-

View metadata, citation and similar papers at core.ac.uk brought to you by# CORE
&

provided by NASA Technical Reports Server

Session 3: Reuse

Jon Valett, NASA/Goddard, Discussant
Sharon Waligora, Computer Sciences Corporation
Neil Iscoe, EDS Research
William Wessale, CAE-Link Corporation

PRECEDING PAGE BLANK NOT FILMED SEL-92.004 page 159

https://core.ac.uk/display/42791643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SEL-92-004 page 160

N94-11429

MAXIMIZING REUSE:
APPLYING COMMON SENSE AND DISCIPLINE

Sharon Waligora
James Langston

COMPUTER SCIENCES CORPORATION
GreenTec II
10110 Aerospace Road
Lanham-Seabrook, MD 20706
(301) 794-4460

ABSTRACT

Computer Sciences Corporation (CSC)/System Sciences Division (SSD) has maintained a
long-term relationship with NASA/Goddard, providing satellite mission ground-support
software and services for 23 years. As a partner in the Software Engineering Laboratory
(SEL) since 1976, CSC has worked closely with NASA/Goddard to improve the software
engineering process. This paper examines the evolution of reuse programs in this uniquely
stable environment and formulates certain recommendations for developing reuse programs
as a business strategy and as an integral part of production. It focuses on the management
strategy and philosophy that have helped make reuse successful in this environment.

INTRODUCTION

For 23 years, Computer Sciences Corporation
(CSC)/System Sciences Division (SSD) has built
satellite ground-support software systems for the
Goddard Space Flight Center (GSFC) of the
National Aeronautics and Space Administration
(NASA). In this uniquely stable environment, CSC
has gradually developed a reuse program that has
allowed the company to meet increasingly chal-
lenging business needs and has mow become a
major element of SSD’s business strategy. Reuse at
CSC is seen not only as a technical issue but also as
a matter of management; meaningful reuse strate-
gies are characterized by the consistent, coordi-
nated application of common sense and discipline.
This paper examines how this successful reuse

PRECEDING PAGE BLANK NOT FILMED

program evolved over the past 23 years and presents
five key factors that contributed to its success.

Scope of the Study

The work described here has been performed at
CSC under its Systems, Engineering, and Analysis
Support (SEAS) contract and predecessor con-
tracts. The primary objective of these contracts is
the development of scientific satellite ground-sup-
port systems for NASA/Goddard’s Mission Opera-
tions and Data Systems Directorate (Code 500).
In particular, the development of attitude ground-
support systems (AGSSs) and simulators built for
Code 550 (the Flight Dynamics Division) and
payload operations control center systems
(POCCs) built for Code 510 (the Mission Opera-
tions Division) serve as good examples of the

SEL-92-004 page 161

benefits derived from reuse practices developed in
this environment.

During the early 1970s, documentation procedures
were at worst nonexistent and at best intermittent;
CSC, like most of the industry, had not yet
developed the practice of recording project histories
and statistics. Thus, much of the evidence for the
early years of this period — the “prehistory” of reuse
in our organization — is anecdotal; still, the views
presented by long-term employees are consistent
with the overall picture and existing technical
documents of the time. After 1976, with the
founding of the Software Engineering Laboratory
(SEL), documentation of our project experience
became both more extensive and more analytical
(References 1, 2).

The SEL was founded by the Flight Dynamics
Software Engineering Branch of NASA/Goddard
(Code 552), the Department of Computer Science
of the University of Maryland, and the Flight
Dynamics Software Engineering Operation of
CSC/SSD specifically to investigate the effective-

ness of software engineering technologies applied
to the development of applications software. Dur-
ing the past 17 years, the SEL has measured and
evaluated the development process, conducted
numerous experiments, and documented its find-
ings in many professional papers and reports. In
particular, the Software Engineering Laboratory
Series offers ample documentation of the evolution
of software engineering in this environment. As a
whole, this collection of documentation forms an
unusually rich body of historical information for
examining the evolution of software reuse
(Reference 3).

The 32 attitude systems charted here in detail were
all built between 1977, when the first projects
measured by the SEL were completed, and 1992.
They are sequentially ordered by project start date.
Figure 1 shows the percentage of reuse achieved by
each project, based on the amount of code reused
(reused code is defined here as existing code used
verbatim or with less than 25-percent modifica-
tion). A linear fit of these data shows a steady

100%
90%

80%
70%

60%

50%

40%

Percent of reuse

30% —

20%

10% -

L
S .= mg

0% TIIl‘[llll%jTI

0 5 10

15

lli']'llll_l'llll'll

20 25 30

Time-ordered projects

10000083-g002

Figure 1. Percentage of Reuse Achieved by the Projects Studied

SEL-92-004 page 162

increase in reuse, rising from an initial 10 percent in
1977 to a current 60 percent.

