
Session 3: Reuse

Jon Valett, NASAJGoddard, Discussant

Sharon Waligora, Computer Sciences Corporation

Neil Iscoe, EDS Research

William Wessale, CAE-Link Corporation

PRECEDIN_ PAGE BLANK NOT FILMED SEL-92-004page159

https://ntrs.nasa.gov/search.jsp?R=19940006957 2020-06-16T20:47:27+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42791643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

SEL-92-O04 page 160

N94-I1429
MAXIMIZING REUSE:

APPLYING COMMON SENSE AND DISCIPLINE

Sharon Waligora

James Langston

COMPUTER SCIENCES CORPORATION

GreoaTec II

10110 Aerospace Road

Lanham-Seabrook, MD 20706

(301) 794-4460

ABSTRACT

Computer Sci_.es Corporation (CSCTSystem Scimces Division (SSD) has mJinmined a

long-term relationship with NASA/Godda_ providing satellite mission ground-support
software and services for 23 years. As a partner in the Software Engineering Laboratory

(SEL) since 1976, CSC has worked closely with NASA/Goddard to improve the software

engineering process. This paper examines the evolution of reuse programs in this uniquely
stable mvironmmt and formulates certain recommendations for developing reuse programs

as a business strategy and as an integral part of production. It focuses on the management

strategy and philosophy that have helped make reuse successful in this mvironmenL

INTRODUCTION

For 23 years, Computer Scimces Corporation

(CSC)/System Sciences Division (SSD) has built

satellite ground-support software systems for the

Godderd Space Fright Center (GSFC) of the
National Aeronautics and Space Administration

(NASA). In this uniquely stable mvimnment, CSC

has gradually developed a reuse progrmn that has
allowed the company to meet increasingly chal-

lmging business needs and has now become a

major elemant of SSD's business slrategy. Reuse at

CSC is seen not only as a technical issue but also as

a matter of management; meaningful reuse strate-

gies are characterized by the consistent, coordi-

nated application of common sense and discipline.

This paper examines how this _ reuse

program evolved ove_ the past 23 years and presents

five key factors that contributed to its success.

Scope of the Study

The work described here has been performed at

CSC under its Systems, Engineering, and Analysis

Support (SEAS) contract and predecessor con-
tracts. The primary objective of these contracts is

the development of sciantifK: satellite ground-sup-

port systems for NASA/Goddard's lVfission Opera-

tions and Dam Systems Directorate (Code 500).

In particular, the development of attitude gronnd-

support systems (AGSSs) and simulators built for
Code 550 (the lqight Dynamics Division) and

payload operations control center systems
_) built for Code 510 (the Mission Opera-

lions Division) serve as good examples of the

PRECEDING PAGE BLANK NOT FILMED
SEL-92-004 page 161

benefits derived from reuse practices developed in
this environment.

During the early 1970s, docum_tatic_ procedures
were at worst nonexistent and at best intermittent;

CSC, like most of the industry, had not yet

developed the practice of recording project histories
and statistics. Thus, much of the evidence for the

early years of this period- the"prehistory" ofreuse

in our organization - is anecdotal; still, the views

presented by long-term employees are consistent

with the overall picture and existing technical
documents of the time. After 1976, with the

founding of the Software Engineering Laboratory

(SEL), documentation of our project experie_,,e
became both more extensive and more analytical

(References I, 2).

The SHI., was founded by the Flight Dynamics

Software Engineering Branch of NASA/Geddard

(Code 552), the Department of Ccanputer Scieme

of the University of Maryland, and the night
Dymmcs Software _g Operation of
CSC/SSD specifically to investigate the effective-

ness of software engineering technologies applied

to the development of applications software. Dur-

ing the past 17 years, the SEL has measured and

evaluated the development process, conducted

nmnerous experiments, and documented its find-

ings in many professional papers and reports. In

particular, the Software Engineering Laboratory
Series offers ample documentation of the evolution

of software engineering in this environment. As a

whole, this collection of documentation forms an

unusually rich body of historical information for

examining the evolution of software reuse

(Reference 3).

The 32 attitude systems charted here in detail were

all built between 1977, when the first projects

measured by the SEL were completed, and 1992.

They are sequentianyorderedby projectstartdate.
Figure 1 shows the pew.antage of reuse achieved by

each project, based on the amount of code reused

(reused code is defined here as existing code used

verbatim or with less than 25-percent modifr.a-

fion). A linear fit of these data shows a steady

100%

90%

80%

70%

0

0

F_m,reL

• U n

NB

• nmn •

10S 15 20 25 30

Time-ordered proJecls

Percentage of Reuse Achieved by the Projects Studied

SEL-92-004page162

2

increasein reuse, rising from an initial 10 percent in

1977 to a current 60 percene

Examining the cost (measured as effort) to develop

these same systems (Figure 2), we see that the cost
to creme 1000 source lines of code (KSLOC) from

scratch did not change significantly during this

period, but that the effort to develop systems with

reuse dropped significantly, fzom 325 hours per
KSLOC to slightly ove_ 100. This ccm_'ms SIlL

studies that reused portions of software can be

delivered with savings of 70 percent to 80 percent

over enid'ely new code (Refere_e 4).

