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Abstract

Electron systems which have low dimensional properties have been constructed by squeez-
ing the motion in zero, one or two-direction. An isolated quantum dot is modelled by a
potential box with delta-profiled, penetrable potential walls embedded in a large outer box
with infinitely high potential walls which represent the work function with respect to vac-
uum. We show the smooth crossover of the density of states from the three-dimension to
quasi-zero-dimensional electron gas.

1 Introduction

Quantum wires and quantum boxes with three-dimensionally confined electrons constitute a con-
siderable part of recent semiconductor research [1, 2]. To study thbe optical properties of these
systems, one should investigate the density of states (DOS) carefully, because the change in the
density of states affects directly the optical properties of these structures as a result of reduced
dimensionality.

The DOS of a low dimensional electron gas(LDEG) in the presence of magnetic field has
been discussed in many literatures measuring the magnetocapacitance (3, 4). Furthermore au
electrical confinement which is usually controlled by (alternate) gate voltage (5] and, so called
the illumination method [6] are used to get a LDEG. The etched silicon filaments also discussed
recently as quantum wires or quantum dots [7). But the DOS of a LDEG of confined electrons
in small space which is constructed by reducing the size of the confinement is not discussed
frequently, see ref. [1]. A typical example of an ideal system having QOD charactor is that of
electron confined in a quantum box with impenetrable potential barriers. Despite of the large
number of studies on quantum wire and quantum box structures up to date, we have not found
research on the crossover of the DOS from a three dimensional DOS to a quasi-zero dimensional
DOS. In Section 2, to illustrate the formation of a quasi-one-dimensional electron gas(Q1DEG)
using the classical electrostatic method, a simple metal-insulator-semiconductor(MIS) structure
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with very many parallel gate electrodes has been treated by making use of the conformal mapping
method. In section 3, we consider a rather artificial quantum box structure, so called the three
directional double-barrier resonant-tunneling structures(DBRTS) to study quantum mechanically,
and have calculated the local density of states and the global density of states. In section 4, the
crossovers of the DOS is calculated. Especially, we reveal the crossovers of the DOS from 3D to

QoD.

2 Construction of the very many parallel quantum wires

To study electrical properties of a quantum wire, we first start with a quasi-two-dimensional
electron gas(Q2DEG) at simple metal-insulator- semiconductor(MIS) structure. A Q2DEG system
with many parallel gate electrodes is shown in Fig.1 in which an electron gas is confined to the
x-z plane. We actually try to confine the electrons in the z-direction as well to form a QIDEG
system.

y v
¢ A
w | ow " wih i w |mwn
i o Lnmiater '
% L x L wElwyv v ey ,
T 4t ¥ ¥ T K T o
Fig.1 Fig.2

Fig.1 A Structure of symetric gate arrays. Fig.2 The boundary condition in w-
plane.

To calculate the charge(density) distribution at the MIS interface (y=0 plane) to see the
formation of a Q1DEG, we will use the conformal mapping method which is useful especially for
two-dimensional problems and we assume that significant changes in the electrode potential (and
thus is density in the channel) cause only a slight change in the near junction band bending.
This type of approximation has been used by Shik 8] to calculate various properties of the MIS
structure.

The problem is solving the Laplace equation in insulator region.

8 ¥ _

3}7-0-3”7-0 (1)

with the boundary condition;
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Aty = d, ¥ |yuq is alternate gate potential Vi and V3 and at y = 0, ¥ | =0 is constant, i.e.
equipotential surface. The next step is getting the distribution of the surface carrier density.

Kq 0¥
n,(z) = ;-;:'3; ly=o0 - (2)

We solve the problem by taking the following conformal transformation [9]).
W=U+iV=e2=24+1y

~ where d is the thickness of the insulator, Now the insulator region is mapped on the upper half
plane and the boundary condition is given as in Fig.2.
After getting the potential which satisfy the boundary condition, we now get the electron
density distribution n(z) analytically from Eq.(2):

n(z) = -’E‘;‘:llu(ww)-' $3(=1)** < sinh((2n - 1)xa/2d)
1

[cosh(xz/d) + oooh((‘2-n -1)/2d)] >) (3)
where a is the gate interval and m is the number of gates.
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Fig.3 The surface charge density vs. position.
Fig.4 Crossover of the global DOS from 3D to 2D in the range Uy =0to U, =20,
as a function of E/Eo. Here U, takes the values 0, 2, 12, 16, 20.

