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PREFACE

Under the NASA MSFC contract NAS8-37824, CFDRC has developed an advanced

CFD code: REFLEQS (REactive FLow EQuation Solver). REFLEQS has been

designed for turbulent flow and heat transfer problems with and without chemical

reactions. Particular attention has been given to the needs of predicting flow

environment and efficiency of combustion in liquid rocket engines, using LOX/H2

or LOX/Hydrocarbon propellant systems. The results of this study are described in

the following three volumes:

!

1: Final Report;

2: REFLEQS-Validation and Applications Manual; and

3: REFLEQS - User's Manual.

The final report includes descriptions of the mathematical basis of REFLEQS.
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performance;

Dr. Ashok K. Singhal (President & Technical Director of CFDRC) for
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CFDRC for testing and validating various versions of the code; and
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1. INTRODUCTION

1.1 klta;kgr md

Until recently, liquid rocket thrust chambers were designed using methods of

characteristics and boundary layer approximations. In the mid 1980's, new

prediction methodologies, based on solutions of Navier-Stokes equations were

proposed by Liang (1986), and Przekwas et al (1984, 1986). Computational Fluid

Dynamics (CFD) found its way in practical rocket engine design due to several

initiatives coordinated by NASA Marshall Space Flight Center and annually

reported in the Proceedings of "Computational Fluid Dynamics Workshops".

This report presents the results of the three-year effort (1989-1992), sponsored by

NASA MSFC, to develop an advanced CFD code for predicting two-phase, reactive

flows in liquid rocket thrust chambers. The starting point for this project was the

existing REFLEQS code of CFDRC.

1.2 Project Objectives and Approach

The overall objective of this project was to develop a 3D CFD code that could be used

as a tool in designing and predicting flow environment in LOX/H2 and

LOX/Hydrocarbon liquid propellant thrust chambers. The code should be capable of

performing steady-state and transient analysis of single-phase and two-phase

reactive flows on non-orthogonal grids.

A building block approach was to be used in which the most advanced,

methodology would be first implemented in the 2D code, tested and then extended

to the 3D code. Code testing, verification/validation and documentation efforts

were planned to be performed concurrently.

Three major activities were planned for this project: development of the new

generation REFLEQS code, code tests, and validation, and computational studies

supporting STME engine development.

1 4105/6
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The starting version of the REFLEQS code utilized staggered grid arrangement, first

order numerical schemes, interactive SIMPLEC algorithm and weak form of

conservation equations (see Yang et al, 1992). The planned direction and selected

code modifications for this project included the following:

a.

b.

C.

d°

e.

fo

.

h.

employ accurate differencing schemes (second-order accurate);

incorporate efficient solution algorithms;

incorporate options for Cartesian, cylindrical, and Body-Fitted

Coordinate (BFC) systems;

incorporate advanced turbulence models with boundary layer

treatment;

develop Eulerian-Lagrangian spray dynamics and combustion models,

accounting for turbulence modulation effects for evaporating systems;

incorporate available finite-rate reduced mechanism combustion

models;

incorporate turbulence-combustion interaction models; and

include thermal radiation model.

Early in the project, it was decided to incorporate state-of-the-art numerical

methodology by implementing non-staggered grid arrangement, higher-order TVD-

type numerical schemes, non-iterative PISO solution procedure, and strong form of

conservation equations expressed in terms of Cartesian velocity components.

Several new methodologies prior to this project had not been thoroughly tested,

(e.g. PISO algorithm for compressible flows, Hautmann 4-step reduced chemistry for

fuel rich conditions, etc.). As a result, fundamental development, testing, and

validation efforts were directed to the development of new, robust fluid dynamic

solvers. As a result, most code subroutines are completely reprogrammed.

Parallel to the code development, active, continuous support was provided for

analyzing flows and heat transfer problems during the STME development effort,

e.g., NLS manifold study, STME nozzle cooling, vehicle base heating, etc.

2 410516
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1.3 Salient Features of the Code

This section outlines the salient features of the REFLEQS code, specifically designed

for solving turbulent flow and heat transfer problems with and without chemical

reaction. It consists of two fully compatible codes: REFLEQS-2D and REFLEQS-3D,

and a common preprocessor, REFLEQSP.

The codes are written in modular form, using FORTRAN 77 language. The

provided pre-processor allows the user to specify the problem in a compact input file

without modifying the main code. Several users can be supported with a single

version of the code. Geometric flexibility implemented into the code allows the

user to simulate flows in complex geometric configurations, multiple flow inlets

and exits, and with internal solid objects. Selected capabilities, techniques, and

physical models are summarized below.

1.3.1 Numerical Techniques

The following are numerical techniques of the REFLEQS code.

a°

b.

C.

d.

e.

f.

°

h.

i.

°

k.

Finite-volume approach of solving Favre-averaged Navier-Stokes

equations.

Cartesian, polar, and non-orthogonal Body-Fitted Coordinates (BFC).

Colocated (non-staggered) grid.

Strong conservative form of momentum equations with Cartesian

components as dependent variables.

Stationary or rotating coordinate systems.

Pressure-based methodology for incompressible and compressible

flows.

Blockage technique for flows with internal solid objects.

Four differencing schemes: upwind, central (with damping terms),

MUSCL, and third-order Osher-Chakravarthy.

Steady-state and transient (second-order time-accurate) analysis

capability.

Fully implicit and conservative formulation.

Pressure-based solution algorithms, including SIMPLE, a variant of

SIMPLEC, and non-iterative PISO algorithm for all flow speeds.

3 4108/6
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n.

Symmetric Whole-Field linear equation solver

Gradient Squared solver.

Multi-component flows with heat and mass transfer.

Eulerian-Lagrangian approach for two-phase flows.

and Conjugate

1.3.2 physical Models

The following are the physical models for the REFLEQS code.

a.

b.

C.

JANNAF Property Tables for gaseous species.

Equation of State for arbitrary composition of ideal gas.

Four turbulence models:

.

2.

3.

4.

Standard k-E model (Launder and Spalding, 1974);

Extended k-E model (Y.S. Chen and Kim, 1987);

Multiple Time Scale Model (Kim and C.P. Chen, 1988); and

Low-Reynolds Number k-¢ Model (Chien, 1982); this provides

the capability of resolving boundary layers.

d,

e.

f.

g.

h.

i.

Standard and extended wall functions.

Instantaneous reaction (diffusion controlled combustion) model.

Equilibrium chemistry model (accelerated JANNAF method).

One step finite rate chemistry models and two-step reduced

mechanism models for O2/H2 and O2/Hydrocarbon propellants.

Evaporating reactive spray dynamics model.

Discrete ordinate thermal radiation model.

1.3.3 Code Organization

Figure 1-1 illustrates the overall flowchart of the code. A common preprocessor

(developed under CFDRC's R&D funds) supports both 2D and 3D codes. It provides

the flexibility of restarting problems, reading grids from external files, (e.g., EAGLE

format or PLOT3D format), screening user's input file for simple errors and

incorporates some degree of intelligence by analyzing input consistency. Results can

be processed with NASA's PLOT3D or FAST graphical postprocessors, or more

conveniently with CFDRC's CFD-VIEW scientific data visualization package.

4 4105/6



E 4

-2

m

m

m

w

• IUser Input I
I F e I _,_JREFLEQS-2D

i _ Equation

[__ I Solver

I'._._ii_i_,_!,i_e__'_ P_Pr_'sorI_ IREFLEQS-3D I

i L_ I EquationI Solver

I_iiiii__ !',i_:I

Restart
File

Figure 1-1. REFLEQS Code Organization

_..IGraphics Post-
I PrOcessOr I

4 I05_6 f1-1

1.3.4 Code Testing

The REFLEQS code has been checked out for a large number of problems by using

the following four-step validation procedure:

a°

b.

C.

d.

Check-out problems (with known solutions);

Benchmark problems (with benchmark quality data);

Validation problems (with detailed experiment data); and

Field problems (with global performance data).

Results of the computational studies can be found in the volume

"REFLEQS - Validation and Applications Manual".

entitled,

m

m

1.4 Outline of the Report

Section 2 provides a general description of the governing partial differential

equations embodied in the REFLEQS codes. Section 3 describes the physical models

available.
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The geometry and computational grid topologies are explained in Section 4 while

the control volume discretization techniques are discussed in Section 5. Details

including the similarities and differences of the solution algorithms, SIMPLE,

SIMPLEC, and PISO, are described in Section 6.

A separate section (Section 7) is dedicated to boundary conditions, providing

detailed explanation for each boundary condition type available to the user. Section

8 presents the overall solution procedure and linear equation solvers used in the

code. Conclusions are presented in Section 9 and recommendations for further

development and applications of REFLEQS are given in Section 10.

m
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2. BASIC GOVERNING EQUATIONS

In this section, the basic governing equations for single-phase fluid flow are

presented. These equations are derived from the conservation laws of mass,

momentum, and energy which can be found in most fluid mechanics textbooks.

Since a conservative finite-volume method is used in REFLEQS, all the governing

equations are expressed in conservative forms.

In Cartesian tensor form, the mass conservation and momentum conservation can

be expressed as

m

w

3p 3

-_ +G(P uj) -0

0pui 0 0p 0 :ii

Ot+N(Pue')=-N+- xj+afi (2.1)

where ui is the ith Cartesian component of the instantaneous velocity, p is the fluid

density, p is the instantaneous static pressure, z_j is the viscous stress tensor, fi is the

body force. For the Newtonian fluid, "_j can be related to the velocity through

(2.2)

where # is the fluid dynamic viscosity and 6_j is the Kronecker delta.

The energy equation can take several forms and different forms are good for

different classes of problems. Two forms are used in the REFLEQS code: static

enthalpy; and stagnation enthalpy. The static enthalpy form of the energy equation

can be expressed as:

w

lad

0oh 0 _]j _ui

7 4105/6
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Note that the above equation is not strictly conservative by its nature and is

recommended for use for incompressible and low Mach number flows. The total

enthalpy form of the energy equation, on the other hand, is fully conservative and

is recommended for high speed compressible flows. The total enthalpy H, defined

as H = h + v2/2, is governed by the following equation

3 [pujH]=_DqJ _)

In Equations (2.3) and (2.4), qj is the j-component of the heat flux.

Law, the heat flux is calculated by

(2.4)

By using Fourier

-k 3T

q.i = _ (2.5)

where k is the thermal conductivity.

The species conservation equation is written as:

OPYi 3 O( 3Yil+poGj w <2.6>

where Yi is the mass fraction of species i, D is the mass diffusivity, and l_ represents

source/sink terms due to chemical reactions.