EVOLUTION OF REUSE AT CSC

Historically, the steady growth of reuse at CSC

evolved through four very distinct levels, as shown

in Figure 3. At first, reuse was completely depen-

dent upon people, because people are the essential
element of the software business. We then began to

focus on code reuse, building reusable products.

Next, we developed a reusable process. And, most

recently, we have expanded our approach to address

reuse in the full life cycle, beginning with require-

merits and design. E_x_ence gained throughout
these four levels has given us increasing control

over the future development of our reuse programs,

as well as our development process and business

policies in generaL We have already begun moving
to what we believe will be the next level, the reuse

of architectures.

The levels were built cumulatively; as the organiza-

tion mamw.d from one level to the next, previous

reuse levels were adjusted and further developed to

support the new leveL At each level, developers
were e_ouraged to make a conscious effort to build

something reusable, and managers actively pro-

rooted the reuse of these items.

Reuse of Personnel

In the early 1970s, software reuse was almost

o_ progxmmnmg was just beginning to

gain recognition as a profession. Most programs
were small tools that were developed by scientists

35O

0 0

Cost to develop systems
0 --0 _ a_ndch

V -- 0

soo _ ,, m= o mi

io 0 _ ° m • 0

o o ,.,
-r"

comto wlth muse

1

1

so

o

m
J r,

I •

0 5 10 15 20 25 30

Time-ordered projects

mo0mm.eom

Figure 2. Cost To Deliver the Projects Studied

3
SEL-92-004 page 163

Code

People

Create • Create
reusable

libraries of • functional
utilities - packages

I

1970

Process

Formalize process
(implicit muse)

Requirements & Design
v

Build Build
generalized " reusable

systems " architectures

Refine process
(explicit muse)

Create controlled
reusable source

libraries

am.
v

h
v

Capture people's .
knowledge in products "

I

! I.

1975 1980

Capture and feed back
organizational experience

I

1985

I I

1990 NOW

Time

b
v

Figure 3. Reuse Levels

as a means to solve a problem; little atteation was

paid to the structure, _ifity, or reusability
of software products. Such was the case here. We

were just beginning our relationship with GSFC,
providing flight dynamics ground support for
scientific satellites. Physicists, astronomers, and

aeronautical engineers wrote their own programs
and tools to help them perform their mission

support duties.

However, our software reuse program had its
beginnings in this unstructured period of software

development. Because software was merely a

means to an end, the scientists would reuse any

pieces of code that they had created for a previous

program, as a con]mort-sense way of saving some

time and effort. Usually, they reused only what they

had written themselves, because they knew it

existed, they understood what it did, they trusted it,

and they knew how and where to get it. Only rarely

would they borrow something from a colleague.

Software reuse was thus confined to the scope of the

individual developer or to a small group of people,

who viewed it as an informal, ad-hoc way to get the

problem sowed as quickly as possible. That attitude

also prevailed at an organizational level. Our

managemeat philosophy at this time was simply to

"reuse" people from one project to another, assign-

ing personnel on the basis of past experience and

specific expertise. Using this approach, we were

building a small staff of application experts who

could provide satellite mission _ and develop

software tools to solve flight dynamics problems.

The weakness in this managemeat approach was

that the knowledge and experieace were embodied

in individual employees; when people were reas-

signed to other projects, or when they left the

organization, their knowledge and experience went

with them. It is significanL however, that the idea of

reuse, evea in these highly perumalized forms, was
already inhm, mtt in Our way of doing business.]axis

set the stage for the next level of development. The

nature of the product itself served as the catalyst that

started cry_ellizing these impromptu forms of

reuse inw a fonnal/zed process.

SEL-92-004 page 164

4

As weapproachedthemid-1970s,attitudeground
supportproblemsweregettingmore complex; it
was clear that we needed a more structured

approach to provide an integrated set of tools to

supporteach spacecraftmission.Logic toldus that

we shouldbuildasinglesystemtoprovideattitude

supportfor multiplemissionssimilartothe God-

dard TrajectoryDeterminationSystem (OTDS),

which provided orbitdeterminationfor allmis-

sions,But attempts to build similarall-purpose

systems for a_mde support failed because specific

requirements for a_i_de data processing were too

complex and too varied. This resul_l in a plan to

build a separate a_imde gromld-support system

(AGSS) for each spacecraft.

The demand for this work was also increasing. In

1973, we were facing the challenge of building 10

AGSSs that would provide similar services foi 10

different spacecraft in only 6 years. Clearly, a way
had to be folmd to minimiT_ the amoum of software

developed, and the experts' knowledge somehow

had tobe captured, syst_._ti_,-d, andmade accessi-

ble across many systems.