A typical density distribution is illustrated in Fig.3 where we can see immediately the many
parallel QIDEG (eventhough we show here only two wires). The one dimensional electron density
of the order of 10%/cm is obtained for the typical operating gate voltage when a is 1000A. We
flao 'mveltig_ated the case of anti-symmetric gate voltage. Similar results have been obtained but
in symmetric case it is easy to construct one dimensional electron channels especially for smaller

number of gates. In our calculation we took a/d = 1, which satisfy the first approximation, y =0
plane is equipotential. '
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3 The quantum box model and the DOS

Now we come back to quantum system with a delta-profiled quantum box. Usually a quantum dot
is an element of the array of quantum dots. But the interaction among quantum dots decreases
rapidly with increasing dot separation [10] and is unimpotant for the usual experimental situation
[1].

Therefore a separated single quantum box is taken for our study. For a rectangular wire(L,(.) <
Ap), Arora and others{12] used the impenetrable potential walls, but in this paper we consider
three sets of penetrable barriers. We start our calculations with the model, i.e., the typical three
directional DBRTS, which consists of two thin(~ 50A4)Al,Ga;-.As layers, separated by a thin
GaAs layer along all three directions. The potential is expressed by

Viz,y,2) =Vib(z+a)+ 6(z—a)+ Vab(y + b) + 6(y — b) + Vaé(z + ¢c) + 6(z - ¢). (1)

In this potential, the six Al,Ga,_.As potential barriers have been replaced by é-functions with
strengthes V;,V; and V; in the z,y, and z direction, respectively. The parameters V(s = 1,2,3)
are given by

Vi = d;AV,; (5)
where d; are the barrier widths and AV,; are the conduction-band discontinuities. In order to deal
with finite density of states,[13], we must place our structure in a large impenetrable rigid box
extending from —~L/2 to L/2. With proper boundary conditions{14], the Schrodinger equation is
separable. we can write the wave function in the product form

3
¥(r) = ¥(2)v(y)e(z) = [] ¥ ; (6)
=)
The separated wave functions, ¥;, satisfy the reduced equations.
V," + [2m /W) (E; - V]]¥; =0 (M)
with s
E=Y E (8)

inl
Here E is the total energy corresponding to the Hamiltonian H and E;(: = z,y, z) is the energy
eigenvalue of W;.
The local density of states in the DBRTS has been obtained in various cases [15]. It is defined
as a function of r = (z,y,2) and E by

N(z,y,5,E) = —(2/x)ImG(r,r'; E)
= 23 3 Y3 | Wau, () Pl Wou, (8) ) Won, (2) P S(E - Eb), (9)

afy ke k, &y

where the factor of 2 implies spin degenenéy, G(r,r; E) is the single particle Green's function,
and a, 4, and v(= ¢ or 0) label state parity. Next we consider the global DOS N(E). It can be
calculated by taking the integration over the box volume,

N(E)-.-sjo'dz/:dyjo‘dm(z,y,z;g). (10)
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The amplitude of the wave function inside the well for both even and odd parities of r,y, and :
componenets are given elsewhere{14]. N(E) can be rewritten as follows:

N(E) = @/r") [~ dnlGi(z) + Gulmr) + (Gulpr) = Gulpr)) sin(2p) /23]
x [ dpalGu(ps) + Gulp) + (Gulpa) = Golpa)) sin(2p3) /2]
x [ dpslGulps) + Culpr) + (Gulps) - Gulpa)) sin(2ps) /203J6(E =~ Eu). (1)

The properties of functions G,(p;) and G,(p;) are already revealed in Ref.14.
When we take appropriate limiting cases, the Eq.(11) recovers all the well-known expressions
of the DOS of 3D, 2D, 1D, and 0D. since the calculations are straightforward, we haven’t repeated

here.

4 Crossovers of the density of states
Now we consider crossovers of the global DOS from a high dimension to a low dimension.

4.1 From 3D to 2D

This case may happen when two of three potentials U/s(see the reference 15) approach zero, while
the remainder varies from zero, i.e., 3D case, to infinity, i.e., 2D case. The Eq.(11) can be modified
as

2r A

4be 2m,
The result of the numerical behavior of Eq.(12) is shown in Fig.4 and indicates the transition of
the DOS from 3D to 2D. In this case we take U; = Uy = 0, U, changes from 0 to 20, and E/E,
varies from 0 to 8. Higher values of U; correspond to a staircase-like 2D behavior which shows
steps at E/E, = P with [ = 1,2,3,--..

NE) = [ ap(Gutm) + Gulpr) + (Gl) - Gulp) sin2p) /2] (12)

4.2 From 2D to 1D

This corresponds to the case of Us going to zero, U, to infinity, and U; varying from zero, i.e., 2D
case, to infinity, 1D case. So G(p3) = 1,G.(;) = x L é(pr — (1+1/2)x),Go(p) = x T é(p - (I +
1)x). Then we can get the modified equation of N(E) as follows ;

xp?