Examining the cost (measured as effort) to develop
these same systems (Figure 2), we see that the cost
to create 1000 source lines of code (KSLOC) from
scratch did not change significantly during this
period, but that the effort to develop systems with
reuse dropped significantly, from 325 hours per
KSLOC to slightly over 100. This confirms SEL
studies that reused portions of software can be
delivered with savings of 70 percent to 80 percent
over entirely new code (Reference 4).

EVOLUTION OF REUSE AT CSC

Historically, the steady growth of reuse at CsC
evolved through four very distinct levels, as shown
in Figure 3. At first, reuse was completely depen-
dent upon people, because people are the essential
element of the software business. We then began to
focus on code reuse, building reusable products.
Next, we developed a reusable process. And, most

recently, we have expanded our approach to address
reuse in the full life cycle, beginning with require-
ments and design. Experience gained throughout
these four levels has given us increasing control
over the future development of our reuse programs,
as well as our development process and business
policies in general. We have already begun moving
to what we believe will be the next level, the reuse
of architectures.

The levels were built cumulatively; as the organiza-
tion matured from one level to the next, previous
reuse levels were adjusted and further developed to
support the new level. At each level, developers
were encouraged tomake a conscious effort to build
something reusable, and managers actively pro-
moted the reuse of these itemns.

Reuse of Personnel

In the early 1970s, software reuse was almost
unheard of; programming was just beginning to
gain recognition as a profession. Most programs
were small tools that were developed by scientists

500

o o
450
o o Cost to develiop systems
400 —_— el from scratch
350 - Q
O
8 300-
-
7]
i 250
2 200 —
X
in /
150 = . -
Cost to develop systems ﬂ
100 with reuse ‘l‘;.—""
50
.l
o II1|llllllllllllll'll]l'llll'll
0 5 10 15 20 25 30
Time-ordered projects
O Development cost based on total system size
B Development cost adjusting system size for reuse
10000003-g001

Figure 2. Cost To Deliver the Projects Studied

SEL-92-004 page 163

Requirements & Design

- Lt
Build Bulld
generalized . reusable
Process systems . architectures
. - >
Formaiize process Refine process
(implicit reuse) : (explicit reuse)
Code : -
Create
Create Create controlled
libraries of * f:lzuctlaob'n:l reusable source
People utilitles : o ckages libraries
X . >
Usesame . Capture people's < Capture and feed back
people . knowledge in products . organizational experience
. o
| } + t 1 } >
1970 1975 1980 1985 1990 NOW
Time ——»
Figure 3. Reuse Levels

as a means to solve a problem; little attention was
paid to the structure, maintainability, or reusability
of software products. Such was the case here. We
were just beginning our relationship with GSFC,
providing flight dynamics ground support for
scientific satellites. Physicists, astronomers, and
aeronautical engineers wrote their own programs
and tools to help them perform their mission
support duties. '

However, our software reuse program had its
beginnings in this unstructured period of software
development. Because software was merely a
means to an end, the scientists would reuse any
pieces of code that they had created for a previous
program, as a common-sense way of saving some
time and effort. Usually, they reused only what they
bad written themselves, because they knew it
existed, they understood what it did, they trusted it,
and they knew how and where to get it. Only rarely
would they borrow something from a colleague.

Software reuse was thus confined to the scope of the
individual developer or to a small group of people,

SEL-92-004 page 164

who viewed it as an informal, ad-hoc way to get the
problem solved as quickly as possible. That attitude
also prevailed at an organizational level. Our
management philosophy at this time was simply to
“reuse” people from one project to another, assign-
ing personnel on the basis of past experience and
specific expertise. Using this approach, we were
building a small staff of application experts who
could provide satellite mission support and develop
software tools to solve flight Gynamics problems.

The weakness in this management approach was
that the knowledge and experience were embodied
in individual employees; when people were reas-
signed to other projects, or when they left the
organization, their knowledge and experience went
with them. It is significant, however, that the idea of
reuse, even in these highly personalized forms, was
already inherent in our way of doing business. This
set the stage for the next level of development. The
nature of the product itself served as the catalyst that
started crystallizing these impromptu forms of
reuse into a formalized process.

As we approached the mid-1970s, attitude ground
support problems were getting more complex; it
was clear that we needed a more structured
approach to provide an integrated set of tools to
support each spacecraft mission. Logic told us that
we should build a single system to provide attitude
support for multiple missions similar to the God-
dard Trajectory Determination System (GTDS),
which provided orbit determination for all mis-
sions. But attempts to build similar all-purpose
systems for attitude support failed because specific
requirements for attitude data processing were too
complex and too varied. This resulted in 2 plan to
build a separate attitude ground-support system
(AGSS) for each spacecraft.

