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Although the problem of the electromagnetic

quantum harmonic oscillator is considered in te×tbooks on

mechanics (see, e.g., [1]) some its aspects seem to

clarified until now. By this we mean that usually the

quantum states of both the oscillator and the field are

radiation by a

quantum

be not

initial

assumed

to be characterized by a definite energy level of the oscillator

and definite occupation numbers of the field modes. In connection _

with growing interest in squeezed states it would be interesting

to analize the general case when the initial states of both

subsystems are arbitrary superpositions of energy eigenstates.

This problem was considered partly in Refs. 2-4, where the power

of the spontaneous emission was calculated in the case of an

arbitrary oscillator's initial state (but the field was supposed

to be initially in a vacuum state). In the present article we

calculate the rate of the oscillator average energy and squeezing

and correlation parameter change under the influence of an

arbitrary e>::ternal radiation field. Some other problems relating

to the interaction between quantum particles (atoms) or

oscillators with the electromagnetic radiation being in arbitrary

( in particular, squeezed) state were investigated, e.g., in Refs

..=,-7•

Let us describe a charged harmonic

Hami Itonian

H = h_aa
0

and the field by a hamiltonian

oscillator by a

(i)
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H m h _ _b b.J J J
J

here _ is the frequency of the oscillator, _ -
J

modes, a,b - corresponding destruction operators.

In a rather general case interaction can be

form

ones of

(2)

field

described in a

H = h _j I_J_a*b_+j X a_bj j + H.c. 1 (3)

(H.c. means hermitian conjugated part, _ and _. are constants).
J J

In Schrodinger picture an arbitrary initial state vector

I_(0) > evolves into a state vector l_=(t) > as predicted by

+ H + H.Schrodinger equation with Hamiltonian H = H ° I i

In interaction picture any Schrodinger operator Q changes

+ H
according to evolution operator U ° corresponding to H = H ° m

Q(t) = Uo(t)QUo(t). (4)

For example

a(t) = a exp(-i_t), b (t) = b, exp(-i_t). (5)
J 3 J

The interaction Hamiltonian in this picture

H
Z

J

generates evolution operator U(t) so that a state vector

picture defined as

I_(t) > = u+o(t) l_(t) >

will variate according to

= h _ IHja*b_e×p(i_t+i_t)+j Xa÷be×p(-iwt+i_t)j_ J + H.c.]

in

(&)

this

(7)

Iv(t)> = U(t) I_(0)>.

Expectation value in this picture

(8)

<Q>z = <_(t) iQl_,(t)> (9)

variates slowly, only due to interaction. On the other hand, it is

related to the conventional expectation value as follows

<O)"r : <'_slUoOUol_s >" (10)

After introducing designations we can pose several questions

to answer:

1. Can absorption and emission be distinguished iDa general case ?

2. Then how to calculate the rates of these processes ?
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3. Is time ordering important in perturbation calculation for this

case ?

4. Does stimulated emission manifest itself ?

5. How does squeezing parameters of the oscillator and the field

vary ?

To calculate the rates of the processes we need to consider

infinitely long time intervals T _ _ in comparison with

oscillation period. But they must be much shorter than damping

time. Then the evolution operator has meaning of scattering matri>(

S transforming initial state Iv(O)> w li> to resulting one Ir>.

From Heisenberg equation one gets

S = expT(-iT), (11)

where all products are believed time-ordered (designated with

subscript T), and T - matrix is given by

T = $ H (t)/h dt. (12)
I

For our particular case

T = 2_h _ [ X a_b 6(_-_) + H.c.l, (13)
j J J J

here the terms with _ vanish because of a factor 6(_+w). Further
J

6
J

E 6(_-_). Delta function originates as a limit of an integral
J

T/2

Int = (14)$ exp (i or) dt
-T/2

(here the initial instant

Limits of this integral are

Int _ _,

in time re-designated as -TI2).

Int _ 2n _(13), if T _

if _ _ O, (14')

(14")

Conventional techique in quantum

follows [8]. T - matrix is splitted in!o two

part

T- = 2n E _a_b 6(w-_)

j J _ J

and hermitian _onjugated emission part T _.

electrodynamics is as

parts - absorption

Then

(15)

probability for
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time T of absorption ( and similarly emission ) is declared as

P = <i IT_T-Ii: ::'- _ I <f IT-I i'> 12, (16)
f

where summation is performed over a complete set of possible final

states. If rewritten in a form

T- = 2_M-6(Ef-E_) ,
(17)

where Ef and E_ are energies of final and initial states, it shows

employing (14) that (16) expresses the well-known Fermi's rule

2_

P = T E l<flM-li>I 2 6(et-ei)" (18)
f

But is it always valid and why probability is defined in this

manner ?

