@ https://ntrs.nasa.gov/search.jsp?R=19940006964 2020-06-16T20:47:31+00:00Z

N94-11436

MYTHS AND REALITIES:

Defining Re-engineering for a Large
Organization

By Sandra Yin and Julia McCreary
Internal Revenue Service
8405 Colesville Rd., Suite 300
Silver Spring, MD 20910-3312

SEL-92-004 page 326

IV.

VL

TEom

VIL

MON®»> NP OEEUNE» UNWEP QEEUN®P @

MYTHS AND REALITIES:
Defining Re-engineering for a Large Organization

Abstract

Introduction

Internal Revenue Service Tax Systems Modernization
Myths and Realities

Concepts, Content and Context: IRS Assessment and R3 Methods
Objectives

Software Re-engineering Taxonomy

A Framework for Redevelopment

Portfolio Analysis

Up, Over, and Down: Applied Use of Methods

Technical Opportunities

Project Plans for Four Executive-Selected IRS Systems

Tips, Tricks & Traps: The R3 Prototype

Objectives

Findings

Technical Approach for Data

Technical Approach for Process

Features and Futures: Automated Tool Market Survey
Objectives

Interview Results: IRS R3 Objectives

Tool Integration

Multi-Vendor R3 Tool Set Examples

Commercially Available Integration Environments
Transition Challenge: Managing Multiple Tools

Roll Up Your Shirt Sleeves: R3

Business Re-engineering :

How does Technology Support Business Needs?

How does Software Re-engineering Support Business Re-engineering?
Risk Management ‘

Recommendations for the Organization

Define and Implement an Infrastructure

Prepare an Inventory of Current Systems

Conduct a Business Needs Assessment/Measurement Phase
Develop Criteria to Select R3 Candidates

Write a Transition Strategy

1. Two sets of transition strategies

2. Prioritize R3 objectives for the entire enterprise

3. Use R3 opportunities to support organizational readiness
Choose a Candidate Project(s) Targeting Implementation
Establish an R3 Team

Procure Tools which meet the Business Needs, Objectives and Timeframes

Rationalize Enterprise-wide Data and Standardize Data Names
Technology Transition

Marketing R3 Internally

Realities of R3

SEL-92-004 page 327

Introduction

This paper describes the background and results of three studies concerning software
reverse engineering, re-engineering and reuse (R3) hosted by the Internal Revenue
Servicel in 1991 and 1992. The situation at the Internal Revenue - aging, piecemeal
computer systems and outdated technology maintained by a large staff - is familiar to
many institutions, especially among management information systems. IRS is
distinctive for the sheer magnitude and diversity of its problems: the country's tax
records are processed using assembly language and COBOL, spread across tape and
network DBMS files, all crying out for a better way of doing business! How do we
proceed with replacing legacy systems? The three software re-engineering studies
looked at methods, CASE tool support, and performed a prototype project using
re-engineering methods and tools. During the course of these projects, we discovered
critical issues broader than the mechanical definitions of methods and tool technology.
If we could all just develop new software from scratch, life would be so simple.
Therein lies the thorn for most large scale “new" development: planning an orderly
transition, organizational readiness and business re-engineering.

Tax Systems Modermnization

The IRS is in the process of modernizing all of its tax processing systems. Tax Systems
Modernization (TSM) is a long-term effort to move from stand-alone legacy business
systems built on old technology to integrated systems based on enterprise-wide
planning and management. Lines of code for IRS existing systems has been quoted to
number 16 million - 8M Unisys COBOL and 8M IBM assembler. Though often cited,
the statistic is not revealing without further classifications and other measurements or
breakdowns. These programs are used for mainframe processing of taxpayer accounts
and tax returns in regional IRS centers. IRS also has other systems written in IBM
COBOL, C, and 4GL. All parties agree - manually maintaining these systems with
often overlapping functionality comes at great cost. The planned modernization effort
will take the better part of the decade and, since 1989, has been primarily approached by
the Service as a new, top-down development effort using information engineering.

In 1991 and 1992, the IRS undertook three projects to answer the questions: "Is
re-engineering a technology which could assist the IRS in its modernization effort?"
and, if so, "How should we proceed?". The scope of all three projects was software
reverse engineering, re-engineering and reuse, which we refer to as R3 internally at
IRS and within this paper. The projects were initiated by the Integration Division of
Information Systems Development of the IRS National Office. Partners included the
Transition Management Office, which is presently defining the Software Development
Environment (SDE) for the modernization, and the Compliance Division, which
maintains systems controlling tax law compliance cases, both within Information
Systems Management. The projects were contracted out to three private companies.
Within IRS, these projects were defined and managed by a small group of people who
were active in the work and R3 questions as posed to the vendors.

1 The Internal Revenue Service (IRS) is a federal agency belonging to the United States
Department of Treasury. Its mission is to administer and enforce the federal tax law for The United
States of America. :

SEL-92-004 page 328

Myths and Realities ,
With the experience of the methods, tools and prototype projects behind us, combined
with lessons learned in information engineering and watching CASE technology
improve over three years, we can see that some of the initial questions and
expectations for R3 reflected a naivete about what CASE can do to support software
engineering. We shall describe some "myths and realities”" we discovered in the
context of related subjects. Here are some mythical, yet widely-held, organizational
assumptions surrounding the R3 projects at the onset.2
Reverse engineering and re-engineering are synonymous.
Re-engineering soils the pure top-down engineering effort.
The old programs are so encrusted with history there is nothing to salvage.
Re-engineering is fully automated.
A single CASE tool is the solution for new development.
Buy a CASE tool; and don’t bother with infrastructure, work process,
organizational readiness and process improvement needs.

o Wishful thinking makes it so.

Concepts, Content and Context:
IRS Assessment and R3 Methods

Objectives

The first project undertaken, contracted to Price Waterhouse from the Fall of 1991
through mid-1992, was intended as a means of assessing IRS re-engineering
opportunities and setting clear objectives for implementation. Re-engineering terms
were defined in a taxonomy and a methodology for implementation was proposed
based on IRS needs. The initial objectives were as follows:

e Produce a taxonomy of industry-standard R3 terms and definitions.

e Develop and publish taxonomy-supported reverse engineering and
re-engineering methods which map to IRS standard methodologies: the existing
Software Development Life Cydle (circa '82 Yourdon) IRS standards; and the then-draft
Information Engineering Life Cycle (IELC, James Martin’s IE Methodology), the IRS
standard for modernization development.

e Review IRS documents stating modernization goals, standards, etc. Perform
corporate assessment on broad needs and areas of opportunity.

e Connect user-stated needs and objectives with planned processes and tools.

e Further assess and produce sample plans for four executive-selected, IRS systems
which represent a wide spectrum of R3 needs and potential.

Software Re-engineering Taxonomy (Standard Definitions)

It is very important that every organization establish its standard definitions.
Standard terms and definitions serve to articulate objectives and tasks, and remove
ambiguity from legal documents such as contract specifications. We recommend
reusing meanings known industry-wide for a given word, and refrain from creating a
specialized definition for your company.