The demand for this work was also increasing. In
1973, we were facing the challenge of building 10
AGSSs that would provide similar services for 10
different spacecraft in only 6 years. Clearly, a way
had to be found to minimize the amount of software
developed, and the experts’ knowledge somehow
had to be captured, systematized, and made accessi-
ble across many systems.

Reuse of Code

Although each mission’s attitude requirements
were unique, as a whole, all attitude systems were
required to perform the same basic functions and
provide the same kinds of service. Given that
certain parts of an attitude system should be the
same or very similar in all of the future systems, it
was obvious that, with some up-front planning,
those similar parts could be developed once and
reused in all subsequent systems. In many ways,
this common-sense insight, gleaned by the CSC/
GSFC team, was the beginning of real reuse at CSC.

We worked closely with our GSFC customer to
develop a reuse strategy based on reuse of proven
software components such as coded utilities and
design templates. Obviously, this strategy would
dramatically reduce development effort, and it
would extend individual experience across system
boundaries. The first step in this early reuse
program was to identify three elements common to
future systems:

e Low-level utilities. Coordinate transforma-
tions, matrix operations, Sun-vector calcula-
tions, and the like are identical in all flight
dynamics applications.

® User interface. All AGSSs would be used by
the same mission operations team; there was a
strong desire forall AGSSs to have a consistent
look and feel and use the same operating proce-
dures.

e High-level system structure. The specific
hardware and the science requirements of each
spacecraft would dictate the details of the soft-
ware system, but the functions that AGSSs
were to perform were basically the same; these
functions could therefore be allocated to sub-
systems and a standard high-level system struc-
ture could be created.

We then set out to capture people’s knowledge in
products by generating the low-level utilities
described above and, later, reusable functional
packages. To build these products into easily
reusable code, we took four specific steps that
addressed these areas and led to a significant
amount of reuse over the next decade.

First, we assembled the basic utility functions intoa
library. This library was simply a collection of
existing routines, kept in one place so that program-
mers could find them and copy them easily when
they were needed. Usually, these low-level routines
could be reused without change. '

The library approach alone still did not capture
application-specific knowledge in its entirety.
However, the early success of the library showed
that the concept was basically sound, and it
indicated that the process should be expanded to
include reusable functional packages—bigger
pieces of software like orbit propagators and
differential correctors that could be reused in most
of the systems. These functional packages would
capture higher-level knowledge about the applica-
tion and make it more easily available to less-expe-
rienced personnel.

Second, GSFC sponsored the development of the
Graphic Executive Support System (GESS) (Refer-
ence 5), which was designed to reside between the
operating system and the application programs and

SEL-92-004 page 165

deliver all executive control functions and user
interface support for the attitude ground-support
software. This system was intended to give consis-
tency, the same look and feel, to the support
software for each mission, and indeed it did so. In
retrospect, though, this initiative did much more.
User-interface support routines had been the objects
of endless tinkering and “gold plating,” which
works contrary to reuse philosophy; GESS effec-
tively limited the scope of the development effort
by removing the user-interface support routines
from the programmer’s domain.

Third, a team of technical people most knowledge-
able and experienced in the application domain
looked at the requirements for the next four
missions and developed a system structure that
would support that family of satellites. The high-
level AGSS structure that they assembled became
the “standard AGSS design template” that was to be
used for the following 12 to 15 years (References 6,
7). This template encouraged a high degree of
design similarity from one mission to the next,
which in turn facilitated code reuse. It was very easy
to map individual components in a previous system
to the design for a new system; the design brought
forth coded umits for consideration for reuse rather
than forcing the programmer to search for reusable
units that might fit in an unrelated design. With this
approach, most of the coded units needed to be
modified for each mission, but a substantial amount
of code was reused that would otherwise have been
overlooked. In addition, this high-level structure
communicated from one development team to its

successor the knowledge of what an AGSS mustdo,

how it is structured and why, how it interfaces with
other systems, and how functional requirements
can most effectively be allocated to subsystems.

Finally, our managers adopted a philosophy that
enforced reuse of the reusable items. Detailed
designs were required to indicate which units were
going to be reused. High-level designs were
required to be based on the standard AGSS structure
and were required to use GESS for all user-interface
and executive functions. Software reuse was
addressed at preliminary and critical design re-
views; a system design that did not comply with
reuse directives did not pass management review.

SEL-92-004 page 166

Managers also required cost estimates to address
both new and reused code.

This management enforcement was a key element
of the reuse strategy; without it, reuse certainly
never would have received the primary emphasis
that it did from the mid-1970s through the
mid-1980s. With the successful implementation of
reuse strategies, the technical side of our corporate
culture had been changed; managers and team
leaders were now thinking in terms of reusing ideas,
designs, and system structures from one mission to
another. Code reuse was now more organized, and
people were reusing umits that other people had
created. The percentage of actual code reuse varied
depending on how much the standard high-level
design needed to be adjusted, but during the first
few years of purposeful reuse, the average rose from
the initial 10 percent to an average of 25 percent.

