
NASA Contractor Report 4534

Node Assignment in

Heterogeneous Computing

Sukhamoy Som

CTA INCORPORATED

Hampton, Virginia

Prepared for

Langley Research Center

under Contract NASI-18936

National Aeronautics and

Space Administration

Office of Management

Scientific and Technical
Information Program

1993

https://ntrs.nasa.gov/search.jsp?R=19940006659 2020-06-16T21:25:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42791766?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Table of Contents

1. Introduction ... 1

1.1 The ATAMM Rules .. 1

1.2 Purpose ... 3

1.3 Organization ... 5

2. Terminology ... 5

2.1 Set Theory Definitions .. 5

2.2 Assignment Definitions .. 6

2.3 Token Classifications .. 12

3. Theoretical Analysis .. 13

3.1 Periodic Graph Execution .. 13

3.2 Cyclo-Static Assignment ... 20

3.3 Optimally-Static And Fully-Static Assignments ... 24

4. Heterogeneous Computing ... 26

4.1 Problem Formulation .. 26

4.2 Design Method ... 27

5. Conclusions .. 33

6. Future Research .. 34

References ... 35

1

1. Introduction

The Algorithm To Architecture Mapping Model (ATAMM) is a dataflow model

for real-time computing in multiprocessor architectures [1, 2]. The model has been

successfully implemented in two Very High Speed Integrated Circuit (VHSIC)

homogeneous architectures and has been shown to achieve predictable steady-state

performance [2]. It is intended that the ATAMM should be extended to include a larger

problem domain such as heterogeneous computing. The primary objective of this report is

to extend the theoretical foundation of the ATAMM so that the problem domain can be

increased. In this section, the present rules of the ATAN_VI, the purpose of the research,

and the organization of the report are described. Some familiarity with the ATAMM is

assumed.

1.1 The ATAMM Rules

A computational problem is represented by a dataflow graph called an algorithm

marked graph (AMG) such as that shown in Figure 1(a). Nodes represent computations

or operations and directed edges represent precedence constraints or data dependency. A

token on an edge indicates the availability of data for the successor node. All edges have a

pool of buffers and can accommodate more than one token at a time. Two special nodes

are a source and a sink. The algorithm marked graph is executed periodically with data

packets injected from the source and the corresponding outputs being removed by the

sink. The injected data packets are numbered from 1 and up in the order they are injected.

All tokens are tagged with their corresponding data packet number. A node is enabled

when all its incoming edges have a token &matching tag. When an enabled node is fired

for a data packet, the corresponding token is removed from each incoming edge and a

tagged token is deposited on each outgoing edge at the end of node execution. It is

possible to execute multiple instances of a node concurrently on different processors [3].

Two other dataflow graphs, called the node marked graph (NMG) and

computational marked graph (CMG) are used to describe the execution of an AMG on a

4 -- Node Time

Edge _de NO

(a)

Start

N1

(D)

NO

N2

i

_i Finish

i

(D-I)

SGP Section

Number

v

I

t+2 t+4
I v

t+6 Time

(b)

TGP Line
Number

2

Data

NO(D)

NI(D)
i,,,- -,ql

N2(D)

N2(D- 1) ,,.

Pocket Number

t+TBO
J

(c)

t+4 Time

Figure 1. (a) An Algorithm Marked Graph.

(b) Single Graph Play for data packet D.

(c) One iteration period of Total Graph Play.

dataflowarchitecture.As thesegraphsarenot neededfor thecontentsof this report,the

descriptionof the NMG and CMG are omitted.

The execution of a single data packet is known as an iteration and is described by a

diagram called the single graph play (SGP) 1. Total graph play (TGP) is a drawing

depicting the beginning, duration, and end of execution of each node of each data packet

when the AMG is executed periodically. Two performance measures are defined next.

The performance measure TBIO, or time between input and output, is the elapsed

computing time between the injection of a data packet and the corresponding output. The

time between successive outputs is known as the iteration period and denoted as the time

between outputs (TBO). The SGP for data packet D and one iteration period of TGP

following the injection of packet D are shown in Figures I (b) and (c) respectively. Time t

is the injection time for data packet D which is the left vertical line in the TGP diagram.

Arrows are used to show the beginning and the end of execution of a node. All node

executions are shown on horizontal lines which will be referred to as TGP node execution

lines, or simply TGP lines. Execution of source and sink are assumed to take zero time

and are not depicted. It is proved in [1] that one iteration period of the TGP can be

derived by overlapping sections of the SGP as shown in Figure 1. The SGP for packet D is

divided from the beginning in sections of TBO time units, and are numbered from the left

with data packets D, D-l, etc. These sections are the contributions from the concurrent

data packets towards one iteration period of TGP beginning with the injection of packet D

as described in Figure 1.

1.2 Purpose

In the present ATAMM implementations on homogeneous architectures [2], it is

assumed that all processors are identical and are capable of executing any node of a given

algorithm marked graph. Hence, the nodes are assigned to processors dynamically at run-

IThe SGP represents steady-stale performance. Further analysis to determine the SGP may be required if
initial tokens are present in the graph.

time and no effort is made to enforce a fixed or static mapping between nodes and

processors. Such node-to-processor mapping where any node can be assigned to any

processor in any order is referred to as dynamic assignment in this report. The model

determines processor requirements with dynamic assignment and is always able to achieve

predictable periodic graph execution. In heterogeneous architectures, however, some

nodes may only be executed in a few specific processors. This happens because

processors are of different types. In addition to computations, the nodes may represent

other operations such as input/output, access to data base, etc. Also, the size of code or

data may restrict the execution of certain nodes onto certain processors only. Hence, it

may be desired that the set of nodes and processors are partitioned in blocks so that a

block of nodes can be mapped onto a distinct block of processors which are capable of

executing all nodes from the assigned block.

