224.9	TDRS-3. Performed experiment activities for commercial and scientific middeck experiments. Mission Duration 97 hours 0 minutes 11 second
STS-27 (S)	Shuttle (S)	Sep 29		LAND	ED AT EAFB DEC	6, 1988		Third Atlantis flight with Robert L. Gibson, Guy S. Gardner, Richard M.
1988 106A	(Atlantis)							Mullane, Jerry L. Ross and William M. Shepherd. DOD Mission.
DOD (S)				ELE	MENTS NOT AVAIL	_ABLE		Mission Duration 105 hours 05 minutes 37 seconds.
1988 1068								·
1989								
STS-29 (S)	Shuttle (S)	Mar 13		LAND	ED AT EAFB MAR	18, 1989		Eighth Discovery flight with Michael L. Coats, John E. Blaha, James
19á9 21A	(Discovery)							Bagian, James F. Buchli, Robert Springer. Deployed a new Tracking
TDRS-D (S)			1436.1	35808	35768	0.0	2224	and Data Relay Satellite. Performed commercial and scientific
1989 21B	Shuttle (S)	Maria		1410	ED AT EAFB MAY	0. 1000		experiments, Mission Duration 119 hours 38 minutes 52 seconds
STS-30 (S) 1989 33A	(Atlantis)	May 4		LANU	ED AT EARB MAY	8, 1989		Fourth Atlantis flight with David M. Walker, Ronald J. Grabe, Mary L. Cleave, Mark C. Lee, Norman E. Thagard. Deployed the Magellan
Magelian (S)	(Attazina)			TRAI	NS-VENUS TRAJEC	TORY		spacecraft on a mission toward Venus. Performed commercial and
1989 33B				1100	10-YEMOO MADE	310111		scientific middeck experiments. Mission Duration: 96 hours 56 minute
								28 seconds.
STS-28 (S)	Shuttle (S)	Aug 8		LAND	ED AT EAFB AUG	13, 1989		Ninth Columbia flight with Brewster H. Shaw, Richard N. Richards,
1989 61A	(Columbia)	-						David C. Leetsma, James C. Adamson, and Mark N. Brown. DOD
								Mission, Mission Duration: 121 hours 0 minutes 08 seconds.
Fitsatcom (S)	Atlas-Centaur	Sep 25	1436.1	35701	35774	2.9	1863	Navy Communications satellite to provide communications between
1989 77A	(AC-68) (S)	0-110			E6 E . E0 007	00 4000		aircraft, ships and ground stations for DOD. Reimbursable (DOD).
STS-34 (S) 1989 84A	Shuttle (S) (Atlantis)	Oct 18		LAND	ED AT EAFB OCT	23, 1989		Fifth Atlantis flight with Donald E. Williams, Michael J. McCulley, Ellen Baker, Shannon N. Lucid, and Franklin Chang-Diaz. Deployed the
Galileo (S)	(Atlantis)			E1 C	MENTS NOT AVAI	ARIE		Galileo spacecraft on a mission toward Jupiter. Performed experiment
1989 84B				ELL	MENTONOLAVA	Dioce		activities for commercial and scientific middeck experiments. Mission
1000 0 10								Duration: 119 hours 39 minutes 22 seconds.
COBE (S)	Delta 2	Nov 18	102.6	885	873	99.0	2206	Cosmic Background Explorer spacecraft to provide the most
1989 B9A	(S)							comprehensive observations to date of radiative content of the universe
STS-33 (S)	Shuttle (S)	Nov 23		LAND	ED AT EAFB NOV	28, 1989		Ninth Discovery flight with Frederick Gregory, John E. Blaha, Manly L.
1989 90A	(Discovery)							Carter, Franklin S. Musgrave and Kathryn C. Thornton, DOD Mission.
DOD (S) 1989 908				ELE	MENTS NOT AVAI	LABLE		Mission Duration: 120 hours 6 minutes 46 seconds.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAR	RAMETERS	WEIGHT	REMARKS
Inti Design	VEHICLE	DATE	(Mins.)	Apogee (km)	Perigee (km) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1990								1990
STS-32 (S) 1990 2A Syncom IV-5 (S)	Shuttle (S) (Columbia)	Jan 9	1436.2	1AND 35815	ED AT EAFB JA 35759	N 20, 1990 2.7	6953.4	Tenth Columbia flight with Daniel C. Brandenstein, James D. Wetherbee, Bonnie J. Dunbar, Marsha S. Ivins and G. David Low. Deployed Syncom IV-5 (Reimbursable - DOD), a geostationary
1990 28								communications satellite also known as Leasat, for the U.S. Navy. Also retrieved the Long Duration Exposures Facility (LDEF) deployed on STS-41C on April 6, 1984. Mission Duration; 261 hrs 0 mins 37 secs.
STS-36 (S) 1990 19A	Shuttle (S) (Atlantis)	Feb 28		LAND	ED AT EAFB MA	AR 4, 1990	-	Sixth Atlantis flight with John D. Creighton John H. Casper, David C. Hilmers, Richard M. Mullane and Pierre J. Thuot, DOD Mission.
DOD (S) 1990 19B	, ,			ELE	MENTS NOT AV	/AILABLE		Mission Duration: 106 hours 18 minutes 22 seconds.
Pegsat (S) 1990 28A	Pegasus (S) (Orb Sci)	Apr 5	94.1	539	410	94.1		A 50-foot tocket (Pegasus), dropped from the wing of a 8-52 aircraft flying over the Pecific Ocean, kunched the Pegast satellite in the first demonstration flight of the Pegasus launch vehicle. The Pegast science investigations are part of the Combined Release and Radiation Effects Satellite (CRRES), a joint NaSA/DOD program.
STS-31 (S) 1990 37A	Shuttle (S) (Discovery)	Apr 24			ED AT EAFB AP			Tenth Discovery flight with Loren J. Shriver, Charles F. Bolden, Bruce McCandless, Steven A. Hawley, and Kathryn D. Sullivan. Deployed
HST (S) 1990 37B	_		96.6	598	591	28.5	11355.4	the Edwin P. Hubble Space Telescope (HST) astronomical observatory. Designed to operate above the Earth's turbulent and obscuring atmosphere to observe celestial objects at ultraviolet, visible and near-infrared wavelengths. Joint NASAESA mission. Mission Duration: 121 hours 16 minutes 6 seconds.
Mecsat (S) 1990 43A	Scout 113	May 9	98.3	755	601	89.9	89.9	Two Multiple Access Communications Satellites (MACSATs) to provide alobal store-and-forward message relay capability for DOD Users.
1990 43A 1990 43B	(S)		98.3	752	600	89.9		Reimbursable (DOD). (VAFB)
ROSAT (S) 1990 49A	Delta 2 (S)	Jun 1	95.6	557	542	53.0	2421.1	Roerilgen Satellite (ROSAT), an Explorer class scientific satellite configured to accommodate a large X-ray telescope, to study X-ray emissions from non-solar celestial objects. International cooperative program with NASA, Germany, and the UK.
CRRES (S) 1990 65A	Atlas-Centaur (AC-69) (S)	Jul 25	614.4	34781	345	18.0		Combined Release and Radiation Effects Satellite (CRRES) which uses chemical releases to study the Earth's magnetic fields and the plasmas, or ionized gases, that travel through them. Joint NASA/DOD program.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PARA	METERS	WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km	Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS-41 (S)	Shuttle (S)	Oct 6			DED AT EAFB OCT 1			Eleventh Discovery flight with Richard N. Richards, Robert D. Cabana,
1990 90A	(Discovery)							Bruce E. Melnick, William M. Shepherd, and Thomas D. Akers.
Ulysses (S)					HELIOCENTRIC OR	ВIT	20079.5	Deployed the Ulysses spacecraft, a joint NASA/ESA mission to study
1990 90B								the poles of the Sun and the interplanetary space above and below the
								poles. Mission Duration: 98 hours 10 minutes 3 seconds.
STS-38 (S)	Shuttle (S)	Nov 15		LAN	DED AT KSC NOV 20), 1990		Seventh Atlantis flight with Richard O. Covey, Robert C. Springer, Cart
1990 97A	(Atlantis)							J. Meade, Frank L. Culbertson and Charles D. Gemar. DOD Mission.
DOD (S)				EU	EMENTS NOT AVAIL	ABLE		Mission Duration: 117 hours 54 minutes 27 seconds.
1990 97B								
STS-35 (S)	Shuttle (S)	Dec 2		LAN	DED AT EAFB DEC 1	1, 1990		Eleventh Columbia flight with Vance D. Brand, John M. Lounge,
1990 106A	(Columbia)							Jeffrey A. Hoffman, Robert A. Parker, Guy S. Gardner, Ronald A. Parise
								and Samuel T. Durrance. Carried Astro-1, a Space Shuttle attached
								payload to acquire high priority astrophysical data on a variety of
								celestial objects. Mission Duration: 215 hours 5 minutes 7 seconds.
1991								1991
STS-37 (S)	Shuttle (S)	Apr 5		LAN	DED AT EAFB APR 1	1, 1991		Eighth Atlantis flight with Steven R. Nagel, Kenneth D. Cameron,
1991 27A	(Atlantis)							Linda M. Godwin, Jerome Apt, and Jerry L. Ross. An unplanned EVA
GRO (S)			92.0	376	370	28.5	15900.0	took place to help with the deployment of GRO's high gain antenna.
1991 27B								Also demonstrated were mobility aids which will be used on Space
								Station Freedom, Mission Duration; 143 hrs 32 min 45 sec.
STS-39 (S)	Shuttle (S)	Apr 28		LAN	DED AT KSC MAY 6,	1991		Twelfth Discovery flight with Michael L. Coats, Blaine L. Hammond, Jr.,
1991 31A	(Discovery)							Guion S. Bluford, Gregory J. Harbaugh, Richard J. Hieb, Donald R.
IBSS (S)					DOWN MAY 6, 199	1		McMonagle, and Charles L. Veach. Discovery performed dozens of
1991 31B								maneuvers, deploying canisters from the cargo bay, releasing and
								retrieving a payload with the RMS, allowing the Department of Defense
								to gather important plume observation data and information for the
								SDIO. Mission Duration: 199 hrs 26 min 17 sec.
NOAA-12 (S)	Atlas-E (S)	May 14	101.2	824	806	98.7	1418.0	Third-generation operational spacecraft to provide systematic global
1991 32A								weather observations. Will replace NOAA-10 as the morning satellite
1001 021								in NOAA's two polar satellite system. Joint NASA/NOAA effort, (WSMC)

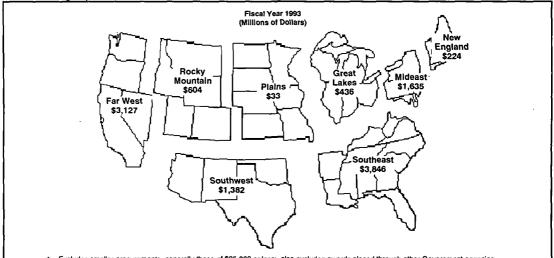
MISSION/			PERIOD	CURRENT	ORBITAL PAR	AMETERS	WEIGHT	
Intl Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km)	Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
STS-40 (S) Spacelab (SLS-1) 1991 40A	Shuttle (S) (Columbia)	Jun 5			DED AT EAFB JUN		· · · · · · · · · · · · · · · · · · ·	Tweith Columbia flight with Bryan D. O'Connor, Sidney M. Gutlerrez, M. Rhea Seddon, James P. Bagian, Tamara E. Jerrigan, F. Drew Gaffney, and Millie Hughes-Fullord. The first mission since Skylab to do intensive investigations into the effects of weightlessness on humans. Data learned from this flight will be used in NASA's planning for longer Shuttle missions set for 1992, and in the planning of Space Station Freedom. Mission Duration: 218 hrs 15 mins 14 set.
REX (S) 1991 45A	Scout (S)	Jun 29	101.3	867	769	89.6	96.7	Radistion Experiment to do further research to overcome and understand the physics of the electron density irregularities that cause disruptive scintillation effects on transionospheric radio signals. Reimbursable - DOD. (VAFB)
STS-43 (S) 1991 54A	Shuttle (S) (Atlantis)	Aug 2		LAN	DED AT KSC AUG	11, 1991		Ninth Atlantis flight with John E. Blaha, Michael A. Baker, James C. Adamson, G. David Low, and Shannon E. Lucid. A TDRS satellite was
TDRS-E (S) 1991 54B	(Alkalicis)		1436.1	35793	35779	0.0	2226.9	deployed, keeping the network which supports Shuttle missions and other spacecraft at full operational capability. Mission Duration: 213 hours 22 minutes 27 seconds.
STS-48 (S) 1991 63A	Shuttle (S) (Discovery)	Sep 12		LAN	DED AT EAFB SEF	18, 1991		Thirteenth Discovery flight with John O. Creighton, Kenneth S. Reightler, Mark F. Brown, James F. Buchli, and Charles D. Gemar. The
UARS (S) 1991 63B	(======,,		96.2	580	573	57.0	6532.2	Upper Atmosphere Research Satellite (UARS) will study physical processes acting within and upon the stratosphere, mesosphere, and lower thermosphere. Mission Duretion: 128 hrs 27 mins 51 secs.
STS-44 (S) 1991 80A	Shuttle (S) (Atlantis)	Nov 24		LAN	DED AT EAFB DEC	1, 1991		Tenth Atlantis flight with Frederick D. Gregory, Terence T. Henricks, F. Story Musgrave, Mario Runco, Jr., James S. Voss, and Thomas J.
DSP (S) 1991 808	, marine)	Nov 25		£U	EMENTS NOT AVA	ILABLE		Story meagates, man or fution, or, standard stores, and inforties of hennen. A dedicated mission for the Department of Pefense to gather data for their programs. Deployed Defense Support Program satellife (DSP). The mission was shortened when an inertial measurement unit falled on the sixth day of the mission. Mission Duration: 168 hrs 52 mins 27 secs.
1992								1992
STS-42 (S) 1992 2A	Shuttle (S) (Discovery)	Jan 22		LAN	DED AT EAFB JAN	30, 1992		Fourteenth Discovery flight with Ronald J. Grabe, Steven S. Oswald, Norman E. Thagard, William F. Readdy, Devid C. Hilmers, Roberta L. Bondar, and Uff D. Merbold. The International Microgravity Laboratory (ML-1) studied the effects of microgravity on living organisms and materials processes. Mission duration: 183 hrs 15 mins 43 secs.

