Generalised squeezing and informetion cheory approsch to quantu antangianant

A. VOURDAS
Department of Electrical Engineering and Electronics
University of Liverpool
P.O. Box 147
Liverpool L69 3BX

Abstract

It is shown that the usual one and two-mode squeezing are based on reducible representations of the $S U(1,1)$ group. Generalised squeezing is introduced with the use of different $\operatorname{SU}(1,1)$ rotations on each irreducible sector. Two-mode squeezing entangles the rodes and information theory methods are used to study this entanglement. The ontanglement of three modes is also studied with the use of the strong subadditivity property of the entropy.

1. Incroduction

In a recenc paper (1) we have explained that two-mode aqueazing is based on reducible representations of the $\operatorname{sU}(1,1)$. The various irreducible sectors have been identified and different $S U(1,1)$ rotations have been perforaed on each of them, generalizing in this way the concept of squeezing. In this paper we extend these ideas. In section 2 ve consider one mode squeezing and prove that it is also based on reducible representations of $S U(1,1)$. The two irreducible sectors are identified and different $S U(1,1)$ rotations are applied on eich of thea, genaralising in this way the concept of one-mode squeering. In section 3 the two-mode case is considered in connection with both the $S U(1,1)$ and $S U(2)$ groups. Some of the results presented in [1] are briefly reviewed here. Each irreducible sector of the SU(1,1) (or SU(2)) group is squeezed independently and the generalised squeezed seace is characterised by an infinite number of squeezing paraneters. Haniltonians which will lead to this type of squeszing, are presented.

Two-mode squeezing entangles the two modes. Especially our generallsed squeezing entangles then in a very complicated way. One approach to study this entanglement is by using information theory methods. In section 4 wo use the subaddivity and atrong subadditivity properties of the entropy to define quantities which exprese the entanglement of two and three quantua systens. Especially interesting are the results for three entangled systens, because they indicate that this case is non-trivial generalisation of the two systea entanglement. The latter case has of course been discussed aince the beginning of quantum mechanics; but it is only recently that some preliminary discussion of the former case has appeared [2]. Our results based on informetion theory methods suggest that the three systen entanglement is a very interesting probles that requires further study.

2. Genoralifed one-rode mquazins

We consider the harmonic oscillator Hilbert space H and express it as

$$
\begin{equation*}
\mathrm{H}=\mathrm{H}_{0}+\mathrm{H}_{1} \tag{1}
\end{equation*}
$$

where $H_{\text {g }}$ is the subspace spanned by the even number eigenstates and H_{1} the subspaci spanned by the odd number eigenstaces. We also consider the corresponding projeceion operstors to these subspaces:

$$
\begin{aligned}
& \pi_{0}-\sum_{N=0}^{\infty}|2 N><2 N| \\
& \pi_{1}=\sum_{N=0}^{\infty}|2 N+1><2 N+1| \\
& \pi_{0}+\pi_{1}-1
\end{aligned}
$$

The one mode squeezing operacora are defined as:

$$
\begin{align*}
& S\left(x, 0_{1}, \lambda\right)=\exp \left[-\frac{1}{2} x e^{-1 k_{+}} \frac{1}{2} \operatorname{c}^{10} k_{-}\right] \exp \left(1 \lambda K_{0}\right) \\
& K_{0}-\frac{1}{2} a^{+}+\frac{1}{4} ; k_{+}-\frac{1}{2} e^{+2} ; \quad k=\frac{1}{2} a^{2} \\
& {\left[K_{0}, K_{ \pm}\right]= \pm K_{ \pm} ;\left[K_{-}, K_{+}\right]=2 K_{0}} \tag{3}\\
& k^{2}-K_{0}^{2}-\frac{1}{2}\left(K_{+} k+K_{-} K_{+}\right)-k(k-1)-\frac{3}{16}
\end{align*}
$$