Another important aspect of a static node to processor assignment scheme is that

the memory requirement of a processor is expected to decrease significantly because a

processor is not required to execute all nodes of all algorithm marked graphs. Therefore

even in homogeneous architectures, there is an advantage in introducing a static node-to-

processor assignment scheme in the ATAMM model. Two well known static node-to-

processor assignment schemes are fully-static and cyclo-static assignments [4, 5, 6]. In a

fully-static scheme, a node of the algorithm marked graph is assigned to a specific

processor for all iterations. In a cyclo-static scheme, a node is assigned to a group of

processors cyclically. A more detailed definition of static assignments with an extension

to suit the ATAMM problem domain, is given in Section 2.2.

The purpose of this report is to develop the necessary foundation to include static

assignment schemes for both homogeneous and heterogeneous architectures within the

ATAMM context 2. The dynamic assignment scheme can still be used for homogeneous

2private communication with Paul J. Hayes of NASA Langley Research Center, Hampton, Virginia and

Mahyar R. Malekpour of Lockheed Engineering & Sciences Company, Hampton, Virginia.

4

architectures but a static partitioning of nodes-to-processors is necessary for

heterogeneous architectures. Within a partition either dynamic or static assignment

scheme could be used 3.

1.9 Organization

In Section 2, the necessary terminology is defined. The algorithms, theorems, and

proofs are developed in Section 3. In Section 4, an heterogeneous application is

discussed. Conclusions are drawn and future research topics are discussed in Sections 5

and 6, respectively.

2. Terminology

In order to address the issues of node assignment schemes and heterogeneous

computing, certain formal terms need to be defined. These terms are derived from Set

Theory [7] and various assignment schemes from the literature [4, 5, 6].

2.1 Set Theory_ Definitions

Set: A set is a collection of distinct objects.

Examples of sets in the ATAMM context are as follows. The processors of a

multicomputer form a set, denoted as P. All nodes of an algorithm marked graph form

another set, denoted as N.

Hence, N = {NO, N1, N2, ... N(k-1)} and P = {P0, Pl, P2, ... P(m-1)}

where the algorithm marked graph has k nodes and the architecture has m processors. N 1

and P 1 are members or elements of sets N and P, respectively.

Subset: A set S1 is said to be a subset of another set $2 if every element of $1 is also an

element of $2.

A set S1 = {NO, N1, N2} is a subset of N and is expressed as S1 C N. However,

a set {N1, N3} is not a subset of {NI, N2}.

3private communication with Robert L. Jones, NASA Langley Research Center, Hampton, Virginia,

August 1992.

Union of Sets: The union or sum of two sets S1 and $2, designated S1 + $2 or S1 U $2

is the set containing all elements which are members of either S1 or $2 or both.

An example is {N1, N2, N5} U {N2, N6} = {N1, N2, N5, N6}.

Intersection of Sets: The intersection or product of two sets S1 and $2, designated as S1

$2 or S1.$2 is the set containing precisely those elements which are members of both

S1 and $2.

An example is {P1, P2, P3} _ {P2, P3} = {P2}.

Disjoint Sets: Two sets S1 and $2 are disjoint, or mutually exclusive, if they have no

common element, i.e., S1 _ $2 or S1.$2 = dp, or a null set.

The set of nodes N and the set of processors P are disjoint. Hence, N _ P = _, or

a null set.

Partition: A partition 7z on a set S is a collection of disjoint subsets whose set union is S.

The disjoint subsets are called the blocks of Tt. The #(Tz) is the number of blocks in re.

Suppose a computer has 5 processors named as P0, P1, P2, P3, and P4. Hence, P

= {P0, P1, P2, P3, P4}. A possible partition of P is {P0, P1 }, {P2}, and {P3, P4}. Then

{P2} is a block of this partition and #(Tt) = 3. However, the partition specified by {P0,

P1, P2, P3} and {P3, P4} is not a valid partition of P because the subsets contain the

common element P3, and thus, are not disjoint.

2.2 Assignment Definitions

A block of nodes is assigned to a block of processors. This assignment may be

dynamic where a node may be assigned to any one of the processors in any order. A

static assignment indicates that the nodes are mapped to the processors according to some

fixed rules. A static assignment can be either periodic or aperiodic. A periodic static

assignment is a scheme where the node-to-processor assignment is repetitive over a fixed

number of iterations. Two periodic static node assignment schemes of interest are cyclo-

static and fully-static assignments [4, 5, 6]. They are defined as follows.

6

Cyclo-Static Assignment: When successive data packets of a node are assigned

cyclically within a block of processors with an equal displacement in processor number,

the assignment is referred to as a cyclo-static assignment. Let there be m processors

numbered as P0, P1, P2, P3, .. P(m-1) to which a node Ni is assigned in a cyclo-static

manner. If packet D of the node Ni is assigned to a processor P(q), then packet D+I of

the same node Ni must be assigned to processor P(q+c) modulo m, where c is an integer

and is known as the processor displacement. An example with c= 2 and m=5 is given in

Figure 2 where the execution of a node Ni of an arbitrary algorithm marked graph is

shown for five iteration periods. The data packet D of Ni is assigned to P1 and hence the

data packet D+I must be assigned to P{(l+2) modulo 5} or P3. Similarly, the data packet

D+2 is assigned to P{(3+2) modulo 5} or P0.

Fully-Static Assignment: A fully-static assignment is defined as an assignment where all

iterations of a node are assigned to the same processor. The successive data packets of a

fully-static node is executed by an unique processor. An interesting point to note is that if

the processor displacement of a cyclo-static assignment is zero, it results into a fully-static

assignment. For example, if c = 0 in Figure 2, the node Ni would have been assigned to

processor PI for all six iteration periods. Hence, fully-static is a special case ofcyclo-

static assignment with processor displacement equal to zero.

If the assignment of a node is fully-static on a processor, the required code and

data could be stored only in that processor. Therefore, a fully-static assignment is

expected to require less memory in processors compared to a cyclo-static assignment and

is a key objective in [4, 5]. On the other hand, a cyclo-static assignment is more flexible

compared to a fully-static assignment and is expected to provide better processor

utilization. An added advantage is the existence of multiple copies of code and data which

provide the needed redundancy for fault tolerance.