For turbulent flows, the diffusion terms in the above equations are replaced by the

effective diffusion due to turbulence. Section 3 discusses the calculation of the

effective diffusion (or eddy diffusivities) for various turbulence models.

r
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3. PHYSICAL MODELS

3.1 Turbulence Models

In this section, the theoretical framework behind turbulence modeling is outlined

followed by a detailed description of the various turbulence models available in the

REFLEQS code. Section 3.1.1 introduces Favre time-averaging and the Boussinesq

eddy viscosity concept. Section 3.1.2-3.1.7 describe the turbulence models

implemented in the REFLEQS code.

3.1.1 Favre Averaged Navier-Stokes Equations

The basic governing fluid dynamics equations have already been introduced in

Section 2. These equations are, in general, applicable to Newtonian fluid flow under

steady or transient, incompressible or compressible, laminar, transitional or

turbulent conditions. The nonlinearity of the Navier-Stokes equations, coupled

with the complexity of the boundary conditions, makes it impossible to obtain

analytical solutions for all but a limited number of flows of engineering interest.

Hence one is forced to resort to approximate or numerical methods. Even though a

wide variety of numerical techniques can be applied to solve the Navier-Stokes equa-

tions for laminar flows, Direct Numerical Simulation (DNS) of turbulent flows is

feasible only at very low Reynolds numbers. Turbulent flows are inherently

unsteady and they contain a wide range of time and length scales, and resolution of

these scales requires very short time steps and fine grids. The CPU and memory

requirements for direct simulations are too large even for the fastest and largest

present day computers.

As most engineering applications only require time-mean quantities, the Navier-

Stokes equations are usually averaged over time or ensemble of statistically

equivalent flows to yield averaged equations. In the averaging process, a flow

quantity q_is decomposed in to mean and fluctuating parts. The following two types

of averaging are generally used.

• ft a + T
Reynolds (or time) Averaging: _ = _ + qb where qb -- (1/T) qJdt

,d to

9 4105/6
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Favre (or density) Averaging: qb= _ + q_"where _ = p--_/p

Note that overbar denotes Reynolds averaging while tilde denotes Favre averaging.

T should be large compared the fluctuation time scale so that mean quantities are

stationary over a number of samples. It also must be borne in mind that the mean

quantities can vary in time on a scale much larger than T.

Applying the Favre averaging procedure to Navier-Stokes equations (Equation 2.1),

one obtains, the Favre-averaged Navier-Stokes (FANS) equations given below. (For

detailed derivation, see Cebeci and Smith, 1974.)

J

w

:_.._

(3.1)

The FANS equations contain less information than the full NS equations, but have

additional unknown terms -_ uiuC called the Reynolds stresses. These correlations

between the fluctuating components arise in the averaging process, and need to be

modeled to achieve closure of the FANS equations.

All the turbulence models available in REFLEQS employ the generalized Boussinesq

eddy viscosity concept in which the Reynolds stress -_ uiu; is treated as a linear

function of the mean strain rate

--P Ui Uj = "' + 3xi 3 3Xm 8ij --3 8q
(3.2)

10 411_/6
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Here k is half the trace of the Reynolds stress tensor and/zt is the turbulent eddy

viscosity. Following the kinetic theory of gases, the eddy viscosity is modeled as the

product of a velocity scale q and a length scale L

t.tt = C p q e (3.3)

where C is a constant of proportionality. Various turbulence models differ in the

way q and e are estimated. In the following description of models, the overbar form

/.t and p, and tilde for u, v, etc. are dropped for convenience.

3.1.2 Baldwin-Lomax Model

This belongs to the class of algebraic turbulence models because the velocity and

length scales are obtained from algebraic relations. It is also commonly referred to as

a mixing-length model because it employs Prandtl's mixing-length hypothesis in

modeling length and velocity scales.

Baldwin and Lomax (1978) developed this model primarily for wall-bounded flows.

Like the mixing-length model of Cebeci and Smith (1974), it employs different

expressions for #t in the inner and outer parts of the boundary layer.

_tt inner for y < YcrossoverlI'tt = P't outer for y >_Ycrossover I
(3.4)

In the inner layer, Prandtl's mixing-length model and the Van Driest's damping

function are used to estimate the length scale,

f =tcy[1-exp(-y+/A+)]

where A+ is the Van Driest's damping constant.

wall units, is defined as

(3.5)

y+, the distance from the wall in

r .

y+=yur/v, ur=
(3.6)

1 1 4108/6
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In the preceding expression u_is commonly known as the friction velocity with _'w

being the shear stressat the wall.

The velocity scale q is modeled as the product of

vorticity,

and the root mean square

,O),=I(_____- _X)2+(__ _)2+(_ __)2]1/2 (3.7)

Using the preceding expressions, the eddy viscosity in the inner layer is obtained as

_tin,_ = p e2lcol (3.8)

The outer layer eddy viscosity is determined from the following expression:

_touter = K Ccp p FwakeFkleb (y) (3.9)

where K is the Clauser constant, Ccp is an additional constant, and

f wake = min YmaxFmax, Cwk Ymax _ (3.10)

The quantities ymax and Fmax are determined from the function

F(y)= y Ic01[1-exp(-y+/A+)] (3.11)

The quantity Fmax is the maximum value of F(y) that occurs within the boundary

layer and Y_x is the value of y at which the maximum occurs.

Fkleb(Y) is the Klebanoff intermittency factor given by

12 410516



[ -1Fkl_b(y)= 1 +5.5 Ymax J] (3.12)

The quantity Udif is the difference between the maximum and minimum total

velocity in the boundary layer (i.e., at a fixed x station)

w

Udif = _/ (u2 + v 2 + W2)max - %/( u2

The second term in Uaif is zero for stationary walls.

+ V 2 + W2)min (3.13)

The values used for the constants appearing in the preceding expressions are

A÷=26 Ccp=l.6 Ck_b=0.3 Cwk =0.25 Jc=0.4 K=0.0168

3.1.3 Standard k-cModel

Several versions of k-e models are in use today, but the model employed in

REFLEQS is based on Launder and Spalding (1974). This model employs two partial

differential equations to estimate the velocity and length scales and hence

commonly known as the two-equation model. These equations are the k- and e-

equations which govern the transport of the turbulent kinetic energy (TKE) and its

dissipation rate respectively. The modeled equations are

with the production P defined as

pp¢ pc2 3

= C_, --X-- - C_, T +
(3.14)

13 4105/6
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F

P = vt + 3x---_ 3 3x m 3xj 3 k 3x m (3.15)

The square root of k is taken to be the velocity scale while the length scale is

obtained from

L £

w

r3/4 k3/2
_= _

¢ (3.16)

The expression for eddy viscosity is

C"k2 (3.17)
Vt=" E

The five constants used in the model are:

C. = 0.09 ; Ca_ = 1.44 ; C_2 = 1.92 ; crk = 1.0 ; era= 1.3

Wall functions are used for this model. A description of wall functions is provided

in Section 7.4.

3.1.4 Extended k-eModel

This model was developed by Chert and Kim (1987) by modifying the standard k-E

model to make the dissipation rate more responsive to the mean strain rate than

the standard k-e model. The k-equation retains the same form as that of the

standard k-¢ model. In addition to the dissipation rate time scale, k/e, a production

range time scale, k/P is introduced in the E-equation as shown below.

(3.18)

14 41(]6/6
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The net effect of this formulation is to enhance the development of 8 when the

mean strain is strong and to suppress the generation of e when the mean strain is

weak. The model constants are:

C)_ = 0.09 ; C¢I = 1.15 ; C_2 = 1.9 ; C_3 = 0.25 ; crk = 0.75 ; cy_= 1.15

3.1.5 Multiple Time-Scale Model

Most turbulence models, including the standard k-¢ model, assume one time scale

for both the production and the dissipation rates of turbulence. However, experi-

ments and the Direct Numerical Simulation (DNS) of turbulence have shown that

most of the turbulence production occurs at large scales (energy carrying eddies) and

is cascaded to smaller scales (dissipative eddies) where most of the dissipation takes

place. Several authors (e.g., Hanjalic et al., 1980; Fabris et al., 1981) have suggested

partitioning of the energy spectrum into production range kp and dissipation range

kt, the sum of the two quantities being k. Kim and Chen (1988) have developed a

multiple time-scale turbulence model based on variable partitioning of turbulent

kinetic energy. The partitioning is determined as a part of the solution and depends

on local turbulence intensity, production, energy transfer and dissipation rate. The

partition is moved into higher wave numbers when production is high, and to low

wave numbers when production vanishes. The model uses a transport equation for

each kp, kt, ¢p and at, however these equations differ from each other only in the

source terms.

m

E =

m

(.+., 1

0 0 pp2 pp_p

= C p, + Gp, kp p8 2 0 I_t + _t OSp)

w
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3 3 Pd _2 PPer' et

(p_)+_ (p,,,/_,):c,,, kt +c_- kt % k-i-+G_,- ,_ J (3.19)

u

w

m

The eddy viscosity is defined as

vt = C_ k2/ep (3.20)

where k, the total TKE, is calculated as

k = kp + kt

The model constants are:

Ca = 0.09; cr_ = era = 0.75; cr_ = cra = 1.15

C¢pl = 0.21; Cqa2 = 1.24; C_3 = 1.84;Cal = 0.29; Cet2 -" 1.28; Ca3 = 1.66

(3.21)

=
w 3.1.6 Low Rey-nolds Number Model

All three models described above, viz. the Standard k-e model, the extended k-e

model, and the multiple time scale model, are of high-Reynolds number form and

therefore require the used of wall functions. However, the commonly used wall

functions may not be accurate in flows with large separation, suction, blowing, heat

transfer, relaminarization, etc. This difficulty associated with wall functions can be

reduced by the use of low-Reynolds number k-e models which permit integration of

momentum and k-E equations all the way to the wall. The k-e equations are

modified as shown below to include the effect of molecular viscosity in the near

wall regions.
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e

(3.22)

Several versions low-Reynolds number k-¢ models are available today. After a

careful analysis of the comparative studies done by Patel et al. (1985), Brankovic and

Stowers (1988), Avva et al (1990), the low-Re model of Chien (1982) was selected for

implementation in REFLEQS. The model parameters appearing in the preceding

equations are:

C, = 0.09 ; C_1 = 1.35 ; C_2 = 1.8 ; crt = 1.0 ; cr_ = 1.3

r_--_-_xp(_.01_5y*),h--_.0;h= _-0.22_xp[_R;6)_]
D- 2_k/_; E--2@_)_xp(-05y+) (3.23)

3.2 Combustion Models

The combustion models implemented in the REFLEQS code include:

instantaneous, equilibrium, and finite rate chemistry models. Previously, the finite-

rate model in the REFLEQS code was restricted to one-step or multi-step irreversible

reactions such that a particular fuel species may appear as a reactant in one reaction

step only. In this study, efforts were made to extend the chemistry modeling

capability of the REFLEQS code to include dependent, multi-step reactions in which

the same fuel (or oxidizer) species can exist in more than one step. The cases of H2-

Air and Hydrocarbon-Air combustions are considered.

