N94-10603

WIGNER FUNCTIONS FOR NONCLASSICAL STATES OF A COLLECTION OF TWO-LEVEL ATOMS

G. S. Agarwal *School of* **Physics,** *University of Hyderabad Hyderabad 500 134, India*

and

Moa-Planch-Institut fl_r Quantenoptik, Postfach 1513.*D so4* Ge,many

Jonathan P. Dowling

Weapons Sciences Dirsctomte, AMSMI.RD-WS.ST Research, Development, and Engineering **Center** *?.7. S. Army Missile Command, Redstone Arsenal, Alabama 35898.5248, USA*

> **Wolfgang P. Schleich** *Abteilung f_r Theoretische Physik HI, Universitdt* Ulm *Oberer Eselsberg W.7900, Ulm, Germany*

AbsWact

The **general theory of atomic angular momentum statos is used** to **derive the Wigner distribution function for atomic angular momentum number** states, **co**herent states, and squeezed states. These Wigner functions $W(\theta,\phi)$ are represented **as a pseudo-probability distribution in spherical coordinates** *0* **and** 9 **on** the surface of a sphere of radius $\sqrt{j(j+1)}$ where *j* is the total angular momentum.

1 **Introduction**

The phase space description of electromagnetic fields has had great success in leading to an understanding of the relationship between semiclassical and quantum theories of light. It was Sudarshan [1] who proved the optical equivalence theorem, **i.e., he derived** the **relationship between the quantifies measured by a photodetector** and **the mean values of the corresponding operators. He** showed **that the function appearing in** the diagonal **coherent state** representation, **that is calculated from the density matrix, provides a link between the** semiclassica] and **quantum descriptions. This function,** $n \times p(\alpha)$, is generally singular for nonclassical states [2]. In such cases the **Wigner function [3,4] has proved** to **be especially attractive** as an alternative. **The Wigner function has** also **proved** to **be quite useful** in **discussing** related topics **[5] such as the photon number** distribution and **the phase operator** distribution. In **these problems,** the **concept of** the **area of overlap** in **phase space has been especially useful.**

The nonclassical characteristics of the atomic systems, particularly a collection **of two-level atoms, has been a subject of much** investigation **[6,7]. Much of the work has** concentrated **on the** direct **calculation of the variances in** the **atomic operators such as** *Jx, J+,* **and** *J* **- Very** little **has been done on** the relationship between **the nonclassical**

329

aspects and the phase space distributions for atomic operators. For general angular momentum systems, Arecchi, et al. [8] introduced the analog of the diagonal coherent state representation

$$
\rho = \int P(\alpha, \beta) | \alpha, \beta \rangle \langle \alpha, \beta | \sin \alpha \, d\alpha \, d\beta , \qquad (1)
$$

where $| \alpha, \beta \rangle$ represents the atomic coherent state

$$
|\alpha,\beta\rangle = \sum_{m=-j}^{j} \binom{2j}{m+j}^{1/2} \left(\sin\frac{\alpha}{2}\right)^{j+m} \left(\cos\frac{\alpha}{2}\right)^{j-m} e^{-i(j+m)\beta} |jm\rangle , \qquad (2)
$$

and where $\lim_{\epsilon \to 0}$ is the eigenstate of J^2 and J_z . The **parameters** α and ρ correspond to θ and φ except that α is measured off the south pole. The coherent state obtains the **minimum** of the angular **momentum** uncertainty relation $\langle \Delta J_x^2 \rangle \langle \Delta J_y^2 \rangle \geq |\langle J_z \rangle|^2/4$,

where *x;y;* **and** *z"* **form** an **orthogonal coordinate system with** *z'in* the _" **direction with** angular coordinates (α, β) . The coherent state is just a rotation of the ground Fock state *IJ,-J)* **away from** the **south pole. Arecchi and** co-workers **discussed** the **utility of** the function $P(\alpha, \beta)$ in atomic problems, and Scully and co-workers have discussed the . 1 **Wigner function for spm-_ particles [9]. Using** the **general** theory **of multipole operators [10], Agarwa] [11]** introduced the **Wigner function for systems of** arbitrary **angular momentum. To arrive at this** distribution, **we first expand** the **atomic angular momentum operators as**

$$
G = \sum_{K=0}^{2j} \sum_{Q=-K}^{+K} G_{KQ} T_{KQ} \quad , \tag{3}
$$

where T_{KQ} is the multipole operator defined by

$$
T_{KQ} = \sum_{m=-j}^{j} \sum_{m=-j}^{+} (-1)^{j-m} \sqrt{2k+1} \begin{pmatrix} j & K & j \\ -m & Q & m' \end{pmatrix} |jm\rangle \langle jm'| , \qquad (4)
$$