They form a reducible reprasentation of $\operatorname{SU}(1,1)$. More specifically, thay fori the $k=1 / 4$ irreducible representation when they act on H_{0} only; and the $k=3 / 4$ irreducible representation when they act on H_{1} only ${ }^{\circ}$ [3]. Related to this is the fact that:
$\left[S(x, 0, \lambda), \pi_{0}\right]=\left[S(x, 1, \lambda), \pi_{1}\right]-0$
The following unitary operator squeezes Independently each irreducible sector:
$U\left(r_{0} \lambda_{0} ; r_{1} \nu_{1} \lambda_{1}\right)=S\left(r_{0}, \lambda_{0}\right) r_{0}+S\left(r_{1}, 1_{1}, \lambda_{1}\right) \pi_{1}$
This is more general than the operator of equ.(3). Only in the special case
$r_{0}=r_{1} ; \lambda_{0}=\lambda_{1} ; \lambda_{0}=\lambda_{1}$
the operator (5) reduces to the operator (3). Acting with the operator (5) on a coherent seace $\mid A>$, we get a generalised squeezed seate:

$-S\left(r_{0}, \theta_{0}, \lambda_{0}\right) x_{0}\left|A>+S\left(r_{1}, \lambda_{1}, \lambda_{1}\right) \Gamma_{1}\right| A>$
In the special case of equ. (6) this reduces to the usual squeezed states.

In systems described by the Hamiltonian

$$
\begin{equation*}
H=w a^{+} a+\left(\mu_{0} a^{+2}+\mu_{0}^{*} a^{2}\right) \pi_{0}+\left(\mu_{1} a^{+2}+\mu_{1}^{*} a^{2}\right) \pi_{1} \tag{8}
\end{equation*}
$$

ordinary coherent states will evolve into the generalised squeezed states (7). In the special case $\mu_{0}-\mu_{1}$ the Hanileonian (8) reduces 50 the Hamiltonian

$$
\begin{equation*}
H=\omega a^{+} a+\mu a^{2}+\mu a^{+2} \tag{9}
\end{equation*}
$$

which is associated to the usual squeazed states.

3. Generalised Ero-modo squenzing

The approprlate group for the study of two-mode quadratic Haniltonians is $\operatorname{Sp}(4, R)$ [4]. In this paper we shall only consider its subgroups $S U(1,1)$ and $S U(2)$ in connaction with the Haniltonians:

$$
\begin{align*}
& H_{1}-\omega_{1} a_{1}^{+} a_{1}+\omega_{2} a_{2}^{+} a_{2}+\mu a_{1} a_{2}+\mu * a_{1}^{+} a_{2}^{+} \tag{10}\\
& H_{2}-\omega_{1} a_{1}^{+} a_{1}+\omega_{2} a_{2}^{+} a_{2}+\mu a_{1} a_{2}^{+}+\mu a_{1}^{+} a_{2} \tag{11}
\end{align*}
$$

correspondingly. Both of these Hamiltonians have been used extensively in quantur optics problem [5].

Starting with the $S U(1,1)$ group we oxpress the two-mode Hilbert space as

$$
\begin{equation*}
H_{A} \times H_{B}=\sum_{k=-\infty}^{\infty} H_{k} \tag{12}
\end{equation*}
$$

where H_{k} is the subspace spanned by the number eigenstates

$$
H_{k}=(\mid N+k, N>; N=\max (0,-k), \ldots . \infty)
$$

We also introduce the corresponding projection operators

$$
\begin{align*}
& \pi_{k}=\sum|N+k, N<N+k, N| \\
& \sum N_{k} \cdot 1 \tag{14}
\end{align*}
$$

The two-node $\operatorname{SU}(1,1)$ squeezing operacors are defined as

$$
\begin{align*}
& S(r, 0, \lambda)=\exp \left(\left.\cdot \frac{1}{2} r e^{-10} K_{+}+\frac{1}{2} r e^{10} K_{1} \right\rvert\, \exp \left(1 \lambda K_{0}\right)\right. \\
& K_{+}-a_{1}^{+} a_{2}^{+} ; K_{-}-a_{1} a_{2}, K_{0}-\frac{1}{2}\left(a_{1}^{+} a_{1}+a_{2}^{+} a_{2}+1\right) \\
& K^{2}=\frac{1}{4}\left(a_{1}^{+} a_{1} \cdot a_{2}^{+} a_{2}\right)^{2}=\frac{1}{4} \tag{15}
\end{align*}
$$

They form a reducible representation of $S U(1,1)$. More specifically, when they act on the space H_{k} only, they form the

$$
\begin{equation*}
l=\frac{1+|k|}{2} \tag{16}
\end{equation*}
$$

irreducible representation of $S U(1,1)$ which belongs in the discrete series. Note also that
$\left[S(r, \lambda, \lambda), \pi_{k}\right]=0$
The following unitary operator squeezes independencly each irreducible sector:

$$
\begin{equation*}
U\left(\left(r_{k}, \theta_{k}, \lambda_{k} \mid\right)-\sum S\left(r_{k}, o_{k}, \lambda_{k}\right) \pi_{k}\right. \tag{18}
\end{equation*}
$$

