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Abstract

Electron syst4ms which have low dimensional propertim have been constructed by squeez-
in I the motion in zero, one or two-direction. An isolated quantum dot is modelled by a

potentia/box with delts-pro_ied, penstrLble potentia/wails embedded in s l_rge outer box

with inJinitely high potential wadis which reprment the work function with respect to vac-
uum. We show the smooth crouover of the density of storm from the three-dimension to

quui-zero-dimensionsl electron f_.

1 Introduction

Quantum wires and quantum boxes with three-dimensionally confined electrons constitute a con-

siderable part of recent semiconductor research [I, 2]. To study the optical properties of these

systems, one should investigatethe densityof states(DOS) carefully,becAuze the change in the

density of states a_ects directly the optical properties of these structures as a result of reduced

dimensionality.

The DOS of a low dimensional electron gas(LDEG) in the presence of magnetic field has

been discussed in many Literatures me_uring the magnetocapacitance [3, 4]. Furthermore an

electrical confinement which is usu_I/y controlled by (alternate) gate voltage [5] and, so called

the illumination method [6] are used to get a LDEG. The etched silicon filaments also discussed

recently as quantum wires or quantum dots [7]. But the DOS of a LDEG of confined electrons

in small space which is constructed by reducing the size of the confinement is not discussed

frequently, see ref. [I]. A typical example of an ideal system having Q0D charactor is that of

electron confined in a quantum box with impenetrable potential barriers. Despite of the large

number of studies on quantum wire and quantum box structures up to date, we have not found

research on the crossover of the DOS from a three dimensional DOS to a quasi-zero dimensional

DOS. In Section 2, to illustrate the formation of a quasi-one-dimensional electron gas(QIDEG)

using the classical electrostatic method, a simple metal-insu]ator-semiconductor(MIS) structure
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with wn'y many p_allel gate electrodes has been treated by making use of the conformal mapping
method. In section 3, we consider a rather artificial quantum box structure, so called the three
directional double-barrier resonant-tunneling structures(DBl_r$) to study quantum mechanically,

and have calculated the local density of states and the global density of states. In section 4, the
crossovers of the DOS is calculated. Especially, we reveal the crossovers of the DOS from 3D to

q0D.

2 Construction of the very many parallel quantum wires

To study electrical properties of a quantum wire, we first start with a quasi-two-dimensional

electron gas(Q2DEG) at simple metal-insu_tor- semiconductor(MIS) structure. A Q2DEG system
with many parallel gate electrodes is shown in Fig.l in which an electron gas is confined to the

x-z plane. We actually try to confine the electrons in the z-direction as well to form a QIDEG

system.
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Fig.1 Fig.2

Fig.l A Structure of symetric gate arrays. Fig.2 The boundary condition in w-

plane.

To calculate the charge(density) distribution at the MIS interface (yffi0 plane) to see the

formation of a Q1DEG, we will use the conformal mapping method which is useful especially tor
two-dimensional problems and we assume that significant changes in the electrode potential (and

thus is density in the channel) cause only a slight change in the near junction band bending.

This type of approximation has been used by Shik [8] to calculate various properties of the MIS

structure.
The problem is solving the Laplace equation in insulator region.

02_ 024 =0 (1)
Ox-'-f + Oy---f

with the boundary condition;

266



At y " d, @ l_.,r is slternate gate potenti "I VI and V2 and at y --- 0, @ i_=0 is constant, i.e.

equipotential surface. The next step is getting the distribution of the sur[sce carrier density.

Kd O@

"'(')= 4,---J_I,-o. (2)

We solve the problem by taking the following conforms] trandorm_tion [9].

W ffi U + iV ffi e''ld, z - z + ill

where d is the thickns_ of the insulator, Now the insulstor region is mapped on the upper half

plane and the boundary condition is given u in Fig.2.
After getting the potential which s_tisfy the boundary condition, we now get the electron

density distribution n(z) analytically from Eq.(2):

u_

KdV2[..(=) = _., + (V,/V2)-'_(-z) "+' < ,inh((2,- Z),a/2_')
m=l

[_h(,=/d) + _hC(2- - x)/2d)]>1 (3)

where a is the gste interval and m is the number of gstes.
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Fig.3 The surface charge density vs. position.
Fig.4 Crossover of the global DOS from 3D to 2D in the range U, = 0 to U, = 20,

as a function of E/Eo. Here Uz takes the values 0, 2, 12, 16, 20.