where $\begin{pmatrix} j & K & j \\ -m & Q & m' \end{pmatrix}$ is the usual Wigner 3*j* symbol. The expansion coefficients in Eq. (3) are obtained from the orthogonality of the multipole operators, namely

$$
G_{KQ} = Tr \left(GT_{KQ}^{\dagger} \right). \tag{5}
$$

The Wigner function associated with *G* is then **defined by [11]**

$$
\mathbf{W}(\theta,\varphi) = \sum_{\mathbf{K}=0}^{2j} \sum_{\mathbf{Q}=-\mathbf{K}}^{+K} \mathbf{Y}_{\mathbf{K}\mathbf{Q}}(\theta,\varphi) \mathbf{G}_{\mathbf{K}\mathbf{Q}} \tag{6}
$$

where Y_{KO} are the usual spherical harmonics. Note that

$$
Tr G = \sqrt{\frac{2j+1}{4\pi}} \int W(\theta, \varphi) \sin\theta \, d\theta \, d\varphi = 1 \tag{7}
$$

a general property desired of any distribution function. Note further that if two operators $G^{(1)}$ and $G^{(2)}$ are represented respectively by the Wigner functions $W^{(1)}$ and $W^{(2)}$, then

$$
\operatorname{Tr}\left(\mathbf{G}_1\mathbf{G}_2\right) = \int \mathbf{W}^{(1)}(\theta,\varphi) \, \mathbf{W}^{(2)}(\theta,\varphi) \sin\theta \, d\theta \, d\varphi \,,\tag{8}
$$

a defining property of the **Wigner** di_'cribution. **In fact thue two features, Eqs. (7) and** (8) , can be used to derive the form, Eq. (6) , of the Wigner function. Thus, unlike the P function, **all expectation values can be obtained in** terms **of the Wigner functions alone.**

In this paper we shall consider the **structure of the Wigner function associated** with the important states like (i) Fock states $|j,m\rangle$, (ii) coherent states $|\alpha,\beta\rangle$, and (iii) **squeezed** states $\langle \zeta, m \rangle$ associated with a collection of two-level atoms interacting with **a squeezed photon bath. We examine how the quantum character of the state is** reflected in **the properties of** the **Wigner function.**

2 Angular Momentum States Ijm)

We first obtain the **Wigner function for** the **state/jm). The density matrix can be written** in the **form**

 $p = |jm\rangle$ (jm) $\langle jm|$ (9)

Upon **using Eqs. (4) through (6), that are used in defining** the **Wigner function** *W,* **we find that**

$$
W_{jm}(\theta,\varphi) = \sum_{K=0}^{2j} Y_{K0}(\theta,\varphi) (-1)^{j-m} \sqrt{2K+1} \begin{pmatrix} j & K & j \\ -m & 0 & m \end{pmatrix}^{\bullet}
$$
 (10)

As expected W_{jm} is independent of φ .

This function is plotted in Fig. 1 as a function of $\theta \in (0,\pi)$ and $\varphi \in (-\pi,\pi)$ for $j=5$ and $m=0$, -1 , \ldots -5 . We plot the distribution both as planar and spherical surfaces. If we suppose that $\langle jm \rangle$ is an orbital angular momentum state, then quantum-mechanically we would expect the angular momentum vector of length $\sqrt{j(j+1)}\hbar$ to be oriented inside **a** sphere of radius $\sqrt{j(j+1)}$ \hbar such that its *z* component is $m\hbar$ where $m = -5, ..., 5$. This **situation** is depicted in Fig. 2 [12]. The Wigner function $W(\theta, \varphi)$, when integrated over the domain of spherical angle, $\theta \in (0,\pi)$ and $\varphi \in (-\pi,\pi)$, contributes the most positive **probability** at precisely these locations in θ . At these θ values there is always one peak **on** the **"wavy sea" that is not cancelled by a trough and so contributes a large amount of probability.** In Fig. 1 we plot the function $W(\theta, \varphi)$ as a two-dimensional surface, and also

the **normalized** function $\tilde{W} = W/\sqrt{i(i+1)}$ in spherical coordinates so that the oscillations **can** be **viewed as variations** in the **surface of a sphere of** radius **one.**

 $\left(a\right)$

 $\langle \bullet \rangle$

í

 \overline{a}

I.