Code reuse, then, proved successful as a strategy for
capturing the available application knowledge,
knowledge about what was being built. Yet it could
not capture knowledge about how the organization
did business. Control of process was the next
logical step toward maximizing the effectiveness of
reuse as a means of increasing general efficiency

and productivity.
Reuse of Process

CSC’s distinctive corporate culture during the
1970s, although it implicitly included reuse, was
not framed around any very definite corporate
process. It operated on an informal process that had
developed spontaneously, without specific direc-
tives and without documentation. This process was
transmitted by on-the-job experiences and by word
of mouth; each project leader was free to follow it or
to improvise new processes.

By formalizing the process, we expected to stan-
dardize the procedures used across all projects. This
would minimize the training needed by personnel
as they moved from one project to the next, and it
would facilitate the training of new personnel. In
addition to these obvious technical advantages, it
would also ‘help managers estimate and control
costs and schedules.

The first step in this process was methodologically
the same as had been used before: we began

capturing, recording, and reusing the organizational
experience of our personnel. In the case of process,
these activities took the form of capturing weekly
project metrics in a corporate database, formally
recording lessons learned in software development
project history reports, and maintaining a library of
this information accessible to managers and project
leaders of new projects. We observed the current
practices and gathered informal standards and
procedures that project leaders had drawn from
their experiences and were then using to train their
teams.

This information gave us a broad and accurate view
of the existing process of software development in
the flight dynamics domain. By 1984, the CSC/
GSFC team formalized the process in its Recom-
mended Approach to Software Development
(Reference 8) and its Manager's Handbook (Refer-
ence 4), and, at about the same time, CSC
developed its own corporate process document, the
Digital System Development Methodology (DSDM)
(References 9, 10). Because both of these methods
were based on work actually being done in the
organizations at that time and on lessons learned
from previous work, they recorded and system-
atized the common-sense procedures that worked
rather than prescribing an ideal standard without
reference to experience. Both defined the manage-
ment process as well as the technical development
process. Because the process in both cases was
based on current practices, reuse was an integral
component from the beginning. In fact, reuse was
by then seen as so basic to the process that it was
embodied as an underlying theme in these docu-
ments rather than singled out as a separate topic.

Managers at all levels enforced the fully docu-
mented process. It was used (and reused) on all
subsequent projects. During this period, we were
able to build larger, more complex systems (Refer-
ence 6) even though we were experiencing higher-
than-normal tumover of our experienced
application experts. Design templates, reusable
code, and a documented process provided a well-
defined environment in which new personnel
quickly became productive contributors.

Reuse of Requirements and
Design

The same drivers that had spurred the formulation
of reuse programs during the 1970s prompted us to
improve them during the 1980s. In those years,
NASA gradually abandoned its practice of flying
numerous, highly specific satellites in favor of
flying fewer satellites of greater complexity. This
new policy required larger, more complex ground
systems, but budgets did not immediately rise in
response to this increased demand. Further refine-
ment of proven reuse policies promised to build on
past successes, reduce the company’s adaptation
time, and, most important, boost the efficiency of
production to meet the challenge of the period’s
unprecedented requirements.

SEL studies at the time showed that verbatim code
reuse was by far the most beneficial form of reuse,
but surveys also showed that the functional pack-
ages reused from system to system were almost
always modified before reuse (References 6, 11);
subsequent studies related this trend to the fact that
requirements and specifications were customarily
written for a specific spacecraft, a practice that
introduced variations that had to be reflected in each
mission’s software.

In 1987, an opportunity to use this knowledge
presented itself when two major missions were
scheduled for concurrent development, the Upper
Atmosphere Research Satellite (UARS) and the
Extreme Ultraviolet Explorer (EUVE). Because
NASA was beginning to standardize spacecraft
design at that time, the requirements for EUVE
were largely a subset of those for UARS, but
variations in the specifications of the two would
have caused considerable code modification, result-
ing in typical system development costs. Our
project managers, committed to reuse and aware of
the potential cost savings, agreed to build the
system for EUVE through verbatim reuse of major
components built for UARS, addressing reuse from
the very beginning of the life cycle.

We began by modifying the UARS functional

specifications to satisfy the requirements for both
missions, and thereby for a whole family of similar
spacecraft. We then focused on designing a multi-

SEL-92-004 page 167

mission, generalized system. In the past, our focus
had been on a reusable high-level design and
verbatim reuse of the lowest-level utilities, but we
were now addressing reuse throughout the entire
system; functional packages and major components
were ified and designed to serve multiple
missions without modification. Functional pack-
ages were partitioned to map to actual hardware
elements on the spacecraft, and data interfaces were
generalized and encapsulated with related func-
tions; this approach created a set of building blocks
that could be easily reconfigured to support another
mission.