Reuse of Code

Although each mission's attitude requiremonts

were unique, as a whole, all attitude systems were

required to perform the same basic functions and

provide the same kinds of service. Given that

certain parts of an attitude system should be the

same or very similar in all of the future systems, it

was obvious that, with some up-fiont planning,

those similar parts could be developed once and

reused in all subsequem systems. In many ways,
this common-sense insight, gleaned by the CSC/

GSFC team, was the beginning of real reuse at CSC.

We worked closely with our GSFC customer to

develop a reuse strategy based on reuse of proven

software components such as coded utilities and

design templates. Obviously, this strategy would

dramatically reduce development effort, and it

would extend individual experience across system

boundaries. The in'st step in this early reuse

program was to identify three elemonts common to

future systems:

@ Low-level utilities. Coordinate uansforma-

tions, matrix operations, Sun-vector calcula-

tions, and the like are identical in all flight

dynamics applications.

User interface. All AGSSs would be used by

the same mission operations team; there was a

slrong desire for all AGSSs to have a consistent
look and feel and use the same operating prcce-

dares.

• High.level system strumtre. The specific

hardware and thesciencex1_tirmnentsofeach

spacecraftwould dictatethedetailsofthesoft-

ware system, but the ftmctions that AGSSs

were to perform were basically the same; these
functions could therefore be allocated to sub-

systems and a standard high-level system struc-
ture could be created.

We then set out to capture people's knowledge in

products by generating the low-level utilities
descn'bed above and, later, reusable functional

packages. To build these products into easily
reusable code, we took four specific steps that

addressed these areas and led to a significant
amount of reuse over the next decade.

First, we assembled the basic utility functions into a

library. This library was simply a collection of

existing routines, kept in one place so that program-
mers could find them and copy them easily when

they were needed. Usually, these low-level routines
could be reused without change.

The library approach alone still did not capture

application-specific knowledge in its entirety.

However, the early success of the librm7 showed

that the concept was basically sound, and it

indicated that the process should be expanded to

include reusable fimctional packages---bigger

pieces of software like orbit propagators and
differentialcorrectorsthatcouldbe reusedinmost

of the systems. These functional packages would

capture higher-level knowledge about the applica-

tion and make it more easily available to less-expe-

rienced personneL

Second, GSFC sponsored the development of the

GraphicExecutive SupportSystem (GESS) (Refer-
ence 5), which was designed to reside between the

operating system and the application programs and

5
SEL-92-004 page 165

deriver all executive control functions and user

interface support for the attitude ground-support

software. This system was intended to give consis-

tency, the same look and feel, to the suplx_
software for each mission, and indeed it did so. In

retrospect, though, this im_tmtive did much more.

User-interface _ routines had been the objects

of endless tinkering and "'gold plating," which

works contrary to reuse philosophy; GESS effec-

lively limited the scope of the development effort

by removing the user-interface support routines

firom the programmer's domain.

Third, a team of technical people most knowledge-

able and experienced in the application domain

looked at the requirements for the next four

missions and developed a system structure that

would support that family of satellites. The high-

level AGSS stnwture that they assembled became

the "standard AGSS design template" that was to be

used for the following 12 to 15 years (Referetw_ 6,

7). This template encouraged a high degree of

design similarity from one mission to the next,
which in tm'n facilitated code reuse. It was very easy

to map individual componentsin a previous system
to the design for a new system; the design brought
forth coded units for consideration for reuse rather

than forcing the prognunmer to search for reusable

units that might fit in an unrelated design. With this

approach, most of the coded units needed to be
modified for each mission, but a substantial amount

of code was reused that would otherwise have been

overlooked. In addition, this high-level structure

communicated from one development team to its

successor the knowledge of what an AGSS must do,

how it is smJ_un_! and why, how it interfaces with

other systems, and how functional requirements

can most effectively be allocated to subsystems.

Finally, our managers adopted a philosophy that
enforced reuse of the reusable items. Detailed

designs were required to indicate which units were

going to be reused. High-level designs were

required to be based on the standard AGSS structure

and weft required to use GESS for all user-interface
and executive functions. Software reuse was

addressed at preliminary and critical design re-

views; a system design that did not comply with

reuse directives did not pass management review.

Managers also required cost estimates to address

both new and reused code.

This management enforcement was a key element

of the reuse strategy; without it, reuse certainly

never would have received the primary emphasis

that it did from the mid-1970s through the

mid-1980s. With the successful implementation of

reuse strategies, the technical side of our corporate
culturehad been changed; managers and team

leaders wea-enow thinking in terms ofreusing ideas,

designs,and systems_mctures_om one missionto

aaother. Code reuse was now more organized,and

people were reusing units that other people had

created. The percentage of actual code reuse varied

depending on how much the standard high-level

design needed to be adjusted, but during the first

few years of par[_eful reuse, the average rose from

the initial 10 pmcont to an average of 25 percent.

Code tease, then, proved successful as a strategy for

c=tpturing the available application knowledge,

kin:re,ledge about what was being built. Yet it could

not capture knowledge about how the organization
did business. Control of process was the next

logical step toward max.imiTing the effectiveness of

reuse as a means of increasing general efficiency

andproductivity.