332

 $\left(q\right)$

 ω

333

FIG. 1. Here we plot for $\theta \in (0,\pi)$ and $\phi \in (-\pi,\pi)$, the normalized Wigner

function $\widetilde{W}^{\text{Fock}} = W^{\text{Fock}}/\sqrt{j(j+1)}$, where $W^{\text{Fock}}(\theta,\varphi)$ is given by Eq. (10). The **angular** momentum Fock states represented here are $\langle jm \rangle = \langle 5, m \rangle$ where $m = 0$, $-1, -2, -3, -4, -5$. When integrated over θ and φ , the Wigner function contributes the most positive probability precisely at the locations where the angular **momentum vector** for $\langle jm \rangle$ of length $\sqrt{j(j+1)}$ **h** has z component $m\hbar$ (see Fig. 2). **These contributions occur where the dominant positive crest of the Wigaer** f unction — the peak that is not cancelled by any troughs — contributes. To bring out all the features of $W(\theta, \varphi)$ we plot it first as a two-dimensional surface function of θ and φ in (a), (c), (e), (g), (i), and (k). This method of presentation **brings** out the scale of the local positive and negative variations of *W* with **respect** to the plane $f(\theta, \varphi) = 0$. Then in (b), (d), (f), (h), (j), and (l), we take a global

 $\text{view by plotting } \overline{W}(\theta, \varphi) = \overline{W}(\theta, \varphi) / \sqrt{\overline{f}(i+1)}$ on a sphere of radius one.

FIG. 2.' Here we show a schematic diagram of the **angular momentum vector** for the Fock states inside a sphere of radius $\sqrt{j(j+1)}\hbar$. The vectors all have length $\sqrt{j(j+1)}\hbar$ but *z* component $m\hbar$. These vector locations correspond to the **maximal contributions from the Wigner functions shown in Fig. 1. In particular,** the **Wigner function always** has **an uncance]]ed dominant peak at precisely** these **locations** in the angle θ .

3 Atomic Coherent State $\langle \alpha, \beta \rangle$

We next consider the Wigner function for the atomic coherent state, Eq. (2),

$$
\rho = |\alpha, \beta\rangle \langle \alpha, \beta| \tag{11}
$$

Using Eqs. (2), **(4), and (S), the coemcionts of** the **operator** G for **the density matrix, Eq. (11), are found to be**

$$
G_{KQ}^{\text{coherent}} = e^{-iQ\beta} (\tan \alpha/2)^{Q} \sum_{m=-j}^{j} \left(\frac{2j}{j+m} \right)^{1/2} \left(\frac{2j}{j+m+j} \right)^{1/2} (\sin \alpha/2)^{2j+2m}
$$

× $(\cos \alpha/2)^{2j-2m} (-1)^{j-m-Q} (2K+1)^{1/2} \left(\frac{j}{m} - \frac{j}{m-Q} \right) K$ (12)

The Wigner function $W^{\text{coherent}}(\theta, \varphi)$ is then given by Eq. (6) and is plotted in Fig. 3 for $\alpha = \beta = \pi/4$, recalling that α is measured at the south pole. (Again we have normalized $W = W/\sqrt{j(j+1)}$.) The coherent state appears as a positive perturbation on the **surface of a unit sphere. It** is **a Gaussian-llke distribution located on** the **sphere's** $\sin^{-1}(\theta) = \frac{3\pi}{4}, \phi = \frac{\pi}{4}$; the **"Wigner toothache" state.** It is just a rotation of the **ground Fock state** _ner **function from section 2. The Gaussian shape is analogous** to **that** found for the Wigner distribution for coherent states of the single mode radiation **field.**

FIG. 3. Here we plot the Wigner distribution $W^{coherent}/\sqrt{j(j+1)}$ for the coherent state α , β), Eq. (2). We choose the parameters $\alpha = \beta = \pi/4$ that correspond **to** a Gaussian distribution localized at $\theta = 3\pi/4$, $\varphi = \pi/4$. This distribution is **qualitatively similar to that of the coherent state** for **photons. Again we present a two-dimensional surface view (a) and a spherical coordinate perspective (b).**