Next, a unique characteristic of the ATAMM problem domain is discussed where

a node may be executed concurrently for multiple data packets. In [4, 5], multiple

7

-k

+

C

E_
E_ c_

k_

+_

o

c_
R
+_

(",1

-4-

_3

.11

c_

0

0

0

olm_

_3
n_
0

Z

e_
R

instances of a node cannot be executed concurrently, but this is not a restriction for the

ATAMM When the node time of a node Nj is larger than TBO, Nj is executed for

F(Node time of Nj)/TBO-] data packets concurrently. Hence, [-(Node time of Nj)/TBO-]

processors must be assigned to this node Nj as a single processor can only execute one

data packet of a node at a time. Hence, it is impossible to develop a fully-static

assignment for the node Nj. As a fully-static assignment of all nodes may not be possible

in the extended ATAMM problem domain, a new assignment scheme called an Optimally-

Static assignment [8] is defined 4. The objective is to achieve an assignment as fully-static

as possible.

Optimally-Static Assignment: A block of nodes consisting of at least one node with

node time greater than the iteration period is said to be optimally-static in a block of

processors provided the following rules are satisfied. If the node time of a node is less

than the iteration period, it is assigned to one unique processor as in the fully-static case.

For a node with node time larger than the iteration period, the node is assigned cyclo-

statically with a processor displacement of 1 to a disjoint subset of the block of processors

consisting of [-node time / iteration period-] processors.

As an example, consider a node Nj = 7 time units and TBO = 3 time units. Hence,

[-7/3-] or 3 processors are required to execute this node. The optimally-static assignment

of Nj to three processors {P0, P1, P2} is shown in Figure 3 for four iteration periods. The

data packet D+I of Nj is assigned to P{(2+l) modulo 3} or P0 because the data packet D

is assigned to P2 and processor displacement is 1. No other node can be assigned to

(V0, Vl, P2}.

The classes of assignment schemes are pictorially described in Figure 4(a). Any

assignment is either static or dynamic. The static assignment can be either periodic or

aperiodic. A class of periodic assignment is the cyclo-static assignment where the

4This new term is coined by the author jointly with Matthew Storch of University of Illinois, Urbana,
Illinois and Paul J. Hayes and Robert L. Jones of NASA Langley Research Center.

9

÷

÷

L_

0

_Z

vml 0

E
o_

,o

c_

o_

0
r_

0

0

0

0

c_

c_

0

.__
LT_

10

/
Q.. Aperiodic /)

General, Constant /

Processor Displacement/
/

._Cyclo-Static/.?

/jf-f_

.. Assignment _.)

//// _ " \

\
"x

\

\

(Periodic
:_. <

\

//' \,

/ At Least One_

Node >TBO ",

(Optimally-Static,

Dynamic

All Nodes Less

Than TBO

(_ Fully-Static

(a)

_jf Cyclo-Static

// _JOptimally-Static _ '",,

I
"_

(b)

Figure , (a) Classification of assignment schemes.

(b) Relationships between Cyclo, Optimally, and

Fully-Static assignments.

11

processor displacement from iteration to iteration are maintained to be constant. The

optimally-static assignment is applicable to a block of nodes which contains at least one

node with node time greater than TBO. If all nodes are less than TBO, a fully-static

assignment is possible. Finally in Figure 4(b), the relationship between cyclo, optimally,

and fully-static assignments is shown with respect to processor displacement. A special

case of cyclo-static is optimally-static where the processor displacement is either 1 or 0.

In a fully-static assignment, the processor displacement is always zero.

2.3 Token Classifications

Tokens on an AMG are classified into three categories: initial tokens, inter-

iteration tokens, and intra-iteration tokens.

Initial Token: Before any data packets are injected from the source, the algorithm

marked graph may contain tokens which are known as initial tokens. These tokens

represent initial conditions (history) for the algorithm marked graph. A tag is attached to

each initial token which identifies the data packet number for which it is to be used. The

number of initial tokens on an edge is assumed to be zero or positive in this report. Also

initial tokens can appear either on data or control edges and are identical to delays in

signal processing literature [4].

The initial tokens on an edge also indicate inter-iteration dependency between the

nodes and edges with initial tokens are referred to as inter-iteration edges. An initial token

on an edge from node Ni to Nj indicates that the execution of node Nj for data packet D

can only start after the finishing of execution of node Ni for data packet D-1.

Inter-Iteration Token: When the immediate predecessor of an inter-iteration edge is

executed by a data packet, a token is deposited on the inter-iteration edge and the tag of

the token is incremented by the number of initial tokens on the edge. This token is

referred to as an inter-iteration token.

12

Accordingto theATAMM rules,anodeisenabledwhenall incomingedgeshave

tokensof a matchingtag. Hence,for theedgefrom Ni to Nj asdescribedabove,data

packet1firesNj with the initial token. Whendatapacket1finishesNi, it producesan

inter-iterationtokenof tag 2 on theedgefrom Ni to Nj. This token is used to fire Nj for

packet 2.

Intra-Iteration Token: All tokens generated from a node solely based on input data

packet D, are known as intra-iteration tokens of packet D. If an algorithm marked graph

does not have any initial token, all tokens used in firing nodes are always intra-iteration

tokens.

3. Theoretical Analysis

In this section, the ATAMM theoretical foundation is extended to include an

arbitrary number of initial tokens, heterogeneous computing, and static node assignment

schemes. It is proved that the periodic execution of the AMG is achieved. The

characteristics of periodic graph execution are established. Algorithms are developed and

proved for generating static node assignments in the ATAMM context.

3.1 Periodic Graph Execution

The periodic execution of a graph refers to a condition when each node of the

AMG is fired at intervals of TBO. The single graph play for each data packet is identical.