A typical density distribution is illustrated in Fig.3 where we can see immediately the many
parallel Q1DEG (eventhough we show here only two wires). The one dimensional electron density
of the order of 10S/cm is obtained for the typic_ operating gate voltage when a is 1000_,. We
also investigsted the cue of anti-symmetric gate voltage. Similar results have been obtained but
in symmetric case it is e_y to construct one dimensional electron channels especially for smaller
number of gates. In our calculation we took a/d ffi I, which 8_tisfy the first _pproxirnAtion, y ffi 0

plane is equipotential.
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3 The quantum box model and the DOS

Now we come baw.kto quLntum system with s delta-pro_ed quantum box. Usuidly a quantum dot

is an element of the Lrray of quantum dots. But the interact_n _-mong quantum dots decreases
rapidly with incre_ing dot sepaz_tion [10] sad is unimpot_nt for the usual experiments] situation

[11].
Therefore a separated single quantum box is taken for our study. For a rects_ulaz wire(Lv(_ I

'_v), Arora and others[12] used the impenetrable potential wall-, but in this paper we consider

three sets of penetrable harden. We start our calculationJ with the model, i.e., the typical three
dL,_:tional DBRTS, which consists of two thin(~ 50_)AI, Ga:_,A_ layen, separated by a thin

GeAs layer along all three directions. The potential is expressed by

V(z,y,z) fV:6(z+a)+6(z-a)+V_6(y+b)+6(y-b)+Vs6(z+c)+6(z-c). (4)

In this potential, the six AI.GaI_.Aa potential _ have been replant by 6-functions with

strengthes V:,V: and Vs in the z,y, and z direction, respectively. The parameters V_(i ffi 1,2,3)
are given by

v, = d,AV. (5)

where d_ are the barrier widths and AV= ire the conduction-band discontinuities. In order to deal

with finite density of states,J13], we must place our structure in a ILrge impenetrable rigid box
extending from -L/2 to 1,/2. With proper boundaxy conditions[14], the Schr_iinger equation is
sepazable, we can write the wave function in the product form

3

i=I

The separated wave functions, _, s_tisfy the reduced equations.

with

• ," + [2mc/h'][E, - _]q_, = 0 (T)

Ef E E, (S)
iml

Here E is the total energy corresponding to the HeJniltonian H and E,(i = z, _/,z) is the energy
eigenvalue of qty.

The local density of st.ttes in the DBRTS hu been obtained in various cases [15]. It is defined

as a function of r = (z, y, :) and E by

N(z, y, :; E) = -(2/_r)lmG(r,r'; E)

: 2__,_,_,_,[_o,.(z) I:I_,.(_)I_I_,.(z)I_6(E-E,). (9)

where the factor of 2 implies spin degeneracy, G(r, F; E) is the single paxticle Green's function,
and _,_, and 7(= e or 0) label state parity. Next we consider the global DOS N(E). It can be
calculated by taking the integration over the box volume,

N(E) ffi 8 fo" dz fo' d_ fo" dzN(z,y,z;E). (1O)
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The amplitude of the wsve function inside the well for both even tad odd parities of z, y, and z
componenetl are given ebewhere[14]. N(E) can be rewritten as follows:

N(E) - (2/sra)of dp_[G.(ps)+ G,(ps)+ (G.(p_)- G.(ps))sin(2p_)12p,]

x o_d_[U._) + G.(_) + (G.(_)-G.(_)).in(2_)/2_]

x oF dpa[G,(ps)+ G.(ps)+ (a.(ps)- G.(ps))Jin(2ps)/2Psl6(E- Et). (11)

The properties of functions G,(p_) tad G,(p_) _re already _ in ROf.14.

When we take 8ppropri_te limiting ca•m, the Eq.(ll) remvem iii the well-known expressions
of the DOS of 3D, 2D, 1D, tnd 0D. since the calculi•ions are str•ightforwtrd, we haven't repested
here.

4 Crossovers of the density of states

Now we consider crmmven of the global DOS from • high dimension to • low dimension.

4.1 From 3D to 2D

This case nmy happen when two of three potentials U_'s(see the rderence 15) approach zero, while

the remainder va.,ies from zero, i.e., 3D cue, to infinity, i.e., 2D case. The Eq.(ll) can be modified
u

4bc2mc N(E) " .1o dpt[Gc(pt) + G,(pt) + (G.(pt) - Go(p1))sin(2p_)/2;h] (12)

The result of the numerical behsvior of Eq.(12) is shown in Fig.4 and indic_tee the transition of
the DOS from 3D to 2D. In this case we take U_ = Us = 0, Ui changm from 0 to 20, and E/Eo

vm-im from 0 to 8. Higher vsdum of Us correspond to • st•ircnse-Uke 2D behavior which shows
stepe st E/E. = P with I = I, 2, 3,....