4 Atomic **Squeezed State** *I_m)*

We finally consider the state [12,13] ofthe angular momentum system defined by

$$
|\zeta, m\rangle = cA_m \exp\left(\Theta J_z\right) \exp\left(-i\pi J_y/2\right)|jm\rangle, \qquad (13)
$$

where cA_m is the **normalization** constant. For $m = -5$, this state -- generated by a non-Hermitian operator -- describes the behavior of a collection of two-level atoms **interacting with a squeezed coherent photon** state. **In** the state, **Eq. (13),** the x **quadrature, i.e.,** *Jz* **is squeezed as** per **Eq. (13),**

$$
\langle (\Delta J_x)^2 \rangle - \frac{1}{2} | \langle J_z \rangle | = -\frac{1}{2} | \langle J_z \rangle (1 - e^{-|\zeta|}) | , \qquad (14)
$$

where ζ is defined by

$$
e^{2\Theta} = \tanh (2|\zeta|) \tag{15}
$$

This relation implies that $\langle (A J_x)^2 \rangle$ < $\langle (J_x) / 2 \rangle$ that shows a suppression of *x* noise, ΔJ_x , in uncertainty relation $\langle (\Delta J_x)^2 \rangle \langle (\Delta J_y)^2 \rangle \ge \langle (J_z)^2 \rangle^2 / 4$ at the expense of the y fluctuations,
 ΔJ_y . Thus the states of Eq. (13) can be considered as suitable candidates for squeezed ΔJ_y . **Thus** the states of Eq. (13) can be considered as $\Delta \theta$ and θ and θ in [13] he **states of** the **general angular momentum system, besides, Agarwal aria** *run* **txoJ na shown that the states, Eq. (13), are the eigenstates of the operator** $(J - \cosh |\zeta| + J + \sinh |\zeta|)/\sqrt{2 \sinh 2 |\zeta|}$ with the eigenvalue *m*, and that these states are the analog **of** the **two photon** coherent **states [2] for photons. Note further** that **Eq. (13) can be written in** terms **of the elements of** the **rotation operator coefficients**

 $d_{mm'}^j$, $(\pi/2)$ via the relationship

$$
\langle jm|\zeta p\rangle = A_p e^{\Theta m} d_{mp}^j(\pi/2),\tag{16}
$$

where we define

$$
d_{mp}^{j} (\pi/2) = \frac{\left((j+m)!\ (j-m)!\ (j+p)!\ (j-p)!\right)^{1/2}}{2^{j}} \sum_{q=-j}^{+j} \frac{\left(-1 \right)^{q}}{(j-p-q)!\ q!\ (q+p-m)!\ (j+m-q)!} \ . \tag{17}
$$

Upon using Eq,. (13), (16), and **(17) for** the squeezed **state,** and _s. **(-4)and (5) for** the **definition of** the **Wigner function, we find the coefficients of the squeezed density operator** *G* **to be**

$$
G_{KQ}^{squareed} = \sum_{m=-j}^{j} \sum_{m'=-j}^{j} (-1)^{j-m} (2K+1)^{1/2} \left(\frac{j}{-m} \frac{K}{Q} \frac{j}{m'}\right) \left[\frac{e^{(m+m')\Theta} d_{mp}^{j} d_{m'p}^{j}}{\sum_{m''} \left|d_{m''p}^{j}\right|^{2} e^{2m\Theta}}\right],
$$
 (18)

where we have also introduced the **value of** the **normalization** constant. **The Wigner distribution** *W ulueezed (a_)* **obtained from Eq. (6), using Eqs. (17)** and **(18), is plotted in** Fig. 4 for $j = 5$ and $p = -5$. We take the squeezing parameter Θ equal to -2.13×10^{-5} **which, in the Agarwal and Puri** system **of two-level atoms interacting with a squeezed photon bath, corresponds to a mean photon occupation number of** $\bar{n} = \sinh^2\left(\frac{1}{2}\arctanh(e^{2\Theta})\right) = 50$ corresponding to $\zeta = 2.65$. The plot is again normalized **I"-** */* so **that** the **elongated Gauasian** of **the squeezed state** appears **as a "Wigner banana" draped across the** surface of **sphere of radius** one at **the south pole. (To see this, one** must **take** the **surface in Fig. 4a and mentally map it onto a sphere of radius one, as in Fig. 41).) Notice that the localization of the state is squeezed in the g direction at** the **expense of knowledge about the y location. Agarwal and Purl [13] have shown how** the **atomic states Eq. (13) can be produced ifthe collect/on** of **two-level atoms interacts with a broad band squeezed bath** and **if one** concentrates *only on* **the steady-state solution for** the collective **system. The parameter** _"**characterizes the squeezed** bath with **average** photon number equal to $sinh^2\zeta$.