Inputs are injected and outputs are generated at intervals of TBO. For algorithm marked

graphs with no initial token, periodic execution of the AMG can be achieved by injection

control, insertion of buffers, and providing sufficient resources as specified by the total

graph play [1]. However, for AMGs with initial tokens on either data or control edges

[1], a transient condition may exist for a few packets in which periodic execution for all

nodes is not possible.

13

WhentheAMG isexecutedperiodically,it is saidto bein asteady-state.With

initial tokensonAMG edges,thesinglegraphplayandhencethetotalgraphplayat

steady-statemaybedifferentfrom thatduringtransientconditions.

Theorem 1: Theexecutionof theAMG accordingto theATAMM rulesalwaysreachesa

steady-statewhenthesinglegraphplayfor eachdatapacketis identical.

Proof." By the ATAMM rules, a node in the AMG must be able to fire as soon as all input

edges have required tokens. A node may be fired by either initial tokens, intra-iteration

tokens, inter-iteration tokens, or by a combination of all of them Let the injection time

for the first data packet be denoted as t = 0. The second data packet is injected at t =

TBO and a new data packet is injected after every TBO time interval. The nodes for a

data packet D which are fired solely by intra-iteration tokens are always enabled after the

longest path time from the source to the node. Firing by intra-iteration tokens means that

all tokens used to fire this node or all its predecessors are generated from the data packet

D. With sufficient resources and output buffers, these nodes will be executed after equal

time intervals from the injection of the data packet D. Hence the single graph play for

these nodes will look identical for any data packet. Next the nodes for the data packet D

which require either initial tokens or inter-iteration tokens directly or indirectly are

considered. The indirect use of initial tokens or inter-iteration tokens refers to the

condition when a node does not require such tokens but its predecessors are fired with

these tokens. An inter-iteration token for packet D is generated from the finishing of a

node in iteration (D-h) where h is.a positive number. This inter-iteration token is always

produced after a fixed time interval from the injection of the data packet (D-h) regardless

of the value of D. Hence, when only inter-iteration and/or intra-iteration tokens are used

to fire a node of packet D, the node is always executed alter equal time intervals from the

injection of packet D. With a finite number of initial tokens, all tokens will be either intra-

14

iterationor inter-iteration after executing a finite number of data packets. Hence the

AMG will reach a steady-state when all SGPs will look identical for all data packets.

However, for small values of D, initial tokens will be used instead of inter-iteration tokens.

All the initial tokens are present in the AMG at time t = 0. Therefore, when an initial

token is involved in firing a node for data packet D either directly or indirectly, the node

may be fired earlier than when inter-iteration tokens are used for large values of D.

Hence, there may be a transient condition during the execution of the first few data

packets in which some nodes are fired earlier than that specified by the steady-state SGP.

However, execution of any AMG according to AMG rules must reach a steady-state.

This completes the proof of Theorem 1.

As an example, consider an edge E from Ni to Nj with one initial token. Let Ni be

fired with only inter-iteration tokens. Also, let E be the only incoming edge for Nj. For

data packet 1, Nj can fire at t = 0 itself Let data packet 1 finish node Ni at t = T1. Hence

for data packet 2, node Nj is fired at t = T1. As data packet 2 is injected TBO time units

after data packet 1, node Ni for data packet 2 is finished at time TI+TBO. This occurs

because all data packets must take equal time to fire nodes which depend solely on intra-

iteration tokens. The node Nj for data packet 2 is fired at TI+TBO which is TI time units

after injection of packet 2. Similarly, data packet 3 fires node Nj at TI+2TBO which is T1

time units after injection of data packet 2. Hence, Nj for a packet D is fired after fixed time

intervals T1 from the injection of packet D provided D is greater than 1. Hence, the

steady-state SGP will always show execution of Nj in a fixed time interval.

Lemma 1: In steady-state, each node of the AMG is executed at TBO intervals.

Proof" The single graph play for each data packet is identical at steady-state. Data

packets are injected in intervals of TBO. Every node is executed exactly once for each

data packet. Therefore, the firing of each node of the AMG must occur at the interval of

TBO. This completes the proof of Lemma 1.

15

Lemma 2: In oneiterationperiodTBO at steady-state,anodemayexecutemultipledata

packets.Thetotal executiontimeof a nodefor all datapacketsin oneiterationperiod

mustequalthe nodetime.

Proof." As the TGP is constructed with sections of the SGP, the complete execution of

each node will always appear exactly once in one iteration period of the TGP. The

execution of a node in the SGP may be divided in more than one section. As each section

carries an unique data packet number, multiple data packets may execute the same node in

one iteration period. This completes the proof of Lemma 2.

Lemma 3: The total graph play for every iteration period at steady-state is identical in the

sense that all node execution lines are the same but the data packet number on a node

execution line is incremented by 1 from current to next iteration period.

Proof." At steady-state, the single graph play for all data packets is identical. Hence, the

TGP must always have identical node execution lines. Consider two successive iteration

periods of TGP beginning at the injection of data packets D (at time t) and D+I (at time

t+TBO). The TGP for these iteration periods are derived from sections of SGPs for data

packets D and D+I, respectively. Hence by the construction process, the data packet

number for a node execution line segment in iteration period beginning (t+TBO) must be

one higher than that in the previous iteration period. This completes the proof of

Lemma 3.

The original method of generating the SGP by firing every node as early as

possible needs to be modified for graphs with initial tokens. An analytical method for

generating the steady-state SGP for any graph has been developed 5. An alternative

method based on simulation is to execute the AMG until it reaches a steady-state. When

the SGP does not change with increasing data packet numbers, the AMG has reached

5Developed by Robert L. Jones, NASA Langley Research Center, Hampton, Virginia. A software tool
called the ATAMM Design Tool can automaticalT _,enerate the steady-state SGP and TGP.

16

steady-state. The simulation method of generating steady-state SGP and TGP is illustrated

below by an example.

Consider the AMG in Figure 5 which is taken from [4]. The largest time per token

ratio from all loops in the AMG is 4. Let TBO be 4. The execution &data packets 1

through 5 are shown in Figure 6. The node A is always repeated at the interval of TBO.