One of the key elements of our generalized systems
approach was that we made no attempt to generalize
those parts of the systems that were highly variable
from one mission to the next. As Figure 4 shows,
this approach assumes that some new highly
specific components would be developed for each
system, while the larger generalized part of the
system would be reused without change.

This approach has proven very successful. It has
been used to develop three different families of
systems across the SEAS contract: AGSSs, attitude
telemetry simulators, and POCCs. At present in
Code 550, two versions of the generalized AGSS
have been built to support satellites with two
different attitude control systems. As shown in
Table 1, these systems have been reused to support
three missions and are planned to be reused for at
least three more. The generalized attitude telemetry
simulator developed for UARS has also been
reused to support two other missions. It will support
two future three-axis-stabilized satellites. In addi-
tion, the Transportable POCC (TPOCC), a general-
ized system built in Code 510, has already been
reused to support two satellites, and it will be used
to support five others. All of these generalized
systems show verbatim code reuse in the range of
65 percent to 85 percent.

It is important to note that the generalized approach
seems to be language and platform independent.
Figure 5 shows data from three subsequent systems
that we built in each of the three different system
families. At the top are attitude telemetry simula-
tors, in the middle are AGSSs, and at the bottom are
POCCs. All of these generalized systems show the
same favorable trends — in each case, as verbatim

SEL-92-004 page 168

reuse goes up, the cost to develop goes down, and
the error rates drop, indicating an increase in

quality.
Table 1. Reuse of Generalized Systems

Generalized | Developed | Reused Future
System* for for Reuse
MTASS AGSS | UARS EUVE SOHO
SAMPEX | TOMS
MSASS AGSS | WIND POLAR FAST
TELEMEIRY | UARS EUVE SOHO
SIMULATOR SAMPEX | TOMS
TPOCC GENERAL | SAMPEX | FAST
USE ICE/IMP SWAS
' SOHO
TRMM
XTE
*Sec Acronym List

Although each of these system families was
developed in a different language and on different
platforms, they all used some degree of object-ori-
ented design (OOD). We used formal object-ori-
ented techniques to develop the telemetry
simulators using Ada on VAX systems, where the
designers made extensive use of Ada generics to
produce reusable code (Reference 12). On the other
hand, the TPOCC family of systems, developed ina
C/UNIX environment, and the AGSS generalized
systems, developed in FORTRAN, did not formally
apply object-oriented techniques. However, their
mapping of software components to spacecraft
hardware objects and their encapsulation of data
with the functions that use them are evidence of
object-oriented thinking and organization.

As is common with major changes in any business,
this higher level of reuse introduced a new set of
challenges. Configuration management, in particu-
lar, took on a whole new level of importance.
Systems no longer “owned” the code they were
reusing. Introducing a change to a commonly
reused componeat now had the potential of affect-
ing many systems. Proposed changes to reusable
components had to be controlled carefully, and
changes to shared code necessitated testing all
systems that used it. We addressed these issues by
setting up formal procedures (Reference 13) and
setting up configured libraries and official mainte-

‘Generalized |

Part

3
Telemetry
Simulators
(Code 550)

AGSS
{Code 550)

POCCs
(Code 510)

Reuse Cost
(% Reuse (Hours/100 DSI)
Verbatim code)
100 125
o B
125
0 ;)
15|
o | EiE
Time —» Time —o

Generalized part reused verbatim in both systems
H Specialized code for System A

Specialized code for System B

Figure 4. Structure of Generalized Systems -

Errors
(Errors/DSI)
10
] Ada
VAX
E (1988 - 1992)
(1]
10
FORTRAN
IBM mainframe
(1987 - 1892)
0
10
C
Workstations
B (1989 - 1992)
0 =~ — -~ — B
Time —

Figure 5. Results of Generalized Systems

SEL-92-004 page 169

nance groups responsible for managing, evolving,
and certifying the reusable code. This has been done
at two levels.

First, reusable source libraries have been set up for
the widely used low-level utilities, where the
emphasis is on making the components and func-
tional packages as generally reusable and as
efficient as possible; units are thoroughly tested and
certified but they are not tested in the context of
every reusing system. Conversely, generalized
system parts are maintained and enhanced totally
within the context of the family of systems they
support. Changes are driven by either the needs of a
future reusing system or the changing needs of the
current reusing systems, and changes are always
regression tested in the context of every reusing
system before being certified.

Our new approach to reuse also called for further
refinement of our process. From 1990 through
1992, the SEL Recommended Approach (Reference
8) and the Manager's Handbook (Reference 4) were
revised to explicitly address reuse; their scope was
expanded to include the Requirements Definition

phase that we now understood to be so critical to the
reuse process. A two-part reuse process was clearly
defined that now addressed enabling reuse (creating
reusable software) as well the reusing process itself.
In addition, more specific guidance was given to
managers ON mManaging reuse.