In the apecial case

$$
\begin{align*}
& \cdots=r_{-1}-r_{0}=r_{1}=\cdots \\
& \cdots=v_{-1}-1_{0}=r_{1}=\cdots \tag{19}\\
& \cdots=\lambda_{-1}-\lambda_{0}=\lambda_{1}-\cdots
\end{align*}
$$

the operators (18) reduce to the operators (15).
Acting with the operators (18) on two-mode coherent states we get generalised two-mode squeezed states:

$$
\begin{equation*}
\left.U\left(\left|r_{k}\right|_{k} \lambda_{k} \mid\right)\left|A_{1}, A_{2}>-\sum_{k} S\left(r_{k}, A_{k}, \lambda_{k}\right) x_{k}\right| A_{1}, A_{2}\right\rangle \tag{20}
\end{equation*}
$$

In the special case of equ. (19) chey reduce to the usual two-mode squeszed states. In systems described by the Hasiltonian

$$
\begin{equation*}
H=\omega_{1} a_{1}^{+} a_{1}+\omega_{2} a_{2}^{+} a_{2}+\sum_{k}\left(\mu_{k} a_{1} a_{2}+\mu_{k}^{\dagger} a_{1}^{+} a_{2}^{+}\right) \pi_{k} \tag{21}
\end{equation*}
$$

ordinary coherent states will evolve into the states of equ. (20). In the special case that all the mere equal to each other, the Hasiltonian (21) reduces to thertanileonian (10).

In the case of the $S U(2)$ group we express the two-mode Hilbert space as

$$
\begin{align*}
& H_{A} \times H_{B}=\sum_{j} H_{2 j+1} \\
& j=0, H, 1, \ldots \tag{22}
\end{align*}
$$

where $H_{2 j+1}$ is the subspace spanned by the number eigenseates

$$
\begin{equation*}
H_{2 j+1}-(|N, 2 j-N\rangle ; N-0, \ldots(2 j)) \tag{23}
\end{equation*}
$$

We also introduce the corresponding projection operators

$$
\begin{align*}
& \pi_{2 j+1}=\sum_{N=0}^{2 j}|N, 2 j-N\rangle<N, 2 j-N \mid \\
& \sum \pi_{2 j+1}=1 \tag{24}
\end{align*}
$$

The $S U(2)$ squeezing operators are defined as:

$$
\begin{align*}
& T(r, \theta, \lambda)-\exp \left[\cdot \frac{1}{2} r e^{-10} J_{+}+\frac{1}{2} r 0^{10} J\right] \exp \left(1 \lambda J_{0}\right) \\
& J_{+}=a_{1}^{+} a_{2} ; J=a_{1} a_{2}^{+} ; J_{0}-\frac{1}{2}\left(a_{1}^{+} a_{1} \cdot a_{2}^{+} a_{2}\right) \\
& J^{2}=\left[\frac{1}{2}\left(a_{1}^{+} a_{1}+a_{2}^{+} a_{2}\right)\right]\left[\frac{1}{2}\left(a_{1}^{+} a_{1}+a_{2}^{+} a_{2}+1\right)\right] \tag{25}
\end{align*}
$$

They form a reducible reprasentation of $S U(2)$. When they act on the space $\mathrm{H}_{2}+1$ only, they form the J irreducible representation of $\mathrm{SU}(2)$. Note also thit ${ }^{1+1}$
$\left[T(r, C, \lambda), \pi_{2 j+1}\right]=0$
The following unitary operator performs SU(2) rotations independently on each irreducible sector:

$$
\begin{equation*}
U\left(\left(r_{2 j+1}, \theta_{2 j+1}, \lambda_{2 j+1}\right)\right)=\sum T\left(r_{2 j+1},\left(_{2 j+1}, \lambda_{2 j+1}\right) x_{2 j+1}\right. \tag{27}
\end{equation*}
$$

In the special case:

$$
\begin{align*}
& r_{1}=r_{2}=\cdots \tag{28}\\
& \theta_{1}^{1}=\theta_{2}=\cdots \\
& \lambda_{1}=\lambda_{2}=\cdots
\end{align*}
$$