3.2.1 2-Step Hz-O_ R¢0¢tion Model

The combustion model for I-I2-O2 reaction is based on the 2-step model of Rogers

and Chinitz (1983).
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H2 + 02 = 2 OH

H2 + 20H = 21-120

(3.24a)

(3.24b)

Further simplifications are made by assuming that the first step, Equation (3.24a), is

in equilibrium, and the second step, Equation (3.24b), is irreversible. The

implementation of this reaction mechanism into the REFLEQS code is discussed

below.

Basic Equations: The basic approach of REFLEQS in solving chemical species, is to

solve the mixture fractions and the "fuel" species of a finite-rate reaction first, and

then derive the mass fractions (or concentrations) of all species according to element

conservation. For this 2-step H2-C)2 reaction of mixed equilibrium chemistry and

finite-rate chemistry, the basic equations are the tranport equations of conserved

mixture fractions

F (fi) = O, i = 1, 2 .... , NCMPS - 1 (3.25)

where NCMPS is the number of mixture compositions. The transport equation of

fuel species [H2] in Equation (3.24b) is given as:

F _H2_ = _ Kfd_Iao[H2] [OH] 2 (3.26)

The extra relations include equilibrium Equation of (3.24a), i.e.,

= =

and element conservation

(3.27)

[OH] + 2[<] + 2[H20 ] =[HI (3.28a)

18 410516
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In the above Equations (3.25) through (3.28a,b), F( ) denotes the fluid transport

operator and, fi is the mixture fraction to be solved for NCMPS-1 compositions (with

NCMPS- I

fNCMPS -1 - _-" fi). The equilibrium constant K, OH
i=1

expressed as

for Equation (3.24a) is

=

m

(3.29)

where G is the Gibbs free energy at T.

Solution Procedure: Once the mixture fraction fi is solved, the mole values of

elements [HI, and [O] can be derived as

F_

u

m

(3.30a)

[ol=[o-1_°'._[od°_+[-_o]_°_ __0_

where [ ](0) is the un-reacted species concentration from mixture fraction fi.

With [H2] solved from Equation (3.26), the species [02], [OH], [/-/20] are to be obtained

from Equation (3.30b) plus

[OH] + 2[H20] : [H] _ 2[H2 ] (3.31)

[OH]2=KoH[H2][02] (3.32)

After algebraic manipulations, the Equations (3.30b), (3.31), and (3.32) are solved in

different cases of [H2] values as:
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(i) [H2] > 0, then

1

[OH]:-_(4b2 *4bR 1 - b) (3.33a)

(3.33b)

(ii) [H2] = 0, then

i

U

U

w

[OH] = 0

[02]=1/4R1

(3.34a)

(3.34b)

and in both cases

= (3.35)

In the above expressions,

b- 1/4Ko.[H ] (3.36)

(3.37)

3.2.2 2a__pL_4 - Oz Reaction Model

The 2-step CH4 - 02 reaction model of Westbrook and Dryer (1981) is employed and

simplified by assuming only forward reaction is present.

3 k't

CH 4 + _ 0 2 --> CO + 2H20 (3.38a)

02 k21+ CO --->CO 2 (3.38b)

where the reaction rates of Equations (3.38a and 3.38b) are given by Westbrook and

Dryer (1981), (in cm-g-s unit) respectively as
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- 48.4

4 --67xio

-40

iO2 = 1014"6e "_ [CO] [H20] 0"5 [02] 0.25

(3.39a)

(3.39b)

An algorithm similar to that for the 2-step I-I2-O2 mechanism is used. The transport

equations to be solved are Equation (3.25) for mixture fraction fi and those for "fuel"

species as

F{CH4_ =-do/ (3.40)

m

--z

i_

m

Other species can be derived from the element conservation relations.

[c.n4] + [CO] + [CO2] = [C]

(3.41)

(3.42a)

4[CH4]+2[H20]=[H]
(3.42b)

2 [02]+ [CO] + 2 [C02] + [/-/20 ] = [0] (3.42c)

With elements [C], [H], and [O] obtained from mixture fraction fi, and [CH4], [O2]

solved from Equations (3.39), (3.41), and (3.42) yields

(3.43)

[H20 ] (3.44)

(3.45)
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3.2.3 Chemical Equilibrium Model

The equilibrium model proposed by Meintjes and Morgan (1989) is described below.

This method is based on calculating the element potentials or the element activities.

The chemical potential of any species "j" can be written as:

+RTI 70 (3.46)

where uj = chemical potential, _ = standard state Gibbs function, po = atm • pr and

pj = partial pressure of species "j".

nj
pj = np (3.47)

I

where nj/n is the mole fraction of species

po is atm pressure.

"j', p is the total pressure of mixture and

i

!

The chemical potential "/_j" can be written as:

p.j = _, aq P.i (3.48)
i=1

where/1i is the chemical potential of atomic element i and aq is the number of moles

of element "i" per mole of species "j". Substituting into Equation (3.46),

i _j p
I _.,aq_ i .-R-.._+ln

RT i=I (3.49)

1

From the equation of state,

p RT
- (3.50)

n V
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Therefore,

()°, I n,_., a ij _ i = In +In "V + -R--T
i=1

(3.51)

Defining molar concentration, q = nj/v and

w

D

Rewriting Equation (3.51),

RT t_J

where cj = nj/v and '_i = lai/RT.

Equation (3.52) can be written as:

I

i=I
(3.52)

=

m

L _

where

In cj = In Rj + _., aq In Z i
i=I

(3.53)

=: :

(3.54)

m

J

and Zi = eZ/(an element variable)

Equation (3.53) is simplified as:

= :

I

cj=Ri11(zi)_,,j =_,...1
i=1

(3.55)
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Sir_ce atoms of each element are conserved,

I

aijcj=bi,i=l,...I
j=l

(3.56)

where bi is the total number of moles of element "i" in all species.

i

_L
i__ ___

Equations (3.55) and (3.56) form the basis of this formulation. Substituting Equation

(3.55) into (3.56):

RjFI (z.) -
j=l m=I

=0,i=1,...I
(3.57)

Thus there are "i" non-linear algebraic equations for the "I" unknown values of Zi.

A good guess is used to obtain the initial values of Zi and the subsequent values are

obtained by solving this system. The values of c] are calculated from Equation (3.55).

The temperature is calculated from "q" and then the new values of Rj are calculated

and again the system is solved for new values of Zi and so on until convergence is

achieved.

3.3 Turbulence-Combustion Interaction

In many combustion systems, reactants enter in separate streams, with fuel and

oxidizer non-premixed. The resulting combustion process of diffusion flames, in

the presence of flow fluctuation due to turbulence, is very complicated. Generally,

the "fast-chemistry" assumption is made to simplify the problem of turbulence-

combustion interaction. Under this assumption, the chemical reactions are

considered to have very high production rates, so that the reactions are completed as

soon as the reactants are mixed. In other words, the reaction time is assumed to be

negligibly short in comparison with the turbulent mixing time. In the limit of fast

chemistry, the instantaneous species concentrations and temperature (with given

enthalpy) are functions only of conserved scalar concentrations (e.g., mixture

24 4105/6



==

m

m

w

fractions) at that instant. The averaged thermodynamic variable can be obtained

from the knowledge of statistics of those scalars, which can be expressed by the

probability-density function (pdf). A further approximation is made by assuming a

form of the pdf that can be evaluated from a few moments of the conserved scalar.

In this study, the conserved-scalar approach based on the fast-chemistry assumption

is adopted to account for the effects of turbulence-combustion interaction. The pdf

of the mixture fraction is assumed to be a tophat function.

3.3.1 Conserved Scalar Equations

For the problem of diffusion controlled combustion, the effect of mass diffusivity

differences among different species are negligible in most turbulent flows at

moderate to high Reynolds number (see Kuo, 1986). Therefore, the simplest and

best choice for the conserved scalar varaible is the mixture fraction.

To determine the pdf, which describes the statistics of mixture fraction, the mean

value and variance of the mixture fraction are needed. These can be solved from

the Favre-averaged transport equations suggested by Jones and Whitelaw (1982), as

(3.58)

_- ,. - (3.59)

where f and _ (g = f"2) are the density-weighted mean and variances of mixture

fraction f, respectively, and CD has the value of 2.

3.3.2 Top-HatPdfModel

The "top-hat" pdf with possible delta function at 0 and 1 is assumed as
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Po , f=O
p(f)= c, O<a <f<b<l

P1, f=l
(3.60)

The specific expression of p(f) (i.e., the values of parameters, Po, PI, a, b, c) can be

determined by the following moments.

_o' p (f) d f = 1 (3.61a)

L_

H
_o'fp_df= f (3.61b)

m

k J

m

which leads to the explicit form for Equation (3.61) as

(3.61c)

Po + P1 + c (b- a) = I (3.62a)

P1 + I c (b2_ a2) = f (3.62b)

1 c (b 3 _ a3) = _ + f2
P1 +_ (3.62c)

mmm

The expression of p(f) for the mean value f< 0.5 can be derived for three different

cases from Equations (3.62a-c) as
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(i)

(ii)

(iii)

I
a

c

I
b

f2<_3_<2F-3f 2

pi

C

Po

O. b 1.

0

3i-_U-3P

p_

Po

y

f

O°

Pl

.

(Po = P1 = 0

1
C.=

N

3g_'f "t

P°=3( _ +_

PI-O

a=O

f 8_

fpo=(1-_ + 3T(1- _ + 3"g

a=O

f \c:6S (_-J-6g

(3.63)

(3.64)

(3.65)
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L . Owing to the

f =0.5 forf _ (0,1)

parameters as

symmetrical properties of p(f,f;g') and p(1-f,f,-g) and

, for f'>0.5, P(f) can be expressed simply by obtaining the

all= 1-bl(l_ f) (3.66a)

bIf= I-al(l_lO (3.66b)

clf = cl( 1 _ f) (3.66c)

POll = Pll(1-fj (3.66d)

PllJ = Pol(1-f) (3.66e)

m

!

where []If denotes the parameter for f'>0.5, and Ill(l-J)

in Equations (3.63-3.65) with f substituted for (1 - f') •

is the parameters given

3.3.3 M¢0n Values of Thermodynamic Variables

Based on the fast-chemistry assumption, the thermodynamic variables such as

species mass fractions (or concentrations), temperature, and density, are functions

only of the mixture fraction. The mean values of these variables, which are of

interest, are obtained by averaging the instantaneous values at the given mixture

fraction, f, with the pdf P(f) over the sample domain f _ (0,1) i.e.

m

u

m

fo
"Yi= Yi(f) P(D d f (3.67a)

T= _o_ Ti(f) P(f) d f (3.67b)

w

!
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~-1 fo2 P(f) d fP = _ (3.67c)

in which Yi is the species mass fraction, T, /9 are temperature and density,

respectively.