Future Reuse of Architectures

Today, we have begun to move to the next stage of
requirements and design reuse. We have begun to
build some reusable architectures from which new
systems will be configured rather than developed
from a larger set of standardized reusable system
pieces (Reference 14). This is an attempt to
eliminate the configuration-control and mainte-
nance problems thatare associated with the general-

ized systems.
BUSINESS BENEFITS OF REUSE
Figure 6 shows overall code reuse plotted on a time

scale and mapped to the reuse levels. On average, as
we have seen from Figure 2, costs decreased as

People - Code

Requirements &

Process Design

Reuse Percent
8
1
) 4

./

-
e

{
1975

1980

f J
1985

Note: Percent of code reused with less than 25%
modification. Data from 32 attitude systems.

Figure 6. Measured Code Reuse

SEL-92-004 page 170

reuse increased. Looking at the trends within each
of the reuse levels, the increase in reuse shows two
major incremental jumps. The first payoff came
when we began reusing code, at reuse levels of 20 to
25 percent. Although there was little change in the
amount of code reuse as we defined and began
reusing the process, this effort provided the founda-
tion for the move to the next level by establishing a
stable working environment and organization.

The second quantum leap occurred, and the big
payoff came, in the late 1980s when we began
reusing the generalized systems at the Require-
ments and Design level. This sudden increase in
reuse, based as it is on five data points, is not a
spike; there was little change in reuse percentages
during the early years of this period because this
period was spent in building generalized systems
for reuse. When these systems were actually reused,
overall reuse increased dramatically.

CONCLUSIONS

There are five major contributors to CSC’s success
with reuse in this environment: management com-
mitment, process maturity, organizational maturity,
judicious use of new technology, and a tight focus
on creating and reusing products within the applica-
tion domain. :

e Management commitment. Managers looked
for innovative technical and management solu-
tions to respond to business challenges, such as
increasing workloads and shrinking budgets.
Seeing the potential benefits, our managers be-
came committed to a reuse strategy in the
mid-1970s and they have maintained their
strong commitment to the present. The devel-
opment of a successful reuse program required
solid management judgment to balance periods
of innovation, in which the organization eva-
luated and adopted new technical approaches,
and periods of managed reuse, during which the
organization focused on reaping the benefits of
its investment. At each point, the business

needs and goals of the next S years drove the

management focus. Typically, new approaches
would be considered and pilot projects started 3
to 5 years before we would need to meet an
anticipated challenge. In each cycle, managers

11

were committed to both building reusable prod-
ucts and then seeing that they were reused.

Process maturity. As the development process
matured, it provided an increasingly stable en-
vironment; developers could focus more on
better technical solutions and less on the me-
chanics of how the job should be done. The
process itself, which was tailored to the specific
domain, helped perpetuate the reuse philoso-
phy as new people joined the organization. In
its current form, the Recommended Approach
(Reference 8), which explicitly calls out reuse
activities throughout the life cycle, serves as a
driver for further culture change as we formally
integrate the two-part reuse process into our
standard way of doing business.

Organizational maturity. Our organization
has matured to meet the growing technical chal-
lenges of satellite ground support. Tweaty
years ago, our arganization was small; now, it is
far more extensive, including more than 10
times as many professionals as it did at first.
Individual people working independently have
been superseded by well-integrated teams of
software engineers and application specialists;
highly personal working methods have been
replaced by a formalized and unified approach
to software development.

‘We have matured from an organization depen-
dent on the knowledge of key personnel to one
that draws on an extensive and organized store
of experience. Talented people remain the most
critical element of our business. Yet, as we have
matured, we have replaced our dependence on
the specific talents of a few people with a re-
liance on the proper skill mix of a team whose
members can be changed to meet changing or-

Our organization has also matured in a way that
facilitated the development of software reuse in
much the same way that a programmer’s per-
spective expands over time. We began by look-
ing at code, widened our focus to design, and
most recently began viewing the problem from
the requirements perspective. Each time we
broadened our perspective and expanded the
problem domain, we saw ways to improve the

SEL-92-004 page 171

previous level and a whole new array of possi-
bilities for the next.

Judicious use of new technology. Throughout
this period, we investigated and applied only
those new technologies that made sense in our
environment and were well suited to our pro-
cess. For example, because of the highly scien-
tific nature of our application domain, buying a
large library of generally reusable computer-
science utilities would have little impact on this
environment, whereas the application of ob-
ject-oriented techniques and domain analysis
showed great potential for large-scale benefits.
There were many opportunities during this pe-
riod to either build or buy an automated reus-
able software library. We chose to concentrate
on figuring out how to create reusable compo-
nents rather than concentrating on automating a
process that we didn’t yet understand.

e Focus on a specific application domain. The
most reusable items were produced by people
who understood the local environment and the
specific application domain. In every case
where we successfully built something that was
highly reusable, application experts had
considered what they themselves (as future
reusers) would need in order to build systems
from reusable parts. To ensure that the needs of
both user and reuser were being addressed,
multiple missions were considered at once and,
typically, at least two systems (one that would
create the reusable parts and one that would
reuse the parts) were developed simultaneous-
ly. This kept the development team focused on
reusability within the domain by involving ac-
tive (not just potential) reusers in all reviews
and trade off decisions.