MISSION/	LAUNCH	LAUNCH	PERIOD		ORBITAL PARA		WEIGHT	REMARKS
Intl Design	VEHICLE	DATE	(Mins.)		Perigee (km)		(kg)	(All Launches from ESMC, unless otherwise noted)
STS-45 (S) 1992 15A	Shuttle (S) (Atlantis)	Mar 24		LAND	DED AT KSC APR 2	, 1992		Eleventh Atlantis flight with Charles F. Bolden, Brian K. Dufty, Kathryn D. Sullivan, David C. Leetsma, C. Michael Foale, Dirk D. Frimout and Bryon K. Lichtenburg. The Atmospheric Laboratory for Applications and Science (ATLAS 1) studied stmospheric science, solar science, space physics and astronomy. Mission Duration: 214 hrs 10 mins 24 secs.
STS-49 (S) 1992 26A	Shuttle (S) (Endeavour)	May 2		LANDE	ED AT EAFB MAY 1	6, 1992		First flight of Endeavour with Daniel C. Brandenstein, Kevin P. Chilton, Richard J. Hieb, Bruce E. Mehlick, Pierre J. Thout, Kathryn C. Thornton, and Thomas D. Akers. On orbit sepair of the Infelsat VI satellite and redeployment with new kick motor. Assembly of Station by Extravehicular Activity Methods (ASEM), while attached to the cargo bay. Mission duration; 213 hrs 17 mins 38 secs.
EUVE (S) 1992 31A	Delta II (S)	Jun 7	95.1	529	514	28.4		The Extreme Ultraviolet Explorer (EUVE), designed to study the extreme ultraviolet (EUV) portion of the electromagnetic spectrum as well as selected EUV targets, in order to create a definitive map and catalog of these sources.
STS-50 (S) 1992 34A	Shuttle (S) (Columbia)	Jun 25		LAND	DED AT KSC JUL 9,	1992		Twelfth Columbia flight with Richard N. Richards, Kenneth D. Bowersox, Bonnie J. Dunbar, Carl J. Meade, Ellen S. Baker, and Lawrence J. Deltucas. The First United States Microgravity Laboratory (USML-1) studied scientific and technical questions in materials science, fluid dynamics, biotechnology and combustion science. Mission duration: 331 hrs 30 miss 4 secs.
SAMPEX (S) 1992 38A	Scout (S)	Jul 3	96.6	679	509	81.7		First of the Small Explorer (SMEX) fleet, carrying four cosmic ray monitoring instruments, to study solar energetic particles, anomalous cosmic rays, galactic cosmic rays, and magnetospheric electrons.
GEOTAIL (S) 1992 44A	Delta II (S)	Jul 24	4750.6	508542	41363	22.4	1009	Joint mission between the United States and Japan to study the geomagnetic tail region of the magnetosphere. Geotali will also measure the physics of the magnetosphere, the plasma sheet, reconnection and neutral line formation to better understand fundamental magnetosphere processes.
STS-46 (S) 1992 49A EURECA 1992 49B	Shuttle (S) (Atlantis)	Jul 31	94.6	503	499	28.5		Twelfth Atlantis flight with Loren J. Shriver, Andrew M. Allen, Jeffrey A. Hoffman, Franklin R. Chang-Diaz, Claude Nicollier, Marsha S. Ivins, and Franco Malerba. Deployed ESA'S European Retrievable Carrier (EURECA), a platform placed in orbit for 6 months offering conventional services to experimenters. Tested Tethered Statellite System (TSS-1), a joint program between the United States and Italy. Mission duration: 191 hrs 16 mins 7 secs.

MISSION/	LAUNCH	AUNCH	PERIOD	CURRENT	RBITAL PARA	METERS	WEIGHT	REMARKS
inti Design	VEHICLE	DATE		Apogee (km)			(kg)	(All Launches from ESMC, unless otherwise noted)
STS-47 (S) (Spacelab-J) 1992 61A	Shuttle (S) (Endeavour)	Sep 12	, , , , , , , , , , , , , , , , , , , ,		ED AT KSC SEP 2		1_ (*3/	Second Endeavour flight with Robert L. Gibson, Curtis L. Brown, Mark C. Lee, N. Jan Davis, Mae C. Jemison, Jerome Apt, and Mamoru Mohri. The Spacelab J mission, a joint mission between the U.S. and Japan, performed a series of 43 exfore the effects of producing new materials in the micogravity of space, and the study of living organisms in the organisms in the environission duration: 190 hrs 30 mins 23 secs.
Topex/Poseidon (S) 1992 52A	Ariane 42P (S)	Aug 10	112,4	1342	1330	66.0		U.S. French Satellite to help define the relationship between the Earth's oceans and climate. NASA payload launched on commercial Ariane vehicle. Joint NASA/CNES mission.
Mars Observer (S) 1992 63A	Titan III (S)	Sep 25		TRANS	-MARTIAN TRAJ	ECTORY		After an 11-month cruise, the Mars Observer (MO) will arrive at Mars and be inserted into orbit to examine the surface for elemental and mineralogical composition, global surface topography, gravity lield and magnetic field determination and climatological conditions. The Mars Balloon Relay (MBR), on the Mars Observer, will relay communications from Mars Indeers that will be sent by the Russians in 1995.
STS-52 (S) 1992 70A LAGEOS (S) 1992 70B	Shuttle (S) (Columbia)	Oal 22	222.5	LANDE 5950	ED AT KSC NOV 1 5616	52.7 52.7		Thirteenth Columbia flight with James D. Wetherbee, Michael A. Baker, William M. Sheperd, Tamara E. Jernigan, and Charles L. Veach. The Laser Geodynamics Satellite (IAGEOS) is a cooperative mission of the U.S. and Italy to obtain precise measurements of the crustal movement and gravitational field. The U.S. Microgravity Payload-2 (USMP-2), carried in the cargo bay, is one in a series of payloads for scientific experimentation and material processing in a reduced gravity. Mission duration: 236 hrs 56 mins 13 sers.
MSTI-1 (S) 1992 78A	Scout (S)	Nov 21	91.2	378	292	96.7		DOD/SDIO payload.
STS-53 (S) 1992 86A	Shuttle (S) (Discovery)	Dec 2		LANDE	D AT EAFB DEC	9, 1992		Fifteenth Discovery flight with David M. Walker, Robert Cabana, Guion S. Bluford, James Voss, and M. Richard Clifford. This was a DOD mission. Mission duration: 175 hrs 19 mins 47 secs.
1993								1993
STS-54(S) 1993 3A TDRS F 1993 3B	Shuttle(S) (Endeavour)	Jan 13	1432.0	35717	35697	9, 1993 0.5		Third Endeavour flight with John H. Casper, Donald R. McMonagle, Mario Runco, Jr., Gregory Harbaugh, Susan Helms. A TDRS satellite was deployed to continue support of the Shuttle network systems. Mission duration: 143 hrs 38 mins 19 secs.

MISSION/	LAUNCH	LAUNCH	PERIOD	CURRENT	ORBITAL PAI	RAMETERS	WEIGHT	REMARKS
inti Design	VEHICLE	DATE		Apogee (km)	Perigee (km) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
1993								1993
STS-56(S) 1993 23A	Shuttle (S) (Discovery)	Apr 8		LANI	DED AT KSC API	7 17, 1993		Sixteenth Discovery flight with Kenneth Cameron, Steven S. Oswald, C. Michael Foale, Kenneth Cockrell and Elleen Ochoa. A Spartan
SPARTAN-201 1993 23B		Apr 8	90.3	311	295	57.0		satellite was deployed to study the solar corona. The ATLAS-2 was used to measure upper atmospheric variations around the Earth. Mission Duration: 222 hs 08 min 24 secs.
STS-55 (S) 1993 27A	Shuttle (S) (Columbia)	Apr 26			DED AT KSC MA			Fourteenth Columbia flight with Steven R. Nagel, Terenco T. Henricks, Charles Precourt, Bernard Harris, Jr., Ulrich Walter and Hans Schlegel. The German, Spacelab D-2, was flown to study autpmation and robotics, material and life sciences, the Earth and its atmosphere and astronomy. Mission Duration: 239 his 39 min 59 secs.
STS-57(S) 1993 37A	Shuttle (S) (Endeavour)	Jun 21		LANE	DED AT EAFB Jul	1, 1993		Fourth Endeavour flight with Ronald J. Grabe, Brian J. Duffy, G. David Low, Nancy J. Sherlock, Peter J. K. Wisoff and Janice E. Voss. Retrieved ESA's European Retrievable Carrier (EURECA), a platform placed in orbit on STS-46. SPACEHAB-1 was carried in the cargo bay for experiments sponsored by NASA, the U.S. Commerce and ESA. Mission Duration: 239 hrs 44 mins 54 secs.
RADCAL (S) 1993 41A	Scout (S)	Jun 25	101.3	885	750	89.3		Radar Calibration Satellite (RADCAL) will be used to calibrate U.S. radar tracking stations Expected life of this sattellite is 24 months.
NOAA-13(S) 1993-50A	Atlas-G(S)	Aug 9	102.0	861	845	98.9		This weather observation satellite failed to function in orbit and was determined to be a failure.
STS-51 (S) 1993 58A	Shuttle (S) (Discovery)	Sep 12	*	LÂN	DED AT KSC Sep	22, 1993		Seventeeth Discovery flight with Frank L. Culbertson, Willian F. Readdy, James H. Newman, Daniel W. Bursch and Carl E. Walz The Advanced
ACTS 1993-58B	(2.00010.3)		1437.8	35929	35709	0.2		Communications Technology Satellite(ACTS) will be used to pioneer new initiatives in communications technology. The Orbiting and
ORFEUS-SPA 1993-58C				Ī	OOWN SEP 22, 1	993		Retrievable Far and Extreme Ultraviiolet Spectrometer-Shuttle Pallet System(ORFEUS-SPA), is as astrophysics mission designed to study very hot and cold matter in the universe.

MISSION/	LAUNCH			CURRENT ORBITAL PARAMETERS	WEIGHT	
nti Design	VEHICLE	DATE	(Mins.)	Apogee (km) Perigee (km) Incl (deg)	(kg)	(All Launches from ESMC, unless otherwise noted)
993						1993
STS-58(S)	Shuttle (S) (Columbia)	Oct 18		LANDED AT EAFB NOV 1, 1993		Fitteenth Columbia flight with John E. Blaha, Richard Seafross, David Wolf, Margaret Rhea Seddon, Shannon W. Lucid, William McArthur, and Martin J. Fettman. Spacelab Life Sciences-2(SLS-2) was a missic dedicated to the study of cardiovascular, regulatory, neurovestibular armusculoskeletal systems, to gain more knowledge on how the human body adapts to the space environment. Mission Duration: 336 hrs 12 min 32 sec.
STS-61(S) 1993 75A	Shuttle (S) (Endeavour)	Dec 2		LANDED AT KSC Dec 13, 1993		Fifth Endeavour flight with Richard O. Covey, Kenneth D. Bowersox, F. Story Musgrave, Thomas D. Akers, Jeffrey A. Hoffman, Kathyn C. Thornton and Claude Nicollier. This flight was the first on-orbit service of the Hubble Space Telescope(HST). The Solar Array(SA's), the Wide Field/Planetary Camera(WFPC-II), and the Corrective Optics Space Telescope Axial Replacement(COSTAR) were some of the major units serviced. Mission duration: 259 hrs 58 mins 35 secs.