Reuse of Process

CSC's distinctive corporate culture during the

1970s, althoegh it implicitly included reuse, was

not framed around any very definite corporate

lWtr.ess. It operated on an informal process that had

developed spontaneously, without specific dix -
lives and without documentation. This process was

transmitted by on-the-job experiences and by word

of mouth; each project leader was free to follow it or

to improvise new processes.

By formalizing the process, we expected to stan-

dardize the im3eedures used across all projects. This

WOllld minimiT_ gh_ Ir&iDing _ by peNonnel

as they moved fi,om one project to the next, and it

would facilitate the training of new personnel. In

addition to these obvious teeamical advantages, it

would also help managers estimate and conlrol
costs and schedules.

The flint step in this process was methodologically
the same as had been used before: we began

SEL-92-004 page 166

6

capturing, recording, and reusing the organizational

experience of our personnel In the case of process,

these activities took the form of capturing weekly

project melrics in a _ database, formally

recording lessons learned in software developmeat

project history reports, and mntntnining a h'brary of
this information accessible to managers and project

leaders of new projects. We observed the _t

practices and gathered informal standards and

procedm_ that project leaders had drawn from

their experiences and were thea using to train their

This information gave us a broad and accurate view

of the existing process of software development in

the flight dynamics domain. By 1984, the CSC/

GSFC team formalized the process in its Recom-

mended Approach w Software Development

(Reference 8) and its Manager's Handbook (Refer-

ence 4), and, at about the same time, CSC

developed its own corporate process document, the

Digital System Development Methodology (DSDM)

(Refereaces 9, 10). Because both of these methods

were based on work actually being done in the

organizations at that time and on lessons learned

from previous work, they recorded and system-

atized the common-seine procedures that worked

rather than lZ'escn'bing an ideal standard without

reference to experience. Both defined the manage-

meat process as well as the technical developmeat

process. Because the process in both ca.u_ was

based on current practices, reuse was an integral

component _om the begim_g. In fact, reuse was

by than seea as so basic to the process that it was

embodied as an underlying theme in these docu-

meats rather than singled out as a separate topic.

Managers at all levels enforced the fully docu-

mented process. It was used (and reused) on all

subsequent projects. During this period, we were

able to build larger, more complex systems (Refer-

ence 6) even thoughwe were experieacing higher-
than-normal Uunover of ot_ experimced

application experts. Design templates, reusable

code, and a documented process provided a well-

defined mvironmeat in which new personnel

quickly became productivecontn'butors.

Reuse of Requirements and
Design

The same drivers that had spurred the formulation

of reese programs during the 1970s prompted us to

improve them during the 1980s. In those years,

NASA gradually abandoned its practice of flying

numerous, highly specific satellites in favor of

flying fewer satellites of greater complexity. This

new policy required larger, more complex ground

systems, but budgets did not immediately rise in

response to this increased demand. Further refine-
ment of provea reuse policies promised to build on

past successes, reduce the company's adaptation
lime, and, most important, boost the e,/_ieacy of

production to meet the challeage of the period's

eaprecedeated n_luirements.

SEL studies at the time showed that verbatim code

reuse was by far the most beneficial form of reuse,

but mrveys also showed that the functional pack-

ages mused from system to system were almost

always modified before reuse (References 6, II);

subsequeat smulies related this trend to the fact that

requiremeats and specifications were customarily
written for a specific spacecraft, a practice that
introduced variatious that had to be reflected in each

mission's software.

In 1987, an opportunity to use this knowledge

in_ented itself when two major missions were
schednled for conctwreat developmmt, the Upper

Atmosphere Research Satellite (UARS) and the
Extreme Ultraviolet Explorer (EUVE). Became

NASA was beginning to standardize spacecraft

design at that lime, the requirements for EUVE

were hugely a mbset of those for UARS, but

variations in the specifications of the two would
have caused considerable code modification, result-

ing in typical system developmeat costs. Our

project managers, committed to reuse and aware of

the potential, cost savings, agreed to build the

system for EUVE through verbatim reuse of major

componems builtfor UARS, addressing reuse from

the very beginning of the life cycle.

We began by modifying the UARS functional

|_cificatiom to sa_ the requirements for both

missions, and thereby for a whole family of

spacecraft. We then focused on designing a multi-

7
SEL-92-004 page 167

mission, generalized system. In the past, our focus
had been on a reusable high-level design and

verbatim reuse of the lowest-level utilities, but we

were now addressing reuse throughout the maire

system; functional packages and major components

were specified and designed to serve multiple
missions without modification. Functional pack-

ages were partitioned to map to actual hardware
elements on the spacecraft, and data interfaces were

generalized and encapsulated with related func-

tions; this approach created a set of building blocks

that could be easily reconfignred to support another
mission.

One of the key elements of our generalized systems

approach was that we made no attempt to generalize

those parts of the systems that were highly variable
from one mission to the next. As Figure 4 shows,

this approach assumes that some new highly

specific components would be developed for each

system, while the larger generalized pm't of the

system would be reused without change.