The operatora (27) reduce to the operators (25). Acting with the operators (27) on two-mode coherent states we get the states:
$U\left(+F_{2 j+1}, A_{2 j+1}, \lambda_{2 j+1}\right) \mid A_{1}, A_{2}>-$
$\sum_{j} I\left(r_{2 j+1},{ }_{2 j+1}, \lambda_{2 j+1}\right) x_{2 j+1}\left|A_{1}, A_{2}\right\rangle$
They will be formed during the tiae evolution of ordinary coherent states in systoas described by the Hallitonian:

$$
\begin{equation*}
H-\omega_{1} a_{1}^{+} a_{1}+\omega_{2} a_{2}^{+} a_{2}+\sum \pi_{2 j+1}\left(\mu_{2 j+1} a_{1} a_{2}^{+}+\mu_{2 j+1}^{*} a_{1}^{+} a_{2}\right) \tag{30}
\end{equation*}
$$

In the spacial case that all the $\mu_{2 j+}$ are equal to each other, the Hamilconian (30) reduces to the Hailttonian (11).

The uncertainty properties of the atates (20). (29) have been studied in [1]. The resules presented there show that both of these states axhibit squeezing.

4. Inforpacion theory approach_so quantur_entanchamas

In this section we use quantum information theory methods for the study of two- and three-mode corralated systens. Let ρ be a two-aode denaity matrix and $\left\langle N_{1}\right\rangle,\left\langle N_{2}\right\rangle$ the average number of photons in the two modes. As in our previous work [6] we define the information contained in this density matrix as

$$
\begin{align*}
I= & S_{\max } \cdot S(\rho)=S\left[\rho_{1}^{\mathrm{th}}\left(\left\langle N_{1}\right\rangle\right) \times \rho_{2}^{\mathrm{th}}\left(\left\langle\mathrm{~N}_{2}\right\rangle\right)\right] \cdot S(\rho) \\
S(\rho) & =-\operatorname{Tr} \rho \ln \rho \\
& \rho_{1}^{\mathrm{th}}\left(\left\langle N_{1}\right\rangle\right)=\frac{\left\langle N_{1}\right\rangle^{N 1}}{\left(1+\left\langle N_{1}\right\rangle\right)^{1+N_{1}}}\left|N_{1}\right\rangle\left\langle N_{1}\right| ; 1-1,2 \tag{31}
\end{align*}
$$

Following the negentropy Ideas of Brillouin we aubtract here the entropy of the system from the maximum entropy that the systen could have had, with the average number of photons in the two modes been kept fixed. The maximum entropy is equal to the entropy of a therasl systen with an average number of photons in the two modes $\left\langle N_{1}\right\rangle,\left\langle N_{2}\right\rangle$. Taking partial traces, we define:

$$
\begin{equation*}
\rho_{1}=\mathrm{Tr}_{2} \rho ; \rho_{2}-\mathrm{Tr}_{1} \tag{32}
\end{equation*}
$$

and express the information (31) as [7. 8]

$$
\begin{align*}
& I-I_{1}+I_{2}+I_{12} \\
& \left.I_{1}=S\left[\rho_{1} \text { th }\left(Q_{1}\right\rangle\right)\right]-S\left(\rho_{1}\right) \\
& I_{12}=S\left(\rho_{1}\right)+S\left(\rho_{2}\right)-S(\rho) \tag{33}
\end{align*}
$$

If is the inforaation in the mode 1 ; and I_{12} is the information in the correlftion between the two eodes. The subadditioity property ensures that the I_{12} is non-negative. Numerical evaluation of the quantities I_{1}, I_{2}, I_{12} for stieral exarples has been prosented in [1].

A non-trivial extension of theae idean occurs in the case of three correlated modes. The information in chis case is given by

$$
\begin{align*}
& I=S\left(\rho^{\text {th }}\right)-S(\rho) \\
& \left.\left.\left.\rho^{\text {th }}=\rho_{1}^{\text {th }}\left(\alpha_{1}\right\rangle\right) \times \rho_{2}^{\text {th }}\left(\alpha_{2}\right\rangle\right) \times \rho_{3}^{\text {th }}\left(\alpha_{3}\right\rangle\right) \tag{34}
\end{align*}
$$