Section C

Procurement, Funding and Manpower

NASA Contract Awards By State

(FY 1993) State	Total (Thousands)	Business (Thousands)	Educational & Nonprofit (Thousands)	State	Total (Thousands)	Business (Thousands)	Educational & Nonprofit (Thousands)			
Alabama	1,234,764	1,205,004	29,760	Nevada	953	261	692			
Alaska	20,063		20,263	New Hampshire	15,330	3,906	11,424			
Arizona	35,734	10,455	25,279	New Jersey	194,920	187,804	7,116			
Arkansas	519	41	478	New Mexico	63,999	54,964	9,035			
California	3,083,877	2,907,066	176,811	New York	57,349	26,029	31,320			
Colorado	112,823	89,040	23,783	North Carolina	10,865	2,282	8,583			
Connecticut	57,358	55,629	1,729	North Dakota	370	110	260			
Detaware	2,814	524	2,290	Ohio	324,700	287,029	37,671			
District of Columbia	140,930	112,469	28,461	Oklahoma	7,723		7,723			
Florida	1,377,189	1,356,193	20,996	Oregon	8,334	4,442	3,892			
Georgia	25,028	11,175	13,853	Pennsylvania	115,217	93,801	21,416			
Hawaii	9,882	529	9,353	Rhode Island	4,470	808	3,662			
Idaho	(424)		(424)	South Carolina	3,289	1,709	1,580			
Illinois	15,954	3,490	12,464	South Dakota	1,158	260	898			
Indiana	18,546	13,794	4,752	Tennessee	40,670	11,362	29,308			
lowa	7,736	624	7,112	Texas	1,274,392	1,189,046	85,346			
Kansas	7,043	672	6,371	Utah	489,237	485,367	3,870			
Kentucky	892	41	851	Vermont	467	231	236			
Louisiana	316,588	314,225	2,363	Virginia	537,196	492,784	44,412			
Maine	826	254	572	Washington	33,736	23,501	10,235			
Maryland	1,124,045	1,001,836	122,209	West Virginia	34,528	140	34,388			
Massachusetts	146,072	34,519	111,553	Wisconsin	38,150	25,593	12,557			
Michigan	38,598	4,019	34,579	Wyoming	542		542			
Minnesota	5,652	1,773	3,879	L						
Mississippi	264,228	258,871	5,357	TOTAL	\$11,317,310	\$10,279,595	\$1,037,715			
Missouri	9,825	4,991	4,834	Note: Excludes sn	pallor procurements, a	onorally those of \$25	OOD or love: also			
Montana	1,422	300	1,122	Note: Excludes smaller procurements, generally those of \$25,000 or lese excludes awards placed through other Government agencies, aw						
Nebraska	1,731	632	1,099		U.S., and actions on the		encies, awards			

U.S. Geographical Distribution of NASA Prime Contract Awards *

 Excludes smaller procurements, generally those of \$25,000 or less; also excludes awards placed through other Government agencies, awards outside the U.S., and awards on the JPL contracts. **Procurement Activity**

Total Procuremen	t By Installation FY 19	93)	Awards Placed Outside The United S	States (FY 1993)
Installation	Awards (\$M)	Percent	Place of Performance A	vards (\$Thousands)
TOTAL	\$13,160.4	100.0	TOTAL	\$80,583*
Marshall Space Flight Center	3,001.8	22.8	1	
Johnson Space Center	2.644.4	20.1	Direct NASA Awards	\$80,487
Goddard Space Flight Center	2,181.2	16.6	Australia	12,216
Kennedy Space Center	1,415.4	10.8	Bermuda	613
NASA Resident Office/JPL	1,068.4	8.1	Canada	36,479
Lewis Research Center	873.5	6.6	Chile	1,406
Headquarters	863.4	6.6	France	125
Ames Research Center	567.2	4.3	Germany	2,445
Langley Research Center	436.1	3.3	Israel	63
Stennis Space Center	109.0	.8	Italy	150
			Japan	698
Awards Through Other 0	Sovernment Agencies	EV 1993)	Liechtenstein	137
	-		Netherlands	281
Agency	Awards (\$M)	Percent	- Norway	35
TOTAL	\$508.4	100.0	Puerto Rico	972
Over \$25,000	389.6	76.6	Russia	3,796
Air Force	189.9	37.3	Spain	19,625
Energy Department	55.0	10.8	Switzerland	389
Navy	42.0	8.3	United Kingdom	1,057
Navy	31.0	6.1		
National Science Foundation	17.2	3.4	Placed Through Other Government Agencies	
Interior Department	17.1	3.4	Canada	13
Commerce Department	12.4	2.4	Puerto Rico	83
Defense Department	10.6	2.1		
Other Government Agencies	14.4	2.8	*Excludes smaller procurements, generally thos	of \$25,000 or less
\$25.000 and Under	118.8	23.4		

Contract Awards by Type of Effort

Category	Number of Contracts	Total (Millions)	Category	Number of Contracts	Total (Millions)
TOTAL	5,685	\$10,279.9 *			(
Research and Development	1,983	3,233.0	Supplies & Equipment	2,067	2,751.7
Aeronautics & Space Technology	688	1,017.5	Ammunition & Explosives	11	272.2
Space Science & Applications	562	390.1	Space Vehicles	47	1,396.9
Space Flight	125	643.9	Engines, Turbines & Components	12	751.4
Space Operations	46	259.9	Electrical/Electronic Equipment Components	57	11.3
Commercial Programs	47	18.1	Communication, Detection & Coherent Radiation	108	12.8
Space Station	19	518.5	Equipment		
Other Space R&D	416	361.3	Instruments & Laboratory Equipment	399	26.7
Other R&D	80	23.7	ADP Equipment, Software, Supplies & Support Equipment	912	197.4
Services Services	1,635	4,295.2	Fuels, Lubricants, Oils & Waxes	21	19.7
ADP & Telecommunication	157	460.8	Other Supplies & Equipment	500	63.3
Maintenance, Repair & Rebuilding of Equipment	162	1,061.6			
Operation of Government-owned Facilities	53	414.0			
Professional, Administrative & Management Support	278	1,315.9			
Utilities & Housekeeping	90	227.3			
Construction of Structures & Facilities	154	279.9			
Maintenance, Repair, Alteration of Real Property	378	168.6			
Other Services	363	367.1			
			* Excludes smaller procurements, generally those of	\$25,000 or less	

Distribution of NASA Procurements

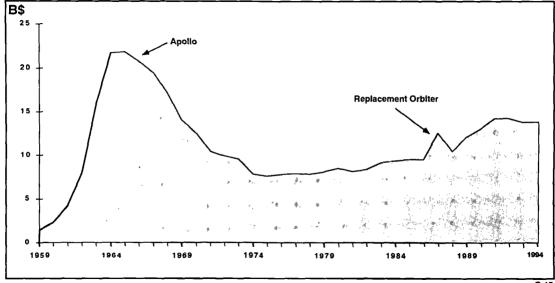
(In Millions of Dollars)					Fiscal Yea	ırs 1961 - 1	993					
	FY 61	FY 62	FY 63	FY 64	FY 65	FY 66	FY 67	FY 68	FY 69	FY 70	FY 71	FY 72
Total Business	423.3	1,030.1	2,261.7	3,521.1	4,141.4	4,087.7	3,864.1	3,446.7	3,022.3	2,759.2	2,279.5	2,143.3
(Small Business)	(63.5)	(123.6)	(191.3)	(240.3)	(286.3)	(255.9)	(216.9)	(189.6)	(162.8)	(161.2)	(178.1)	(160.9)
Educational	24.5	50.2	86.9	112.9	139.5	150.0	132.9	131.5	131.3	134.3	133.9	118.8
Nonprofit			15.3	29.1	25.3	27.7	39.6	33.6	32.3	33.0	29.3	28.0
JPL	86.0	148.5	230.2	226.2	247.2	230.3	222.2	207.2	156.3	179.8	173.3	210.8
Government	221.7	321.8	628.5	692.6	622.8	512.5	366.9	287.0	279.0	265.8	212.5	207.8
Outside U.S.	(*)	(*)_	7.9	12.0	11.2	23.4	25.2	26.7	30.8	33.5	29.7	29.1
Total	755,5	1,550.6	3,230.5	4,593.9	5,187.4	5,031.6	4,650.9	4,132.7	3,652.0	3,405.6	2,858.2	2,737.8
	FY 73	FY 74	FY 75	FY 76	FY 7T	FY 77	FY 78	FY 79	FY 80	FY 81	FY 82	FY 83
Total Business	2,063.8	2,118.6	2,255.0	2,536.1	663.2	2,838.1	2,953.8	3,416.4	3,868.3	4,272.8	4,805.6	5,586.0
(Small Business)	(155.3)	(181.2)	(216.0)	(218.3)	(68.4)	(255.0)	(281.5)	(325.4)	(384.6)	(409.4)	(430.1)	(482.3)
Educational	111.7	97.8	111.4	123.0	27.7	125.5	137.2	147.2	177.0	192.5	187.0	211.3
Nonprofit	26,4	39.3	33.0	32.0	7.6	32.0	42.8	50.8	82.2	155.1	108.8	102.5
JPL	202,3	215.2	234.5	263.7	63.6	289.0	283.8	338.6	397.2	410.8	426.3	454.9
Government	235,2	208.6	198.3	222.4	63.9	223.2	216.0	221.4	271.8	321.9	308.1	394.2
Outside U.S.	34.0	34.1	34.2	27.4	3.8	24.5	26.0	37.4	46.1	55,2	47.9	47.9
Total	2,673,4	2,713.6	2,866.4	3,204.6	829.8	3,532.3	3,659.6	4,211.8	4,842.6	5,408.3	5,883.7	6,796.8
	FY_84	FY 85	FY 86	FY 87	FY 88	FY 89	FY 90	FY 91	FY 92	FY 93		
Total Business	5,967,4	6.652.9	6.356.0	6,540.5	7,274.9	8,567.6	10,071.5	10,417.3	10,716.7	10,497.9		
(Small Business)	(556.2)	(644.7)	(671.3)	(786.3)	(801.4)	(857.3)	(924.3)	(968.3)	(1,010.6)	(1,060.7)		
Educational	22.6	256.9	276.6	315.4	370.3	464.2	`513.6	`592.Ó	659.3	707.8		
Nonprofit	98.6	103.1	119.0	119.1	129.5	180.0	200.6	244.0	297.8	336.6		
JPL	533.1	724.6	891.3	1,005.6	979.9	1,058.1	1,106.8	1,139.6	1,229.6	1,029.8		
Government	494.3	535.1	489.7	594.9	734.6	543.2	610.4	693.4	498.6	508.4		
Outside U.S.	38,1	35.4	47.1	34.3	55.9	63.3	62,3	72.7	76.2	79.9	*1:	ncluded in
Total	7,154,1	8,308.0	8,179.7	8,609.8	9,545.1	10,876.4	12,565.2	13,159.0	13,478.2	13,160.4	G	overnment

	One Hur	ndred Contractors (B		Listed 1993)	According To Total Awards Received		
	Contractor and Principle Place of Contract Performance	Aw (Thousands)	rards (Percent)		Contractor and Principle Place of Contract Performance	Aw. (Thousands)	ards (Percent)
	Total Awards To Business Firms	\$10,497,912	100.00	13.	T R W Inc	217,706	2.07
1.	Rockwell International Corp Canoga Park, CA	1,491,394	14.21	14.	Redondo Beach, CA Computer Sciences Corp Greenbelt, MD	194,588	1.85
2.	McDonnell Douglas Corp Huntington Beach, CA	996,765	9.49	15.		177,287	1.69
3.		589,888	5.62	16.	Grumman Aerospace Corp Reston, VA	162,895	1.55
4.	Boeing Marshall Space Flight Center, AL	502,005	4.78	17.	Boeing Computer Support Services Marshall Space Flight Center, AL	155,085	1.48
5.	Thiokol Corp Brigham City, UT	478,842	4.56	18.	Loral Aerospace Corp Houston, TX	136,852	1.30
6.	Lockheed Missiles & Space Co Marshall Space Flight Center, AL	429,548	4.09	19.	Middleburgh Heights, OH	106,520	1.01
7.	Houston, TX	351,155	3.34	20.	United Technologies Corp West Palm Beach, FL	96,540	.92
8.	Rockwell Space Operations Inc Houston, TX	324,583	3.09		Space Systems Loral Inc San Jose, CA	76,964	.73
9.	General Electric Co Princeton, NJ	286,393	2.73	22.	Johnson Controls World Services Inc Stennis Space Center, MS	67,057	.64
10.	Lockheed Engrg & Science Co Houston, TX	256,247	2.44	1	Cae Link Corp Houston, TX	65,485	.62
11.	Greenbelt, MD	231,412	2.20	24.	Harris Space Systems Inc Corp Rockledge, FL	63,130	.60
12.	E G & G Florida Inc Kennedy Space Center, FL	221,435	2.11	25.	Orbital Sciences Corp Dulles, VA	61,740	.59

	One	Hundre	ed Contractors (Bo		Listed 993)	According To Total Awards Rec	eived		
	Contractor and Principle		Aw	ards		Contractor and Principle		Aw	ards
	Place of Contract Performance		(Thousands)	(Percent)	ĺ	Place of Contract Performance		(Thousands)	(Percent)
26.	Sterling Federal Systems Moffett Field, CA		58,025	.55	39.	PRC Inc Washington, DC		35,282	.34
27.	BAMSI Inc Marshall Space Flight, AL	(D)	57,304	.55	40.			34,589	.33
28.			56,406	.54	41.		(D)	32,135	.31
29.			54,805	.52	42.	Swales & Associates Inc Greenbelt, MD	(S)	29,861	.28
30.	G T E Government Systems Corp Houston, TX		54,414	.52	43.	Calspan Corp Moffett Field, CA		28,432	.27
31.	Hughes Applied Info Sys Inc Greenbelt, MD		52,795	.50	44.			27,778	.26
32.	Spacehab Inc Washington, DC	(S)	49,808	.47	45.	Science Application Intl Corp San Diego, CA		26,847	.26
33.			47,559	.45	46.			25,070	.24
34.	Cray Research Inc Chippewa Falls, WI		47,105	.45	47.	Martin Marietta Services Houston, TX		23,588	.22
35.			46,479	.44	48.			22,817	.22
36.			45,679	.39	49.			22,652	.22
37.			44,202	.32	50.		(S) (D)	22,494	.21
38.	N S I Technology Services Corp Greenbelt, MD		37,018	.35	51.			20,890	.20