2 The authors do not believe the any of the myths listed in the paper. We use “mythical” here
to mean: without foundation in fact; imaginary; fictitious. Early on during our projects defining re-
engineering, simple closer inspection and experience dispelied most myths.

SEL-92-004 page 329

3
One of the stumbling blocks we encountered from the beginning was the proliferation
of "RE-" words, causing confusion rather than providing a basis for clear
communication.3 The IRS documented multiple sources of definitions for a volume
of eighty-four terms, and standardized on a single, preferred meaning for each term.
IRS generally uses the IEEE definitions, which are often equivalent to industry
standards. Here are some examples of definitions for R3.
Reverse engineering:

The process of deriving a conceptual description of a system’s components from its
physical-level description, with the aid of automated tools (McClure).
Re-Engineering:

1. A combination of tools and techniques that facilitate the analysis,
improvement, redesign and reuse of existing software systems to support changing
information requirements (Ulrich).

2. Combined processes encompassing reverse and forward engineering, resulting
in a "new" system (IEEE).

3. Improving current systems without impacting current functions, technical
platforms or archictectures (Guide).

Reuse:
1. Applying knowledge about one system to another system.
2. Sharing software components, requirements, and effort of maintenance.

While IRS began by endorsing the IEEE definition of re-engineering, we have moved
toward a definition to include: using tools to make analyses and discoveries about an
existing system and using the tools to create an improved system. The reason is that
re-engineering entails so much more than reverse plus forward engineering. Much of
the benefit of re-engineering is derived from the assessment, conditioning and
positioning activities, discussed in the framework below. We have spent a lot of time
and effort in damage control just explaining the definition of re-engineering, trying to
move beyond the myths. Meanwhile, today we find across the industry the term
redevelopment has emerged as a recent de facto standard term describing what IRS
calls re-engineering. '

A Framework for Redevelopment (Methodology)

The taxonomy was applied to a structure of categories or sequences, to guide work
processes or methods. There are numerous frameworks we have seen which provide
umbrellas over the taxonomy, all the “re-” words and more. Trade magazines and
conferences can provide much information for comparison about what techniques are
available, but full-blown details of methods are often proprietary and only available as
services rendered during the course of a contracted redevelopment project. Some
vendors offer redevelopment services bundled with their proprietary tool.

3 There exists a plethora of “re-” words and terms: restructuring, redesign, resystemization,
re-architecting, re-documentation, redevelopment, re-engineering, reinventing-the-wheel. It is
personally frustrating to find every common technical term rediscovered and prefixed with "re-". For
several of the "re-" words, we venture the epistemology comes from those with a top-down view of
software engineering. Those who think software engineering is evolutionary might think change or
improvement is expected, and not require prefixes to describe necessarily iterative tasks. Get beyond
“re-" words by using descriptive phases to state objectives, i.e. DBMS migration from IDMS to DB2 vs.
re-architecting.

SEL-92-004 page 330

One example of applied methods is the Framework for Redevelopment (Ulrich),
reference Slide 9. This framework is the basis for a commercially-available off-the-
shelf encyclopedia of objective-driven and “scenario-based” methods, approaches and
procedures. It uses Zachman's Information Systems Architecture Framework: enables
decision making during Inventory/Analysis; reconciles top-down planning with
bottom-up mapping during Functional Assessment; makes source level
improvements during Positioning; targets existing maintenance environment or
Transformation. The Transformation methods are determined by the

implementation scenarios. Transformation options include targeting the Information
Engineering's Design and Construction phases in an I-CASE environment. This
framework example is noteworthy. It is a new COTS product since Summer, 1992. Its
timing indicates the market is demanding scenario-based options to development, and
in particular, it offers several missing pieces from top-down information engineering
concerning the role of legacy systems in new development and the transition from
legacy systems to the new target.4 ‘

Terminology will vary among methodologies. The methods need to be supported by
automated tools; and the terminology and framework - along your organization’s
objective-driven, scenario-based path - describe the functionality of those tools. A
general awareness of the tools on the market needs to be taken into consideration
before deciding your objectives. Obviously, there is a trade-off to keep in mind so that
you select objectives which may be supported using CASE and which are implemented
within time and budget. _

Some aspects of the life cycle are only feasible with tool support. Today, methods
which work at the source or design level are feasible using tools (e.g. tool-supported
measurements or improvements may be made to existing systems which target
maintenance). However, we are continually challenged with the question, “What
about business functions?” After all, what is the objective in an archaelogical dig into
legacy systems if one can not extract the business function? Presently, the tools on the
market which work with process logic do not “extract” essential business rules to the
analysis level; the analyst works interactively at the design level. Business functions
represent requirements. If one has traceability to requirements for an existing system,
the redevelopment and transition to a new target would be more straight forward.
Necessity is the Mother of Invention. To the vendor community: we need
redevelopment support at the analysis level; i.e. ability to extract functional flow
(Phemister) and business rules (Gane), and better data/process/object rationalization
and management support.

Presently, redevelopment methods and tools are evolving rapidly. Generational
advances in hardware architectures and software engineering are also affecting
redevelopment methods. We expect near-term evolution of CASE to include: state
transition, extensions to entity-relationship modeling, object-oriented methods and

4 Objective-driven and scenario-based simply refer to letting the parameters of your specific,
current environment along with custom needs and goals dictate the solution. This sounds obvious, like
common sense. However, some organizations in an early stage of adopting new technology might
attempt purist approaches. Originally at IRS, re-engineering was heresy against information
engineering methodology, while recently people are more open to possibilities of a symbiotic
relationship. :

SEL-92-004 page 331

targets, links to client-server tools, etc. Redevelopment tools will need to incorporate
these new CASE targets.

Redevelopment work is a team effort, sometimes compared to an archaelogical dig.
The technology itself is no "silver bullet". Regardless of how you acquire the
methodology suitable for your organization, create teams which include people with
prior experience in your redevelopment scenario and in the application domain.

Portfolio Analysis

Common to every framework is a strong, up-front emphasis on “portfolio analysis”,
assessments to guide decisions about project objectives and strategies. Decisions
regarding the benefit of re-engineering any system must always be made in relation to
organizational goals and objectives. Portfolio analysis assesses the condition of an
existing system or systems, in order to strategically select re-engineering options which
are both technically feasible and advantageous from a business perspective, reference
Slide 10.

This is management by triage. At an enterprise level, each program maps to the
portfolio analysis quadrants, offering a snapshot of the state the enterprise. The
enterprise is then grouped into categories of programs with like characteristics, e.g.
mission-critical, multiple applications with common functions, hardware platforms.
For example, portfolio analysis measures the level of effort to move systems en masse,
from mainframe Unisys batch/flat file COBOL to CASE/ client- server target, while
pointing out those programs which are not worth the effort.

At a program level, the data structures and processes need to be assessed regarding
how well they support business functions and the degree of platform independence.
Their quality depends upon how stable or reusable the software components are and
whether they represent requirements for the replacement system. Depending upon
the combinations of low/high technical value and low/high functional value: retire
or rewrite some systems; migrate some intact functionally to new architectures; repair
others to last until replacement; and reuse as basis for new development or use as
mapping for Current Systems Analysis.