The integration of Equations (3.67a-c) are approximated by numerical quadrature

with limited discrete samples.

3.4

The droplet equations of mass, momentum and energy are solved in a Lagrangian

frame of reference moving with the droplets. These solutions are used to calculate

the source/sink terms for the corresponding gas phase equations.

The equation of motion for the droplet is written as (Crowe et al. (1977)):

w

m

dv ,4d

=C c_o (U - v) ]U - v ]_-z - V d Vp + m dgm,_-_ (3.68)

where rna is the mass of the droplet and v = ui + vj + wk its velocity vector, u, v

and w are the Cartesian velocity components. CD is the drag coefficient and/9, U

and p are the density, velocity and pressure of the gas, respectively. Ad is the droplet

surface area and Vd is the droplet volume. For a spherical droplet, Ad = _d2 and Va

= _ d3/6 where d is the droplet diameter, g is the gravity vector. Equation (3.68)

accounts for the acceleration/deceleration of the droplet due to combined effects of

drag with gas, local pressure gradients and body forces such as gravity.

The drag coefficient, CD, for the droplet is based on the local Reynolds number

evaluated as:
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_.- Re = (3.69)
#

where 1_ is the dynamic viscosity of the gas. The following correlations have been

found to be valid for different ranges of Reynolds numbers (Crowe et al, 1977):

CD = 2_4_4
Re

CD = R2_e4e[1 + 0 .15Re0"687]

CD = 0.44

forRe < 1

for 1 < Re < 103

for Re > 103

(3.70)

Substituting for CD into Equation (3.68),

dv 18 f (u v)- vp__= - --+g
dt p d_,_ P d (3.71)

where Pd is the droplet liquid density and f = CoRe�24. The droplet locations are

determined from the velocities as:

dR = v (3.72)
-- dt

__o

u where R is the position vector of the droplet.

The mass conservation equation for the droplet is given by:

drna =- Sh (pD)_ (xv-x.) (3.73)
dt

where Sh is the Sherwood number and D is the mass diffusion coefficient for the

gas. xv and x_. are the vapor mass fractions at the droplet surface and the free stream,
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respectively. In this model, xv is calculated from the liquid saturation pressure. The

Sherwood number is obtained from the following expression (Crowe et al, 1977):

Sh = 2 + 0.6Re °.5 Sc 0333 (3.74)

where Sc is the Schmidt number. Since m a = pdrd3/6, the mass equation for the

droplet is rewritten in terms of its diameter:

m

n

B

. . Xv - X,,.

--_"=d(d)-2Sh{pDJ Pad

(3.75)

The energy equation for the droplet is written as:

,. dTa ddmal (3.76)
m at.. ,t _ = ?t + _'-_1

where _t is the sensible heat transferred to the droplet and Td is the droplet

temperature. L is the latent heat of vaporization for the droplet fluid and Ca is the

specific heat of the droplet. Clis calculated as:

= Nu_kd (Tg- T,i) (3.77)

where k and Tg are the thermal conductivity and temperature of the gas,

respectively. The Nusselt number, Nu, is obtained from the following correlation:

Nu = 2 + 0.6Re °.5 Pr 0"333 (3.78)

where Pr is the Prandtl number. Substituting the above expressions into Equation

(3.76), the energy equation is rewritten as:

= =

u

where

dTa =.Tg- Ta QL (3.79)
dt 0 0
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L Sh (pD) (xv - x_)
QL= Nuk (3.80)

Pdd2C d

0=- 6Nuk (3.81)

w

= ,

lml

F
L

u

If the droplet temperature is below its boiling point, Equation (3.75) is used as the

mass conservation equation. Once the droplet attains its boiling point, the mass

conservation equation is obtained by setting the left hand side of Equation (3.76) to

zero, i.e., the droplet temperature cannot exceed its boiling point. Therefore,

dm_= _q__" (3.82)
dt L

This equation implies that all the heat transferred from the gas is used to vaporize

the droplet.

The solutions to the droplet equations provide sources/sink terms to the gas phase

conservation equations. The sources/sinks are assigned to the particular cell (in the

Eulerian gas phase) in which the droplet is located. The calculation of the

source/sinks is as follows.

The mass of the droplet is continuously monitored along its trajectory. The

source/sink term for a cell is given as:

s

w

w

3 3,)io-(i)out
= nPa_ _ 6 (3.83)

i

the summation takes place over all the droplets located in the given cell. The

subscripts "in" and "out" refer to cell inlet and outlet conditions, r_ is the number

density of droplets in a given parcel. Similarly the momentum source/sink term is

evaluated as:

w
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6 (3.84)

This includes the effects of frictional interactions with the gas.

source term is a vector. The energy source/sink term is given as:

The momentum

w

= -_

w

= araby- nZ, , (3.85)
i

where hv is the enthalpy of the vapor at the vaporization temperature and qi is the

heat transfer from the gas to the droplet (calculated according to Equation (3.77)).

3.5 Radiation Model

A large number of numerical techniques are available for solving the equations

governing the transfer of thermal radiation. The most widely used among them are

listed below.

a.

b.

G

d.

e.

f.

Hottel's Zone method

Flux method

P-N approximation method

Monte-Carlo method

Discrete-transfer method

Discrete-ordinate method

Hottel's zone method was the first general numerical procedure developed to

handle the radiative transfer equation. It has been widely used to estimate the

radiation transfer in the absence of detailed knowledge of the flow and reaction.

This method involves the use of exchange factors which needs to be worked out in

advance for complex geometries. The disadvantage of this method is that it is very

uneconomical and not suited for complex configurations with strongly participating

media. The flux methods involve differential approximation to the radiative

transfer equation. This method is computationally efficient and for this reason it
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has been widely used in general combustion problems. However, this method

suffers from inadequate accuracy and the difficulty to extend to complex geometries.

Compared to this method, the P-N approximation method is more accurate.

Among all the existing numerical treatments for radiative heat transfer, the Monte-

Carlo method is the most accurate method. In this method, the randomly chosen

energy releases are tracked through the combustion chamber for their lifetimes.

Unfortunately, this method is computationally expensive. The discrete-transfer

method, on the other hand, is economical and can be applied in a straightforward

manner to complex geometries. This method, however, cannot treat the scattering

by the medium containing droplets and soot particles and hence is not suitable for

combustor applications.

After comprehensive review of all the methods, it has been found that the discrete-

ordinate is well suited for radiation prediction in rocket combustion chambers.

There are several advantages of this method. Firstly, the discrete-ordinate method

can be easily extended for polar and complex geometries. Secondly, the evaluation

of the in-scattering term is relatively simple. Also, the boundary conditions can be

imposed more accurately at inlets and exits. Finally, this method is accurate and can

be easily coupled with CFD codes based on the control volume approach. The

governing equations and the solution procedure for this method are described

below.

3.5.1 Governing Equations

The integro-differential radiative heat transfer equation for an emitting-absorbing

and scattering gray medium can be written as (Fiveland, 1984)

f, f2"o I(r,f)_¢(f)'-_f))d(_ . V) I(r, f)) =-(k + o) I(r, fa) + k Ib (r) + -_-"_ , (3.86)

n where .(2 is the direction of propagation of the radiation beam, I is the radiation

intensity which is a function of both position (r) and direction (_), k and cr are the

absorption and scattering coefficients respectively. Ib is the intensity of black body
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radiation at the temperature of the medium, ¢ is the phase function of the energy

transfer from the incoming a'2" direction to the outgoing direction £2. The term on

the left hand side represents the gradient of the intensity in the specified direction £2.

The three terms on the right hand side represent the changes in intensity due to

absorption and out-scattering, emission and in-scattering respectively.

The boundary condition for solving the above equation may be written as

m

p£ [n.fflI(r, ff)dffI (r, f2) = e Ib (r) + -_ .=',o (3.87)

where I is the intensity of radiant energy leaving a surface at a boundary location, e

is the surface emissivity, p is the surface reflectivity, and n is the unit normal vector

at the boundary location.

In the discrete-ordinate method, Equations (3.86) and (3.87) are replaced by a discrete

set of equations for a finite number of ordinate directions. The integral terms on the

right hand side of the above equations are approximated by summation over each

ordinate. The discrete-ordinate equations may then be written as,

w

 m-a7 + m-a7 =-(k +g +NEw=',='mg ";m=
m

(3.88)

For cylindrical polar geometries, the discrete-ordinate equation may be written as,

m._

!
_m a (r In) 1 3 01mlm) 3I m
-7- 3-----7----7 a4t +bt,n____=_k+,,,.m+._v+_-___w,dqjm,m_m.;rn=I,...Mt,_T l-t. Y. 1 (3.89)

rtl'

u

where the second term on the left hand side represents the angular intensity

redistribution. It accounts for the change in the direction cosines as a beam travels

in a straight line.
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The different boundary conditions required to solve this equation are given as,

Wall Boundary

Symmetry Boundary

Inlet and Exit Boundary

Im = alb + P _ win" I'trd Ira" (3.90)

m

(3.91)

Im = 0 (3.92)

In the above equations, m and m' denote the outgoing and incoming directions,

respectively. For a particular direction, denoted by m, the values /.t and _ are the

direction cosines along the x and y directions. These equations represent m coupled

partial differential equations for the m intensities, Ira. In the present code, only the

$4 approximation, i.e., 12 ordinate directions are considered. Table 3-1 lists the

values of the direction cosines and the associated weights.

Table 3-1.