Based on our experience, we believe that there is a
reuse maturity model consisting of levels that every
organization must progress through in developing a
successful reuse program. At CSC, it has taken us
20 years to come this far. Certainly the maturity rate
of the software engineering industry as a whole
contributed to the length of this period; another
organization beginning today would no doubt
accomplish this much more quickly. But it is clear
that a successful reuse program cannot be put in

SEL-92-004 page 172

12

place overnight. A step-by-step approach is essen-
tial. First, focus on developing a mature organiza-
tion; capture and reuse the knowledge and
experience of people and projects. Next, develop
and mature a reusable process that is specifically
tailored or adapted for the specific domain. Then,
concentrate on building and reusing software
engineering products ranging from code units to

requirements and design and beyond.
ACRONYM LIST
AGSS — attitude ground support system
EUVE - Extreme Ultraviolet Explorer
FAST - Fast Auroral Spapshot Tool
ICE/IMP - International Cometary Explorer/
Interplanetary Monitoring Platform
ISTP — International Solar-Terrestrial
' Physics '
MSASS - Multimission Spin-Stabilized
Attitude Support System
MTASS - Multimission Three-Axis-
Stabilized Attitude Support System
SAMPEX - Solar, Anomalous, and Magneto-
spheric Particle Explorer
SOHO - Solar and Heliospheric Observatory
SWAS - Submillimeter Wave Astronomy
Satellite
TOMS ~ Total Ozone Mapping Spectrometer
TPOCC - Transportable Payload Operations
Control Center
TRMM - Tropical Rainfall Measurement
Mission
UARS - Upper Atmosphere Research
Satellite
XTE — X-Ray Timing Explorer
ACKNOWLEDGEMENT
We would like to thank Kevin Orlin Johnson for his
help in preparing this paper.

REFERENCES

. NASA/GSFC Software Engineering Laborato-
ry, SEL-77-001, Proceedings From the First
Summer Software Engineering Workshop,
August 1976

. ———, SEL-81-104, The Software Engi-
neering Laboratory,D.N. Card, F. E. McGarry,
G. Page, et al., February 1982

. — ——, SEL-82-1106, Annotated Bibliogra-

phy of Software Engineering Laboratory Liter-
ature, L. Morusiewicz and J. Valett, November
1992

. — ——-—, SEL-84-101, Manager’s Handbook
for Software Development (Revision 1), L.Lan-
dis, F. E. McGarry, S. Waligora, et al., Novem-
ber 1990 (previous version published in 1984)

. Computer Sciences Corporation, CsC/
SD-75/6057, Graphic Executive Support Sys-
tem (GESS) User’s Guide, J. E. Hoover et al,
August 1975 (updated 1976, 1977, and 1979)

. ———, CSC/TM-89/6031, A Study on Size
and Reuse Trends in Attitude Ground Support
Systems (AGSSs) Developed for the Flight
Dynamics Division (FDD) (1976-1988),
D. Boland et al., February 1989

. 1. Wertz, ed., Spacecraft Attitude Determina-
tion and Control, Dordrecht, Holland: D. Re-
idel Publishing Company, 1978

13

10.

11.

12.

13.

14.

NASA/GSFC Software Engineering Laborato-
ry, SEL-81-305, Recommended Approach to
Software Development (Revision 3), L. Landis,
S. Waligora, F. McGarry, et al., June 1992 (pre-
vious versions published in 1981 and 1983)

Computer Sciences Corporation, Digital Sys-
tem Development Methodology, Version 3.0,
December 1989 (previous versions published
in 1981 and 1984)

—— —, DSDM® Digest: Digital System De-
velopment Methodology, Version 30,E M.
Markson, Sr., T. L. Clark and M. T. Speights,
December 1989

———, CSC/TM-87/6062, Profile of Soft-
ware Reuse in the Flight Dynamics Environ-
ment, D. Solomon and W. Agresti, November
1987

Proceedings of TRI-Ada 1989, “Using Ada to
Maximize Verbatim Software Reuse,” M. E.
Stark and E. W. Booth, October 1989

Computer Sciences Corporation, CsC/
TR-90/6083, Transportable Payload Opera-
tions Control Center (TPOCC) Project Support
Plan (Revision 3), September 1992