This approach has proven very successful. It has
been used to develop three diffenmtfamilies of

systems across the SEAS conlract: AOSSs, altitude

telemetry simulators, and POCCs. At present in
Code 550, two versions of the generalized AGSS

have been built to support satellites with two

different attitu_ control systems. As shown in

Table 1, these systems have been mused to support

three missions and are planned to be reused for at

least three more. The generafized attitude telemetry

simulator developed for UARS has also been

mused to support two other missions. It will support
two future three-axis-stabilized satellites. In addi-

lion, the Transportable POCC (TP_, a general-

ized system built in Code 510, has already been

reused to support two sateltites, and it will be used

to SUPlmrt five o_ecs. All of these general/zeal

systems show verbatim code reuse in the range of

65 percent to 85 percent.

It is important to note that the generalized approach
seems to be language and platformindependent.

Figure 5 shows data from three subsequent systems
that we built in each of the three different system

families. At the top are attitude telemetry simula-

tors, in the middle are AGSSs, and at the bottom are

_. All of these generalized systems show the
same favorable trends - in each case, as verbatim

reuse goes up, the cost to develop goes down, and

the error rates drop, indicating an increase in

quaUty.

Table 1. Reuse of Generalized Systems

Gmeraliz_

System*

MTASS AGSS

MSASS AGSS

Tm.EMEIRY
SlMtn.ATOR

TI_)CC

Veve oped
for

UARS

WIND

UARS

USE

*See_U,t

Reused
for

EUVE
SAMPEX

POLAR

EUVE
SAMPEX

SAMPEX
ICE/_IP

Future
Reuse

SOHO
TOMS

FAST

SOHO
TOMS

FAST
SWAS
SOHO
TRMM
XTE

Although each of these system families was

developed in a diffment language and on different

platforms, they all used some degree of object-ori-

ented design (OOD). We used formal object-off-

ented techniques to develop the telemetry

simulauns using Ada on VAX systems, where the

designers made extensive use of Ada generics to

produce reusable code (Refe_mce 12). On the other
hand, the TPOCC family of systems, developed in a

C/UNIX envircmnem, and the AGSS generalized

systems, developed in FORTRAN, did not formally

apply object.oriented techniques. However, their

mapping of software components to spacecraft
hardware objects and their encapsulation of data
with the functions that use them are evidence of

object-orientedthinkingand organization.

As is common with major changes in any business,

this higher level of muse intmduc, ed a new set of

challenges. ConBgnration management, in particu-

lar,took on a whole new level of importance.

Systems no longer "owned" the code they were

reusing. InUeducing a change to a commonly

reused component now had the potential of affect-

ing many systems. Proposed changes to reusable

components had to be controlled carefully, and

changes to shared code necessitated testing all

systems that used iL We addressed these issues bY

setting up formal procedures (Roference 13) and

settingup coofigm"=d libraries and official mainW-

SEL-92-004 page 168

8

Generalized
Part

I'-'--I Generalized part reused verbatim in both systems

Specialized code for System A

_1 Specialized code for System B

Figure 4. Structure oF Geaeralized Systems -

3

Telemetry
Simulators

(Code 550)

3
AGSS

(Code 550)

3
POCCs

(Code 510)

Reuse

(% Reuse
Verbatim code)

Cost Errors
(Hours/100 DSI) (Errors/DSl)

125 1:.1
100

':[L ':IL
10oIJ 1:1_ 1:11

Figure S. Results of Generalized Systems

Ada
VAX

(1988 - 1992)

FORTRAN
IBM mainframe

(1987 - 1992)

C
Workstations

(1989- 1992)

SEL-92-004 page 169

nance groups responsible for managing, evolving,

and certifying the reusable code. This has been done
at two levels.

First, reusable so_.e h'braries have been set up for

the widely used low-level utilities, where the

emphasis is on making the components and func-

tional packages as generally reusable and as

efficient as possible; units are thoroughly tested and

certified but they are not tested in the context of

every reusing system. Conversely, geaeralized

system parts are maintained and P.,l_h_(_] totally
within the context of the family of systmns they

support. Changes are drive_ by either the needs of a

future reusing system or the changing needs of the

currentreusingsystems, and changes are always

regression tested in the context of every reusing

system before being certified.

Our new approach to reuse also called for further
refinement of our process. From 1990 through

1992, the SHL Recommended Approach (Reference

8) and the Manager's Handbook (Reference 4) wore

revised to explicitly address reuse; their scope was
expanded to include the Requirements Definition

phase that we now understood to be so critical to the
reuse process. A two-part reuse process was clearly
defined that now addressed enabling reuse (creating

reusable software) as well the reusing process itself.

In addition, more specific guidance was given to

managers on managing reuse.