4cm,

NE) = S [ dmlGp) + Gulps) + (Gulpa) = Golp)) sin(2p) 201

x [1/[(x/2a)*E/E, - ((m +1/2)x/a)’ - (p:/b)*)'/
+ 1/[(x/2a)*E/E, — (m + 1)x/a’ — (p/4)*]*/?). (13)

The Fig.5 shows the graphical result, that is, the crossover of the global DOS from 2D to 1D. In
this case, for the sake of convenience, we take ¢ = b,Us = 0 and U, — oo, U, takes the values
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of 0, 2, 8, 16, 20, and E/E, is taken from 0.0 to 8.0. One can see that the steps at E/E, = 1,
4,9, -, that is, the two dimensional band edges, are shifted to peaks at E/E, = 2, §, 8, 10,
.+., i.e., the one dimensional band edges. As U, increases, the motion of confined electrons along
the y axis atarts to shrink and is guided only along the z axis. This weak additional confinement
shifts the 2D band edges towards higher energies and finally the typical 1D characteristics of the
DOS comes to bevisualized. Higher values of U correspond to increased sharp peaks of the DOS
of the 1.D quantum wire case, which are in good agreement with those of Arakawa and Sakaki
[13] and of Tsang [16]. The values at E/E, = 5 and 10 are roughly twice those at E/E, = 2 and
8, respectively, which comes from the double degeneracy of the eigenstates. Similar discussions
were treated by Berggrent and Newson [17] in the case of the 2D electrons in the presence of a
magnetic field.
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Fig.5 Crossover of the global DOS from 2D to 1D. Here we take U; = coendU; =
0, 2, 8, 16, 20. Higher values of U; correspond to a sawtoothlike 1D behavior.

Fig.6 Crossover of the global DOS from 1D to 0D. Here we take U, = U; = o
and Us = 0, 2, 10, 20, 80. Higher values of Uy correspond to a sharp line shape 0D
behavior.

4.3 From 1D to 0D

In this case, we take both U; and U; to be infinity, and Us vary from zero, 1D case, to infinity,
0D case. Then Eq.(11) becomes

[ . 1/2
ME) = (o) 5 [T dpGulr) + Gulp) + Gulps) - Glpa s 30
m=ul
x 6[E — (A/2m.)(Ix/20)? + (m=/2b) + (ps/e)? (14)
(E)N(E) = i Gu(t) + Golt) + (Ge(t) = Go(t)) sin(2t)/2¢ (15)

[E/E, - P —miJ/2

l,m=1
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where t = (¢/2)(E/E, - B — m?)'/2,

Fig.6 shows the transition of the global DOS from 1D to 0D. For the sake of convenience, we
put @ = b = c. The Eq.(15) recovers the well-known DOS of a quantum dot [16], when we take
Us to be infinity. Sawtooth type maximums at E/E, = 2, §, 8, 10, - -, are now moved to the
positions at E/E, = 3, 6,9, 11, - -, as the strength of U, increases. When the confining potential
increase, both primary peaks and secondary ones appear, which reflect the coexistance of 1D
and 0D behavior. The secondary peak with the lower energy is a reminescence of the 1D DOS
shifted towards higher energy due to the additional confinement, and the primary peak (higher
energetic peak) arises from quasi 0D states. Bacause the differences between peaks are so high, we
used different scales for the DOS axis ranging from 1.0 to over 2000. The DOS clearly shows the
potential strength (U;) dependence of the spatial quantization through E,. This kind of secondary
peaks are also shown in many experimental data of a transport measurement [18]. We know that
the electron systems used in above experiments are in an intermediate state between 1D and 0D,
because the potential strengths are not infinitely high.

We believe that this kind of DOS transition which shows intermediate states will also occur in
real systems where, for example, the barriers have finite widths. For barriers with finite thickness,
the effective mass of the electron changes in passing from the quantum-well region (GaAs) to the
barrier regions (AlGaAs) of the structure. Bruno and Bahder [15] have considered this for the one
directional DBRTS case and showed that the DOS at the low-energy subband edges is higher than
the DOS at the same energies in the absences of barriers (for delta-profiled barriers). In our case,
we can estimate that our result for the DOS will be increased a bit upward at the same energies
because of the additive form of the potential which we have taken.

In this paper, first we showed as an example the formation of many electron wires using the
conformal mapping method. Next, considering a penetrable quantum box, with a volume of a
axbxe, in a very large rigid box of volume L3, we calculated the general form of the local and
global DOS.

The merit of this model is as follows :

1) the model is simple to handle and easy to calculate analytically,

2) in this model, one can recover the results of all the limiting cases of the 3D, 2D, 1D, and
0D,

3) starting from one equation we can discuss all three crossover cases.
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