During the IRS project, the corporate assessment was performed "manually”, by
interviewing people in information systems maintenance and new development, and
by reviewing various documents. As a manual effort, the portfolio analysis needs to
be “maintained” and become more comprehensive in the future. If an organization
performs this current systems assessment with the aid of tools, there is the added
benefit of having an authoritative source and integrated inventory (a repository of
current operations, systems, platforms, locations, versions, languages, DBMSs,
teleprocessing, methods, metrics, measurements, etc.) which could be put to other
uses.

Myth: "Metrics and measurements are just unnecessary overhead.”

Reality: One can not begin to understand the scope of a problem unless it is measured.
Fixes based on anything less is like practicing folk medicine. Show potential
customers the use and benefits of each measurement.

SEL-92-004 page 332

Again and again, we cannot stress enough: make informed decisions regarding
business objectives before jumping in headfirst. Assessment based on organizational
goals determines your selection of projects; project objectives and scenarios determine
your methods; and methods determine the appropriate technology you need to get the
job done. :

Up, Over, and Down: Applied Use of Methods

It is a great temptation to use methods to defend the use of a favorite tool or
technology. We experienced a mid-life-cycle crisis in the prototype project when we
discovered that the goal of taking the old code into a CASE tool and moving forward
was inappropriate for the candidate we had chosen. This is not to say that applying
these methods to a project cannot be a good one. Rather, the portfolio analysis,
categorizing the system and establishing project goals, was not fully performed.

Be sure to use methods sensibly: still working within a framework and having
selected the objectives, the software process and methods should be repeatable for a
given scenario-type. The scenario example described above, populating an I-CASE
tool with existing system components and using the I-CASE tool to forward engineer
to the target environment, can be very beneficial when applied to an appropriate
candidate, reference Slide 11.

Note, in the slide, the black arrows between construction and design phases, grey
arrows between design and analysis, and white between planning and analysis on the
forward engineering side only. This means several things. First, lack of tool support
on the process side only makes reverse engineering feasible for creating design-level
abstractions from source code. Second, better tool support for the data side allows the
possibility to extract analysis phase constructs, through a multi-step process, from the
source data structures and data definition language. Third, integration between
planning and analysis is manual, top-down only. One’s choice of methods, and how
“high” up the I-CASE tool to target for reverse engineering, must be dependent on the
availability of tool support, the risk taken by that approach, and the level of effort, time
and cost. Consider as part of the cost, not only the price of the CASE tools, but the
likelihood of needing help from experienced consultants.

Myth: "Reverse engineering means using an automated tool which does everything
unassisted upon pressing a button,” or, the opposite, "There is no such thing as
reverse engineering".

Reality: Let the buyer beware of smoke and mirrors. There are good tools in most all
dassificationsS; however, code reverse engineering to an analysis level is not
here today. Reverse engineering and re-engineering is hard work, where the
analyst is usually assisted in decision-making with interactive tools. Tools in
the hands of an inexperienced or undisciplined user can potentially cause
damage faster than that user could with bare hands. Make plans, and
understand the methods. “Just-in-time training" and mixed teams of specialists

and learners can ease technology transfer in the organization.

5 Tool classes parallel the methods. The following tool classes were created during the Market
Survey project and are: existing systems (enhancement, assessment and conditioning); repository
load/enhancement; new/replacement systems; repositories; integrated tool set environments;
testing/ validation; software/project management.

SEL-92-004 page 333

Another methodology provided by Price Waterhouse, reference Slide 12.A,
demonstrates re-engineering phases within a life cycle. Here re-engineering tasks can
be related to the familiar forward engineering life cycle phases of analysis, design and
construction. Examples of applying re-engineering solutions to business problems,
reference Slides 12.B-D, are technical redesign, functional enhancement, system
rationalization, hardware platform conversion, and CASE migration.

Technical Opportunities

Reuse provides the greatest potential benefits from reverse and re-engineering.
Whether in the context of recycling old system components for one-time use by new
development, sharing software components between both existing and new systems,
or consolidating redundant software components (requirements, data, its behavior and
testing, etc.) into a shared resource, reuse has demonstrated benefits. The IRS
Assessment and R3 Methods study included private industry case studies where reuse
was universally stated by companies as a principle benefit. During the IRS assessment
of re-engineering objectives and targets, the consensus of many interviewees was
reuse provided the incentive for re-engineering. The IRS has identified certain
functions which could benefit from sharing software components, as opposed to the
present way of independently programming and testing some redundant
requirements and functions. _ :

Myth: "Reuse is a matter of organizing a reuse library..."

Reality: Reuse is much more than the catalog of reusable components. Reusable
components need to be both used and maintained. Give clear thought to the
objectives and strategy for reuse. At the highest (software life cycle) level

_ possible, try to put boundaries around the generalized domain in question, and
re-engineer or forward engineer from there. Reusable requirements are perhaps
the highest objective. Multiple users of a shared software component might add
their extensions. Determine procedures for reuse management. Who owns,
uses and maintains software components? How to make reusable objects
"living and accessible" (are they being used)? Know a given reusable object's
"bandwidth" of reusability through a life cycle. What is the reuse repository or
SDE framework service information model; etc.? Reuse is a program requiring
support and incentives throughout the culture of the organization, from
managers to the users of reuse. Reuse the lessons of case studies rather than
reinventing the wheel.

Myth: “I am not going to re-engineer, I am using I-CASE [new, top-down
development].”

Reality: Re-engineering is not an alternative to I-CASE, competing for deviopment
attention. Rather, it supports top-down development at several strategic points,
to include verification & validation, current systems assessment and transition
issues. An organization with business or management information includes
data among its most valuable assets. Any replacement system for MIS must
consider the transition and continuity of the data. At a minimum, the
developer must include data re-engineering in any development, and better to
do so with foresight and a methodology than when it comes time for migrating
production data. The developer must examine a system'’s external data

SEL-92-004 page 334

interfaces.6 Regardless of how archaic the legacy system may be, the developer
of the replacement system needs to know the mapping from old files to new,
while the implied data model may be used as a skeletal starting point for new
redesign and development. There are tools which make improvements to
software components, though often the traceability history between old and new
is lost or kept manually. The reality is with or without tool support, the
developer must manage the transition.

Project Plans for Four Executive-Selected IRS Systems

Plans were drawn up for re-engineering four systems which were selected because they
represented typical and significant software and/or business problems at IRS. Their
approaches were seen as repeatable for other similar projects. The four projects were:

1. Share software components - reuse penalty and interest calculations.

2. Convert from Unisys network DBMS to IBM Relational DBMS.

3. Migrate a recently-developed system (electronic returns filing), with a long
expected life, to an I-CASE tool; and maintain from the design level of the tool. Reuse
some tax form field validation routines between electronic filing and paper returns
processing systems.

4. Use tools to work with IBM assembly code (IRS Master File). Options include
improving the assembly language code, establishing reusable modules (D-Sects),
modeling the Master File data structures, testing conversion to COBOL or I-CASE.