Future Reuse of Architectures

Today, we have begun to move to the next stage of

requirements and design reuse. We have begun to
build some reusable architectures from which new

systems will be configured rather than developed

from a larger set of standardized reusable system

pieces (Refe_ace 14). This is an attempt to
e'Inninate the configuration-control and mainte-

nance problems thatareassociatedwiththe general-

ized systems.

BUSINESS BENEFITS OF REUSE

Figure 6 shows overall code reuse plotted on a time

scale andmupped to the reuse levels. On average, as

we have seen from Figure 2, costs decreased as

100"

80_

60-
Q
m SO-
o

ee 40-

_m

10_

1970

People

#
t

t

Requirements &
Code Process Design

I i i i
1975 1980 1985 1990

Note: Percentof code musedwith less than 25%
modification. Data from 32attitude systems.

Figure 6. Measared Code Reuse

SEL-92-004 page 170

10

reuse increasexL Looking at the uends within each

of the reuse levels, the increase in reuse shows two

major incremental jumps. The first payoff came
when we began reusing code, at reuse levels of 20to •

25 percentAlthough there was lirde change in the
amount of code reuse as we defined and began

reusing the process, this effort provided the founda-
tion for the move to the next level by establishing a

stable working environment and organization.

The second quantum leap occurred, and the big

payoff came, in the late 1980s when we began
reusing the g_,]i7_l sys_ms at the Require-

merits and Design level This sudden increase in

reuse, based as it is on five data points, is not a

spike; there was liale change in reuse percentages

during the early years of this period because this

period was spent in building generalized systems

for reuse. When these systems were actually reused,

overall reuse increased dramatically.

CONCLUSIONS

There are five major conm_utors to CSC's success

with reuse in tl_ mvironment: management com-

miunent, process maturity, organizational w Ann-ity,

judicious use of new technology, and a tight focus

on creating andreusing products within the applica-
tion domain.

Mmmgement commitment. Managers looked

for innovative technical and manageme_ solu-

tions to respond to business challenges, such as

increasing workloads and shrinking budgets.

Seeing the poUmtial benefits, our managers be-
came comm/tted to a reuse su'ategy in the

mid-1970s and they have maintained their

strong commitment to the presenL The devel-

opment of a successful reuse program requked
solid numagement judsment to balance periods

of innovation, in which the organization eva-
luated and _u_opted new technical apprc_hes,
and periods of managed reuse, during which the

organization focused on reaping the benefits of

its investment. At each point, the business

needs and goals of the next 5 years drove the.

management focus. Typically, new approaches

would be considered and pilot projects started 3

to 5 years before we would need to meet an

anticipated challenge. In each cycle, managm's

were comm/ned to both building reusable prod-

uc_ and then seeing that they were reused.

Process matur/ty. As the development process

matted, it provided an increasingly stable en-

vironme_ developers could focus more on
better technical solutions and less on the me-

chanics of how the job should be done. The

procem itself, which was tailored to the specific

domain, helped perpetuate the reuse philoso-

phy as new people joined the organization. In
its currem form, the Recommended Approach

(Refere_e 8), which explicitly calls out reuse

activities On'oughotU the life cycle, serves as a

driver for further culture change as we formally

integrate the two-part reuse process into our

standard way of doing business.

Orp,,izalional maturity. Our organization

has matured to meet tbe growing teclmical chal-

lenges of satellite ground support. Twenty

years ago, our organization was small; now, it is
far more extensive, including more than 10

times as many professionals as it did at first.
Individual people working independently have

been superseded by wen-integrated teams of

soflwsre engineers and apph'cation spec_ts;

highly personal working methods have been

replaced by a fommlized and unified approach

to software development.

We have matured from an organization depen-

dent on the knowledge of key personnel to one
that draws on an exumsive and organized store

of ezperience. Talen_l people remain the most
critical element of our business. Yet, as we have

matured, we have replaced our dependence cc

the specffk talents of a few people with a re,-

liance on the proper skill mix of a |earn whose

members can be clumged to meet changing or-

need.

Our organization has also matured in a way that

facilitami the development of software reuse in

much the same way that a progranuner's per-

spective expands over time. We began by look-

ing at code, widened our focus to design, and

most recmtly began viewing the problem from

the requiremems penpective. Each lime we

bmaden_ our perspective and expanded the

problem domain, we saw ways to improv e the

11 SEL-92-004 page 171

previous level and a whole new array of possi'
bilities for the next.

• Judicious use of new technology. Tt_ughout

this period, we investigated and applied only

those new technologies that made sense in our

environment and were well suited to our pro-

cess. For example, because of the highly scien-

tific nature of our application domain, buying a

large library of generally reusable computer-
science utilities would have little impact on this

envircmment, whereas the application of ob-

ject-oriented techniques and domain analysis

showed great potential for large-scale benefits.

There were many oppommifies during this pe-

riod to either build or buy an automated reus-

able software library. We chose to

on figuring out how to create reusable compo-

nents rather thun concenuafing on ammnating a

process that we didn't yet understand.