Goddard Space Flight Center, Flight Dynamics -
Division, S550-COMPASS-102, Combined
Operational Mission Planning and Attitude
Support System (COMFPASS) High-Level Re-
quirements, Architecture, and Operation
Concepts, R. DeFazio (GSFC) et al., May 1991

SEL-92-004 page 173

Maximizing Reuse:
Applying Common Sense and Discipline

Sharon Waligora and Jim Langston
Computer Sciences Corporation

Gmad& System Sciences Division

Agenda

B Evidence of our reuse success
B Evolution of reuse in our environment
B Recommendations

A=@R @R Computer Sciences Corporation
QuuePUa System Sciences Division

SEL-92-004 page 174

Environment

Organization
Customer (since 1970)

Application

Languages
Computing Environment

Average System Size
Average Project Duration

Gmadl&m System Sciences Division

Percent of Reuse

CSC SEAS contract and predecessor
contracts

GSFC Mission Operations and
Data Systems Directorate (Code 500)

Scientific satellite ground support
- Attitude systems (Code 550)
- Payload Operations Control Centers
(Code 510)

FORTRAN, Ada, C
HSD 8063 (IBM 3083), VAX 8820,

VAX-11/780
180 KSLOC
2 years
Cost to Deliver

/

10 20 30
Time-ordered projects

Reuse has increased from

1978-1992.

Hours/KSLOC
N
(-3
-]

Cost to develop systems
with reuse
o Al ¥]
0 10 20 30

Time-ordered projects

It costs 70-80% less
to deliver reused portions
of software.

Based on 32 attitude systems

@@= Computer Sciences Corporation
Guadls System Sciences Division

10000093G- 4

SEL-92-004 page 175

Levels of Reuse

o
. ous

Rgmts & Design

Process

'

Code

Y

Ty

1970 1975 1980 1985 1990 NOwW

Rgugn Computer Sciences Corporation
Sua¥&a System Sciences Division 10008893G- 5§

Levels of Reuse

People

Usessme .

J

k- i I I
I L] ¥ ¥

1970 1975 1880 1985 1990 NOW

A= @=@" Computer Sciences Corporation
SeadSa System Sciences Division 10008883G- €

SEL-92-004 page 176

Levels of Reuse

Use same Capture people’s
peopie imowiedge in products
b . ; + t t >
1970 1975 1980 1985 1990 NOW
#2@"@" Computer Sciences Corporation
Suad&s Sysiem Sciences Division 10006893G- 7
Levels of Reuse
Process
implicit
reuse
Code) :
. Creats
Norariew ot el
People Willtes © packages
Use same Capture people's Capture and feed back
people knowiedge in products organizationsl experience
t } —t t t t >
1870 1975 1980 1985 1990 NOW

Time ——=

=™ Computer Sciences Corporation
W% Sysiem Sciences Division

10008093G- §

SEL-92-004 page 177

Levels of Reuse

Rqmts & Design
Bulid : Bulid
Process systeins : architectures
(implicit reuse) . (expiicit reuse)
Code : -
Create o
Creste © M Create controtied
Wbraries of © m' : reusable SOUCe
Use same Capture people’s Capture and fesd back
people imowiedge in products . organizationsl experience
F + l ; : + >
1970 1975 1980 1985 1990 NOW
Time ——»-
fR@gs Computer Sciences Corporation
Gmadlm System Sciences Division 10008893G- 9

What Is a Generalized System?

Generalized
Part

[] Generalized part reused verbatim in both systems
95 Specialized code for System A
Il Specialized code for System B

et

System Sciences Division 10008893G- 10

SEL-92-004 page 178

Measured Code Reuse

People Code Process Rqmts & Design
100+
90—
804
€ n4
P el
P =l
g ol
304
204 ’/
,/‘
10+ F,
L 4 i 1 1
1 | 1)
1970 1975 1960 1985 1990
Percent of code reused with less than 25% modification.
Data from 32 attitude systems.
f=g=@s Computer Sciences Corporation
Gmadle System Sciences Division 10008883G- 11

Generalized Systems Reuse Results

Reuse Cost Errors
(% Reuse (Hours/100 DSI) (Errors/DSH)
Verbatim code)
100 125 10
3 Ada
Telemetry VAX
Simulstors (1988 - 1992)
(Code 550) ,
0
100
3 ' FORTRAN
AGSS 1BM mainframe
(Code 550) (1987 - 1992)
0
100
3 - C
POCCs Workstations
(Code 510) ' (1989 - 1992)
0
Time —»
@@= Computer Sciences Corporation
GwafSs System Sciences Division : 10000083G- 12

SEL-92-004 page 179

Recommendations

Start with the basics
Focus on business/customer needs
Tailor the process for your organization

Learn from experience
Make a conscious effort to expand to the next level

Rqmts & Design

People

Y

S@Rg@R Computer Sciences Corporation

| = | S System Sciences Division 10008893G- 13

SEL-92-004 page 180