Tips, Tricks & Traps:
Jhe R3 Prototype
Objectives

At the same time the Assessment and Methods project was going on, a prototype was
developed by Integrated Microcomputer Services, Inc. (IMS) in Rockville, Maryland.
The system was fairly representative of IRS code. It produces letters and
correspondences mailed to taxpayers. It had 70,000 lines of COBOL code; 37 batch and
online transaction programs; flat files and DMS-1100 network DBMS; Unisys 1100
platform. A contractor lead a mixed team of consultants and IRS staff. The IRS staff
had no prior experience with CASE tools, but were knowledgeable as maintenance
programmers of that application system. The objectives of the prototype were as
follows: ,
* Reverse engineer existing system into a CASE tool
Condition code to be acceptable to CASE tool
Decouple data from logic
Create design structures from code
Create design structures from data
¢ Normalize/rationalize data model
Reconcile multiple entries for logically equivalent objects
to a single, standard data name
Re-engineer data to conceptual entity-relationship diagram,
analysis model v

6 For example, if a system has multiple programs including both flat files and DBMS, we
recommend first working with data structures for the DBMS and for the 1/0 going to/from another
system.

SEL-92-004 page 335

Forward engineer normalized design

e Make modifications to code in the CASE tool

» Forward engineer the whole system to construction, returning to the
original platform '

We felt this prototype had many of the characteristics of “typical” IRS target
environments and would demonstrate benefits and/or difficulties in using CASE
technology for maintenance. This prototype had appeared to be a portrait of a re-
engineering exercise. The code was conditioned prior to being put into the CASE tool;
data was separated from process in the code; data was rationalized and normalized.
The challenges we subsequently faced were not the result of the conditioning process.
Rather we had neglecteéd to perform an important planning step - setting objectives on
the basis of inventor/analysis and needs assessment. The business need should be
established first, then the technical mechanics second.

Findings

As a technical proof-of-concept, the prototype was largely successful. It was good
experience and valuable lessons were learned. Some of the lessons learned could have
been learned by listening to someone else’s story like you are doing here today. Let me
lay some of those out here.

The candidate system was selected because of its representative size and technical
characteristics. It also was fairly well contained, not requiring intricate interfaces with
other programs or systems. It had an enthusiastic sponsor: upper and middle
managers who authorized the technicians to participate in the 28-week project. The
internal characteristics of the system were not so suitable to re-engineering.
Unfortunately, the architecture of the system - with its 37 batch and online transaction
programs, accessing both flat and DBMS files - was not an appropriate candidate given
the pre-selected re-engineering objectives for the proof-of-concept. The candidate
system and target objectives were selected without the benefit of Inventory/Analysis
and Positioning.

It was assumed the resultant system would look much like the original system did and
testing requirements were established based on those assumptions. Half-way through
the project, the normalized data model was presented for review and the light went
on. The original system had only auxiliary files being accessed through the data base.?
The substance of the business data was stored on flat files, primarily on tape. The
normalized data model, if implemented, would so dramatically affect the processes
that the code would have to be abandoned and rewritten. At this point, it became clear
that the project objectives had not been carefully selected. Had the objective of the
project been to modify the system to its most efficient form (see business re-
engineering below), there would have been no question as to how to proceed. We
would have followed through with the normalized data model and rewritten all of
the code, boiled down to a handful of new programs. However, rewriting the code
would demonstrate nothing about reverse engineering the logic into a CASE tool and
forward engineering (generating code for) the same functionality to the target

7 The DBMS was storing the transactions to process later in batch mode against the flat file
which held the meaningful data.

SEL-92-004 page 336

10

platform. At that time, demonstrating the equivalent functionality of business re-
engineering in the testing phase would have been difficult; we had already prepared to
test 37 programs. We did not have the staff or the time to create equal testing scenarios
for the newly developed code, to exactly match the original code.

IRS decided at this mid-way point, rather than forward engineering the fully
normalized data model, to instead implement small modifications to the data
structures, so that the code could be preserved in close to its original form. This
system was neither business re-engineering nor the same as production. In the process
of re-engineering the code we discovered some awkward programming styles and
processing indicating patchwork, which were preserved into the CASE tool. We
realized this candidate system, although tested, should not be put in production.

We can draw valuable conclusions from the work that was done. The project was
completed to run on the Unisys, with successful code generation, tracing to design
level in a CASE tool. We were able to populate the CASE tool with reuseable objects.
Just the learning process of cleaning up the data and building models alone was a
valuable one for the technicians.

But more important than these simple technical objectives were the findings which
frame the plans for the next re-engineering project. For example, candidate systems
need to be chosen based on current systems inventory/assessments which are made in
light of business objectives. Also, prototypes should target production. It changes how
customers and project sponsors feel about project results. Targeting production also
helps focus project objectives and maintain project momentum. Another key
component of any re-engineering project is cleaning up the data before populating a
CASE tool. This step may seem self-evident to the casual observer, but it is one for
which we did not budget time. Important lesson learned. Another lesson entailed
facing the reality that a good deal of the work was manual or tool-assisted. Some
unique situations may require consulting services or specialized tools which serve a
market niche, most of which are only available with contracting services. For
example, because the original and target platform was Unisys, there were additional
steps at both the front and back end of the re-engineering process, which can be
automated with a special purpose tool (i.e. not available for mass market). The
technical approach we used on this prototype, mixing manual and tool-asssisted
processes, is well-documented and could be reused again with a like project.

Technical Approach: Data Re-Engineering -

Slide 16 shows the technical approach we took during the project, listing tools,
automated processes and manual processes. A text editor was used to standardize
names and Bachman/Analyst™ was used to normalize the data model. Here lies the
mid-life-cycle crisis. If we forward engineered the normalized conceptual data model,
the flat files disappear, and so would 30 batch programs. Although, getting rid of
unnecessary programs is a good idea, this was not the project’s originally stated
objectives. So, the data model was de-normalized to target most of the original file
structures before moving it to the Knowledgeware ADW™ tool where it was merged
with the process model. You will see two branches into the ADW tool. The direct link
to the ADW Analysis Workbench tool was the entity-relationship data model, as
normalized in Bachman. There was a second branch into the ADW Design

SEL-92-004 page 337

11

Workbench tool. That branch shows the IDMS DDL passing the de-normalized design
to the Design Workbench to be merged with the process model.