However, the execution &node B reaches steady-state from the third data packet. The

execution of B(1) and B(2) are triggered by initial tokens on the edge from A to B and

hence do not reflect the steady-state periodic nature. B(3) is fired by the inter-iteration

token from A(l). Similarly, B(4) and B(5) are fired by inter-iteration tokens from A(2)

and A(3). As node A always starts and finishes at the interval of TBO, the execution of

node B is also periodic with TBO beginning with the third packet. The steady-state TGP

is then obtained from the steady-state SGP and is described in Figure 7(a).

Node Tir'ne
/

10 / /..------_--0_

"JSOUrCp I
-_ _ "_ SinkNode A \

Two Initial
Tokens

Figure 5. An Algorithm Marked Graph with initial tokens.

17

<C

_C'q

0 -_

z_

0 0
Q_

c-
O 0

_2

\
C',4

r--

c-
O3

L

O

0-

(,9

0.)

*d

i

C?

A

F _

<_

C_

O

,4
li

e"
o,,,_

O

O

e_

O

e"
O

X

18

TGP Line
Number

2

0

A(4)

Node A for
Doto Pocket 5

a(s)

A(3) B(s)

t+4

t+TBO

Time

(a)

Processor

Number

P5

P2

P1

PO

A(S)

"(t = 16)

A(S)

A(4)
A(4)

A(S)

A(6)

e(s) e(6)
• -I_ 4

No¢ A is

cyclo-static

in P P2,
and P3

t+TBO

\ TBO-- 4

Nod is

I* fully-static
in P,

t+2TBO

Time

(b)

Figure 7. (a) Total Graph Play for TBO = 4.

(b) Two iteration periods of TGP with

optimally-static assignment.

19

3.2 Cyclo-Static Assignment

In the following sub-section, it is shown that a cyclo-static assignment can always

be achieved in the ATAMM. An algorithm, called Algorithm 1, is presented and proved

to generate a cyclo-static assignment with a processor displacement of either one or zero 6.

Algorithm 1 is used to partition nodes of a given AMG into blocks. Then each block of

nodes is assigned to a block of processors. It is assumed that all nodes of the AMG

execute on the same type of processors.

Algorithm 1:

1)

2)

3)

4)

5)

Construct one iteration period of the steady-state TGP for the AMG. Let t be the

beginning of the iteration period.

To form a block, select a node whose execution begins at time t.

If no such node is available, select a node from the TGP whose execution begins

immediately following the end of execution of an already selected node 7.

If the node selected does not end at (t+TBO), select a new node which begins

immediately following the end of the last selected node. Repeat until all nodes are

assigned or the last node selected ends at (t+TBO). The block is completed at

this point.

Redraw the TGP to show the execution of the selected node(s) for the block

together. If a selected node is executed for two or more data packets in one

iteration period, show the complete node execution, from start to finish, in

consecutive lines of the redrawn TGP.

6 The cyclo-static nature of graph execution in the ATAMM was initially observed by Mahyar R.
Malekpour of Lockheed Engineering &Sciences Company, Hampton, Virginia and Robert L. Jones of

NASA Langley Research Center, Hampton, Virginia.

7For the formation of the first block, a node is guaranteed to begin at time t as a new data packet is

injected at time t. Hence, Step 2 will select a node and Step 3 will be skipped. From the second block
onwards, Step 2 alone may not be able to select a new node. However, as every. AMG node is fired at the

completion of another AMG node or source, Steps 2 and 3 together must be able to select a node for a
new block.

2O

6)

7)

A new node block is formed by the selected nodes. Assign processors to this

block equal to the number of concurrent lines 8 in the corresponding portion of the

TGP.

If all nodes of the TGP are not yet selected, go back to Step 2 to form another

block. Each node is selected only once in the algorithm.

Theorem 2: Each block of nodes is mapped with a cyclo-static assignment by Algorithm

1. The processor displacement is 1 for two or more processors and 0 for one processor.

Proof." Consider a block of nodes created by Algorithm 1. The number of assigned

processors is equal to the number of node execution lines in the TGP segment

corresponding to this block. For the rest of the proof, the term TGP refers to this TGP

segment only. Number the TGP node execution lines as 0, 1, 2 ... (q-l) and the

corresponding processors as P0, P 1, P2, ... P(q-1), from the bottom to top line of the TGP

segment. Lines (q-1) and 0 are the beginning and the end of node executions for this

block, respectively. Let q > 1 such that at least two processors are assigned to this block.

By the construction process of a block, any two consecutive lines of a block have a

common node with two different data packet numbers. If the execution of a selected node

Ns for data packet D is not completed by the end of the current iteration period on line j (j

not equal to 0), there must also be execution of Ns in line (j-l) with data packet D-1 in the

current TGP. As this is a non-preemptive schedule, processor P(j-I) and Pj execute data

packets (D-l) and D of Ns, respectively. Also in the next iteration period, the execution

of node Ns for packet D will continue on line j and processor j. Hence the TGP line (j-1)

in the current iteration period is shitted to line j in the next iteration period with an

increase of 1 in the data packet number. Hence a node which begins in line (j-l) with

8These are the TGP lines which overlap in time.

21

packetDp andis assignedto processor (j-l) in the current iteration period, will be

assigned to processorj with data packet (Dp+l) in the next iteration period. This is a

cyclic assignment with processor displacement of 1. For line 0 of this TGP segment, P0

will always complete execution of all nodes by the current iteration period. Hence, a node

with packet D on line (q-1) can be assigned to P0 in the next iteration period with packet

D+I. This is a displacement of 1 if processor numbers are calculated in modulo q. Hence

Algorithm 1 always produces a cyclo-static assignment with processor displacement of

unity. Ifq = 1, only one processor is assigned to this block. Hence, all iterations of all

nodes in this block must be executed by the same processor. This is a cyclo-static

assignment with processor displacement of 0 and is the special case referred to as fully-

static. This completes the proof of Theorem 2.