	On	e Hundred	Contractors (B		Listed 1993)	According To Total Awards Re	ceived		
	Contractor and Principle		Aw	ards		Contractor and Principle	_	Awa	ards
l	Place of Contract Performance		(Thousands)	(Percent)		Place of Contract Performance		(Thousands)	(Percent)
52.	Fairchild Space & Def Corp Greenbelt, MD		20,351	.19	65.	Lockheed Corp Burbank, CA		15,234	.15
53.	Johnson Engineering Corp Houston, TX	(S)	20,184	.19	66.	Ferguson M K Co Cleveland, OH		14,226	.14
54.	R M S Technologies Inc Cleveland, OH	(D)	19,974	.19	67.	Cray Grumman Systems Marshall Space Flight, AL		14,210	.14
55.	Paramax Systems Corp Greenbelt, MD		19,943	.19	68.	Government Micro Resources Chantilly, VA	(S) (D)	13,266	.13
56.	Silicon Graphics Inc Mountain View, CA		19,667	.19	69.			13,169	.13
57.	Northrop Worldwide Aircraft Houston, TX		19,434	.19	70.	Virginia Electric & Power Co Hampton, VA		12,714	.12
58.	Hughes Aircraft Co El Segundo, CA		19,246	.18	71.	Blake Construction Co Greenbelt, MD		12,627	.12
59.		(S) (D)	18,517	.18	72.	Cleveland Electric Illuminating Cleveland, OH		12,123	.12
60.	Air Products & Chemicals Inc Allentown, PA		18,164	.17	73.			11,988	.11
61.	Aerojet General Corp Azusa, CA		17,807	.17	74.	Fairchild Industries Germantown, MD		11,950	.11
62.	Micro Craft Inc Hampton, VA	(S)	17,633	.17	75.		(S) (D)	11,322	.11
63.	Ogden Logistics Services Greenbelt, MD		17,233	.16	76.			11,130	.11
64.	Metric Constructors Inc. Kennedy Space Center, FL		17,205	.16	77.		(S) (D)	10,812	.10

	On	e Hundred	Contractors (B		Listed 1993)	According To Total Awards Rec	eived		
	Contractor and Principle			rards		Contractor and Principle		Awa	ards
l	Place of Contract Performance		(Thousands)	(Percent)		Place of Contract Performance		(Thousands)	(Percent)
78.	Science Systems Applications Lanham, MD	(S)	10,422	.10	91.	Vitro Corp Washington, DC		9,128	.09
79.	Recom Technologies Inc Moffett Field, CA	(S) (D)	10,268	.10	92.	Space Transportation Pro Team Huntsville, AL		9,028	.09
80.	R M S Associates Inc JV Lithicum, MD		9,894	.09	93.	Loral Vought Systems Inc Dallas, TX		8,939	.09
81.	Dunn Construction Co Inc Stennis Space Center, MS		9,767	.09	94.	Taft Broadcasting Co Houston Houston, TX	(S)	8,800	.08
82.	Booz, Allen & Hamilton Inc Bethesda, MD		9,732	.09	95.	Kelsey Seybold Medical Group Houston, TX		8,457	.08
83.	Federal Data Corp Greenbelt, MD	(S)	9,553	.09	96.	Boeing Aerospace Operations Inc Moffett Field, CA		8,413	.08
84.	Hamm E L & Associates Inc Greenbelt, MD	(S) (D)	9,514	.09	97.	Computer Sciences Dist Info Slidell, LA		8,389	.08
85.	Mason & Hanger Services Inc Hampton, VA		9,435	.09	98.	Convex Computer Corp Richardson, TX		8,246	.08
86.	Aerospace Design & Fab Inc Brook Park, OH	(S)	9,387	.09	99.	Centennial Contractors Entpr Greenbelt, MD		8,229	.08
87.	Pacificorp Capital Inc Houston, TX		9,337	.09	100.	Scott Co Calif Moffett Field, CA		8,179	.08
88.	E E R Systems Corp Beltsville, MD	(S) (D)	9,301	.09		Other *		1,131,382	10.77
89.	Quad S Co Moffett Field, CA	(S)	9,249	.09		(S)=Small Business (D)=Disadvantaged Business			
90.		(S) (D)	9,184	.09		*Includes other Awards over \$25,0 procurements of \$25,000 or less.		maller	


	One Hundre	d Edu	cational And No		tions Li 1993)	sted According To Total Awards F	Received	•	
	Institution and Principle		Aw	ards		Institution and Principle		Aw	ards
1	Place of Performance		(Thousands)	(Percent)	1	Place of Contract Performance		(Thousands)	(Percent)
	Total Awards to Educational and Nonprofit Institutions		\$1,044,465	100.00	12.	Fairbanks, AK		20,063	1.92
1.	a				13.	Christopher Columbus Ctr Dev	(N)	20,000	1.92
1.	Stanford Univ Stanford, CA		55,897	5.35	14	Baltimore, MD CIESIN	(N)	18.975	1.82
2	Assn Univ Research & Astron	(N)	54,795	5.25	'"	Ann Arbor, MI	(14)	10,973	1.02
	Baltimore, MD	٧٠,	• 1,7		15.	Univ Maryland College Park,		17,643	1.69
3.	Smithsonian Institution	(N)	42, 233	4.04	1,0	College Park, MD			4.00
Ι.	Cambridge, MA		20.465	3.75	16.	Univ Colorado Boulder Boulder, CO		17,285	1.66
4.	Mass Institute Technology Cambridge, MA		39,165	3.75	17	Charles Stark Draper Lab Inc	(N)	16,723	1.60
5.		(N)	31,035	2.97	"	Cambridge, MA	(14)	10,720	1.00
•	Greenbelt, MD	(-7	,		18.	Univ Calif San Diego		16,307	1.56
6.		(N)	23,817	2.28		La Jolla, CA			
1	Tullahoma, TN				19.	National Academy Sciences	(N)	15,767	1.51
7.	Wheeling Jesuit College		23,559	2.26		Washington, DC Univ Alabama Huntsville, AL		44.000	1.43
8.	Wheeling, WV Univ Calif Berkelev		22,853	2.19	20.	Huntsville, AL		14,939	1.43
۰.	Berkeley, CA		22,000	2.19	21.			14,111	1.35
9.			21,749	2.08		Pasadena, CA		,	
	Palestine, TX				22.	Pennsylvania State Univ Up		13,619	1.31
10.	• · · · · · · · · · · · · · · · · · · ·		21,718	2.08		University Park, PA			
i	Tucson, AZ				23.			11,353	1.09
11.		(N)	21,543	2.06	1	Ann Arbor, MI		44 000	4.00
	Houston, TX				24.	Univ Wisconsin Madison Madison, WI		11,099	1.06

	One Hund	red Educat	ional And Nonp	rofit Instituti (FY1		sted According To Total Awards F	Received	 •	
	Institution and Principle		Aw	ards		Institution and Principle		Awa	ards
	Place of Contract Performance		(Thousands)	(Percent)		Place of Contract Performance		(Thousands)	(Percent)
25.	Univ New Hampshire Durham, NH		10,463	1.00	38.	San Jose State Univ Moffett Field, CA		7,190	.69
26.	West Virginia Univ Morgantown, WV		10,395	1,00	39.	Oklahome State Univ Stillwater, OK		7,125	.68
27.	John Hopkins Univ Baltimore, MD		10,235	.98	40.	Battelle Memorial Institute Columbis, OH	(N)	7,063	.68
28.	Univ Texas Austin Austin, TX		9,687	.93	41.	Univ Houston Houston, TX		6,847	.66
29.	Univ Washington Seattle, WA		9,612	,92	42.	Columbia Univ New York, NY		6,730	.64
30.	Univ Hawaii Honolulu, Hl		9,353	.90	43.	Case Western Reserve Univ Cleveland, OH		6,711	.64
31.	Univ Calif Los Angeles Los Angeles, CA		9,086	.87	44.	Texas A & M Univ College Station, TX		6,567	.63
32.	Univ Virginia Charlottesville, VA		8,526	.82	45.	Harvard Univ Cambridge, MA		6,626	.63
33.	CornellUniv Ithaca, NY		8,035	.77	46.	Univ Chicago Chicago, IL		6,436	.62
34.	Southwest Research Institute San Antonio, TX	(N)	7,685	.74	47.	Univ Houston Clear Lake Houston, TX		5,930	.57
35.	Ohio Aerospace Institute Brookpark, OH	(N)	7,676	.74	48.	Univ Iowa Iowa City, IA		5,485	.53
36,	S E T I Institute Moffett Field, CA	(N)	7,664	.73	49.	Old Dominion Univ Norfolk, VA		5,364	.51
37.	Georgia Institute Technology Atlanta, GA		7,491	.72	50.	Univ Southern Calif Los Angeles, CA		4,739	.45

	One Hund	fred Educational And N		ions Li 1993)	sted According To Total Awards i	Received	*	
	Institution and Principle	Aw	ards		Institution and Principle		Awa	ards
l	Place of Contract Performance	(Thousands)	(Percent)		Place of Contract Performance		(Thousands)	(Percent)
51.	Univ Alabama Birmingham	4,623	.44	64.	Howard Univ		3,632	.35
1	Birmingham, AL			1	Washington, DC			
52.	Univ Florida	4,572	.44	65.	Hampton City	(N)	3,511	.34
1	Gainesville, FL				Hampton, VA			
53.	Ohio State Univ	4,538	.43	66.	Oregon State Univ		3,299	.32
í	Columbus, OH			1	Corvallis, OR			
54.	Florida Atlantic Univ	4,517	.43	67.	Florida A & M Univ		3,283	.31
	Tampa, FL			1	Tallahassee, FL			
55.	Virginia Polytechnic Institute	4,413	.42	68.	American Instit Aero & Astro	(N)	3,259	.31
	Blacksburg, VA	•		1	New York, NY	` '		
56.		4,404	.42	69.	Univ Illinois Urbana		3,254	.31
1	Princeton, NJ	.,			Urbana, ILL		-,	
57.	Univ Calif Santa Barbara	4.098	.39	70.	North Carolina State Univ		3.170	.30
	Santa Barbara, CA	.,		1	Raleigh, NC		-,	
58.		4.053	.39	71	George Washington Univ		3,081	.30
00.	St. Louis, MO	.,		1 '''	Washington, DC		0,001	.00
59.		4.011	.38	72.			3.007	.29
1 33.	Pittsburgh, PA	4,011		/ '-	Cleveland, OH		5,007	.23
60.		(N) 3,940	.38	73.			3.006	.29
I 60.	Hutchinson, KS	(14) 3,940	,56	/3.	West Lafavette, IN		3,000	.29
61.		3.917	.38	1 74	Colorado StateUniv		2,791	.26
I 61.		3,917	.56	'4.	Ft. Collins. CO		2,191	.20
۰.	Albuquerque, NM	2.700	00				0710	
62.		3,762	.36	75.	Univ Miami, FL		2,743	.26
۱	Auburn, AL	0.740		l	Miami, FL			
63.		3,743	.36	76.		(N)	2,690	.26
	Minneapolis, MN				Research Triangle Park, NC			

	One Hund	red Educ	ational And No	onprofit Instituti (FY)	s Listed According To Total Awards Received*	
	Institution and Principle		Awa	ards	Institution and Principle Awa	rds
	Place of Contract Performance		(Thousands)	(Percent)	Place of Contract Performance (Thousands)	(Percent)
77.	Clark Atlanta Univ Atlanta, GA		2,660	.25	90. Aerospace Corp (N) 2,131 El Segundo, CA	.20
78.	·	(N)	2,634	.25	91. Univ Pittsburgh 2,058 Pittsburgh, PA	.20
79.	Vanderbilt, Univ Nashville, TN		2,634	.25	92. S R I International Corp (N) 2,054 Menlo Park, CA	.20
80.	Hampton Univ Hampton, VA		2,565	.25	93. Florida State Univ 2,051 Tallahassee, FL	.20
81.			2,519	.24	94. Univ Toledo 2,038 Toledo, OH	.20
82.	North Carolina A & T StateUniv Greensboro, NC		2,498	.24	95. Univ Calif Irvine 1,968 Irvine, CA	.19
83.	Environmental Res Instit Mich Ann Arbor, Mi	(N)	2,392	.23	96. Utah State Univ 1,939 Logan UT	.19
84.	Arizona State Univ Tempe, AZ		2,333	.22	97. College William & Mary 1,924 Williamsburg, VA	.18
85.	Univ Cinncinnati Cinninnati, OH		2,331	.22	98. Univ Calif Riverside 1,836 Riverside, CA	.18
86,	Renesselaer Poly Inst New York Troy, NY		2,279	.22	99. MCAT Institute (N) 1,821 Moffett Field, CA	.17
87.			2,248	.22	100. Institute Technology Develop (N) 1,787 Jackson, MS	.17
88.	State Univ New York Stony Brk Stony Brook, NY		2,247	.22	Other** 131,268 * Excludes JPL	12.57
89.	Clarkson, Univ Potsdam, NY		2,131	.20	** Includes other Awards over \$25,000 and smaller procuren of \$25,000 or less.	nents