Technical Approach: Application Re-Engineering

Slide 17 is a diagram showing the process of the application re-engineering. This
procedure was fairly straight forward. The imsCASE™ tool8 was used to perform the
special modifications that had to be made to the code in the conditioning phase:
removing Unisys distinctives within the code, and modifying the code to reflect data
name standardization and new data structures. The imsCASE tool exported system-
wide repository objects to a single encyclopedia in the Knowledgeware ADW Design
Workbench. As originally specified, analysts made enhancements to the function of
the system in the ADW tool to demonstrate maintenance proof-of-concept. Then the
ADW Construction Workbench generated code and database manipulation language
(DML). On the back end, the imsCASE tool was used to modify code before returning
it to the Unisys platform. '

Features and Futures:
Automated Tool Market Survey

Objectives
The third study, a Market Survey conducted by Case Associates, Inc., developed
evaluation criteria for tools and identified tools which meet IRS corporate needs. The
Market Survey’s objectives were:
e Use re-engineering methodology as a baseline for developing tool
classifications.
e Interview representatives from the IRS maintenance and development
community concerning objectives behind tool needs.
e Develop and apply tool evaluation criteria across an existing vendor database
of several hundred tools.
e Select tool classes of special interest, and determine state-of-art best-in-class.
Integrated tool sets were identified as a special tool class.
o Interview top 15 vendors (of the best-in-class) to discuss tools in more details
and discuss tool futures.
e Write a white paper on software engineering standards and tool integration.

Interview results: IRS R3 Objectives

The vendor for Market Survey conducted more interviews.? The results appear like a
demographic breakdown of an organization in transition. The diverse IRS
community falls into camps of five main objectives. These objectives represent five
important ways that the IRS can apply re-engineering technology. Everyone can

8 The ImsCASE tool belongs to the consultant for this contract. It was used for the following
purposes on this project: parse/export Unisys COBOL Procedure and Data Divisions; parse/export
Unisys DMS1100 Data Definition Language; create repository of system-wide objects including shared
subroutines and standard data elements; static analysis of source code and source cross-referencing; and
repository data interfaces with Knowledgeware’s ADW.

9 Six months earlier similar re-engineering briefings and interviews had been given by Price
Waterhouse for the R3 Assessment and Methods task.

SEL-92-004 page 338

12

benefit from the number one, but each of the others are defended as primary objective
by one of the organizational units within the IRS. In truth, they provide the
parameters for setting target objectives and outlining a transition strategy. Those five
primary objectives are as follows:
1. Creation of an inventory of all current systems. v
5 Faster software maintenance while capturing information about the current
systems.
3. Current system verification and validation of Business Area Analyses
created by the Information Engineering group.
4 Information extracted from current systems to assist in the development of:
New Business Area Analysis (BAA deliverables in IE); and
R3 I-CASE repository for forward engineering.
5. Transition to new target environments supporting the Standards-Based

Architecture (open systems).

Tool Integration

Myth: "CASE tools are presently non-integratable; we should stick to one tool, for the
sake of standards and control.” -

Reality: Unfortunately, our many transition needs and activities are not so simple.
One tool does not encompass all the functionality of a software development
environment. The goals of the IRS modernization are the driving factors. We
look to vendors with non-proprietary interfaces and open systems for the
potential to integrate CASE tools.

The goal of tool integration is to make a collection of tools appear to users as a single
tool. This aspect of the re-engineering industry is only beginning to produce interface
requirements to the vendor community. As stated elsewhere, tool integration is a cry
which we, as users, have raised through our acquisition documents. Tools should
have the same look and feel (user interface) so that the transition between tools is
smooth and learning time is minimal. All the data produced by one tool should be
usable by another tool without loss of meaning (semantics) or loss of content. It
should be easy to navigate between the integrated tools, carrying the information
between the tools. Tool execution should be controllable in a uniform way so tools
can be combined to form higher-order functional units.

In a multi-tool, multi-vendor, multi-platform environment, standardized tool
integration support is needed to ensure a consistent user interface, common database
and standard communication mechanism between tools. An IPSE, Integrated Project
Support Environment, is a rich solution, yet unavailable today. It will support such
users as tool builders, project managers and application developers to manage software
development in an open architecture environment. IRS is watching the CASE
industry to see the extent of vendor cooperation on integration standards, and to assess
the maturity or likelihood of integrated Software Engineering Environment (SEE)10 or
IPSE support for the future.

10 The Integrated SEE framework is based on the NIST/ ECMA Reference Model (National
Institute of Standards and Technology / European Common Manufacturers Association -149) which in
turn references the PCTE standard for a Portable Common Tool Environment, a.k.a. “the toaster model”.

SEL-92-004 page 339

13

There are four categories by which one integrates tools: process, presentation, data and
control. The SEE is a framework for software engineering, an open systems
environment presentation, control and data integration of software engineering tools
using standard interfaces and architecture. These standards are still only goals for
most vendors, and only partially implemented in all cases. Data integration is
regularly offered by vendors. But data integration comes in various “sizes” and is
most effective when coupled with control integration. The most complete form of
integration, data sharing, is presently only available within single-vendor Integrated
CASE tools. Data interchange is offered between a small number of firms, while data
linkage, passing flat ASCII files through import/export facilities, is offered by many.
The important control mechanisms which give the data meaning are excluded in the
transfer in all but the data sharing example. The industry has a long way to go in
providing this level of integration.

To define clearly what we, as the user community, are asking of the vendors: process
and presentation integration is mandatory - data and control services are optional
behind them. The framework for integrating R3, the open systems environment of
IPSE and IEEE is the most important component for integration.

Transition Challenge: Managing Multiple Tools
Reference Slide 24, this is a Venn Diagram representing the information stored by
tools supporting current systems (A), cross-systems integration and corporate-level
inventories (C), and ICASE development (E), and the intersections among them.1
This diagram portrays the integration challenge. Using a manufacturing analogy, the
three large triangles illustrate a warehouse scenario. The A/ B/D triangle makes up a
manufacturing supplier. The B/C/D/F triangle represents the storage warehouse. The
D/E/F triangle is the manufacturing facility. Where as the first facility produces parts
to be used in the final product, their goal is to ship the product to the manufacturer.
As often happens, there is an interim shipping transfer point, where raw materials are
stored, perhaps even inventoried for use later. The final destination, however, is the
manufacurer. In the CASE tools scenario, the A/B/D triangle are the niche tools, and
existing systems maintenance, working with primarily construction objects, producing
normalized data models or conditioned code. The B/C/D/F triangle represents the
integrator, presently held by repository-like tools. The D/E/F triangle is the forward
engineering CASE tool, generating code for new or replacement systems. The
intersections between the triangles provide the most interesting challenges. There
exist interfaces and integration between tools, most of which are proprietary “hot
links” between individual “business partners”. The integration goals are:

1. Get tools for current systems to allow work on incremental improvements.

2. Take deliverables from A and integrate via C with E.

3. Add value-added management information in C, to synchronize and control

enterprise operations.

n A = Current Systems, all existing production
B = Change requests, testing, field operations, database admin
C = The Integrator - Configuration Mgt, Enterprise & Management Info
D = Requirements, Rationalized Data/Code, CSA, data migration
E = ICASE development, forward engineering
F = ICASE verification & validation, model management

SEL-92-004 page 340

14

Multi-Vendor R3 Tool Set Examples ,

In the review of some of the tool set recommendations, some months later, it is clear
that the industry is rapidly changing. At least one of the tools listed here, reference
Slide 23, was marketed by a company that is no longer in business. The market survey
results were given to us with a caveat: the industry is changing so quickly,
recommendations are valid for three to six months. Within twelve months, some
change is evident in fully 75% of the tools listed in the survey. Either feature offerings
have shifted their position among competitors or companies have diversified. These
industry realities confirm the earlier recommendation, only procure tools for a
defined need to use in a current project. Don’t buy a “tool box” full of tools for use
someday.