• Focus on a specific appficafion domain. The

most reusable items were produced by people
who xmdmmtood the local env/mnment and the

specific application domain. In every case

where we successfUlly built something that was

highly reusable, application experts had

considered what they themselves (as future

reesers) would need in order to build systems

from reusable parts. To ensm_ that the nesds of

both user and reuser were being _ed,

multiple missions were considered at once and,

typically, at least two systems (one that would

create the reusable parts and one that would

reuse the parts) were developed simultaneous-

ly. This kept the development team focused on
reusability within the domain by involving ac-

tive (not just potential) reusers in all reviews
and trade off decisions.

Based on our experience, we believe that there is a

reuse maturity model consisting of levels that every

organization must progress through in developing a
successful reuse program. At CSC, it has taken us

20 years to come this far. Cemiuly the maturity rate

of the software engineering industry as a whole

contributed to the length of this period; another

organization beginning today would no doubt

accomplish this much more quickly. But it is clear

that a successful reuse program cannot be put in

place overnight. A step-by-step approach is essen-
tiaL First, focus on developing a mature organiza-

lion; capture and reuse the knowledge and

experience of people and projects. Next, develop
and mature a reusable process that is specifically

tailored or adapted for the specific domain. Then,

concentrate on building and reusing software

engineering products ranging from code units to

requirements and design and beyond.

ACRONYM LIST

AGSS

EUVE

FAST

Ice/n

XS_ m

MSASS -

MTASS -

SAMPEX -

SOHO -

SWAS -

TOMS

TPOCC

TRMM _"

UARS

XTE

- atlitude ground support system

- Exlreme UlWaviolet Explorer

- Fast Auroral Snapshot Tool

- Intemational Cometary Explon=/

Interplanetary Monitoring Platform

International Solar-Terrestrial

Physics

MullimissionSpin-Smb'tlized

Auitude Support System

Mullimission Three-Axis-

Stabilized Attitude Support System

Solar, Anomalous, and Magneto-

spheric Particle Explorer

Solar and Heliospheric Observatory

Submillimeter Wave AsUonomy
Satellite

- Total Ozone Mapping Spectrometer

- PayloadOperations
Control Center

Tropical Rainfall Measurement
Mission

- UpperAtmosphereReseamh
Satenite

- X-Ray Tuning F_rplorer

ACKNOWLEDGEMENT

We would like to thank Kevin Odin Johnson for his

help in preparing this paper.

SEL-92-004 page 172

12

REFERENCES

I. NASA/GSFC Software Engineering Laborato-

ry,SEL-T/-O01, Proceedings From the First
Summer Software Engineering Workshop,

August 1976

2. ., SEI.,-81-104, The Software Engi-

neering Laboratory, D. N. Card, F. E. McGarty,

G. Page, et al., February 1982

3. , SE_82-1106, Annotated Bibliogra-

phy of Sof_are Engineering Laboratory Liter-
azure, L. Morusiewicz and J. Valett, November

1992

4. ; SEI.,.84-101, Manager's Handbook

for Software Development (Revision 1), L.Iam-
dis, E E. McGax_, S. Waligora, et al., Novem-

ber 1990 (Iwevious version published in 1984)

5. Computer Sciences Corporation, CSC/
SD-75/6057, Graphic Executive Support Sys-

ton (GESS) User's Guide, J. E. Hoover et aL,

August 1975 (updated 1976, 1977, and 1979)

6. , CscfrM-89/6031, A Study on Size

and Reuse Trends in Attitude Ground Support

Systems (AGSSs) Developed for the Flight

Dynamics Division (FDD) (1976--1988),
D. Boland et aL, February 1989

7. J. Wettz, ed., Spacecraft Attitude Determina-
tion and Control, Dordrecht, Holland: D. Re-

idel Publishing Company, 1978

8-. NASA/GSFC Software Engineering Laborato-

ry, SEL-81-305, Recommended Approach to

Software Development (Revision 3), L. Lan_,

S. Waligora, F. McGanT, et al., June 1992 (pre-

vious versions published in 1981 and 1983)

9. Computer Scieaces Corporalion, Digital Sys-
tem Development Methodology, Version 3.0,

December 1989 (previous versions published

in 1981 and 1984)

10. _-'-, DSDIt_ Dige_: Digital System De-

velopment Methodology, Version 3.0, E. M.

Markson, Sr., T. L. Clark and M. T. Speights,

December 1989

11. ------, CSC/TM-87/6062, Profile of Soft-

ware Reuse in the Flight Dynamics Environ-

ment, D. Solomon and W. Agremi, November

1987

12. Proceedings of TRI.Ada 1989, "Using Ada to
Maximize Verbatim Software Reme," M. E.

Stark and E. W. Booth, October 1989

13. Computer Sciences Corporation, CSCI
TR-90/6083, Transportable Payload Opera-

tions Control Center O'POCC) Project Support

Plan (Revision 3), September 1992

14.Ooddard SpaceFlightCenter,FlightDynamics

Division, 550-COMPASS-102, Combined

Opera_onal Mission Planning and Attitude

Support System (COMPASS) High.Level Re-

quirements, Architecture, and Operation
Concepts, It. DeFazio (GSFC) et aL, May 1991