NASA's Budget Authority in 1992 Dollars

Financial Summary

In Mill	ions Of Dollars)					Outlays		As C	f September 30, 199
Fiscal Year	Total Appropriations	Total Direct Obligations	Total	Research & Development	Space Flight, Control & Data Communications	Construction Of Facilities	Research & Program Management	Trust Funds	Office Of Inspector General
1959	330.90	298.70	145.50	34.00	-	24.80	86.70	-	
1960	523.90	486.90	401.00	255.70	-	54.30	91.00		-
1961	966.70	908.30	744.30	487.70	_	98.20	159.10	-	_
1962	1,825.30	1,691.70	1,257.00	935.60		114.30	207.10	_	-
1963	3,674.10	3,448.40	2,552.40	2,308.40		225.30	18.70		_
1964	5,100.00	4,864.80	4,171.00	3,317.40	_	437.70	415.90	-	-
1965	5,250.00	5,500,70	5.092.90	3,984.50		530.90	577.50	_	-
1966	5,175.00	5,350.50	5.933.00	4,741.10		572.50	619.40		-
1967	4,968.00	5,011.70	5,425.70	4,487.20		288.60	649.90		_
1968	4,588.90	4,520,40	4,723,70	3,946.10		126.10	651.50	-	
1969	3,995.30	4,045.20	4,251,70	3,530.20		65.30	656.20		_
1970	3,749.20	3,858.90	3,753.10	2,991.60		54.30	707.20		
1971	3,312.60	3,324.00	3.381.90	2,630,40		43.70	707.80		_
1972	3,310.10	3,228.60	3,422.90	2,623.20		50.30	749.40		_
1973	3,407.60	3,154.00	3,315,20	2,541.40		44.70	729.10	••	-
1974	3,039.70	3,122.40	3,256.20	2,421.60		75.10	759.50		-
1975	3,231.20	3,265.90	3,266,50	2,420.40		85.30	760.80		_
1976	3,551.80	3,604.80	3,669,00	2,748.80		120.90	799.30	-	-
rq	932.20	918.80	951.40	730.70	-	25.80	194.90		-
1977	3,819,10	3,858.10	3,945.30	2,980.70		105.00	859.60		-
1978	4.063.70	4,000.30	3,983,10	2.988.70		124.20	870.20	-	-
1979	4,558.80	4,557.50	4,196,50	3,138.80		132.70	925.00	••	_
1980	5,243,40	5,098.10	4,851,60	3,701.40		140.30	1,009.90		_
1981	5,522.70	5,606.20	5,421.20	4,223.00		146.80	1,051.40	-	_
1982	6,020.00	5,946.70	6,035.40	4,796.40		109.00	1,130.00	_	_

Financial Summary

(In Mill	ions Of Dollars)		1			Outlays			As Of Septem	nber 30, 199
Fiscal Year	Total Appropriations	Total Direct Obligations	Total	Research & Development	Space Flight, Control & Data Communications	Construction Of Facilities	Research & Program Management	Trust Funds	Office of Inspector General	GSA Building Delegation
1983	6,817.70	6,723.90	6,663.90	5,316.20		108.10	1,239.60	_	-	
984	7,242.60	7,135.20	7,047.60	2,791.80	2,914.60	108.80	1,232.40			-
985	7,552.20	7,638.40	7,317.70	2,118.20	3,707.00	170.00	1,322.50	-		
986	7,764.20	7,463.00	7,403.50	2,614.80	3,267.40	188.90	1,332.40	-		
987	10,621.00	8,603.70	7,591.40	2,436.20	3,597.30	149.00	1,408.90		-	
988	9,001.50	9,914.70	9,091,60	2,915.80	4,362.20	165.90	1,647.70			
989	10,897.50	11,315.80	11,051.50	3,922.40	5,030.20	190.10	1,908.30	0.50	••	
990	12,295.70	13,068,93	12,428.83	5,094.30	5,116.52	218.42	1,991.09	1.00	7.50	
991	14,014.62	13,973.54	13,877.64	5,765.48	5,590.28	326.31	2,185.06	1.02	9.49	-
992	14,316.05	14,159.75	13,961.42	6,578.85	5,117.51	463.03	1,788.05	1.54	12.44	
1993	14,323.39	14,118.47	14,306.23	7,086.12	5,025.16	556.77	1,621.64	1.12	14.63	0.79

Research and Development Funding By Program

(In Millions of Dollars)															As of Se	tember	30, 1993
,	FY1993	FY 1992	FY 1991	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	FY 1978	FY 197
Space Station	2,077.08	1,976.71	1,875.39	1,723.70	884.60	387.39	414.50	197.80	153.60	-	-		-				& Prior
Space Flight																	
Space Shuttle	-		_	-		-			-	-	1,696.20	2,098.10	1,994.70	1,870.30	1,637.60	1,348.80	4,599.70
Space Transp Cap Dev	496.98	559.49	594.62	546.02	660.40	585,80	522.30	390.00	387.80	446.10	1,771.50	902.20	676,20	446.60	299.70	263.80	3,946.20
STS Oper Capability Dev	(-)	(-)	(-)	()	(-)	(-)	(-)	(-)	()	(-)	(278.80)	(201.50)	(223.50)	(112.90)	(89.90)	(65.40)	(65.40)
Spacelab	(113.89)	(99.20)	(129.30)	(118.58)	(87.60)	(66.50)	(72.00)	(77.30)	(55.60)	(111.00)	(-)	(-)	(-)	(-)	(-)	(-)	(
Upper Stages	· (-)	(59.70)	(82.40)	(79.70)	(131.60)	(142.20)	(152.00)	(113.60)	(135.80)	(157.70)	(-)	()	(-)	(-j	(-)	(-)	(-)
Payload Oper & Support Eqt	(123.85)	(110.86)	(93.42)	(58.54)	(53.10)	(74.10)	(34.10)	(54.20)	(54.50)	(59.60)	(-)	(~)	()	(-)	(-)	()	(-)
Eng & Tech Base (ETB)/DTMS	(214.15)	(210.80)	(208.50)	(181.60)	(160.60)	(133.90)	(133.40)	(105.50)	(105.60)	(93.10)	(70.20)	(182.90)	(183.50)	(172.60)	(177.20)	(171.90)	(1,050.70)
Advanced Programs	(32.09)	(34.55)	(35.20)	(29.70)	(47.70)	(46.40)	(37.70)	(19.40)	(20.50)	(21.40)	(12.60)	(9.70)	(8.80)	(13.00)	(7.00)	(10.00)	(188.80)
Advanced Launch Systems	(9.60)	(27.98)	(-)	(-)	(80.40)	(64.30)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	()	(-)	(-)
Advanced Transportation Tech.	(-)	(-)	(23.90)	()	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	()	()	()
Tethered Satellite Program	(3.40)	(16.40)	(21.90)	(27.30)	(26.40)	(12.10)	(10.60)	(15.00)	(15.80)	(3.30)	(-)	(-)	(-)	(-)	(-)	(-)	(-)
Orbital Maneuvering Veh (OMV)	(-)	(-)	(-)	(50.60)	(73.00)	(46.30)	(82.50)	(5.00)	(-)	(~)	(-)	(-)	(-)	(-)	(-)	()	()
STS Operations	(-)	(-)	()	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(1,409.90)	(508.10)	(260.40)	(148.10)	(25.60)	(16.50)	()
Skylab	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	()	()	(2,427.10)
Apollo Soyuz Test Project	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(214.20)
Expendable Launch Vehicles	-		-	-	-	-	-		-	-	82.90	31.10	54.40	67.40	73.60	136.50	2,274.60
Completed Programs	_	**	-	-		-			-		-	_				-	22,020.10
Apollo	()	(-)	(-)	(-)	(-)	(-)	(-)	(-)	()	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(20,443.60)
Gemini	(-)	(-)	()	()	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	()	(-)	(1,280.70)
Others	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(~)	(-)	(-)	(-)	(-)_	(-)	(-)	()	()	(295.80)
Total OSF	496.98	559.49	594.62	546.02	660.40	585.80	522.30	390.00	387.80	446.10	3,550.60	3,031.40	2,725.30	2,384.30	2,010.90	1,749.10	32,840.60
Commercial Programs																	
Technology Utilization	28.91	32.08	24.05	23.40	16.30	18.80	15.50	10.40	9.40	9.00	9.00	8.00	8.80	12.00	9.10	9.10	75.30
Commercial Use of Space	132.84	113.63	62.79	32.41	27.80	29.30	23.60	16,00	-						-		
Total OCP	161.75	145.71	86.84	55.81	44.10	48.10	39.10	26.40	9.40	9.00	9.00	8.00	8,80	12.00	9.10	9.10	75.30
												2.00	•		3	3	

Research and Development Funding By Program

					<u> </u>												
	FY1993	FY 1992	FY 1991	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980			r 30, 1993 FY 1977 & Prior
Aeronautics and Space Technology																	APna
Current Programs																	
Space Research & Technology	265.68	299.90	277.90	273.77	273.70	217.10	164.50	148.10	141.00	130.30	121.20	106.90	107.80	111.80	98.30	88.70	432.30
Aeronautical Research & Tech	700.25	543.70	500.10		384.60	320.20	360.50	324.30	328.30	309.70	274.50	261.10	268.80	308.30	264.10	228.00	1,021.40
Transatmospheric Res & Tech	-	4.08	93.79	58.29	68.50	51.90	44.40		-	-	-	-		-	-		
Energy Tech. Applications	-	••	-	-	-	-		••	-	-	-	-	1.90	3.00	5.00	7.50	20,80
Prior Programs																	
Apollo Applications Expr		••	-	-	-	-	-		_	_	-	-	_		_	_	1.00
Chemical & Solar Power	-		_	_	-	-			_	-	-	-	_		-	_	62,30
Basic Research	-		_	-	-	-	-		-	-	_	-	_		_	-	193,60
Space Vehicle Systems	_		-	_	_	_	-		_	-	_	-	-		-	_	332.20
Electronic Systems	-		_	_	_	_	_		-	-	-		-		_	_	272.00
Human Factor Systems			-	_	_	-	-		-	_	_	-	_	-	_	_	151,30
Space Power & Elec Prop Sys	_		_	-	_	_			_	_	_	_	_		_	-	385.40
Nuclear Rockets			-	_	-	-	-		_	_	_	-	-		-	-	512.80
Chemical Propulsion	_		-	_	_	_	_		_	_	_	_	_		-		365.40
Aeronautical Vehicles			_	_	_	_	_		-	-	_	-	_		_	_	451.20
Nuclear Power & Propulsion			_	_	_	_	_		-	-	_	_	_	-	-		44,10
Mission Analysis			_		_	-	_	_	-		-	-			_		16.00
Total OAST	965.93	847.68	869.38	765.42	726.80	589.20	569.40	472.40	469.30	440.00	395.70	368.00	378.50	423.10	367.40	324.20	
Space Tracking & Data Systems																	
Tracking and Data Acquisition	22.81	21.73	19.75	19.08	18.60	17.70	16.90	15.30	14.70	14.10	496.30	401.30	339.80	332.10	299.90	276.30	3,852.80
Safety, Reliability, Maintainability & Quality Assurance																	
Standards & Practices	32.06	33.18	32.59	22.35	22.10	13.90	11.90	7.50	4.80	4.60	3.00	3.00	2.10	3.80	9.00	9.00	24.20
University Space Science & Technology Academic Program																	
Academic Programs	68.80	44.24	37.43			-			-	-	-	-	-	-	-		
Minority University Res. Prog	22.24	21.73	16.98	14.03													
Total U.S.S.&T.A, P.	91.04	65.97	54.41	37.03													_

Research and Development Funding By Program

(in Millions of Dollars)	FY1993	FY 1992	FY 1991	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	FY 1978	FY 197 & Prio
Space Science and Applications Current Programs																	
Physics & Astronomy	1,025.34	1,019.99	954.94	847.11	712.10	596.20	528.50	554.60	654.70	558.60	480.80	318.20	320.00	335.60	281.80	223.10	
Planetary Exploration	524.74	527.35	469.91	380.85	405.90	323.50	362.20	349.10	286.50	216.10	180,00	205.00	174.10	219.40	181.90	146.70	3,550.20
Life Sciences	145.00	155.79	135.60	104.70	78.10	72.10	70.20	65.00	61.90	57.60	55.60	39.50	42.20	43.80	40.10	33.30	145.70
Space Applications	881.15	888.27	835.07	632.05	578.30	557.40	550.60	478.40	367.60	309.50	311.40	325.00	325.70	328.50	271.90	232,10	2,092.6
Prior Programs																	
Manned Space Science		-	-			-	_	-	-	_		-	_	-	-	-	46.4
Launch Vehicle Development	-	-	-			-	-	-	-	-	-		-	-	-	-	614.4
Bioscience	-	-	-			-	-	-	-	_			-	_		_	257.8
Space Flight Operations	-	-	-			-	-	-	-	-		-	-	-	-	4,00	58.3
Payload, Plan & Prog Integ	(-)	(-)	(-)	(-)	(-)	(-)	_()	(-)	(-)	(=)	(-)	(-)	(-)	()	()	(4.00)	(58.3
Total OSSA	2,591.36	2,591.36	2,395.52	1,964.71	1,774.40	1,549.20	1,511.50	1,447.10	1,370.70	1,141.80	1,027.80	887.70	862.00	927.30	775.70	639.20	8,961.7
Exploration	3.46	3.46	3.50	-		-	-	-	-	-	-	-	-	-	-	-	_
University Affairs	-	. <u>-</u>	-			-	-	-	-	-	-		-	-	-	-	229.2
Operating Account	587,65	589.75	89.11	93,56	103.50	63.70	68,10	59.90	55.00	23.60	33.10	23.60	17.80	5.50	5.20	4.70	79.7
Total Program	7.094.30	6.827.61	6.023.52	5.227.69	4.234.50	3.254.90	3.153.70	2.616.40	2.465.30	2.079.20	5,515,50	4.723.00	4.334.30	4.088.10	3.477.20	3.011.60	50.325.3
Approp Trans & Adjustment	5.00	0.00	0.00	-7.00	32.10	159.4	12.00	21.90	2.80	-34.30	7.30	17.90	2.00	3.00	0.00	1.40	301.0
Appropriation	7,089.30	6,827.61	6,023.52	5,220.69	4,266.60	3,414.30	3,165.70	2,683.30	2,468.10	2,044.90	5,522.80	4,740.90	4,336.30	4,091.10	3,477.20	3,013.00	50,626.
Lapse Unoblig Bal Incl		(1.16)	(1.32)	(1.68)	(0.5)	(1.1)	(4.4)	(0.3)	(0.2)	(0.3)	(0.2)	(0.3)	(0.6)	(0.1)	(0.3)	(0.3)	_
Appropriation Lapse Unoblig Bal Incl Note: Unobligated Balances Lapse		(1.16)	(1.32)	(1.68)	(0.5)	-											