These tool sets also demonstrate the “hot links” between specific tools. Although this
is often marketed as integration, and can be extremely useful if a project requires two
tools to communicate, be aware of the limitations of what is being sold. These
linkages will need to be maintained, if the project has any extended life. Which
vendor will maintain this linkage? What happens if one or the other company goes
out of business? We are still waiting for the interchange standards to be implemented.

The optimum goal would no doubt be to wait five years until the industry settled
down a bit. But we have immediate problems requiring immediate answers. For this
reason, we recommend that technology refreshment clauses be included in new
procurements. Identify specific business objectives which can be served by categories
of re-engineering tools and acquire those tools for use in clearly defined projects. Or
contract with an agency that will provide the products for the work. Consider settling
for “good enough”, slightly less functionality in the short term using a canned, open
product which buys you a vertically upgradable and integratable environment over
the long run. Watch industry alliances, national and international standards, and
determine which tools position the organiztion with the best options.

Commercially Available Integration Environments

Integration environments are beginning to be available in the marketplace, reference
Slide 22. Most of are based on the “toaster model”, offering plug-in features for
multiple tools. One should look carefully to determine the level of integration being
demonstrated. About all “data integration” means today is exchanging entity-
relationship diagram or data dictionary information. Know the process by which the
tool provides ERD integration, i.e. how will one use it? Meanwhile, vendors will all
say they are planning to be “compatible” to whatever the latest standard hits the trade
journals. Ask when the offering will be available. Ask how the promised features
will deliver the requested functionality, look for the shades of grey through the smoke
and mirrors. “You get what you ask for”, meaning, be an informed consumer.

Business Re-engineering

Until now the focus of this paper has been software re-engineering. Throughout our

R3 studies, we kept on encountering another “re” word that did not go away; it has

become a prominent consideration. The objectives of sound business practice are to:
e Achieve a strategic and competitive position in the industry;

SEL-92-004 page 341

15

¢ Increase productivity;

* Respond rapidly and flexibly to deploy new or changing mission-critical
functions;

¢ Be cost-effective;

e Serve the customer in the spirit of Total Quality Management.
Business re-engineering refers to modeling the organization business practices, and
procedures to reach the above objectives.

How does technology support business needs?

Old ways of doing business are wedded to obsolete technology and that inefficiency
puts an organization at a competitive disadvantage. Some critics of software re-
engineering are concerned it perpetuates obsolete ways by means of improved
technologies. Citing Paul A. Strassman, Department of Defense, the organization
should view a modernization effort as a functional improvement of business
processes, not a technology program.

For example, when looking for areas to improve, executives should look for
unnecessary redundancy. Decentralization of operations or Total Quality
Management principles also impact the service to the customer. Changes in the
supporting technology which affect improvements to business process include
consolidating and integrating data, providing seamless information flows and
just-in-time data, and sharing reusable software components. However, advances in
hardware have outpaced those of software architectures, leaving customers with
increasingly greater expectations of what software should offer them. Strassman states
the common glue for making a software engineering infrastructure feasible comes
from a coherent approach to information management. Part of this approach “is
contained in the principles of the separation of the roles of information providers
from those of information customers.”

Who are the customers at IRS? Broadly, IRS customers are the U.S.A. taxpayers,
Congressional lawmakers and Department of Treasury. For developers of IRS
software, our intermediaries are functional end-users in the IRS whose responsiblity is
to implement and enforce tax law. For those creating the Software Development
Environment and information technology infrastructure, customers are the
developers of software.

How does a Software Re-engineering Framework support Business Re-engineering?
We believe an effective business process is the foremost priority and is absolutely
essential for the good standing of the organization. Having established those major
business prerequisites, we believe software re-engineering does have a role when an
orderly transition into the new technology is necessary, as opposed to letting the new
system replace the old wholesale.

Wholesale replacements are high risk, time-consuming and costly. Even though a
new generation may not care for its legacy, the answer is not throwing away the
existing system (like throwing out the baby with the bath water). Re-engineering
should support a transition effort which determines the mapping, phased co-existence
and synchronization between legacy and new systems, in two most critical areas:
requirements or business functions, and production data migration. Creating data

SEL-92-004 page 342

16

and/or process models for a legacy system, will promote understanding of what is
being replaced by the new development life cycle. The effort will proceed with less risk
than doing the new analysis blind or from scratch. The existing production operations
are mission-critical and form the definitive baseline from which any changes must be
managed.12

Not all re-engineering means migrating to new systems. CASE tools may be used to
relieve the maintenance burden for existing systems. Support for maintenance during
a long-term modernization effort should not be disregarded because the system will
eventually be retired. Perhaps there is still cost benefit for CASE during its remaining
useful life. CASE support for maintenance can be an enabling technology. While
aiding analysis and maintenance it may also prepare a legacy system for migration to
open systems, I-CASE, etc. It enables software process improvement and prepares the
organization for the cultural readiness to use CASE.

Risk Management :
There are business risks involved in developing software within estimated time and
budget. There are significant benefits to evaluating current systems to determine what
can be retired last (or not at all). Planning to utilize the current system and its
strengths in a transition strategy or business plan reduces risk. Consider an
organizational framework which approaches software development from a project
management or risk-driven perspective, reference Slide 29.

The risk management techniques in the table, written by Barry Boehm, are part of a
"spiral method for software development” which incorporates prototyping,
evolutionary user and technical requirements, short requirement inspection and
verification loops, and risk resolution. Spiral methods are analogous to down-sizing
the software lifecycle away from top-down waterfall methods. It is risk-driven, where
by comparison, information engineering is document-driven.

Risk management techniques fit in well with a range of software project situations. It
fits well with the scenario-driven approaches of the redevelopment migration
framework. The techniques are appropriate for high risk areas, when testing
migration of re-engineered modules, and for internal software development (vs.
contractually specified). Incremental prototyping and letting the end-user have a
tool-assisted view of their specifications would be a suggested extension for some
software development in TSM. :

R 1|. f i O izati)

This paper has been filled with commentary to those who are about to venture into
the redevelopment world. Here we shall advise certain steps which we are now
beginning to take; which, if we had to do it over, we would make our first priority.
The recommendation which is the most important and prerequisite to all others is to
establish an infrastructure to manage large-scale software development. Failure to

12 Requests for changes and enhancements to maintenance systems need to be coordinated with
new development work.

SEL-92-004 page 343

17

establish this infrastructure can weaken the effectiveness of the other
recommendations which depend upon a stable foundation for software engineering.

Define and implement an infrastructure

Myth: "A software methodology and its supporting tool is sufficient for
implementation.” :

Reality: A single I-CASE tool might satisfy needs for a standalone project. However,
for large-scale software development and coordination (and IRS tips the scale!),
the success of any technology hinges upon the infrastructure for software
engineering. Management of the engineering process or a framework for
software development projects, like an IPSE, Integrated Project Support
Environment, should be understood and in place as standard operating
procedures. The infrastructure supports managemen, IPSE/tool builders, and
software developers; it supports cross-system development coordination and
system redevelopment through to implementation (versus stopping short of
supporting the full life cydle).