Direction Cosines and Their Associated Weights for the $4 Approximation

Direction Cosines Weight
Direction
Number l_m _m _Im Wm

1 -0.908248 -0.295876 .295876 /rJ3
2 -0.908248 " 0.295876 .295876 _J3

3 -0.295876 -0.908248 .295876 _3
4 -0.295876 -0.295876 .908248 _3
5 -0.295876 0.295876 .908248 _3
6 -0.295876 0.908248 .295876 _3

7 0.295876 -0.908248 .908248 _3
8 0.295876 -0.295876 .908248 _3
9 0.295876 0.295876 .908248 _3
10 0.295876 0.908248 .295876 _3

11 0.908248 -0.295876 .295876 _3
12 0.908248 0.295876 .295876 _3

4105/6 t3-1
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Equation (3.88) can be cast in a fully conservative form for a general BFC coordinate

system as

i

w

O-_[gmlmJFlx+_mlmJFly]+ _tmlmJF2x+_mlmJF2y]

[ ° ]= l -(k +8)I m + kI b +"_-_ 2 Wm'(_m'mlm (3.93)

where x' and y" are the local grid coordinate directions, J is the Jacobian of the

coordinate transformation and

3x

Fix = -_

Ox

Fly = --_

J

F_ = "_

F2y =

(3.94)

Equation (3.89) can be integrated over the control volume, shown in Figure 3-1, to

obtain

gm (Ae lm'- Aw lm'_) + _m (An lm" - As ir_) + (An - As ) [_/m+ 1/2 Ip, m+ 1/2 -wmTm- l/2 Ip, m-1/2]

= - (k+ _) VI,,,p+ kVG + V4-ff_ w,,,.O,,,'mI,,.p

where the coefficients y are evaluated from the recurrence relation

(3.95)

u
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"_m+ I/2 = 'Ym- 1/2 - _m Wm (3.96)

In the above equation A denotes the cell face area and V denotes the cell volume

and subscripts w, e, s, n, P denote the west, east, south, north, and cell center,

respectively. Figure 3-1 shows a sketch of the control volume.

u

I

i

i

_=-

m

i

r _

W

I
n

E

_z
410_ r4-1

Figure 3-1. Sketch of the Control Volume

The in-scattering term on the right hand side of this equation contains the phase

function ¢ which can be prescribed for both isotropic and anisotropic scattering by

the medium. For a linear anisotropic scattering, the phase function may be written

as,

_m'm= l . 0 + ao[_.m_.m" + _m _m' +'rlm _m "] (3.97)

where ao is the asymmetry factor that iies between -1 and 1. The values -1,0,1 denote

backward, isotropic and forward scattering, respectively.

m
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Equations (3.95) involves 5 intensities out of which 2 intensities are known from

the boundary conditions. The other cellface intensitiescan be eliminated in terms

of the cell center intensity by a spatially weighted approximation. For example, if

the east and north cellface intensitiesare unknown, they can be eliminated in terms

of cell center intensity by using

Ir%-(1-OO Ira,

Ira. = 0_ (3.98a)

w

2

w

N

Imp-(1- )Im.
In, = o_ (3.98b)

where ¢z is the weighting factor, cz=l yields a upwind differencing scheme and (x=1/2

yields a central differencing or the "diamond differencing" scheme. Substituting

Equation (3.98) into the integrated discrete-ordinate equation results in a algebraic

equation for the cell center intensity,

u

where

gtmAIm +_mBIm +SI-S2

Imp = gtmAN + _mAs + (x(k + or) V (3.99)

u

n

A = A e (1 - (z) + A w o¢

B =An(1-(z)+AsO_

Sl = O_k'V' Ibp

S2 = o_v TE Wr; %"' Ir;l'

N

Equation (3.99) is appropriate when both the direction cosines are positive and the

direction of integration proceeds in a direction of increasing x and y. For negative
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direction cosine, the direction of integration is reversed and the integration sweep is

started from the appropriate corner of the domain. Thus, for each set of direction

cosines, the intensities at all the cell centers are obtained by marching in the

appropriate direction. This procedure is repeated for all the ordinate directions. The

in-scattering term is evaluated explicitely by using the previous iteration values,

thus decoupling the m ordinate equations.

Assuming local radiative equilibrium, the source term for each computational cell

i.e. the net radiative heat flux, is given by,

w

m

s= v k G Ir_win- V 4rIkX b (3.100)
m

This source term is added to the gas phase energy equation. The gas phase equations

and the radiative transfer equations are solved in an iterative manner.

m

m

w

m
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4. GEOMETRY AND ITS COMPUTATIONAL REPRESENTATION

The REFLEQS code uses a single domain structured grid approach. One important

feature of the code is the use of a non-orthogonal body-fitted grid with internal

blockages. As a result, many flow problems with complex geometries can be

handled. In this section, a brief description of the geometry, the Body-Fitted

Coordinate (BFC) system, and the internal blockage concepts are presented.

i

D

i

4.1 Geometry. and Grid

The REFLEQS code can be used to solve any fluid flow problems with complex

geometries as long as the flow domain is covered with a structured grid. A grid is a

discrete representation of the flow geometry and computational domain. A grid is

considered to be structured if there exists three grid lines (for a 3D problem) to

identify three distinctive directions and any face of a control volume is on two grid

lines. In other words, a single (I,J,K) index can be used to identify a cell or a point of

a structured grid. Since the REFLEQS code allows internal blockages, the above

mentioned structured grid is able to cover most flow problems despite its geometric

limitations. An example of a two-dimensional flow problem is shown in Figure 4-

l a and two possible grid layouts, one with blockage and another without blockage,

are displayed in Figures 4-1b and 4-1c.

=

4.2 Body-Fitted-Coordlnate (BFC) System

In the REFLEQS code, three different coordinate systems are used: the Cartesian grid

system; 2D axisymmetric polar system; and an arbitrary Body-Fitted-Coordinate

system. The Cartesian and polar systems are specialized grid systems for problems

with simple geometries and they could offer some savings of the storage and

execution time. In general, the REFLEQS code works with the BFC system and on a

BFC grid. Figure 4-1b and 4-1c are just two simple examples of such a grid system.

u

41 4105/6



I

m

E
m

m

w

i

m

w

Figure 4-1.

inlet

_/////////////Z/Z///_"/Z///_"/Z_Z/////_

"/,

_////.////./////////.

(a)

lil I III I I

k._ I I

I I I
• I !

I I

IIII

(b)

outlet

(c)
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Mathematically, a BFC system can be viewed as a coordinate transformation from

physical domain to computational domain as illustrated in Figure 4-2 for a 2D

problem. The _ and vl coordinate lines and the I and J indices have a direct

correlation. In order to identify each point on the physical domain, a base Cartesian

coordinate system is always used as shown in Figure 4-2a. As a result, the

transformation can be expressed as

=n(x,y,z), = 4"(x,y,z)or y= 43
z=zccn, )

(4.1)

w

w

m

Therefore, each point on a physical domain can be identified by a triplet (x, y, z).

This triplet is a function of _, vl and _ or is associated with a particular (i, j, k) index.

Therefore, the REFLEQS code works on a BFC grid system expressed on a base

Cartesian coordinates. Note that a physical domain is always transformed to a

rectangular domain as shown in Figure 4-2.

For future reference, a brief introduction of the BFC coordinate system is given

below. A comprehensive description of BFC coordinate system can be found in the

work of Thompson et al, (1985). For derivation convenience, (_1 _2, _3) is used to

replace (_, rl, 4). In a BFC coordinate system, (_1, _2, _3), the covariant base vectors

are defined as

(4.2)

m

w
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,,_ell,(l,J)

4105/6 f4-2 _ X

u

(a) physical domain

Figure 4-2.

3

2

J=l
I= 2 .., .. ..

(b) computational domain

An Illustration of the Transformation from Physical to Computational

Domain
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where r is the displacement vector and is equal to x [ + y f + z/_ , and contravariant

base vectors are defined as

=

w

u

w

m

m

-'I _2 X _3 "2 _3 X _1 -'3 _1 X ¢2 (4.3)

- ! ;a - ! ;_ =---7--

where J is the Jacobian defined as J= (sl x _2)" _3" Basically, _j is a base vector along _j

coordinate line and eJ is a base vector normal to the surface formed by si and

-_k(i_je k). But note that _j and sJ are not unit bases and unit bases can be defined as

hi-- V/NJ
(4.4)

and

_J
(no summation on j)

(4.5)

where hj is usually called scale factors.

It is easy to show that the covariant and contravariant base vectors satisfy the basic

relationship

_i" _j= 8ij (4.6)

where 8ij is the Kronecker delta.

In the BFC system, the gradient, divergence, curl, and Laplacian operators can be

expressed in conservative form as:

Gradient:

L

m
Divergence:

3
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Curl:

Laplacian:

Vx_'-I 3 (J_'k V-)J3_ x

g2f=j 32 .

m

The geometric meaning of the above quantities can be easily explained on a 2D local

point P curvilinear coordinates shown in Figure 4-3. For a BFC grid, the Jacobian is

simply the volume of each cell.

u

=

i

z

L_
m

Figure 4-3. Geometrical Meaning of Covariant and Contravariant Bases for a 2D

BFC System

4.3 Blockage Concept

In many engineering problems the boundaries of the domain are very complicated

and there can be internal flow obstacles. To facilitate the use and generation of a

single domain structured grid, the REFLEQS code employs the so called "blockage"

concept. With blockage capability, several parts of the flow domain can be real solids
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or imaginary dead regions which are blocked-off. Such blocked-off regions are

illustrated in Figure 4-4 for a 2D flow where both real and imaginary blockage is

used. As it can be seen, a structured grid is very difficult to generate without

blockage capability and blockage offers convenience in grid generation. The blocked-

off regions will participate in the grid generation and numerical solution process but

will have solid wall properties. The numerical treatment of the blockages is not

discussed here and interested readers should consult the book by Patankar (1980).

m

u
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Figure 4-4. Illustration of the Use of Blocked-Off Regions
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5. DISCRETIZATION METHODS

The fluid flows are governed by several physical conservation laws and these laws

can be written as Partial Differential Equations (PDE's) as presented in Section 2. A

numerical method to solve these PDE's consists of the discretization of the PDE's on

a given grid, formation of corresponding linearized algebraic equations, and the

solution of the algebraic equations. This way, a final set of discrete numbers on a

grid is obtained which represents the numerical solution of the PDE's. In this

section, the discretization of the governing equations is presented. The finite-

volume approach is adopted due to its attractive capability of preserving the

conservation property. In the following, the storage locations of the dependent

variables are first discussed. The discretization process then follows in more detail.

5.1 Staggered versus Colocated Grid Approach
_v

r

m

L

w

i

The staggered grid approach was widely used for incompressible flow simulations in

the past. With the staggered grid approach, proposed by Harlow and Welch (1965),

the velocity components are stored at positions between the pressure nodes as

illustrated in Figure 5-1a. Such an approach ensures the pressure is readily available

for momentum equations and velocity components are available for the continuity

equation without interpolation. As a result, a proper pressure coupling is

guaranteed and the well-known checkerboard instability is prevented. However,

the disadvantages of the staggered grid approach are well known and the following

are just two examples.