As an example, consider the AMG of Figure l(a). NO -- 4, NI = 1 and N2 = 5

time units and the corresponding steady-state TGP for TBO = 4 is shown in Figure l(c).

Let a cyclo-static assignment be desired. By Step 2, NO is selected as the first node of a

block. As NO ends right on t+TBO, no new node is selected. Hence, {NO} is a single

node block and 1 processor, P2, is assigned to this block. P2 will always execute NO and

therefore mapping of N0 to P2 is both cyclo-static as well as fully-static. As all nodes are

not yet selected, Step 2 is repeated and NI is selected for a new block. By Step 4, N2 is

selected. A new block is formed as {N1, N2} in Step 6. From the TGP, two processors,

P0 and P1, are assigned to {N1, N2}. The cyclo-static nature of scheduling is shown in

Figure 8 by displaying the TGP for multiple iteration periods. NI for data packets 2, 3,

and 4 are executed by P1, P0, and P1 respectively. Similarly, node N2 is assigned to P1

and P0 alternately. Hence the mapping of {N1, N2} to {P0, P1 } is cyclo-static with a

processor displacement of 1.

22

CD
Z

0
Z

cl

CJ

Lr_
E

o Z

o

_._o

°[z

z

z

"8
z

o _

C'd

z

V z

c'.d

c_
Z

Od

(-N

C'.I
_J

Z

r-rj

_q,l"
2"

z_,

I

El_
O
CL.

©
E
L-

O,,I

+

G

+

co
÷

0
L_
h--

/
+

C'-J

.I _. c'q

O _

/'J _ '--

O _

°_

[-. ,-

O _:_

._ 0

0 _
._

[-- 0

0_

.__

23

Lemma 4: In a cyclo-static assignment by Algorithm 1, each processor must either have

the code or access to the code for all nodes of the assigned block of nodes.

Proof." As a processor is required to execute every line of TGP and hence any node of the

assigned block of nodes, the processor must have necessary codes. Otherwise, the

processor must be able to fetch the required codes. This completes the proof of Lemma

4.

3.30.otimally-Static And Fully-Static Assignments

It may be desirable that all nodes are assigned in a fully or optimally-static manner,

depending on the node sizes with respect to TBO. A heuristic algorithm called Algorithm

2 is developed for generating such an assignment for a given AMG. It is assumed that all

nodes of the AMG execute on the same processor type. If all node times are less than or

equal to TBO, a fully-static assignment is generated. If the block of nodes contain at least

one node larger than TBO, an optimally-static assignment is generated. This corresponds

to AMGs with multiple concurrent instantiations of nodes. It is to be noted that optimally

or fully-static assignments may result in low processor utilization.

Algorithm 2:

1) Construct one iteration period of the steady-state TGP for the AMG. Redraw the

TGP with the following rules.

2) For all nodes larger than TBO, show the node execution in consecutive lines.

Form a block of processors equal to the number of concurrent lines 9 and assign

processors to this node.

3) Follow Steps 4 through 6 for nodes with node time less than or equal to TBO.

4) Depict the execution of a node always in one line of the TGP.

5) Combine non-overlapping node executions on TGP lines while satisfying Step 4

and precedence constraints 1°.

9This corresponds to parallel execution of multiple data packets of the same node.

10This is to reduce the number of TGP lines and hence required processors.

24

6)

7)

Form a block of nodes consisting of all nodes on one TGP node execution line.

Assign one processor to this block of nodes.

Calculate the total number of processors from all blocks of processors.

Theorem 3: Algorithm 2 produces a fully-static assignment if all nodes are less than TBO

and an optimally-static assignment if at least one node is larger than TBO.

Proof For nodes less than TBO, Step 4 ensures that the execution of a node Ns,

regardless of data packet numbers, is always on one line in the TGP. Hence, only one

processor which is assigned to nodes on this line of TGP will execute Ns in every iteration

period. Therefore, the node Ns is fully-static on this processor. By Steps 5 and 6, a

number of nodes may be assigned to the same processor but a node always appears in only

one line of TGP. Hence, a node will always belong to one block of nodes which is always

assigned to the same processor. When a node Ns is larger than TBO, the execution of Ns

will be shown in multiple lines in the TGP and data packet numbers on these lines decrease

by 1 from top to bottom. Then Ns is assigned to a block of processors as in Algorithm 1.

By Theorem 2, Ns is assigned to the block of processors cyclo-statically with a processor

displacement of 1. This completes the proof of Theorem 3.

An optimally-static assignment is generated for the AMG of Figure 5. The TGP is

redrawn in Figure 7(b) according to Algorithm 2. Three processors are required for node

A. One processor is required for node B. While node B is fully static on P0, node A is

assigned cyclically to P1, P2, and P3. Note that processor utilization is less than 100% as

indicated by the gaps in processor activity in the TGP, for this assignment.

25

4. Heterogeneous Computing

The objective of this section is to use the extended theoretical foundation in

heterogeneous multiprocessor scheduling and design. For this purpose, a design objective

is defined. A methodology for scheduling is developed and illustrated through an

example.

.4.1 Problem Formulation

An algorithm marked graph is to be mapped on a heterogeneous architecture.

Nodes of the algorithm marked graph and processors of the architecture are to be

partitioned in blocks based on type. A block of the node set N is to be assigned to a block

of the processor set P.

to-one and fully-static.

static or dynamic.

This assignment of a type of nodes to a type of processors is one-

However, the assignment of nodes within one type may be either

The mapping of nodes onto processors is done on the basis of an objective

function while satisfying some constraints.

Objective Function: The iteration period or TBO is specified. The computing time or

TBIO can be increased up to a specified deadline. The objective is to minimize the

number of required processors of each type and generate a schedule and node-to-

processor assignment scheme based on the constraints.

The constraints can be classified into three categories: 1) Type Constraint, 2)

Memory Constraint, and 3) Precedence Constraint.

Type Constraint: Each node and processor has unique characteristics. A node must be

mapped onto a processor which is capable of executing the node.