The greatest lesson we learned from our methods, tools, and prototype studies was
that an organizational framework - infrastructure - is as critical, if not more, to the
success of large scale software engineering than the technical nuts and bolts of CASE.
For all three R3 projects, the vendors presented findings citing the lack of IRS
organizational readiness - explicitly citing lack of infrastructure - as an obstacle to
continue applying R3 approaches. However, all three vendors felt that R3 approaches
were critical to the success of TSM. Here the word infrastructure is used broadly; R3
would be integrated with the entire organization, managing transition issues for large
scale information technology. Continuing to perform prototypes would put the cart
before the horse. Quality assurance procedures, change and configuration
management, project management and short/long term procurement support should
be in place before the development process begins. Those accountable for TSM should
make infrastructure an immediate priority. Some R3-related elements of an
infrastructure for TSM are not in place yet, but are critical success factors, and are listed
as follows:

¢ a transition strategy;
objective- and requirement-driven software engineering processes;
configuration management synchronizing old & new systems;
traceability of requirements;
reusable software components;
procurement of tools for a software engineering environment or an IPSE.

Prepare an inventory of current systems. On an enterprise-wide scale, document the
component names of system operations; identify the salient business purpose(s) for
each main program. Create an integrated inventory of operations, showing
relationships among system “schematic”/data flow components, programs, data files,
users, developers, methods, etc. Later, for selected systems, further decompose to
relate the data elements, processes and requirements. There are automated tools to
support this effort. This inventory will be essential in evaluating enterprise business
needs and providing a basis from which the portfolio analysis is made.

SEL-92-004 page 344

18

Conduct a business needs assessment/measurement phase. Identify software
problems. Determine the extent to which the system or its separate components are
functionally stable and represent future business and technical needs. These
assessments are made at a system or program-level; source-level metrics are supported
by automated tools. Metrics and measurements of various kinds13 can be gathered to
determine specific system problems. Tools can assist in identifying performance issues
and maintenance-intensive code.

Develop criteria to select R3 candidates. Using the business needs assessment
information, graph current systems to portfolio analysis axes, judging technical and
functional quality, resulting in a view of a high-level snapshot and prognosis for a
class of problem types; reference Slide 10 and section above on Portfolio Analysis.
Consider the feasibility of whether reusing or making improvements to existing
software components supports business and technical objectives. Criteria for quality
will, again, reflect future technical and organizational goals; e.g. whether a system’s
existing technical architecture matches dlosely to the future target architecture. Goals
need not be grandiose, nor revolutionary; if incremental change is planned, the needs
assessment and portfolio analysis would assist in planning the appropriate sequence of
incremental improvements (see Transition Strategy below). For example, portfolio
analysis may only model moving to a database from flat files, or to modular
subroutines from large monolithic programs, both still on the same hardware
platform. :

Write a Transition Strategy. A transition strategy outlines low-risk target strategies
over multiple phases in order to reach long term goals. Without a phased approach,
those same strategies could have been high-risk.

There are two sets of transition strategies. The obvious one which first comes to mind
is the transition schedule and strategy for end-user production systems from the
base of existing legacy systems. The second transition strategy determines the
schedule and changes to software engineering processes and environments
while supporting maintenance and/or the transition to new end-user targets.

Prioritize suitable R3 objectives for the entire enterprise’s software engineering effort.
Prioritizing expectations for re-engineering is iterative; the organization
conducts its needs and current systems assessments, and balances business needs
with short-term goals based on level-of risk, cost or time of effort. Objectives
should be traced to customers, who own the requirements, and end-users.
Objectives need to be identifiable by deliverables (measurable benefit or
measurable barometer of objectives met).

Use R3 opportunities immediately to support incremental organizational readiness:
Model the business data of major IRS systems; make CASE-assisted,
incremental, source-level improvements to assembler language programs; use
current system data models not only to verify and validate data and processes of
new development, but to serve as the baseline model for new development;
and, allow maintenance programmers in areas using C language, or those
supporting systems which will not be retired in the near term, the benefit of

13 Itis not within the scope of this paper to present a comprehensive taxonomy on the many
forms of inspections, measurements, and metrics possible. However it is important, as with all
processes, that measurements be taken which directly facilitate the user of the metric to benefit from
the information, and help the user determine an appropriate software engineerng strategy.

SEL-92-004 page 345

19

using R3 CASE to make incremental improvements. Determine a hierarchy of
those activities, while coordinating dependencies.}4 Without having a
transition strategy in place, the organization is at risk of completing a well-
executed, technically-perfect project that neither supports organizational goals
nor moves any closer to final objectives- and may be thrown away.

Choose a candidate project(s) targeting implementation. A re-engineering support
program must provide some level of support to appropriate, selected candidates. Start
out with a small and well-defined (manageable) scope in a proof-of-concept. Although
the long-term modernization should be flexible as needed, a project’s given objectives
must be fixed, not moving targets. Beginning at the project-level, make a more
detailed assessment and re-engineering plan. The project adapts software engineering
processes to fit its situation, not one size-fits-all; reference Slides 9 & 11. Then,
implement the project! Without implementation as a hard and fast goal, objectives
may slide and findings may be tangential to use in real production. This is where the
rubber meets the road for re-engineering concepts. It provides opportunities for
technology transfer of software re-engineering processes to increasing numbers of
technicians and managers. Successful use of re-engineering and technology transition
are still on-the-outside-looking-in at IRS. - There are many suitable projects at IRS
which would demonstrate the pragmatism of re-engineering approaches. In fact, we
argue, any development approach must by necessity include resolving transition
issues.

Establish an R3 team to support developers assisting with measurements, project
planning, tools use and coordination with corporate modernization efforts. A large
organization should be able to assemble a cadre of skilled software engineers and
trouble shooters. A team supporting R3 projects should report to a chief architect who
is responsible for both an integrated, enterprise information systems architecture and
the technical feasibility of the modernization solution. A permanent team
demonstrates executive mandate, management support and authority to make
technical decisions. The IRS has been performing its re-engineering work using a
loosely matrixed organization, assigning staff part-time to the ad hoc effort. By
creating a permanent team, resources and relationships can be consolidated to make
the support for R3 more stable and apply the technical expertise of personnel. It also
capitalizes on the efficiency and effectiveness of a team of technical specialists, with
experience in using tools and methods. Such a team can provide support to projects,
facilitating technology transfer to the organization’s grass roots increasingly over time.
As technidians from the functional areas participate in projects with the R3 team, they
serve an evangelical purpose, carrying the experience and knowledge back to their
maintenance environment. Organizations without in-house resources can hire
consultants; however, the organization must devote some staff to work side-by-side
with the consultant, otherwise the organization will have flat progress in technology
transition.