It is not easy to extend the staggered grid approach to non-orthogonal

curvilinear grids. Several proposed extensions are extremely complex

to apply and can cause loss of accuracy.

Many state-of-the-art CFD methodologies are difficult to apply with a

staggered grid approach such as multigrid, local grid refinement, and

multi-zoning.

The current state-of-the-art approach is based on the colocated grid (or non-staggered

grid) proposed by Rhie and Chow (1983) and later by Peric (1985). The grid

arrangement of this approach is illustrated in Figure 5-1b. This colocated grid
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approach has many advantages over the staggered grid approach and is used in the

REFLEQS code. This approach evaluates the cell face velocity using momentum

equations and consequently the cell face velocity is directly linked to a third pressure

derivative term. This linkage ensures that the checkerboard instability is

eliminated. With a colocated grid approach and Cartesian velocity as dependent

variables, many coding complications are avoided and more accurate solutions can

be obtained, particularly for viscous flows.

w

m

V

I

// I

j¢

/

(u,v,w,p)/@
/

/

/

/
/

(a) (b)

Figure 5-1. Illustration of Variable Storage Locations for: (a) Staggered; and

(b) Colocated Grid

5.2 A General Convection-Diffusion Equation

It is noted that all governing equations, except continuity equation, can be expressed

in a general form as

____+___+_+---_=_/r +_ r +_ r +s_ (5.1)
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where ¢ can stand for Cartesian velocity components, total enthalpy, turbulence

kinetic energy, mass concentration, etc. F is the effective diffusivity and S_ is the

source term. Therefore, the above equation, in convection-diffusion form, will be

considered for discretization. The continuity equation will be discussed later in

Section 5.7.

First of all, Equation (5.1) needs to be transformed to BFC coordinates using the new

independent variable _(x, y, z) , rl(x, y, z), and _(x, y, z). Without detailed derivation,

it is sufficient to write down the transformed equation in (4, 7/, _') coordinates as

follows:

w

w

l al a¢ rjg17, + S, (5.2)

with

g/k= -_j. _k (5.3)

The discretization involves an integration of Equation (5.2) over a control volume

as shown in Figure 5-2. That is:

_j_v[Equation (5.2)]. l d _ d d _ (5.4)n

Note that A_--At/ = ,4_" = 1 has been chosen on every control volume with the

REFLEQS code. This is purely for computational convenience. In the next several

sections, individual terms of the above integration will be discussed.

m

m
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Figure 5-2. The Labeling Scheme of a Control Volume

5.3 Transient Term

Consider the discretization of the transient term of Equation (5.2), i.e.,

_z_vl _ 3_vT = 7 (l p _) J d_ drl d_'= _ (J pC) d_ drl d_'= pOV- p°qb%'°• At (5.5)

In the above, superscript "o" stands for a value at an old time, variables without "o"

superscipt are at the new time, and V stands for the volume. Note that the above
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discretization holds true for both Euler first-order and Crank-Nicholson second-

order schemes.

5.4 Convection Term and Different Convection Schemes

By defining a physcial contravariant velocity component U _ such that 17 = U k e k , the

convection term can be rewritten as

(5.6)

Integration of the above term over a control volume gives,

==

u

a
m

C = C¢ - C w + C n - C s + C h - C I = GeqJe - Gw_w + Gn_n - Gsd_s + Gh_h - Gd_l (5.7)

with G¢ defined, for example, as

(5.8)

whereG's represent the mass flux through a face of the control volume. The

subscripts, e, w, n, s, h, and I represent the values evaluated at east, west, north,

south, high, and low faces as shown in Figure 5-2. The evaluation of the mass

fluxes G, will be described in Section 5.7 and the evaluation of q values at control

volume faces are described next.

Without loss of generality, the evaluation of _e is discussed on a uniform grid as

shown in Figure 5-3. The following various schemes can be used for this purpose:

m
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Figure 5-3.
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An Illustration of the Cell Face Value Evaluation

5.4.1 First-Order Upwind Scheme

First-order upwind approach will evaluate Ce using either _p or CE depending on the

flow direction at point e. Mathematically, it can be expressed as

(5.9)

or in more convenient form as

_ + _p q_E- q_P (5.10)
cYp=G 2 IGI 2

Era)

L_

m

m

This scheme has first-order accuracy and is one of the most stable schemes.

5.4.2 Central Difference Scheme

Pure central difference approach will evaluate qe by averaging the values at point P

and E. That is
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_E + _P (5.11)
CCN = Ge 2

1

It is widely known that pure central difference scheme may cause unphysical

oscillations. For most problems, some damping (or artificial viscosity) is needed for

stability. In practice, central difference scheme with damping is constructed as

Ce=d¢Cy P +(1-de)CCe N (5.12)

with de, the damping coefficient, representing the fraction of Upwind scheme used.

Equation (5.12) can be re-written as

C, = Ge + CE CE- CP2 de [Ge - 2 (5.13)

W

1

[]
1

g

U

1

Comparing Equation (5.10) with Equation (5.11), it is clear why the scheme is called

central difference plus damping, de = 0 yields the pure central scheme, while de = 1.0

results in the upwind scheme. In this report, central difference scheme often refers

to pure central plus the damping term as given above.

5.4.3 Smart Scheme with Minmod Limiter

It is observed that the damping coefficient is constant for a central difference

scheme. There are many flow situations where damping is needed only in certain

limited regions. Therefore, a smart scheme is designed to adaptively calculate

damping coefficient depending on the local flow property. The minmod limiter can

be used to obtain damping coefficient de as

de= minimode (1, Ye) (5.14)

with
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(_E- U - (_P-U

q_E- (_P
and (5.15)

The MINMOD function is defined as: MINMOD (o¢, fl) = sign (cx) max [o, rain (_o_[,

This scheme will reduce to upwind scheme if there exists local extrema such as

across shocks (Ye < 0), to central difference scheme when Ye > 1, and to second-order

upwind scheme for 0 < Ye < 1.

5.4.4 Other High-Order Schemes

For compressible flows with shocks, several high-order schemes with limiters are

very accurate for shock capturing. Three such schemes are introduced in the

following.

Osher-Chakravarthy Scheme: Osher-Chakravarthy scheme evaluates the damping

coefficient as

de = _ + _ minmod
(5.16)

1 3-11

with 11 =_ and fl=l--'--_

Roe's Superbee Scheme:

coefficient as

Roe's Superbee scheme is used to obtain the damping

de= Max[o, min(2y, 1), min (7, 2)] (5.17)

van Leer's MUSCL Scheme: van Leer's MUSCL scheme is used to obtain the

damping coefficient as

m
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(5.18)

5.5 Diffusion Terms

The diffusion term in Equation (5.2) can be split into two parts: main diffusion

(j = k); and cross diffusion (j _ k). Let's consider main diffusion first, i.e.,

k=1,2,or3 (5.19)

Without loss of generality, k = 1 term will be used for derivation.

term over a control volume, as shown in Figure 5-2, leads to

Integration of D_

w

It is easy to show that

A 2 A

1911- I - hisin (5.21)

m

i ,

where A is the area of the control volume face along the _ direction and 0_1

represents the angle between vector e I and the plane formed by e2 and e 3. By

defining

F.A
(5.22)

_ - h1 sin c_
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we have

Therefore, D_, the main diffusion coefficient needs to be evaluated at the faces of

each control volume.

The cross diffusion term is written as

_k
(5.24)

Consider D_ 1 for illustration purpose:

w

w

= :

m

m

(5.25)

By defining D 21 F jg21 1= _ and assuming One = _ (Op + OE + 0N + ONE), etc., we have

Other cross terms can be similarly discretized.

(5.26)

5.6 Final Linear Equation Set

From Subsections 5.3 to 5.5, the general convection-diffusion Equation (5.2) has

been discretized term by term on a control volume. Assembling all the terms

together, the final linear equation is resulted and can be written in general form as:

• L :

w
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A_p = A_W + AE_ E + AS_S + ANON + AL_L + AH_H

+ ASB/_SW + ASE_SE + ANW_NW + ANE_NE

+ ALS_LS + ALI_LN + AH_nS + AHI_HN

+A_ + Aw_+ AEL_EL+ AEV_EH

+ S '_

(5.27)

5.7 Di_cretization of Mass Conservation and Mass Flux Evaluation

As mentioned before, mass conservation equation is a special one which can not be

written as the general convection-diffusion form (Equation (5.2)). Moreover, in a

pressure-based method mass conservation is used to determine pressure field. For

this purpose, the mass conservation equation needs special attention. The general

mass conservation equation can be transformed into BFC coordinates as

JOt pv. =0 (5.28)

Therefore, integration over a control volume yields

r

m

pV - p°'v'°
_-G e-G w+ G n-G s+ G h-Gt=O

(5.29)

with e=( 0uI)for example. Note that G's are the mass flux through a control
e

volume face as mentioned in Section 5.4.

Our next task is to evaluate mass flux G's at control volume faces such that the

checkerboard instability is eliminated for a colocated grid arrangement. This is
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achieved by averaging momentum equation to the cell faces and relating the cell

face velocity directly to the local pressure gradient. This procedure is presented next.

The discretized x-momentum equation can be expressed at cell P as

w

(5.30)

where nb refers to all the neighboring cells and the transient term is explicitly

expressed to ensure that the momentum equation at cell face includes the effect of a

time step. Dividing the above equations by a_ yields

s:(1 + cd_)up : _,, --anb _ u + cd;u; + --
nb a_ unb dp P a_ (5.31)

where

P u V
c=..-_ , dp=__u

ap
(5.32)

The above momentum equation is at P-cell but in reality it applies to every point.

Therefore, at cell face f, for example, we have

w

Since we do not know how to evaluate (a_b)l, for example, the following quantities at

f will be obtained by averaging the same quantity from two neighboring nodal

points.