We define

$$
\begin{align*}
& \rho_{i j}=\mathrm{Tr}_{k} \rho, \quad \rho_{i}-\mathrm{Tr}_{j k} \rho \\
& I_{i}=S\left(\rho_{1}{ }^{\operatorname{th}}\left(\left\langle\mathbb{N}_{1}\right\rangle\right)\right]-S\left(\rho_{1}\right) \\
& I_{i j}-S\left(\rho_{i}\right)+S\left(\rho_{i}\right)-S\left(\rho_{i j}\right) \tag{35}
\end{align*}
$$

If is the information in the mode $1 . I_{i j}$ is the information in the corralationi between the modes ($1, j$). Whthen express the total informetion in the three-mode systen as:

$$
\begin{equation*}
I=I_{1}+I_{2}+I_{3}+I_{12}+I_{23}+I(12 ; 23) \tag{36}
\end{equation*}
$$

where

$$
\begin{equation*}
I(12 ; 21)=S\left(\rho_{12}\right)+S\left(\rho_{23}\right) \cdot S(\rho) \cdot S\left(\rho_{2}\right) \tag{37}
\end{equation*}
$$

The strong subadditivity property [9] ensures that the quantity $I(12$; 23) 1s non-negative. For symetry reasons, somabody uight be tempted to split I(12 ; 23) as:

$$
\begin{equation*}
I(12 ; 23)=I_{13}+A \tag{38}
\end{equation*}
$$

so that he can express the infornation I of equ. (36), as the sum of the three informations in the three modas; the three informations in the correlated pairs of modes; and the quanticy A characterising the correlation between all modes. However the quantity A is not necessarily positive and its interpretacion as information would be incorrect. Therafore, the information I of a three-mode system is the sum of the thres informations in the three modes; the two correlation informations in two of the pairs; and the information $I(12 ; 23)$ of equ. (37) which describes now types of correlations in the three-mode systens. This result can be used as aguide" of how to study the ontanglament of three systems. It is seen chat chree system entanglement is a non-trivial generalisation of two system entangleasent.

5. Discurgion

In many cases the concept of squaezing is based on reducible representations of the $S U(1,1)$ (or $S U(2)$) group. In these cases different SU(1,1) (or SU(2)) rotations on each irreducible sector lead co generalised squeezing. These ideas have been applied to both one-mode and two-mode squeezing.

Two-mode squaezing correlates the two-modes and information theory nethods have been used for the atudy of these correlaeions. The subadditivity and serong subadditivity properties of the entropy have bean used for the study of two and three correlated systens, correspondingly. It has bean shown that the antanglament of three syateas is a non-trivial generalisacion of che entanglement of two systems. Further work is required in this diraction.

Refernacer

1. A. Vourdas, Phys.Rov. N46, (July 1992).
2. D.M. Greanberger, M.A. Horne, A. Shimony, A. Zeilinger, Aner.J. Phys. 58, 1131 (1990).
D.N. Mermin, Aear.J. Phys. 58, 731 (1990).
3. R.F. Bishop, A. Vourdas, J. Phys. A20, 3727, (1987).
4. R.F. Bishop, A. Vourdas, 2.Physik B71, S27, (1988).
5. B. Yurke, S.L. MeCall, J.R. Klauder, Phys.Rev. A33, 4033 (1986).
F. Singer, R.A. Campos, M.C. Taich, B.E.A. Saleh, Quantum Opt. 2, 307 (1990).
R.A. Campos, B.E.A. Saleh, M.C. Teich, Phys.Rev. A40, 1371 (1989).
6. A. Vourdas, Phys.Rev. A37, 3890 (1988); Phys.Rev. A39, 206 (1989); IEEE Trans.Info. Theo. 36, 208 (1990): J.Mod.Opt. 37, 1661 (1990).
7. G. Lindbland, Commun. Math. Phys. 33, 305 (1973). E.H. Lieb, Bull.Aner.Mach.Soc. 81, 1 (1975).
R.S. Ingarden, Rep.Mach. Phys. 10, 43 (1976).
8. A. Wehrl, Rev.Mod. Phys. 50. 221 (1978).
9. D.W. Robinson, D. Ruelle, Comun.Math. Phys. S, 288 (1967).
O. Lanford, D.W. Robinson, J.Math. Phys. 9, 1120 (1968).
E.H. Lieb, M.B. Ruskai, Phys.Rev.Let. 30, 434 (1973); J.Mach. Phys. 14, 1938 (1973).