13 SEL-92-004 page 173

Maximizing Reuse:

Applying Common Sense and Discipline

Sharon Waligora and Jim Langston

Computer Sciences Corporation

tla41almC,..p._ _ Co_._o-
Itmtttttt_ System Sciences Division

Agenda

• Evidence of our reuse success

• Evolution of reuse in our environment

• Recommendations

pllmf Compmer Scie.em _"

_tttmmtl_m System Sciences Division
1o0mtmo- 2

SEL--92-004 page 174

Environment

Organization

Customer (since 1970)

Application

Languages

Computing Environment

Average System Size

Average Project Duration

CSC SEAS contract and predecessor
contracts

GSFC Mission Operations and
Data Systems Directorate (Code 500)

Scientific satellite ground support
- Attitude systems (C _o<le550)
- Payload Operations Control Cemers

(Code 510)

FORTRAN, Ada, C

HSD 8063 (IBM 3083), VAX 8820,
VAX-11/780

180 KSLOC

2 years

IPIPtP co,m_ _ con_.._o.
llnllll System Sciences DivL_on

lo0ea_oo- 3

Percent of Reuse Cost to Deriver

100
5O0

80 400

60 i 300

i4o =_,oo
20 100

10 20 30

Time.ordered projects

Reuse has Increased from
1978-1992.

0

0

Cost to develop systems
gfom scratch

/m

---..>_
Cost to develop lystem

with reus4

,o 2'o _'o

Tlme-ofderecl projects

It costs 70-80% less
to deliver reused portions

of software.

Based on 32 attitude systems

pdmdm _ _ c_-a_on
m $.m Sciences_._on

IOWNI_- 4

SEL-92-004 l_ge 175

Levels of Reuse

People

Code

Process

im

I Rqmts & Design

1970

I

197S

I I

1980 1985

Time

t i!

19g0 NOW

OmOmOm Computer _ _
_ttltttlltm system Sciences Div_on lm G

Levels of Reuse

People

i

Uwm

im :
p

I I 1 I I

lg'/0 lS75 lll0 liU lll0 NOW

pemp computer Scimce, Co_.
_lml_tltl System Sciences Division tOOCMIOG- 6

SEL-92-004 page 176

Levels of Reuse

People

Code

c.-. i _
BllmflN of • llum_l

.
- I_

Ulo 8lllll

mmm_

R

i

|

I

1970 1975 1980

•

1985

I

1890

I

NOW

iptfpgm Campu_ Sc_ncmCoqmn_n
llmJtm Sys_m SciencesDivision

Levels of Reuse

People

Code

I=_rocess

_ ixm:en

cm
cm

uble
lllxa_ o1 • lunctlocml
ulg_ •

•

Coptum people's
knm,_gs _ imxwms

CaiMme w_ Iced be_

:.

I I 1 I I

1070 1975 1980 1985 1990

dmdmdm couq,ut_ scJe._ coq,or.tJon
Sysu_m Sciences Division

Time

i

NOW

I¢I0m4NDG- 8

SEL-92-O04 page 177

Levels of Reuse

Creale
Q'cmo reusable

of lum:Oc_l

u_

Process I

F_ _,-j •

0mpac_ mJm) .

Rqmts & Design

Bldld Bc_d

gemallad r_mble
systwns arcNmctums

People

tilse um

Capture people's
Dm_Im tnproa.m

i_nu pmce_
(eZl_ re.e)

I I I

1970 1975 1980

Captum and fled back
oqi,mmnwlieXl:U_

Cr_to coJ
musable source

m

I I I
11)85 lm0 NOW

Time

ilmilalp Co,.p,_
llmmlilm systemSciencesDivision

leCCmN_G- 9

What Is a Generalized System?

Generalized
Part

['-7 Generalized part mused verbatim in both systems

Specialized code for System A

Speclallzed code for System B

dlail_p, o,,m,_ _ co,P,',_-
_ Sciences Dh,_ion

lOCOSN_- _0

SEL-92-004 page 178

Measured Code Reuse

Rqmts & Design

Generalized Systems Reuse Results

3
Tem.r_y
Slmulltom
(Cod, SS0)

3
AGSS

(Code SSO)

3 -

POCCs
(co_ slo)

Reuse

Verl_tlm code)

100

0

100

0

100

Cost
(Houm/100 DSI) (Ermm/DSI)

-[,oI .
o _ o _-i, _ (1988 - 1992)

IBM maintmme
0SU-la02)

0 0

Workstations

0 0

Ibmdllm s_m. Sde.ces Division
Io_oMlo0- 12

+- '_ SEL-92-O04 page 179

Recommendations

• Start with the basics

• Focus on business/customer needs

• Tailor the process for your organization

• Learn from experience

• Make a conscious effort to expand to the next level

Process

I[Ial_l[al System Sciences Divi._on
IOGOS_3L_ 13

SEL-92-004 page 180