FIG. 4. Here we plot the Wigner function for a squeezed ,nmdAr momen .turn state ζ , -5) defined by Eq. (13). The function W^{2} ^{usessu} (θ, ϕ) is computed using **Eqs.** (6), (17), and (18) for a squeezing parameter of $\theta = -2.13 \times 10^{-5}$ corresponding **to** a mean occupation number of $\bar{n} = 50$. In (a) we plot the function as a surface $W(\theta, \varphi)$ as before. We have normalized the variation in the surface in spherical coordinates to a sphere of radius $\sqrt{j(j+1)}$ in (b) so that the elongated Gaussian **appears here** as **a "Wigner banana" draped across the surface of the** sphere **of** radius **one at** the south **pole. Notice that** the **squeezed** state **is** more **localized in** the x" direction **than the coherent state, Fig. 3, at** the **expense of decreased localization or increased noise** in **the** *y'direction.*

5 Summary and Conclusions

In summary the Wigner distribution for a genera] angular momentum **state has been derived and given explicitly for a Fork state, a coherent state, and a squeezed state. Represented as a pseudo-probability distribution on the sphere of radius one, the Wigner function is plotted for these three situations. These plots enable us to understand** the **nonclassical nature of** the **states of a** collection **of identical two-level atoms** since **the** collection **is described by** the **addition of** the spin **operators for each atom.**

Acknowledgements

Both G. S. A. and J. P. D. thank **Professor H. Walther for his hospitality** and **support at** the **Max-Planck-Institut fttr** _mntenoptik **where part of this work was done. G. S. A. also acknowledges travel support under National Science Foundation grant number** _ **9100685, and one of us (J. P.** *D.)* **would like** to **acknowledge** the **National** Research Council for **financial support.**

References

- **[1] E. C. G. Sudarshan, Phys. Rev. Lett. 10,** 277 (1963); **see also, It. J. Glauber, Phys. Rev. lSl,** *2766* **(1963).**
- [2] **H. P. Yuen, Phys.** Rev. **A I\$, 2226 (1976); for many important properties of** the *P* **function, see also R. J. Glauber in Ref. I.**
- **[3] E. P. WiSher, Phys. Rev. 40, 749 (1932).**
- **[4) G. S. Agarwal, J. Mod. Opt.** 84, **909 (1987).**
- **[5]** J. **P. Dowling, W. Schleich,** and **J. A. Wheeler, Ann. Phys.** (Leipzig) *48,* **423** (1991).
- **[6] K. Wodkiewicz** and **J. H. Eberly, J. Opt.** Soc. **Am. B 2, 458** (1985); See als **P. K. Arvind, J.** Opt. **Soc. An_ B** 5, **1545 (1988).**
- **[7) N.** Rehler **and J. H. Eberly, Phys. Rev. A** 2, **1607 (1970).**
- **[s) F. T. Arecchi, E. Courtens, I_ Gilmore,** and **H. Thomas, Phys. Rev. A 6, 2211 (1972). For a detailed review on the coherent states for various systems see A. M. Perelomov, Usp. Fiz. NaulL 1_, 23 (1977); [Sov. Phys. Uspekhi** _0, **703 (1977)].**
- **[9) L. Cohen** and **M. O. Scully, FouncL Phys. 16, 295 (1986); M. O. Scully, Phys. Rev. D 28, 2477 (1983); L. Cohen** and **M. O. Scully** in *New Techniques* and *Ideas in Quantum* Measurement *Theory,* **edited by D. Greenberger, Annals of** the **New York Academy of Sciences 480, 115 (Special Issue, 1987); M. O. Scully and K. Wodkiewicz in** *Coherence* and *Quantum Optics V/,* **edited by J. H. Eberly, et** al., **(Plenum Press, New York, 1990), p. 1047.**
- **[10] A. R. Edmonds,** *Angular Momentum in Quantum Mechanics,* **(Princeton University Press, Princeton, NJ, 1957),** § **3.7.**
- **[II] G. S. Agarwal, Phys. Rev. A** 24, **2889 (1981).**
- **[12] F. K. Richtmyer, E. H. Kennard, and J. N. Cooper,** *Introd_on to Modern Phys_s,* **6th ed., (McGraw-Hill, New York, 1969),** § **14.5.**
- **[13] G. S. Agarwal and R. R. Purl, Phys. Rev. A 41,** 3782 **(1990); Optics Commun.** O, **267 (1989).**
- **[14] M.** _ **Rasheed, J. Math. Phys. 19, 1391 (1978).**