The expansion of S - matrix (11) is as follows

S = 1 - i (T*+T-) - (T 2) /2 + ...
T

The identity of normalization must be valid

perturbation, i.e. for all powers of T as it

the first power of coupling constant :

I = <rlr> " <i Ii> + <i IT+T÷Ii> + <i IT-T_li>

+ <i IT÷T-li> + <i IT-T-li> - <i IcT')Tli> + ..-

in all orders

is proportional

(19)

of

to

(20)

Then terms from second to fifth can be interpreted as a

probability of transitions in the second order, since the first

and the sixth will be probability to stay in the initial state. So

conventional procedure ignores the second and the fifth terms. It

is possible only if T-li> is orthogonal to T*li>. It can happen

when either field or the oscillator is in energy eigenstate. Then

actually only _wo levels are involved in any sort of transitions.

In this case emission and absorption can be distinguished- That is

on obtaining after measurement one of If> states we can tell a

result of absorption from a result of emission.

For arbitrary initial state they cannot be distinguished

experimentally. But the total probability of emission and

absorption together in (20) does not have physical meaning.

Therefore we have to revise our approach. More well-grounded
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procedure is to calculate not probabilities but observable

variations :

_<Q>z = <i _S'QSIi> - <i IQli>. (21)

Besides, we do not need to introduce the Fock basis If>, but deal

only with the initial state.

Since the observable variation is expected to grow with time,

to calculate the rates of the processes we need to consider only

terms proportional to long time T. We will see later that

expressions like (21) contain terms with factor 6(_-_) and terms
J

with 62(_-w) under a sign of summation. One power of delta
J

function disappear because of summation over the continuum of

modes. The rest one power will transform to factor T. So terms

with delta function of infinitely little difference to the first

and zeroth powers will give non-growing with time observable

variation. Consequently, these terms represent dressing bare

states by virtual quanta. Terms with the second powers of delta

function will give time-Proportional variations of observables.

Just these terms correspond to transitions with creation of real

quanta.

For our case we need S - matrix up to the second order of

perturbation. In this order a time-ordered product

(TZ)T =__ dt• _£ dt 2 _x(t•lHx(t2)IT/h2 , (22)

where

I H (t)H it ),[H (t)H (t)]- z 2 x .
x • x 2 T Hx (t•) Hx(t2) ,

is different from non-ordered product

(T 2) = TxT ÷ T 2
T di.f

by a term

if t > t

if t > t
i 2'

(23)

(24)

t
00 2

T 2 = $ dt $ dt [H (t)H (t)] /h 2 , (25)di.f --00 2 -_0 • x 2 Z •

The latter expression depends on time like

t
2 exp(i (A-_)Z] - I

/" dt $ dtlexp(iAt +ii_t ) = 4_ 6(A+_) lim • (26)-_0 2 --_ 2 •
z_ i (;_-_)
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Such terms do If A = w + w then theJ

last factor in (26") is not singular. Terms with A = _ - _ orJ

opposite give a contribution to T2dLf

exp (2i AZ) -l+exp (-2i AZ)-I

12 [ab*,a*b ] , (27)E IXj j j 2i A

which is not singular either. So T 2 contains first powers ofdif

delta functions and can be neglected compared to T (the former is

coupling constant )_ times less).
J

not vanish only if A = -O.

We arrive to an assumption

S = 1 -iT - TxT/2,

that leads to ,

_<Q >
I

1 [T,Q]] IS>= <i I iCT,Q] - _ [T,

the first term being virtual and the second

Straightforward calculation using (29) gives for example

(28)

(29)

real.

= 1
A<a> x - 1_. iX.2rr6.<b.> - _ £J J J . J

j
• I •

A<bk > = -iXk2n6k<a> - _ Xk2n6 k _. X2n6<b >,
x j J J

A<a*a> = i _ ()_<bea> - X<a*b >)2n6- _ l×kl2(2n6k)2<a*a",'
I .j J J J J J Ic

1 X* * > * * _ • (30c)
+ ._ _: ()'j k<bkbj • + XjXk<bjbk_) (2n):636 k

k.j

• := * @ * *a "::" 2
_<bkbk> i (×x<a bk> - _k<bka>)2m5 k + IX)_! 2<a , (2n6 k)

( -o -, : • ?- n6 k X k E X_n6j<bjbk/ + )_ E X2_6.<bkb '> " (30d)
• j J ,} J J

These variations are expressed in terms of expectation in

the initial state (designated with triangle brackets), can

define quadrature component variances by

D(P,Q) = _ <pQ> + <Qp> - <P><Q>. (31)

Their variations can be e:...'pressed similar to

= _<aa> - 2<a> A<a> - (_<a>)z (32)
_D(a'a) x x x x "

values

One

(30a)

(30b)

This kind of variance is important because in canonical
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coordinate-momentum space ImD(a,a) corresponds to correlation and

ReD(a,a) - to squeezing. In Schrodinger picture they rapidly

transfer from each to other.