Research and Development Funding By Location

															As 0	f Septemb	per 30, 19
	FY1993	FY 1992	FY 1991	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984	FY 1983	FY 1982	FY 1981	FY 1980	FY 1979	FY 1978	FY 197 & Pri
leadquarters	829.23	767.42	645.77	471.79	403.50	332.80	258.20	175.80	150.30	141.80	218.40	152.60	136.00	132.50	115.30	95.00	2,253.9
Ames Research Center	453.82	431.64	357.72	314.20	295.10	261.70	291.10	241.50	223.50	196.80	180.60	162.90	141.00	147.50	140.40	115.50	1,183.1
Oryden Flight Research Facility	_	-		-	-	-	-					11.90	18.40	16.60	13.10	18.60	242.
Electronics Research Center		-			_	-	-	_			-	_		-	-		82.
Goddard Space Flight Center	1,337,13	1,177,23	1.047.81	930.64	743.70	510.90	488.80	522.60	447.10	361.60	816,30	744.00	567.60	550.90	515.50	493.00	6,400.
let Propulsion Laboratory	592.14	714.19	734.97	575.29	581. 6 0	490.30	466.80	451.90	347.80	253.70	308.20	316.40	262.80	320.50	235.80	201.40	3,017.
Johnson Space Center	1,326.41	1,433.47	1,173.60	1,049.33	572.60	334.80	331.00	249.50	235.20	174.90	1.593.00	1,557.30	1,524.70	1,398.30	1.161.80	970.60	15,423
Kennedy Space Center	264.81	272.67	209.80	150.68	116.20	90.50	57.30	71.10	49.00	55.70	529.30	420.50	365.40	300.60	234.90	170.00	2.503.
angley Research Center	360,23	349.97	308.15	260.81	245.90	199.00	221.10	175.20	177.70	140.40	131.90	130.50	143,30	168.20	138,20	157.10	2,322.
ewis Research Center	764.24	681.66	559.20	500.26	393,70	257.30	286.80	257.10	325.10	305.80	269.90	178.40	163.30	170.40	148.50	133.60	2.864.
Marshall Space Flight Center	972.89	974.43	968.32	959,89	870.00	760.90	730.10	465.30	503.20	443.50	1,702.10	1.238.50	1.005.90	888.20	785.20	630.90	13.293.
VASA Pasadena Office	-	-	-	_	_	-	-	-		-	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		-	_			4
Pacific Launch Operations	_	_	_	_	_	-	-			-	_	_	-	-	_		0.
Space Nuclear Systems Office	-	_		-	-	_	_	-	_		-		-		_		436.
Station 17	_	_		_	-5.10	-	_	-3.80	-4.70	-4.70	-242.80	-200.00	-14.00	-31,70	-38.80		
Stennis Space Cneter	23.74	24.93	18.18	14.80	17.30	6.70	22.50	10.20	11.10	9.70	8.60	10.00	8.70	9.30	9.20	10.00	21.
Wallops Flight Facility	-	_	-	-	**	-	-	-	**	-	-	-	11.20	16,80	17.10	15.90	156.
Western Support Office	_	_	_	_	_	_	_		_		-	-	_	-	_		119.
Indistributed	169.66	_	-	-	-	-	-				-	-	-	-	-		-
Fotal Program	7.094.30	6,827.61	6.023.52	5.227.69	4,234.50	3,254.90	3.153.70	2.616.40	2,465,30	2.079.20	5.515.50	4.723.00	4.334.30	4,088,10	3.477.20	3.011.60	50.325.
Approp Trans & Adjustment	-5.00	0.00	0.00	-7.00	32.10	159.40	12.00	21.90	2.80	-34.30	7.30	17.90	2.00	3.00	0.00	1.40	301.
Appropriation	7,089.30	6,827.61	6,023.52	5,220.69	4,266.60	3,414.30	3,165.70	2,638.30	2,468.10	2,044.9	5,522.80	4,740.90	4,336.30	4,091.10	3,477.2	3,013.00	50,626.
apse Unoblig Bal Incl	-	(1.16)	(1.32)	(1.68)	(0.5)	(1.1)	(4.4)	(0.3)	(0.2)	(0.3)	(0.2)	(0.3)	(0.6)	(0.1)	(0.3)	(0.3)	

Space Flight, Control And Data Communications Funding By Program

							As of	September 3	0, 1993
FY 1993	FY 1992	FY 1991	FY 1990	FY 1989	FY 198	FY 1987	FY 1988	FY 1985	FY 1984
1,045.48	1,295.75	1,295.07	1,189.84	1,116.55	1,092.40	3,326.38	1,354.70	1,478.10	1,637.20
2,804.94	2,928.36	2,976.73	2,628.41	2,604.26	1,825.50	1,737.06	1,633.20	1,308.60	1,431.70
3,850.42	4,223.61	4,271.80	3,818.25	3,720.81	2,917.90	5,063.44	2,987.90	2,786.70	3,068.90
5	179.85	_						-	
820.70	869.73	973.91	897.97	813.45	969.30	764.70	658.20	792.20	673.90
207.83	258.76	10.13	9.39	13.79	8.70	17.38	15.62	15.30	9.00
5, 058,80	5.352.10	5.255.84	4,725.61	4.548.05	3.895.90	5.845.52	3.661.72	3.594.20	3.751.8
27.20	-195.03	1,063.29	-170.71	83.85	12.40	-284.50	27.52	7.60	34.3
5,086.00	5,157.07	6,319.13	4,554.90	4,464.20	3,908.30	5,561.02	3,689.24	3,601.80	3,786.1
	(0.43)	(0.41)	(0.82)	(0.90)	(0.40)	(0.30)	(0.3)	(0.2)	(0.5)
	1,045,48 2,804,94 3,850,42 S 820,70 207,83 5,058,80 27,20	1,045.48 1,295.75 2,804.94 2,928.36 3,850.42 4,223.61 S 179.85 820.70 869.73 207.83 258.76 5,058.80 5,352.10 27.20 -195.03	1,045.48 1,295.75 1,295.07 2,804.94 2,928.36 2,976.73 3,850.42 4,223.61 4,271.80 S	1,045.48 1,295.75 1,295.07 1,189.84 2,804.94 2,928.36 2,976.73 2,628.41 3,850.42 4,223.61 4,271.80 3,818.25 S 179.85 820.70 869.73 973.91 897.97 207.83 258.76 10.13 9.39 5,058.80 5,352.10 5,255.84 4,725.61 27.20 -195.03 1,063.29 -170.71	1,045.48 1,295.75 1,295.07 1,189.84 1,116.55 2,804.94 2,928.36 2,976.73 2,628.41 2,604.26 3,850.42 4,223.61 4,271.80 3,818.25 3,720.81 S 179.85 820.70 869.73 973.91 897.97 813.45 207.83 258.76 10.13 9.39 13.79 5,058.80 5,352.10 5,255.84 4,725.61 4,548.05 27.20 -195.03 1,063.29 -170.71 -83.85	1,045.48 1,295.75 1,295.07 1,189.84 1,116.55 1,092.40 2,804.94 2,928.36 2,976.73 2,628.41 2,604.26 1,825.50 3,850.42 4,223.61 4,271.80 3,818.25 3,720.81 2,917.90 S 179.85	1,045.48 1,295.75 1,295.07 1,189.84 1,116.55 1,092.40 3,326.38 2,804.94 2,928.36 2,976.73 2,628.41 2,604.26 1,825.50 1,737.06 3,850.42 4,223.61 4,271.80 3,818.25 3,720.81 2,917.90 5,063.44 S 179.85	1,045,48 1,295,75 1,295,07 1,189,84 1,116,55 1,092,40 3,326,38 1,354,70 2,804,94 2,928,36 2,976,73 2,628,41 2,604,26 1,825,50 1,737,06 1,633,20 3,850,42 4,223,61 4,271,80 3,818,25 3,720,81 2,917,90 5,063,44 2,987,90 S 179,85	1,045,48 1,295.75 1,295.07 1,189.84 1,116.55 1,092.40 3,326.38 1,354.70 1,478.10 2,804.94 2,928.36 2,976.73 2,628.41 2,604.26 1,825.50 1,737.06 1,633.20 1,308.60 3,850.42 4,223.61 4,271.80 3,818.25 3,720.81 2,917.90 5,063.44 2,987.90 2,786.70 S

Space Flight, Control And Data Communications Funding By Location

(In Millions of Dollars) As of Sep												
	FY 1993	FY 1992	FY 1991	FY 1990	FY 1989	FY 1988	FY 1987	FY 1986	FY 1985	FY 1984		
Headquarters	105.52	117.50	220.77	160.73	159.30	364.40	336.97	204.50	259.50	227.60		
Ames Research Center	24.76	22.86	21.78	18.70	16.70	15.40	16.30	18.00	15.60	10.30		
Goddard Space Flight Center	545.93	623.08	672.11	635.73	549.92	467.10	415.90	330.00	432.20	431.00		
Jet Propulsion Laboratory	184.03	176.35	151.75	154.72	124.97	132.10	128.00	117.40	111.90	97.30		
Johnson Space Center	1,176.79	1,220.78	1,188.35	1,130.53	1,054.62	909 .70	2,475.65	1,083.70	1,308.00	1,360.50		
Kennedy Space Center	1,070.21	1,101.91	941.36	857.80	828.37	720,20	660.62	511.52	493.40	490.50		
Langley Research Center		0.63	2.05	2.05	14.30	0.10	0.25	0.40	0.60	0.20		
Lewis Research Center	45.33	58.39	121.87	54.63	10.90	3.70	5.00	3.30	4.30	2.00		
Marshall Space Flight Center	1,666.81	1,837.63	1,904.33	1,683.63	1,779.81	1,263.90	1,734.05	1,655.40	1,437.00	1,379.00		
Station 17					-12.40		-	-277.60	-480.60	-247.70		
Stennis Space Center	34.34	48.11	31.47	27.09	21.56	19.30	16.09	15.10	12.30	1.10		
Undistributed	205.08						56.69			<u></u>		
Total Program	5,058.80	5,352.10	5,255.84	4,725.61	4,548.05	3,895.90	5,845,52	3,661.72	3,594.20	3,751.80		
Approp. Trans & Adjustment	27.20	-195.03	1,063.29	-170.71	-83.85	12,40	-284.50	27.52	7,60	34.30		
Appropriatioin	5,086.00	5,157.07	6,319.13	4,554.90	4,464.20	3,908.30	5,561.02	3,689.24	3,601.80	3,786.10		
Lapse Unoblig Bal Incl		(0.43)	(0.41)	(0.82)	(0.90)	(0.40)	(0.30)	(0.3)	(0.2)	(0.5)		

Note: Unobligated Balances Lapsed at the end of the second year of accountability.