Memory Constraint: The total amount of memory needed in a processor due to the

code and data of assigned nodes must be less than a specified percentage of the total

available memory in that processor.

Precedence Constraint: Any valid schedule of the AMG must satisfy both inter-iteration

and intra-iteration precedence constraints. Both of these precedence constraints are

26

depictedin thetotal graphplay(TGP). New precedenceconstraintsof bothkindscanbe

createdbytheinsertionof controledges[1].

Thefollowingobservationscanbemade.As theremaybedifferenttypesof

nodes,processorrequirementshaveto becalculatedseparatelyfor eachtype of node.

Hence,theTGPshouldbesegmentedinto differentportionscorrespondingto nodetypes.

Control edgescanstill be insertedbetweenanytwo nodesof the AMG in orderto modify

a TGPsegment.However,theprocessorrequirementsfor aparticularnodetypeare

determinedonlyfrom thecorrespondingsegmentof theTGP. Let TCEs denotethetotal

computingeffort for aTGP segment.

4.2 Design Method

A heuristic design procedure is described below.

1) Partition the set &nodes in blocks based on type. Identify the processor type for

each block of N.

2) Generate the steady-state SGP and TGP. Divide the TGP into segments

corresponding to each type.

3) If [-TCE s / TBO7 is less than the number of concurrent lines in a TGP segment,

modify the TGP segment with control edges, if possible, to reduce the processor

requirements while not violating any specified deadline.

4) Based on the memory constraint and node sizes, select either a dynamic, cyclo-

static, optimally-static, or a fully-static assignment scheme for each type.

5) Use Algorithm 1 for a cyclo-static assignment.

6) Ira fully-static or an optimally-static assignment is required, use Algorithm 2.

7) Repeat Steps 4 through 6 for each type of processor.

8) Determine the number of processors required for each processor type.

Consider the AMG of Figure 9 which is a combination of the AMGs of Figures

l(a) and 2. By the time per token ratio, the lower bound on TBO is 4. Let nodes A and B

be of type 1 and nodes NO, N1, and N2 be of type 2. By Step 1, nodes are partitioned into

27

blocks {A, B} and {NO, N1, N2}. The steady-state SGP and segmented TGP are shown

in Figure 10. For block {NO, N1, N2}, TCE s = 10 and hence, at least 3 processors are

required. Also, block {A, B} requires at least 3 processors for TBO = 4. Hence, control

edges cannot reduce processor requirements and Step 3 is skipped. If dynamic

assignment is desired for both type of nodes, the TGP &Figure 10(b) is achieved by

assigning three processors &type 1 to {A, B} and three processors of type 2 to {NO, N1,

N2}. No node-to-processor assignment is necessary within a block. Now let both blocks

{A, B} and {NO, N1, N2} be assigned as cyclo-static with processor displacement of 1 or

0. Hence, Algorithm 1 is used in Step 5. The resulting total graph play and processor

assignment are shown for three iteration periods in Figure 11. Three processors are

required for each type.

As an alternative, suppose both blocks {A, B} and {NO, N1, N2} are to be

assigned as optimally-static. The construction of such an assignment by Algorithm 2 is

shown in Figure 12 which requires four processors &each type. It is clear that the

optimally-static assignment requires more processors compared to cyclo-static (and

dynamic assignment) and thereby will have a lower processor utilization.

28

4 -- Node Time

Type 2 / 1 5 \'\

/ /'/ Node T roe " .\ _,
j " .

Source Nolde A "'O"/ Sink
\\

Type 1 An initial Token

Figure 9. A heterogeneous Algorithm Marked Graph.

29

,II

(D)

NO(D)

8(D)

i
NI(D) N2(D)i

A(D)

Finish

(o-1)

i I i

t t+2 t+4 t+6

Section Number

(D-2)

t+8

Time-I_

(o)

t+lO

D is any Data Packet

Number at steady-state

A(D)
,I

A(D-I)

A(D-2) B(D)

NO(D)

NI(D) N2(D)

p,_ -,q

N2(D-I)

TOP segment for

Type 1

TOP segment for

Type 2

t+TBO

/

t+4 Tir'ne

(b)

Figure 10. (a) Steady-state Single Graph Play.

(b) One iteration period of steady-state

Total Graph Play for TBO=4,

3O

O

"8 "d _

C'-I

+

C'-I

I

L
i

1

+
c2_

CI3

<

L.

C"I

O

O

z

O

z_

c_

<£

1

CZ5

r_

I

('-q

I

<

©

C

C',4

+

G

+

O3
+

I--

/

-t-

C-q

7D

0

0

e"

¢',1

0

o

g.

.o

6
"-6

.__

31

0

a
6

z_

+
c23

r

L

c3

_v

_z

+
CD

_L

I
c23

<12

0 0

- _ =_-_ _. _ ._
• -" 0 c-_ _ ,--

m z z _ _ z

z z z _

i, j

04

+
cZ3

£I_ o4

-t-
eD

0
Z

r

q_

+
CB

I
0
Z

j_ _r
JL

CI3

!

r c

c3
z

m

C--I

+
c3

C'4

Z

CD

o4
z

_L

r c_

Z
_r

÷
D

Z

Zlr

J

_-W
z

'D

C"4

m

+

O

o2)
-- ÷

--- d-

-_ II
0
{39
_--

,/

+

C'q

"-" -O

0

0

L.

.__

©

.__

32

5. Conclusions

The primary objective of this research has been to investigate an extended

ATAMM approach for node assignments in heterogeneous architectures. Several key

results are achieved in that respect. It is established that ATAMM can incorporate both

dynamic and static node assignment schemes for both heterogeneous and homogeneous

architectures. A new optimally-static assignment scheme is defined to determine the

closest possible fully-static node assignment in the ATAMM dataflow architectures.

Also, periodic execution can still be maintained at steady-state for the extended class of

problems. Included in this report is a formalism for the partitioning of nodes and the

assignment of nodes in multiprocessor architectures.