59 410516



m

ll nblf, (5.34)

Therefore, by using Equation (5.31) we have

I: s:]bl nb +

nb _lp ap If
I(a_ unb + 1 + dp p-cd_ u (5.35)

where overbar means average from point P and E. Hence Equation (5.33) can be

written as

(5.36)

and the above equation is further reduced to

+cdU(u;-u-_) (5.37)

: w

m

with

d u = dp
q

U

1 -cdp
(5.38)

Now it is clear from the above equations that the cell face velocity is obtained from

an average of the two neighboring point velocity plus a second-order pressure

correction and a second-order previous time velocity correction. The pressure term

serves as the mechanism to avoid the checkerboard problem and the previous time

velocity serves as a mechanism to obtain a time-independent steady solution.
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The y-component and z-component velocities can be similarly evaluated and the

contravariant velocity component at east face can be thus evaluated as:

U_ = uf. Fix + vf. Fly + wf. Flz (5.39)

with

F1x = hi ¢1. i-" ; Fly = h I ¢1. f ; F1 z = h1¢1. _c (5.40)

N

r

u
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6. VELOCITY PRESSURE COUPLING

In Section 5, the mass conservation equation and other governing equations are

discretized on an arbitrary control volume. It is noted that both pressure and

Cartesian velocity components appear in the mass conservation equation and the

main variable is not clearly identifiable. It is the task of this section to reformulate

the mass conservation equation such that the pressure increment (or pressure

correction) is the main variable. As a result, the velocity and pressure fields are

linked together. This approach is classified as a pressure-based or pressure

correction method.

For ease of presentation, only incompressible flow and Cartesian grids are used.

Extension to BFC and compressible flows are straightforward. The discretized

equations for mass and momentum conservation can be re-written as

u

= =

X, uf=O
f

~i i D i Vi p +Ar u i = _,Anb ui, nb -
nb

(6.1)

_P

where stands for the summation over all faces,
1

neighboring cells.

_is the summation over all the

In the following, three velocity-pressure coupling algorithms are described which

are available from the REFLEQS code.

6.1 @IMPLE Algorithm

E
The SIMPLE algorithms (Patankar et al, 1972) relies on using a guessed value for

pressure p*, and using the momentum equation can be used to obtain the velocity,

i
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u i. If the pressure has an increment p, the velocity components will also have a

corresponding increment u i. This increment can be written as

~i " i " D i
Ae Ui = _'_ Anb U i,nb- Vi P" (6.2)

nb

p

In the SIMPLE algorithm Ui,n_ are neglected and the above increment equation is

approximated as

~i " = _D i " "
A eu i Vp or ui-

D i

~i Vip

At;
(6.3)

Therefore, at cell faces, the increment is

We would like to enforce the new velocity,

(6.4)

w

w to satisfy the mass conservation, i.e.,

(6.5)

m or

-Z.f=Z.;
/ f

(6.6)

(6.7)
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Note that the right hand side of the above equation is simply the mass imbalance.

The above pressure correction equation is a Poisson equation and any linear

equation solver can be used to solve it. After p" is obtained, a new pressure and a

new mass conserved face velocity u/are obtained using Equations (6.4) and (6.5).

6.2 SIMPLEC Algorithm

SIMPLEC algorithm (van Doormal and Raithby, 1984) differs from SIMPLE in the

approximation of the momentum increment equation. With SIMPLEC algorithm,

it is assumed that

i ' _ / '_-_ Anb U i, nb= Anb U i
nb nb (6.8)

As a result, the increment momentum Equation (6.2) becomes,

- An U i=-D: Vip
(6.9)

n_b iSince ~i is always larger than An_, the coefficient
Ap

m

m

i -ZA b=Ap
nb

(6.10)

is always positive.

With Ap^ireplacing Ap~i the same derivation performed for SIMPLE can be used and

the pressure correction equation is also given by Equation (6.7). It is obvious that the

modification fro.m SIMPLE to SIMPLEC is very small. However, in most problems,

the efficiency improvement is significant.
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6.3 pISO Algorithm

PISO is a Predictor-Corrector algorithm and is more mathematically sound

compared with SIMPLE and SIMPLEC since no assumptions are made to the

momentum increment equation. The algorithm is described as follows: with a

guessed pressure, p*, the momentum equation is first solved to get u i. This is the

predictor step and can be written as

Predictor.

-i • i • niv" Si
A p U i = _._ Anb U i,nb - "" iV +

nb
(6.11)

w

_N

Next, two correctors are performed. First-corrector will provide a new u i

such that

"fi **_X" Ai--*. _ i **DriP +
dlpui -_nb nbu"nb Si

and p'"

(6.12)

and second-corrector will get the velocity uf and pressure, p, such that

w

f _ul=O

-i A i **
Ap u i = _, nbui,nb- DiVip + Si

The similarity between PISO and SIMPLE is obvious

equation is subtracted from the old momentum equation.

if the

That is:

(6.13)

new momentum
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,, • ,, = U i - U i

A_u i =-D1V/p with , **
First corrector: =p _p* (6.14)

-i ' i *' " ' " ** " **
Second corrector: Apui=ZAnbUi, nb-DZVp with Ui-'Ui-U i ;p =p-p (6.15)

Since Ui, n_ is known at second-corrector, the above increment equation has the

similar form of SIMPLE and SIMPLEC. However, it is clear that PISO does not make

any approximation regarding the momentum increment equation. Also it is worth

mentioning that the number of correctors does not have to be two and more

correctors can be performed.

m

u

J

m

t
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7. BOUNDARY CONDITIONS

In order to completely specify the mathematical problem, it is necessary to supply

the conditions at the boundaries of the solution domain for all the dependent

variables. These conditions are usually either specification of the value of the

dependent variable, or the value of the associated flux, or a combination between

the two.

REFLEQS offers a variety of boundary conditions which include:

w

L

Fm

m

ao

b.

C.

d.

fo

Inlet: where all the dependent variables are fixed except pressure;

Exi____!t: where all the dependent variables are extrapolated from the

interior except pressure. Pressure can be fixed (FIXP), extrapolated

(EXTRAP), or both (FIXPEX);

Symmetry: where the normal gradient of all the variables are equal to

zero except the velocity component normal to the boundary which is

set to zero;

Solid Wall: where the velocity is fixed, pressure is extrapolated, and

the value or the flux is known for other dependent variables; and

Periodic Boundary. Condition: where the two boundaries exchange the

information.

For each dependent variable, at all boundaries, appropriate modifications of the

discretized equation at the "near boundary" nodes is required. For most of the

dependent variables, the boundary conditions are implemented by modifying the

source terms SUcj and SPcj:

'_" Anb (_nb + SUqj

nb

_-, Anb - SP_O (7.1)
nb

A brief introduction of the above boundary conditions are provided below.

w

w
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7.1 Inlet with Specified Mass Flow Rate (FIXM)

At an inlet, the amount of incoming mass flow rate miN through the boundary cell

face and the incoming _ property should be specified. In this case, the finite-

difference coefficient connecting the boundary node to its neighboring internal node

is set to zero and then the SU_ and SP¢ source terms are modified as:

SU_ = SUcj + rain 4;B
(7.2)

m

SP¢_ = SP_ - miN

The pressure correction equation is not modified in this manner.

with the boundary node is set to zero for p'-equations.

(7.3)

A link coefficient

7.2 Exit Boundary.

At the exit, the fluid flows out of the calculation domain, and the information of

most dependent variables is not available a priori. Fortunately, the information

there is often not important if the convection is the dominant activity. Therefore,

all the dependent variables except pressure can be extrapolated. This is equivalent to

setting the boundary link coefficients to zero. As for pressure, it is fixed at the exit

for most incompressible or subsonic Mach number flows (this is called FIXP

boundary condition). However, for supersonic flows, pressure should be

extrapolated at the exit (EXTRAP boundary condition). REFLEQS offers a third

boundary condition, FIXPEX, to take care of the situation where the exit flow

condition supersonic or subsonic is not known a priori.

7.3 Symmetry Condition

At symmetry boundary, a zero mass flux through the boundary is assumed.

same time, the normal derivative of all the scalar variables is set to zero.

At the
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7.4 Solid Woll Boundary.

For laminar flows or turbulent flows without using wall functions, the no-slip

assumption is made at the solid walls. As a result, the mass flux through a wall is

set to zero. On the other hand, the pressure at the wall is not known, a priori, and

extrapolation from the internal cells is used. For other dependent variables, a

constant value, a constant flux, or a combination of the two is needed at the wall.

For example, for the energy equation, either constant temperature or adiabatic

condition can be assumed. For turbulent flows with wall function boundary

condition, a special procedure is carried out.

The wall functions described by Launder and Spalding (1974), are derived from

experimental and analytical knowledge of the one-dimensional Couette flow which

exists near the wall. A semi-empirical universal function of non-dimensional

distance normal to the wall, y+, is:

y+ - (7.4)

¢r,,,a

In the above definition, 6y is the distance normal to the wall and u_ is the "friction

velocity" given by:

u =l--d- ) (7.5)

In the internal sublayer (y÷ > 11.63) the velocity variation may be described by a

logarithmic relationship i.e.:

u_ fn (Ey +) (7.6)u=--_

where E = 9.70and _c= 0.4034 are experimentally determined constants.
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In both the viscous (y+ < 11.63) and internal (y+ > 11.63) sublayers, the shear stress is

calculated from the product of effective viscosity/,/fly and normal velocity gradient

&t / o_y, i.e.:

U 3u
zw =_q_- (7.7)

m

=

m

=__

where

fla. for y+ < 11 .63

_ef/= _ _tturbfor y+ > 11.63 (7.8)

Near the wall, the transport equation for the turbulent kinetic energy, k, reduces to a

balance between the local production and dissipation of k to give:

_t = pe (7.9)

The velocity gradient may be replaced from Equation (7.7) and the dissipation rate

from:

m

k2
ixt = C. p -_- (7.10)

to give:

7/ 2
_'w= C_'2 P k = p u_

Hence, it follows from Equation (7.5)

(7.11)

w
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I gn(Ey+) (7.12)

7.5 Periodic Boundary.

The periodic (cyclic) boundary conditions appear in the circumferential direction if

the two ends of the calculation domain in the z-direction join up with one another.

This can occur in a polar-coordinate direction in which the whole angular extent

from 0 to 360 ° is to be considered (Figure 7-1a) or when "repetition" is present in the

flow pattern in the angular coordinate direction (Figure 7-1b).

The general rule is that whenever identical conditions are to be expected at z = o and

z = last z, the finite flux, equal on both sides, is to be expected at that surface, then the

boundaries are cyclic.

In this circumstance, the boundary conditions can be specified as follows:

_LB = #N " qJHB= qJ1 " and C_ = CZHB (7.13)

where indices HB and LB denote high boundary (k = N) and low boundary (k = 1), Cz

is the convective flux in the z-direction.
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CYCLIC CONDITIONS FOR _= 120°SECTOR

(b)

Figure 7-1. Grid Notation for Periodic Boundary Conditions in the Z-Direction

1
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8. SOLUTION METHOD

In the previous sections, the discretization method, the derivation of the pressure-

correction equation, and the implementation of the boundary conditions have been

described. The task of this section is to assemble all the elements together and

describe how the discretized governing equations are solved.