Construction of Facilities Funding

(In Millions of Dollars)	FY93 ·	FY 92	FY 91	FY 90	FY 89	FY 88	FY 87	FY 86	FY 85	FY 84	FY 83	FY 82	FY 81	FY 80	FY 79	FY 78	FY.77	
Arnes Research Center		-	-	12.7	-	16.0	18.9	7.8	14.2	14.7	-	-	13.6	2.9	9.1	-	4.4	2.6
Dryden Flight Research Fac.	-		12.8	-	-	12.7	••		-	-	3.5	-	-	-	-	0.4	0.8	-
Goddard Space Flight Center	19.8	22.0	16.6	15.9	6.2	8.6	8.0	3.6	2.1	-	2.6		. ••	-	5.6	4.5	-	-
Jet Propulsion Laboratory		5.5	29.8	5.3	-	-	11.5	9.2	13.7	5.5	-	1.8	2.8	-	4.6	3.1		-
Johnson Space Center	4.0	7.0	11.0	2.8	7.8	-	7.6	-			-	3.0	-	-		2.0	2.2	-
Kennedy Space Center	-	5.3	-	11.3	-	-		-	-	-	-	1.1	0.6	4.8	-	1.7	2.6	-
Langley Research Center		**	4.6	-	7.4	-	11.3	4.6	13.8	10.5	13.5	2.9	22.0	7.1	5.3	1.6	6.1	1.6
Lewis Research Center	-	••	16.0		-	17.0	-		-	12.9	4.8	1.2	8.7	5.7	5.8	8.0	2.7	
Marshall Space Flight Center	-	5.2	- '	_	12.6	-	**	-	1.6				4.0	6.3	-	_	_	
Stennis Space Center	2.2	٠ +	3.8		-	-	-				-	-	-	-	-	0.6	-	-
Wallops Flight Facility		3.5	5.5		-	-	-	-		-	2.1		-	1.1	-	-	-	
Various Locations	33.8	5.7	17.6	2.6	-	6.4	16.9	17.4	14.0	-	-	9.8	32.0	1.7	_	1.1	_	-
Facility Planning & Design	23.3	34.0 -	28.0	26.3	22.0	16.0	17.0	11.8	12.0	9.1	8.2	10.0	9.7	13.9	10.6	11.7	12.6	12.5
Large Aero Fac		-	-		-			-	-	-		-		45.7	56.1	37.0	31.0	-
Minor Construction	14.0	12.9	11.0	10.0	9.0	7.4	6.8	5.9	4.9	4.7	3.7	2.3	3.9	3.5	4.2	6.0	2.9	6.3
Repair	31.9	31.7	28.2	28.0	22.5	22.9	22.1	19.5	17.9	17.2	13.8	12.8	14.8	12.0	-			
Envir Compl & Rest, Program	40.0	36.0	32.0	30.0	26.0	23.9	-	-		_		_	-	-	-		-	
Rehab & Mods *	34.0	34.8	32.9	35.0	31.2	31.5	29.8	24.3	21.5	21.4	18.9	17.6	17.3	19.7	14.1	18.9	17.8	23.
Space Station Facilities	13.8	35.0	13.0	49.8	-	-	12.5				-	-	_	_	_	_	_	-
Shuttle Facilities	193.4	369.4	164.5	117.6	66.1	17.2	6.9	36.1	37.6	49.2	28.1	33.0	9.9	27.9	30.9	64.7	30.3	46.6
Shuttle Payload Facility	-				**			3.8	6.7	13.2	1.7	-	1.5	4.3	_	7.3	4.4	_
Unallocated Plans & Design				-		-		_	_	-	0.5		-		-	-	-	-
Aero. Facils Revitalization	39.8	42.3	32.6	64.1	46.0	-	_			_	-			_	_	_	_	-
Advanced Launch System Fac.				-	15.0	_					~		_	_	-	-		
Trust Fund				_	15.0	-			_	_	_	-	_					
Wake Shield Facility			3.0	2.2	-		_			-	-	-	-	_	_	_		
Future Software Program		6.0	4.0			-		_	-	-		-	-	-	-	-	-	
Earth Science Info Network	42.0	3.4	1.0						-	_	_	_	_	-	-	-		
JSC Visitor Center	-		10.0		_	_			-	-	_	-	-		-		-	_
Deferred Rehab & Major Maint.		11.8	20.0	_				_	_	-	-	_			_		_	_
National Tech. Transfer Center	**	13.5	_	**	-		-	-		-	-	-	_	_	_			_
Chris Columbus Center	_	20.0	_	_	_	-		_		_			-	_	_	-	_	_
Indo Software Valid/Verif	_	10.0	-	_	-			_	_	-	-	-	_	_	_	_		
Space Dynamics Laboratory		10.0	_		-	_	_			-	_	_	-			-	-	_
Delta College, HQ	8.0	-			_	_			_	_	_		-	-	_	_		
High Speed Civil Transport	25.0																	
TOTAL PROGRAM	525.0	531.4	497.9	413.6	286.8	179.6	169.3	144.0	160.0	158.4	101.4	95.5	140.8	156.6	146.3	161.4	117.8	92.5
Approp Trans & Adjust	-5.0	0.0	0.0	187.7	3.3	-1.3	300.0	-10.7	-10.0	-2.9	3.9	0.3	-25.8	-0.5	1.2	-0.5	0.3	0.4
Approp & Availability	520.0	525.0	497.9	601.3	290.1	178.3	469.3	133.3	150.0	155.5	97.5	95.8	115.0	156.1	147.5	160.9	118.1	92.9
*Included in Various Locations Prior to F		- 2010																,

C-24

Construction of Facilities Funding

															As of	September	30, 199
 _	FY 75	FY 74	FY 73	FY 72	FY 71	FY.70	FY 69	_FY 68	FY 67	FY 66	FY 65	FY 64	FY 63	FY 62	FY 61	FY 60	FY:
Arnes Research Center	3.7	-	3.2	6.5	1.1	0.3	0.4	4.2	_	2.8	5.8	11.3	14.3	6.3	0.6	6.1	3
Dryden Flight Research Facility	-	-	-	-	-	0.9	_	-	-	-		2.5	1.8			1.8	
Electronics Research Center	-	-	~	_	-	_	-	_	7.4	5.2	10.4	1.6	-		-	-	
Goddard Space Flight Center	1.9	1.3	0.6	0.7	1.4	0.7	-	0.6	0.7	2.4	2.3	17.7	21.3	11.5	9.4	14.0	3
Jet Propulsion Laboratory	9.2	1.3	0.5	_	1.9	-	-	3.1	0.3	0.9	3.6	3.0	11.4	3.6	8.6	7.7	
Johnson Space Center	0.7		0.6	-	1.1	-	0.9	0.6	11.8	4.0	17.3	33.9	24.5		_	_	
Kennedy Space Center	-		9.7	15.6	0.3	10.5	7.4	20.4	34.6	7.2	87.8	273.4	332.8	115.6	27.8	4.0	
Langley Research Center	3.2	4.0	4.3	-	0.6	5.6	-		6.4	8.4	3.3	9.7	9.8	6.9	12.3	4.5	10
Lewis Research Center	3.7	-	10.0	0.8	0.7	0.3	-	2.1	16.2	0.9	0.8	20.4	45.5	1.1	9.6	6.6	8
Marshall Space Flight Center	3.8	-	-	-	1,3	_	-	0.9	_	1.8	12.0	28.2	40.5	30.7	26.1	-	
Stennis Space Center	_	-	-	-	-	1.4	_	_	_	-	58.4	102.9	77.1	-	-	_	
Wallops Flight Facility	1,1	0.9	0.6	_	_	0.5	0.5	0.7	0.2	1.0	1.7	0.5	4.1	11.3	2.0		16
Michoud Assembly Facility	-	_	_	_	_		0.4	0.5	0.5	0.3	6.2	7.3	28.5				
Nuclear Rocket Dev Station	-		-	-	-	-	-	-	-	-		4.1	11.5	_	_	-	
Pacific Launch Operations	-	-		-		-	-	-	-		0.3	-	-	0.6	0.4	1.1	
Various Locations	7.7	3.7	-	0.7	22.5	26.4	20.8	3.5	6.5	15.1	28.3	211.5	129.9	159.0	28.0	52.4	5.
Facility Planning & Design	10.8	13.5	7.9	3.5	5.4	3.5	1.0	5.4	5.4	5.0	8.8	10.4	12.9	9.8	-	-	
Minor Construction	4.6	4.6		_	_	_	-	-	_	-			-	-	-	-	
Rehab & Mods *	14.8	14.8	11.6	7.9	(17.5)	-	-	-	-		-	-	-	_	_		
Shuttle Facilities	76.5	56.5	27.8	18.3	,	-	-	-		-			-		-	-	
Othes			1.7				_=						_=				
TOTAL PROGRAM	141.7	100.6	78.5	54.0	36.3	50,1	31.4	42.0	90.0	55.0	247.0	738.4	765.9	356.4	124.8	98.2	47.
Approp Trans & Adjust	-1.5	0.5	-1.2	-1.3	-11.3	3.1	-9.6	-6.1	-7.1	5.0	15.9	-58.4	10.3	-40.4	-2.0	-13.6	0
Appropr & Availability	140.2	101.1	77.3	52.7	25.0	53.2	21.8	35.9	82.9	60.0	262.9	680.0	776.2	316.0	122.8	84.6	48.

*Included in Various Locations Prior to FY 1972

Research and Program Management Funding

-7.6 -7.6 -8.	1.9 115.9 5 7.2 76.6 7 24.4 12 3.9 169.1 15 5.2 230.5 17 4.9 156.0 15 2.7 126.6 12 8.8 106.4 9 4.3 172.1 16 6.6 5.5 8.1	Y 81 FY 86 96.4 88.7 72.2 67.4 22.6 20.2 24.5 133.7 76.3 164.7 50.2 135.5 20.8 113.6 99.9 94.6 65.3 156.6 4.9 2.1 20.0 17.8	7 84.6 6 62.8 2 18.9 7 127.8 7 153.0 6 126.4 8 106.6 8 87.5 6 149.0 8 1.3	FY 78 83.4 57.7 18.2 123.5 146.2 116.3 100.7 84.7 143.6 0.1	FY 77 78.4 53.1 17.2 114.3 139.1 110.1 94.7 83.3 140.2 0.7 -	93.5 63.9 19.7 136.6 165.2 128.0 115.7 102.4 170.0 0.5
198.3 191.4 183.6 216.1 201.9 195.6 185.1 176.4 164.6 147.6 139.2 132.1 137.4 128.5 1137.4 10.7 6.3 6. -7.6 -7.6 -8.	7.2 76.6 7 24.4 2 3.9 169.1 14 5.2 230.5 17 4.9 156.0 15 2.7 126.6 12 8.8 106.4 9 4.3 172.1 16 6.6 5.5 8.1	72.2 67.4 22.6 20.2 42.5 133.7 76.3 164.7 50.2 135.5 20.8 113.6 99.9 94.8 65.3 156.6 4.9 23	62.8 2 18.9 7 127.8 7 153.0 6 126.4 8 106.6 8 87.5 6 149.0 8 1.3	57.7 18.2 123.5 146.2 116.3 100.7 84.7 143.6 0.1	53.1 17.2 114.3 139.1 110.1 94.7 83.3 140.2 0.7	63.9 19.7 136.6 165.2 128.0 115.7 102.4 170.0 0.5
198.3 191.4 189.3 216.1 201.9 195.2 185.1 176.4 164.9 147.6 139.2 132.1 37.4 128.5 139.0 199.7 190.9 184.3 10.7 6.3 6. -7.6 -7.6 -8.	24.4 2 3.9 169.1 14 5.2 230.5 17 4.9 156.0 15 2.7 126.6 12 8.8 106.4 9 4.3 172.1 16 6.6 5.5 8.1 -	22.6 20.2 42.5 133.7 76.3 164.7 50.2 135.5 20.8 113.6 99.9 94.8 65.3 156.6 4.9 2.3	2 18.9 7 127.8 7 153.0 6 126.4 8 106.6 8 87.5 6 149.0 8 1.3	18.2 123.5 146.2 116.3 100.7 84.7 143.6 0.1	17.2 114.3 139.1 110.1 94.7 83.3 140.2 0.7	19.7 136.6 165.2 128.0 115.7 102.4 170.0 0.5
216.1 201.9 195.2 185.1 176.4 164.9 147.6 139.2 132. 137.4 128.5 1184. 199.7 190.9 184.9 10.7 6.3 6. -7.6 -7.6 -8.	3.9 169.1 14 5.2 230.5 17 4.9 156.0 15 2.7 126.6 12 8.8 106.4 9 4.3 172.1 18 6.6 5.5 8.1 -	42.5 133.7 76.3 164.7 50.2 135.5 20.8 113.6 99.9 94.8 65.3 156.6 4.9 2.5	7 127.8 7 153.0 6 126.4 8 106.6 8 87.5 6 149.0 8 1.3	123.5 146.2 116.3 100.7 84.7 143.6 0.1	114.3 139.1 110.1 94.7 83.3 140.2 0.7	136.6 165.2 128.0 115.7 102.4 170.0 0.5
216.1 201.9 195.2 185.1 176.4 164.9 147.6 139.2 132. 137.4 128.5 1184. 199.7 190.9 184.9 10.7 6.3 6. -7.6 -7.6 -8.	5.2 230.5 17 4.9 156.0 15 2.7 126.6 12 8.8 106.4 9 4.3 172.1 16 6.6 5.5 8.1 -	76.3 164.7 50.2 135.5 20.8 113.6 99.9 94.8 65.3 156.6 4.9 2	153.0 126.4 106.6 3 87.5 149.0 8 1.3	146.2 116.3 100.7 84.7 143.6 0.1	139.1 110.1 94.7 83.3 140.2 0.7	165.2 128.0 115.7 102.4 170.0 0.5
185.1 176.4 164.9 147.6 139.2 132.1 137.4 128.5 118.1 199.7 190.9 184.5 10.7 6.3 6. -7.6 -7.6 -8.	4.9 156.0 15 2.7 126.6 12 8.8 106.4 9 4.3 172.1 16 6.6 5.5 8.1	50.2 135.5 20.8 113.6 99.9 94.8 65.3 156.6 4.9 2.3	126.4 106.6 3 87.5 149.0 8 1.3	116.3 100.7 84.7 143.6 0.1	110.1 94.7 83.3 140.2 0.7	128.0 115.7 102.4 170.0 0.5
147.6 139.2 132.1 137.4 128.5 118.1 199.7 190.9 184.5 10.7 6.3 6. -7.6 -7.6 -8.	2.7 126.6 12 8.8 106.4 9 4.3 172.1 16 6.6 5.5 8.1 -	20.8 113.8 99.9 94.8 65.3 156.6 4.9 2.	106.6 87.5 149.0 8 1.3	100.7 84.7 143.6 0.1	94.7 83.3 140.2 0.7	115.7 102.4 170.0 0.5
137.4 128.5 118.1 199.7 190.9 184.5 10.7 6.3 6. -7.6 -7.6 -8.	8.8 106.4 9 4.3 172.1 16 6.6 5.5 8.1	99.9 94.8 65.3 156.6 4.9 2.	87.5 149.0 8 1.3	84.7 143.6 0.1	83.3 140.2 0.7	102.4 170.0 0.5
199.7 190.9 184.3 10.7 6.3 6. -7.6 -7.6 -8.	4,3 172.1 16 6.6 5.5 8.1	65.3 156.6 4.9 2.	149.0 8 1.3	143.6 0.1	140.2 0.7	170.0 0.5
10.7 6.3 6. -7.6 -7.6 -8.	6.6 5.5 8.1	4.9 2.	B 1.3	0.1	0.7	0.5
-7.6 -7.6 -8.	8.1				-	-
		20.0 17.8	 15.9	15.1	13.3	 17.0
_ 		20.0 17.8	15.9	15.1	13.3	17.0
331.8 1,255.9 1,197.	7.4 1,183.1 1,07	71.1 996.0	933.8	889.5	844.4	1,012.5
0.5 0.2	0.2	0.3 0.	2 0.3	0.3	0.2	0.6
					-	-
332.3 1,256.1 1,197.	7.4 1,183.3 1,0	71.4 996.2	934.1	889.8	844.6	1,013.1