33

6. Future Research

In the context of this report, the following topics are identified as subjects of

current and future research.

• Heterogeneous architectures should be studied with a finite number of processors and

processor types.

• A methodology needs to be developed for comparing the performance of

heterogeneous architectures.

• The feasibility of reducing communication bottlenecks by static node assignment

should be explored [9, 10].

• The initial transient nature of graph execution requires further investigation for effects

on overall predictability and duration of transients.

• Heuristic and extensive search techniques should be explored for selecting control

edges.

• Finally, non-causal precedence constraints created with a negative number of initial

tokens should be examined.

34

Form Approved

REPORT DOCUMENTATION PAGE OMe,Vo.o_o.-o188

PuOll(reDortlnCj Dutcien for thr_ colleCtlO?_ of in_ormatpor i_ eStltTgatl_Cl to average 1 hour oer resporse, incluchng the time '_Or rev,ew_ng _nstrwc11ons searching existing data sources,

gathering and malnta,_ng the Oata nee_ecl, and como_etlng and revqewl_g the colle(11on Of Informatlon Send comments regarding thl$ Durclen estlrnate or an_ Other &,p_qt of _hlS

coi_eCtlOfl of pnfotmat1on, rnc_udlng _uggeStlOr_5 for re(_UClt_g this Ouroen TO Washlngtcn HeadQuarters Ser_,ces. O,rectotate for Informatlon OperatiOnS and ReDor_s. 1215 _effferson

Daws Highway, S_te 1204 Arlington VA 22202_4302. and to the Office Of Management and Budget, Paperwork Recluct4on Project (0704-0188] Washlrl_ltcn DE 20503

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1993 Contractor Report, May-August 1992
4. TITLE AND SUBTITLE

Node Assignment in Heterogeneous Computing

6. AUTHOR(S)

Sukhamoy Som

7, PERFORMINGORGANIZATIONNAME(S)ANDADDRESS(ES)
CTA INCORPORATED

1 Enterprise Parkway, Suite 390
Hampton, VA 23666

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center
Hampton, VA 23681-0001

S. FUNDING NUMBERS

C NAS1-18936, Task 15
WU 586-03-11

8. PERFORMING ORGANIZATION

REPORT NUMBER

038-3524-150-93-1

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA CR-4534

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Paul J. Hayes. The author is currently employed by Lockheed
Engineering & Sciences Company, Hampton, VA 23666.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 33

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

A number of node assignment schemes, both static and dynamic, are explored for the
Algorithm to Architecture Mapping Model (ATAMM). The architecture under consideration
consists of heterogeneous processors and implements dataflow models of real-time
applications. Terminology is developed for heterogeneous computing. New definitions are
added to the ATAMM for token and assignment classifications. It is proved that a periodic
execution is possible for dataflow graphs. Assignment algorithms are developed and proved.
A design procedure is described for satisfying an objective function in an heterogeneous

architecture. Several examples are provided for illustration.

14. SUBJECT TERMS

Iterative dataflow, multiprocessing, static scheduling, dynamic
scheduling

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Unclassified Unc:l_lssified
NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION

OF ABSTRACT

15. NUMBER OF PAGES

40

16. PRICE CODE

A03
20. LIMITATION OF ABSTRACI"

UL
Standard Form 298 (Rev 2-89)
Pfe'KtID_d i_f ANS_ Std Z]9-18
298-102

References

l°

.

.

.

.

.

.

o

°

10.

S. Som, J. W. Stoughton, and R. R. Mielke, "Strategies for Concurrent

Processing of Complex Algorithms in Data Driven Architectures," NASA

Contractor Report 187450, Grant NAG1-683, October 1990.

R. Mielke, J. Stoughton, S. Sore, R. Obando, M. Malekpour, and B. Mandala,

"ATAMM Multicomputer Operating System Functional Specification," NASA

Contractor Report 4339, Grant NCC 1- 136, November 1990.

S. Som, R. Mielke, R. Obando, J. Stoughton, P. J. Hayes, and R. L. Jones,

"Throughput Enhancement by Multiple Concurrent Instantiations in the ATAMM

Data Flow Architecture," Proceedings of the ISMM International Symposium on

Computer Applications m Design, Simulation, and Analysis, pp. 71-74, Las

Vegas, Nevada, March 19-21, 1991.

Kesab. K. Parhi and David G. Messerschmitt, "Static Rate-Optimal Scheduling of

Iterative Data-Flow Programs via Optimum Unfolding," IEEE Transactions on

Computers, pp. 178-195, Vol. 40, No. 2. February 1991.

Sonia M. Heemstra de Groot and Sabih H. Gerez, and Otto E. Herrman, "Range-

Chart-Guided Iterative Data-Flow Graph Scheduling," IEEE Transactions on

Circuits and Systems, pp. 351-364, Vol. 39, No. 5. May 1992.

D. A. Schwartz and T. P. Barnwell, III, "Cyclostatic Multiprocessor Scheduling

for the Optimal Implementation of Shift Invariant Flow Graphs," in Proceedings of

the ICASSP-85, Tampa, FL, March 1985.

Zvi Kohavi, "Switching and Finite Automata Theory," Second Edition, Mcgraw-

Hill, New York, 1978.

Matthew Storch, "A Comparison of Multiprocessor Scheduling Methods for

Iterative Data Flow Architectures," NASA Contractor Report 189730, Grant

NAG 1-613, February 1993.

Nicholas S° Bowen, Christos N. Nikolaou, and Arif Ghafoor, "On the Assignment

Problem of Arbitrary Process Systems to Heterogeneous Distributed Computer

Systems." IEEE Transactions on Computers, pp. 257-273, Vol. 41, No, 3, March

1992.

B. Narahari and Hyeong-Ah-Choi, "Allocating Partitions To Task Precedence

Graphs," Proceedings of the IEEE 1991 hlternational Conference on Parallel

Processing, vol. 1, pp. 621-624, August 1991.

35