8.1 Overall Solution Process

The Navier-Stokes equations are a set of highly non-linear and coupled differential

equations. In the discretization of the governing equations, it is seen that the

coupling among different dependent variables is one iteration delayed and the non-

linear terms are linearized. Therefore the above approach is usually called an

iterative method. Due to the de-coupling procedure, the final linear equation set for

each governing equation is well defined and can be solved separately using any

linear equation solver. This approach is called segregated or equation-by-equation

approach. In the following, the overall solution process of the segregated method is

described to solve transient Navier-Stokes equations.

w

w

L .

L_
w

a.

b.

c.

do

Prescribe an initial fluid flow field {q 0} at the beginning of the

computation (to).

Make one increment in time (tn+l = tn + At) and we try to get solution

{¢n+1}. For this purpose, an iterative method is used. Therefore, set

With known {_n*l}k, all the link coefficients Anb are evaluated.

[un÷n,"
The momentum equations are solved first to obtain _ i Jk+l using

the known pressure _n+l}k. This velocity field will not satisfy the

mass conservation.
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e.

f.

°

h.

Pressure correction is solved to obtain the new pressure _p'_+l}k+i and

new velocities are obtained as _ z Jk+l • This new velocity field may

satisfy the continuity equation but not satisfy momentum equation.

Any other scalar equations, _, such as energy, turbulence, combustion

equations are solved to get (¢n+l}t+l.

Steps c-f are repeated until all equations are satisfied or a

predetermined convergence criterion is met. At this point, the

solution at n+l time step is calculated.

Steps b-g can be used to obtain a transient solution at any time

locations.

8.2 Linear Equation Solvers

In the overal solution process, one important component is to solve the linear

equation set resulted from each governing equations. This linear equation solver

usually consumes a large fraction of cpu time and may require large amounts of

memory. Therefore, the selection of linear equation solvers is always a trade-off

among execution time, storage and accuracy needed. A direct solver such as

Guassian Elimination is an accurate method but requires prohibitive storage and

execution time. It is rarely a useful solver for segregated iterative approach. The

best candidate for solving sparse banded matrix like ours is the iteration based

solver. In the 60's and 70's Alternating Direction Implicit (ADI) method was very

popular. Despite the fact that it requires very small storage and cpu time per

iteration, ADI method becomes prohibitively slow to solve the large system.

Therefore, ADI is also not a good candidate. In REFLEQS, two advanced solvers are

developed. One is the Whole Field Solver (WFS) which is an enhanced Stone's

Strongly Implicit Procedure (SIP). The WFS, unlike SIP, is free from any adjustable

0_- parameter and is symmetric. Another solver is the Conjugate Gradient Squared

(CGS) solver which may provide an accurate solution for difficult linear system

with reasonable storage and execution time cost. The two solvers are described in

the following sections.
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8.2.1 Whole Field Solver

Figure 8-1 illustrates the backsubstitution node arrangement and the nomenclature

for the WFS discussion.

j+l O" implicit n°de _jN _1
PN x - substituted node

El- cancelation node

I

I I

SH SL x SH

Figure 8-1. Grid Node Nomenclature for the WFS Discussion

With the i,j,k indices omitted the finite-difference (FD) equation can be expressed as:

(8.1)

The difference between WFS and SIP solvers is the solution algorithm of the z-

symmetric 3D WFS for the system of the FD equations can be summarized as

follows.

a°
In SIP only 3 points are treated implicitly in backsubstitution (P, H, N)

while in WFS (P, L, H, N).

b.

C.

Nonsymmetric arrangement of cancellation nodes is used in SIP while

in WFS (SH, SN) symmetric arrangement is retained, (SL, SH).

No extra memory storage is needed in WFS compared to SIP.
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8.2.2 .Gg__aj_ugate Gradient Squared Solver

Conjugate gradient type solvers have become very popular in recent years since they

often provide a faster convergence rate. They also have many other advantages

(vectorization, no user specified parameters, etc.) over classic iterative methods.

Among various nonsymmetric and nonpositive definite conjugate gradient solvers,

the CGS algorithm has been found to yield faster convergence and is simpler to

implement in the CFD code. The CGS algorithm applied to the system AX = b is

expressed as follows:

Initialization (n=0), ro = b - AXo

qo = p-1 = O; P-1 = 1

m

m

Interaction (n>O),

jOn

Pn = 7oT r.;fin= Pn-'--'_1

u n = rn + fin qn

v n = Apn

- T Pn

(Yn= ro vn;an=-_.

qn+l = Un - C_nVn

rn+l=rn._A(u.+q.÷l)

The convergence rate of conjugate gradient algorithms depends on the spectral

radius of the coefficient matrix and can be effectively accelerated by preconditioning

the system. To a matrix, the linear system AX = b is transformed into an equivalent

one whose coefficient matrix has a lower spectral condition number. This is

obtained by using an approximate matrix p, and this transformed system is solvable

by a direct method, and applying the CGS algorithm to the equivalent system

._X = p-I AX = p-_ b = b" In practice, each time in a CGS iteration one has to compute a
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matrix-vector product of the form y =._X, with/7= p-lA. The vector y is actually

computed by solving a linear system of the form py = AX. Incomplete Cholesky

decomposition is used as a preconditioner in the code. It has been found that

preconditioned CGS is very efficient and robust.

m

w
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9. CONCLUSIONS

As a result of this study, an advanced CFD-combustion code, REFLEQS, has been

developed for analyzing two-phase spray flows in rocket combustors. State-of-the-

art numerical schemes and solution algorithms were incorporated into the code for

accurate flow simulations in complex geometries. Colocated grid arrangement,

strong conservation of momentum equations and high order numerical schemes

were used to ensure good solution accuracy.

To simulate flow and combustion in liquid rocket engines, several physical models

were incorporated into the code including:

turbulence models (Baldwin-Lomax, standard k-e, extended k-e, low

Reynolds number, and multiple-scale models);

H2/O2 and hydrocarbon/O2 combustion models (equilibrium, and one-

step and reduced mechanism models);

PDF based turbulence combustion interaction models;

two-phase Eulerian-Lagrangian spray dynamics model; and

discrete ordinate thermal radiation model.

The code was systematically and extensively verified against a large number of test

problems to ensure solution invariance to coordinate orientation, grid skewness,

boundary condition order, initial conditions, etc. Results of the testing, validation,

and application studies are presented in the REFLEQS: Valiation and Applications

Manual. The code has also been successfully applied for several liquid rocket engine

configurations including SSME, AMCC, STME, and OMV. It has also been used for

several turbomachinery applications, including NASA MSFC's Bearing Seals and

Materials Tester (BSMT) flow problems.

w
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10. RECOMMENDATIONS

Based on the experience of work during this project and assessment of current

trends and future needs, several improvements are recommended for REFLEQS.

The suggested enhancements are classified in the following three categories:

a.

b.

C.

Physical Model Enhancement;

Numerical Method Improvement; and

Code Validation and Applications.

i

w

=

w

i

10.1 Physical Model Enhancement

To resolve complex spray combustion dynamics in rocket engines, the following

physical models need further enhancement:

Multi-Step, Finite-Rate, Chemical Kinetics Model: The chemical equilibrium

analysis has been widely used to predict species and temperature distributions in the

combustion chamber and the nozzle. However, this analysis is valid only under

low Mach number and high temperature conditions for which the chemical time

scale is much smaller than the flow time scale. In regions of low temperature (near

cooled walls or regions where the mixture ratio is far from stoichiometric) or high

speed flow (i.e., in the nozzle region), the equilibrium assumption is no longer valid

and the effect of finite rate chemistry must be taken into account. The model should

be formulated in the general form and demonstrated for established reaction

mechanisms (such as 7-step O2-H2 and multi-step CnHm - O2).

Supercritical Spray Model: The properties of fluids change drastically near the

critical point. Most rocket engine thrust chambers operate under supercritical

conditions. Advanced models, such as those being developed at Pennsylvania State

University and University of Tennessee Space Institute (UTSI), should be

incorporated to include the effects of supercritical phenomena on the vaporization

process under these conditions.

Coupled Atomization and Spray Dynamics Model: Existing spray dynamics models

require droplet size distribution and spatial resolution for droplet formation rate.
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This information, assumed a priori, has great influence on spray dynamics results.

Recently, advanced atomization models, based on Jet Embedding and VOF methods,

have been developed (Giridharan et al, 1991 and Giridharan et al, 1992). The most

suitable models for analysis of single injector and multi-injector interactions should

be incorporated and numerically optimized for shear coaxial, shear/swirl, and

impinging injectors.

Conjugate Heat Transfer Model: A conjugate heat transfer model should be

implemented to assess the effects of heat transfer between various engine

components (such as the heat flux across the injector face to the incoming cryogenic

propellants). The conjugate heat transfer model needs to be incorporated in

conjunction with the multi-domain capability.

10.2 Numerical Algorithm Improvements

Current trends in design methodology indicate a shift from analyzing component

performance to a system of component interactions. Multi-domain, multi-media

simulation with a large number of cells (10 6) are needed. To achieve this, the

following enhancements are recommended for incorporation into the code.

Multi-Domain Capability:. The analysis of interior and exterior flow in rocket

engines can be greatly optimized by the use of multi-domain capability. It allows

efficient grid generation and limits the number of blocked computational cells in

the domain. It is also useful for grid refinement in localized regions of high

gradients. A general purpose multi-domain capability should be incorporated into

the code.

Adaptive Gridding Capability:. This feature allows the grid to adapt itself to the

solution of the problem. Therefore, the grid points are automatically clustered in

regions of high flow gradients and become relatively coarser in regions with small

gradients. This facilitates the efficient utilization of the computational cells in the

flow domain. A moving grid capability should be used to implement the adaptive

gridding feature into the code.
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Convergence Enhancement Capability: Advanced methods such as multi-grid and

coupled-variable conjugate gradient solvers should be implemented to improve the

computational efficiency of solving large systems of linear and nonlinear equations.

In addition, a second-order convergence rate scheme such as the Newton iteration

method should be implemented and assessed. These features are especially useful

to accelerate convergence of fine grid solutions.

10.3 Code Validation and Applications

The REFLEQS code can be applied to a wide variety of, subsonic, and supersonic

flows, with and without heat transfer and combustion.

Even though the code has been extensively checked out for a large number of

problems (as described in the REFLEQS: Validation and Applications Manual),

additional detailed validation studies need to be performed for cases where reliable

experimental data are available. More emphasis should be placed on 3D validation

efforts and on flows coupled with complex physics (spray, combustion, radiation,

turbulence, etc.).
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