Retaining in (30) and (32) only terms proportional to T and

dividing by T we obtain time derivative equations. From them we

clearly see that radiation damping

" I: ..Ix,i122rt6j (_3)

determines variation of amplitudes

d

dt <a'..x = 2_ <a>, (34a)
d

1
d-_ <bk>z = - 2 IXki22rt6k <bk>" (34b)

These equations coincide with those obtained usually in the

frame of Wigner - Weisskopf approximation. Field modes and the

oscillator exchange their energies. As a result there is no effect

of stimulated emission but only two independent fluxes of energy:

d

d-_ <a*a>x = - _,<a*a> + _ l_k122n6k<bkbk>, (34c)

d k

_-_ <b_bk> x - IXk122_6k<a*a> + l_k122n6k<bkbk>. (34d)

Squeezing-correlation parameter behaves in a similar way :

d

__ = 2 2n6kD (bk, bk)dt D(a'a)z - _,D(a,a) - _ )_k

d k

d--_ D(bk'bk)x = - _22n6k D(a'a) - l>_k122n6kD(bk'bk )"

(34e)

(._'-,4f )

Further development can be made for the specific

of coefficients in Hamiltonian (3). For the continuum

summation is substituted by integration over phase

summation over polarization inde>_es r

-, _ $ Up do> d_'}

j r.

with volume V, solid angle element di% mode frequency density

2
b_

8nsc s

expressions

of modes

space and

(35)

(36)
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Decomposition of vector potential A(r,t) over mode variables is

h
A(r,t) = E _ coV e (b (t)e×p(ikr) + H.c.). (37)J J J _ J

where e is a polarization vector and k- a wave vector of j-th
j J

mode.

Gauge invariance substitution of oscillator momentum p * p -

ea leads to the interaction Hamiltonian (3)

-epX eZX z

H = + -- • (38)
m 2m

Here e,m are the charge and the mass of the oscillator. The second

term in this case proves to be a unity operator in state-space of

the oscillator. Hence it results in an infinitely little

renormalization of field energy because of a factor I/V (for

infinitely large volume V). The coupling constant will be

(39)

where 0 is the angle between a polarization vector and the
J

oscillation direction.

On the other hand, from the Hamiltonian in another gauge form

H = - eqE, (40)

where q is a coordinate of the oscillator and E is the electric

field vector, it follows that the coupling constant
t

X' = _-J • (41)
J J

But as all expressions contain delta functions 6(w-_), constants
o

(39) and (41) coincide. We see that it is one of the cases when

gauge transform, performed over state vectors in the absence of

vector potential and corresponding to a change from gauge form

(40) to (38), does not make any difference. These transforms were

considered in detail in Ref. 10,

Einstein's stimulated coefficient can be also introduced.

However it is different from a common one - it depends on the

angle and expresses radiati'on power instead of probability :
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2 _e_e c os

B --2.u Ix I"= 2m_
o

The spontaneous emission coefficient is obtained

Integration should be performed over solid angles of

vectors (they are also isotropical ly distributed) ,

vectors of modes :
2 2 2

(d • b_

= I B dO = 6_m_ c s "
4_sc 5 o

(42)

from (33) •

pol arisati on

not wave

(43)

A light beam containing several close modes has an energy density

W = _ p<b*b>h_ (44)
r

or W = 8 W dO. (45)

It will allow us to express eqs.(34) through physically

meaningfull values.

d[h_K.a_a>] - - _h_Ka*a> + $ BW dO,

d ,

[WV] " B [_a*a> - W 1 ,

(4&a)

(46b)

d D(b,b)

d-[ D(a,a) - - zD(a,a) + f BW
i_b+b>

dO, (46c)

d

[WVD(b,b)I - B [pf_,b'b>D(a,a)- W D(b,b)].
(46d)

All above discussed enables us to answer posed questions :

1. In general absorption and emission can not be distinguished.

2. So not Fermi's rule but e×pectation values should be used to

calculate the rates of these processes.

3. Time ordering in this case is not important up to the second

order of perturbation.

4. Stimulated emission does not manifest itself in the final

result.

5. Energy and squeezing-correlation parameters behave in a similar

way : there are independent interchange fl_×es of them

proportional to their current values.
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