4.2 ]Prom 2D to 1D

This corrmponds to the case of Us going to zero, UI to infinity, and U2 vtrying from zero, i.e., 2D

cue, to infinity, ID cue. So G(ps) - l,G.(pt) - • _ 6(;h - (l+ I/2)r),G.(/h) ffi -E6(p, - (l +
l)a'). Then we can get the modified equ•tion of N(E) u follows ;

]-_cN(E) = dp_[G,(p=) + G,(p2) + (G.(p_) - Go(p2))sin(2p_)/2p2]

x [l/[(_r/2a)2E/Eo - ((m + l/2)lr/a)= - Oh�b)'] It'

+ 1/[Or/2a)3E/E. - (m + 1),,/a 2 - (Ih/b)=]l/=]. (13)

The Fig.5 shows the graphical result, thet is, the crossover of the global DOS from 2D to ID. In
this case, for the sake of convenience, we take a ffi b, Us - 0 and UI -* oo, Uz takes the values
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of 0, 2, 8, 16, 20, and E/Eo k taken from 0.0 to 8.0. One can see that the steps st K/Eo = 1,
4, 9, ..-, thit is, the two dimensional band edges, are shifted to peaks at E/Eo = 2, 5, 8. 10,

• .., i.e., the one dimensionil band edges. As U2 incroues, the motion of confined electrons along

the I/axis atirts to shrink and is guided only idong the z txis. This weak additional confinement
shifts the 2D bind edges towirds higher eneigies and finally the typical 1D characteristics of the
DOS comes to bevisuidized. Higher values of U2 correspond to increued sharp pealil of the DOS

of the 1-D quantum wire case, which are in good igreemimt with those of Arllkawa and Sakaki

[13] and of Tsing [16]. The values 8t E/E, ffi 5 and 10 ire roughly twice those at E/Eo ffi 2 and
8, respectively, which comes from the double degeneracy of the eigenstites. $imilir discussions
were treated by Berggrent and Newson [17] in the _ of the 2D electrons in the presence of a

magnetic field.
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Fig.5 Croswvci of the globil DOS from 2D to 1D. Here we take Ul = ooandUl =

0, 2, 8, 16, 20. Higher vidues of Ul correspond to a liwtoothlike 1D behavior.
Fig.6 Crossover of the Illobld DOS from 1D to 0D. Here we take Ul = U2 = oo

sad Us ffi 0, 2, 10, 20, 80. Higher values of Us correspond to a shirp line shape 0D

behavior.

4.3 From ID to 0D

In this case, we take both UI and U_ to be infinity, and Us vary from zero, ID case, to iafinity,

0D case. Then F.,q.(ll) becomes

N(E) = (2/r) _ f/_,z/_.),,, dl_[G.(l_) + G.(t_) + (G.(i_) - G.(l_)) sm(2p_)/'_p_]
I,mmi JO

× _[E - (?Izl2mc)(lwlia) z ÷ (m_r/2b) z + (/hlc) i (14)

G.(t) + G.(t) + (G.(: - G.(t)) sin(2t)/2t

i.,=_2" [EIE. -l n_]m 05)(2_.)_V(_)
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wheret= Orl2)(Elmo- -m2)
Fig.6 shows the transition of the glol_! DOS from 1D to 0D. For the sake of convenience, we

put a = b = c. The Eq.(I5) recovers the well-known DOS of a quantum dot [16], when we take
Us to be infinity. Sawtooth type maximums at E/Eo = 2, 5, 8, I0, .-., are now moved to the

positions at E/E, = 3, 6, 9, II, ..., as the strength of Us in_. When the confining potential
increase, both primary peaks and secondary ones appear, which reflect the coexistance of I D
and 0D behavior. The secondary peak with the lower energy is a reminescence of the ID DOS

shifted towards higher energy due to the additional confinement, and the primary peak (higher

energetic peak) arises from quasi 0D states. Bef.aase the diil'erencee between peaks are so high, we
used different scales for the DOS axis ranging from 1.0 to over 2000. The DOS clearly shows the
potential strength (U,) dependence of the spatial quantizttion through E°. This kind of secondary

peaks are also shown in many experimental data of s transport mea_rement [18]. We know that
the electron systems used in above experiments are in an intermediate state between ID and 0D,
because the potential strengths are not infinitely high.

We believe that thi, kind of DOS transition which shows intermediate states will also occur in

real systems where, for example, the barriers have finite widths. For barriers with finite thickness,

the effective mass of the electron changes in passing from the quantum-well re, on (GaAs) to the
barrier regions (A]GaAs) of the structure. Bruno and Bahder [15] have considered this for the one

directional DBRT$ case and showed thst the DOS at the low-energy subband edges is higher than
the DOS at the same energies in the absences of barriers (for delta-profiled harriers). In our case,

we can estimate that our result for the DOS will be increased a bit upward at the same energies
because of the additive form of the potential which we have taken.

In this paper, first we showed as an example the fornu_tion of many electron wires using the
conformal mapping method. Next, considering a penetrable quantum box, with a volume of a

axbxc, in a very large rigid box of volume Ls, we calcuLtted the general form of the local and
giol_d DOS.

The merit of this model is as follows :

1) the model is simple to handle and easy to calcul&te analytically,

2) in this model, one can recover the results of all the limiting cases of the 3D, 2D, ID, and
0D,

3) starting from one equation we can discuss all three crossover cases.
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