Research and Program Management Funding

								-	_						As of S	etpember	30, 1993
	FY 75	FY 74	FY 73	FY 72	FY 71	FY 70	FY 69	FY 68	FY_67	FY 66	FY 65	FY 64	FY_63	FY 62	FY 61	FY 60	_FY 59
Headquarters (1)	68.9	63.0	61.2	61.6	64.9	63.2	60.8	57.1	57.4	54.4	69.3	56.1	51.3	26.0	13.9	8.5	5.
Ames Research Center (2)	48.6	46.4	42.4	42.2	40.6	37.6	34.0	33.8	33.8	33.2	31.8	26.9	25.6	22,9	19,9	17.8	16.
Oryden Flight Research Center	13.2	12.2	11.7	11.7	11.1	10.3	9.7	9.5	9.5	9.4	10.5	9.4	7.5	7.2	5.1	4.3	3
Electronics Research Center	-	-	-		_	19.1	17.2	15.4	12.2	6.4	3.2	0.5		-	-		
Goddard Space Flight	104.8	97,3	95.7	96.5	93.1	86.4	73.2	68.3	71.1	64.4	93.3	61.9	52.8	39.1	20.4	15.5	1
Johnson Space Center	121.3	117.6	110.6	113.0	111.1	106.6	98.9	95.7	95.7	86.5	88.7	64.7	51.0	24.1	9.2	-	
Kennedy Space Center	95.9	94.4	92.4	92.6	98.3	97.6	95.8	93.1	92.7	82.0	40.8	26.8	18.8	6.4	_	_	
angley Research Center	88.6	83.3	78.6	80.2	75.3	69.8	63.0	62.2	64.3	63.5	59.0	52.1	51.8	46.6	39.1	33.0	31
ewis Research Center	80.3	79.6	81.2	82.5	78.0	73.9	67.9	66.2	66.3	66.4	69.3	58.5	53.4	45.2	35.8	31.2	27
Marshall Space Flight Center	129,1	137,5	137.2	138.9	145.1	125.7	116.3	126.2	128.7	128,4	138.7	124.3	112.6	89.2	68.6	5,1	
Stennis Space Center	1.6		-				-		-		_			_	-	_	
Pacific Launch Operations	-	-		-			_	_	-	0.6	0.9	0.9	0.6	0.1	-		
Space Nuclear Systems Office		1.1	-	2.2	2.4	2.3	2.1	2.0	2.0	1.8	1.7	1.5	1.0	0.3	_	-	
Wallops Flight Facility	12.4	11.6	10.8	10.9	10.3	9.7	9.1	8.8	9.7	9.3	11.1	8.8	8.9	7.1	5.0	2.7	1
Western Support Office	-							1.0	3.2	4.9	5.0	4.4	3.4	1.4	5.7	0.5	
TOTAL PROGRAM	764.7	744.0	721.8	732.3	3) 730.2	702.2	648.0	639.3	646.6	611,2	623.3	496.8	438.7	315.6	222.7	118.6	87.
Lapsed Unoblig Bal	0.2	0.6	7.6	0.3	0.2	0.4	0.1	0.1	0.9	0.6	-			5.5.0			٠,.
Approp Trans & Adjust	-4.9		-	2,1	-7.7	-12.6	-44.9	-11.4	-7.5	-27.8	0.2	-2.8	_	-	_	-	
Appropriation	760.0	744.6	729.4	734.7	722.7	690.0	603.2	628.0	640.0	584.0	623.5	494.0	438.7	315.6	222.7	118.6	87.0

⁽¹⁾ Includes NASA Pasadena Office

⁽²⁾ ERC was closed on June 30, 1970
(3) Includes \$10 million for basic institutional and other requirements for agencies resident at MTF/Slidell

Personnel Summary

	FY59	FY60	_ FY61	FY62	_ FY63 _	FY64	_FY65_	FY66	FY67_	FY68	FY69	FY70	FY71
Headquarters	429	587	735	1,477	2,001	2,158	2,135	2,336	2,373	2,310	2,293	2,187	1,895
Ames Research Center	1,464	1,421	1,471	1,658	2,116	2,204	2,270	2,310	2,264	2,197	2.117	2.033	1.968
Dryden Flight Research Facility (1)	340	408	447	538	616	619	669	662	642	622	601	583	579
Electronics Research Center			-		25 (a)	33 (a)	250	555	791	950	951	592	••
Goddard Space Flight Center	398	1,255	1,599	2,755	3,487	3,675	3,774	3,958	3,997	4,073	4,295	4,487	4,459
Johnson Space Center	**	in GSFC	794	1,786	3,345	4,277	4,413	4,889	5,064	4,956	4,751	4,539	4,298
Kennedy Space Center				339	1,181	1,625	2,464	2,669	2,867	3,044	3,058	2,895	2,704
Langley Research Center	3,624	3,203	3,338	3,894	4,220	4,330	4,371	4,485	4,405	4,219	4,087	3,970	3,830
Lewis Research Center	2,809	2,722	2,773	3,800	4,697	4,859	4,897	5,047	4,956	4,583	4,399	4,240	4,083
Marshall Space Flight Center		370	5,948	6,843	7,332	7,679	7,719	7,740	7,602	6,935	6,639	6.325	6,060
NASA Pasadena Office			-		-	(b)	19	85	91	79	80	72	44
Pacific Launch Operations Office	*~		_		17	22	21	(c)					
Space Nuclear Systems Office			4	39	96	112	116	115	113	108	104	103	89
Stennis Space Center							-	~	••		_	-	
Wallops Flight Facility (2)	171	229	302	421	493	530	554	563	576	565	. 554	522	497
Western Support Office		37	60	136	308	376	377	294	119	(n		
Total	9,235	10,232	17,471	23,686	29,934	32,499	34,049	35,708	35,860	34,641	33,929	32,548	30,506
	FY73	FY74 _	FY75	FY76_	FY77	FY78	EY79	_ FY80	FY81_				
Headquarters	1.747	1.734	1.673	1.708	1,619	1.606	1,534	1,658	1,638				
Ames Research Center	1,740	1,776	1,754	1,724	1.645	1.691	1,713	1,713	1.652	_			
Dryden Flight Research Facility	509	531	544	566	546	514	498	499	491	l N	OTES:		
Electronics Research Center			-							1 "			
Goddard Space Flight Center	3.852	3,936	3,871	3,808	3.666	3.641	3.562	3,535	3,431	1 * 6	ncludes Oth	er Than Perr	manent
Johnson Space Center	3.896	3,886	3,877	3,796	3,640	3,617	3,563	3,616	3.498	, ,	1010000	01 11101111 011	nanon
Kennedy Space Center	2.516	2,408	2,377	2,404	2,270	2,234	2,264	2,291	2,224	1 (1)	Included in	ARC After	FY 1981
Langley Research Center	3.389	3,504	3,472	3,407	3.207	3,167	3.125	3,094	3,028			GSFC Afte	
Lewis Research Center	3,368	3,172	3,181	3,168	3,061	2.964	2,907	2,901	2.782	1 "			
Marshall Space Flight Center	5,287	4.574	4,337	4,336	4.014	3,808	3,677	3,646	3,479] (a)	Figures for	North Easte	em Office
NASA Pasadena Office	39	39	35	.,		-,	~					Figures Inc	
				~	~				·-			1966, PLO	
Pacific Launch Operations Office				-			-			1 (9)	Merged U		
Pacific Launch Operations Office Space Nuclear Systems Office		**											
Space Nuclear Systems Office					94	108	108	111	113	(d)		1968, WSC) Was
Space Nuclear Systems Office Stennis Space Center			76	72 437		108 429	108 409	111 406		(d)	Effective in	1968, WSC	
Space Nuclear Systems Office	434			72	94 426				113 400	(d)	Effective in	shed and Ele	

- 1981
 - Office
- ed in WSO ctivity Was

FY 72 1,755

1,844

4,178

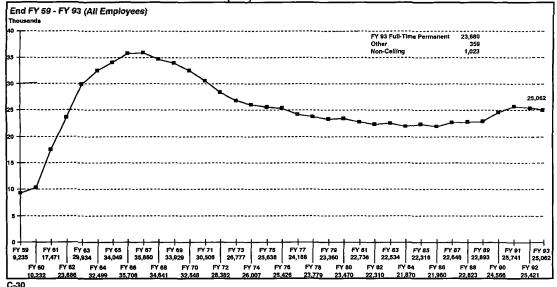
3,935 2,568

3,592

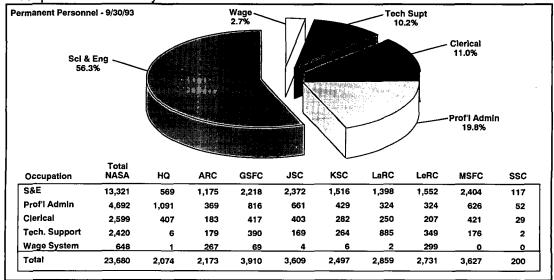
3,866

5,555

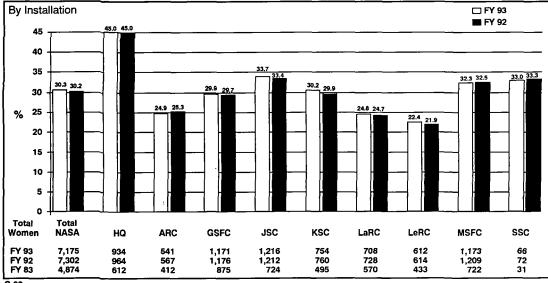
28,382

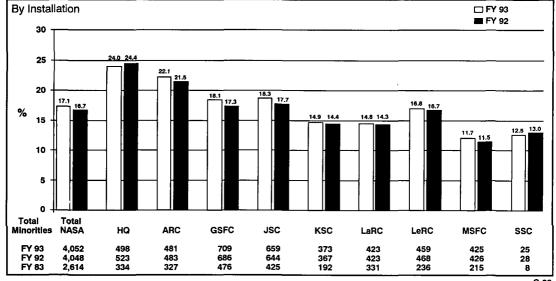

539

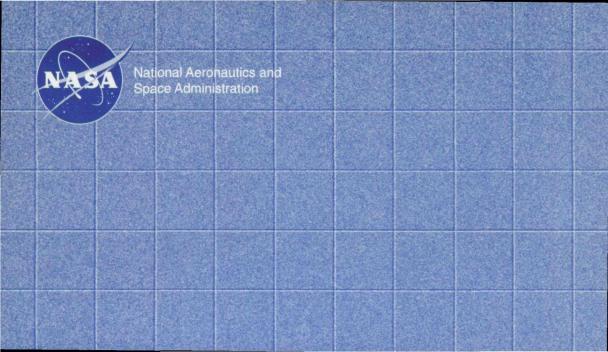
- nts Merged


Personnel Summary

	FY82	FY83	FY84	FY85	FY86	FY87	FY88	FY89	FY90	FY91	FY92	FY93
Headquarters -	1,431	1,492	1,396	1,383	1,362	1,532	1,653	1,727	1,966	2,092	2,143	2,074
Ames Research Center	2,041	2,033	2,043	2,052	2,072	2,079	2,101	2,151	2,205	2,263	2,243	2,173
Goddard Space Flight Center	3,621	3,668	3,541	3,629	3,679	3,648	3,626	3,735	3,873	3,999	3,964	3,910
Johnson Space Center	3,268	3,235	3,227	3,330	3,269	3,349	3,399	3,578	3,615	3,677	3,631	3,609
Kennedy Space Center	2,104	2,084	2,067	2,081	2,051	2,188	2,236	2,423	2,466	2,571	2,546	2,497
Langley Research Center	2,801	2,904	2,821	2,827	2,814	2,851	2,840	2,864	2,961	2,969	2,953	2,859
Lewis Research Center	2,485	2,632	2,624	2,715	2,598	2,663	2,649	2,749	2,728	2,835	2,799	2,731
Marshall Space Flight Center	3,332	3,351	3,223	3,284	3,260	3,384	3,340	3,609	3,619	3,788	3,715	3,627
Stennis Space Center	103	106	108	122	123	137	147	183	192	222	216	200
NASA Permanent	21,186	21,505	21,050	21,423	21,228	21,831	21,991	23,019	23,625	24,416	24,210	23,680
Other Than Permanent	1,124	1,029	820	893	732	815	832	874	941	1,325	1,211	1,382
NASA Total	22,310	22,534	21,870	22,316	21,960	22,646	22,823	23,893	24,566	25,741	25,421	25,062


NASA Civil Service Workforce Employment Trend


Occupational Summary



Women as Percent of Permanent Employees

Minorities as Percent of Permanent Employees