14 One example from the Department of Defense is in the CIM, Corporate Information
Management, effort. DoD has a “reverse tree” in its strategy, where over time and several phases, DoD
plans to merge and consolidate from ninety to eventually seven systems (Strassman).

SEL-92-004 page 346

20

Procure tools which meet the business needs, objectives and timeframes of the
organization. Conduct a market survey. Identify the tools available to meet the
business needs of the organization today. Again, know objectives first. Do not simply
look for problems and fixes which fit a favorite tool or technology. Match the tools to
needs. Look at the future technology trends in the industry, and develop flexible tool
requirements and evaluation criteria with a long useful life. Markey surveys and
evaluation criteria need to be maintained because CASE products and capabilities
change at an extremely fast pace.15 Apply the criteria and identify tools which are most
appropriate as they are needed. Only purchase tools when they will be immediately
used in a project.

Rationalize enterprise-wide data and standardize data names. This means eliminating
redundant names for the same logical data structures and adopting a single standard
name for analysis level elements across enterprise systems. Data name
standardization across the enterprise is an central linchpin for those organizations
which aim to integrate systems. Integrating systems may have several contexts:
re-engineering to consolidate multiple systems to a single system and database; using
data name standardization to better understand data interfaces among muitiple
systems; facilitating impact analysis and configuration management across the
enterprise in response to change requests; assisting impact analysis or current systems
analysis for moving like-data and related logic to new methodologies; creating a data
dictionary; and using standard data names for new systems development.16 These
activities should be performed whether assisted by tools or not. Some tool support is
available, although rationalizing and standardizing data names cannot be fully
automated because understanding the meaning of the data usually requires the
intelligent judgements of a domain expert.1?

Techn T ition

Technology transition includes a "paradigm shift".18 We do not think it means just
learning to use CASE tools. We need to apply CASE technology, methodologies and
perform business re-engineering for Information Technology, to find a better business
process for software engineering. Part of the role of tool-assisted re-engineering is to

15 David Sharon says market survey and evaluation criteria are 25% obsolete in three months
and 50% obsolete in six months.

16 The timing of having these data administration capabilities and procedures in place
relative to the life cycle and implementation schedules of the customers (end users, software
developers) makes a large difference in the purpose for which customers shall use standard data names

and its impact on degrees of integration.

17 Sometimes trying to force a process for data rationalization can be quite kluge-like using
some tool which was not fully intended for that purpose. Our answer for tool-assisted data
rationalization is a request to the vendor community: “Give us a good text editor!”

18 A paradigm shift means that the way you see the world today forever renders obsolete the
way you thought it was yesterday. .

SEL-92-004 page 347

21

prepare the organization for "technology push”, rather than being pulled along later,
thereby accepting the fact that the tools today are in a fluid state or not mature
(Mosley).

Our goal is to buy and use an Integrated Project Support Environment (IPSE).
Although one stop shopping for an IPSE does not exist today, we shall assume a
proactive role as a customer of IPSE, and integrated SEE (Software Engineering
Environment). CASE standards for these environments are being developed by
vendors and user groups. The opportunity to direct these efforts makes this time
exciting.

Our participation in influencing the CASE market makes this time exciting, but it also
can be problematic. Finding and purchasing the “pest-in-class” tools, can be an elusive
goal. Just when a decision is made, another product is released, including all the
features requested. Dave Sharon calls it settling for “good enough” tools. The 80/20
rule. If you settle for 80% of exactly what you want, you may be able to move to
solving your problems more quickly, as opposed to spending 80% of your time trying
to find that last 20% functionality which may not exist in the market for years yet.

Marketing R3 Infernally

Re-engineering provides a wide variety of opportunities to support business goals.
But our experience in the IRS is that if those opportunities are not understood by
management, if they cannot be demonstrated to specifically support critical
organizational goals, this theory will be just another great idea that is not utilized.
Many of the recommendations listed above identify the marketing strategy outlined
here.

Be realistic. Remember, there is no magic, no automatic answers, no instant
resolutions. Don't oversell it. Make sure both technicians and management
understand that completely automated answers are not being proposed. Good
techniques and reasonable benefits are the real advantages to re-engineering. Beware
of presenting this as a “savior strategy”.

Success is the best marketing strategy there is. As discussed in the recommendations
above, identify a small project which targets production and is perceived as important.
No amount of marketing will recover from a large failure. There will be a need to
Jearn tools and methods. Providing a managable task in which staff can establish
technical and procedural processes to follow will create that environment in which
success is possible.

Continue to keep the benefits of this technology before the managers. Some will be
convinced; others will remain skeptical. By providing reports which measure results
and focus on the strategic benefits, they will serve as marketing vehicles. The
comment from above, “don’t oversell it” applies here as well.

SEL-92-004 page 348

Realities of R3

We have presented here some lessons learned from three years of struggling to
understand this technology and its potential benefits. We discovered that of those
lessons, the shattering of our myths and misconceptions, to include unrealistic
expectations of the technology, were among the most important. With realistic
understanding of the considerable possibilities using re-engineering techniques and
methods, we could present a plan to include re-engineering in our transition strategy.
The “realities” listed below represent those lessons learned, and the abandoning of
those cherished myths.

Establish clear objectives - There are many solutions to attempt. Make the solutions fit
the problems (not a favorite toolset).

No Silver Bullet - As stated several times in the paper, this technology is not an
automated answer to all redevelopment problems. It involves hard work and, in
many cases, manual work. But there are excellent tools and methods to support the
analysis and evaluation work which must be done. Properly executed, a good return
on investment can be demonstrated.

Embrace Business Re-engineering Early - Approaching the technology as a solution to
business problems may lead to technical solutions simply providing a faster way of
performing functions that no longer reflect the way the business operates. Not every
organization is plagued with antiquated systems, fixing the business architecture in
stone for many years. But a comprehensive software redevelopment will provide an
opportunity to review the functional processes in light of new business objectives.

Get Experienced Guidance - Ordinarily, one immediately thinks of hiring contract

sonnel with experience in using tools and methods. And that is recommended.
But don't forget in-house personnel, who have functional and organizational
knowledge necessary to the success of any project. These organizational specialists
should be made an equal participant with any contractors, building experience as they
provide functional guidance. This partnership provides the means of gaining
experience and building a team of resident experts.

Phased Change - Plan system implementation with organizational readiness. This
“reality” reflects the integration of re-engineering phases with the IS strategy. In the
case of the IRS, it is a transition strategy. Mapping specific re-engineering tasks to
support strategic milestones serves as a roadmap for implementation. By identifying
bite-sized tasks, the change can be planned in reasonable steps.

Balance R&D with ROI - Implement planned solutions; nothing gives a project
motivation like putting it into production. There will necessarily be some studies
which serve primarily to orient technical staff to tools and methods. However, proof-
of-concept prototypes can be frustrating, if they only produce statistics and

recommendations. The key is to identify production systems which can provide
benefits to the organization - demonstrable return on investment (ROI).

Gather Case Study Results - Don't pursue objectives in the abstract. There is a
tremendous amount of work that is being done in the industry, in both the private

SEL-92-004 page 349

and federal sectors. Take advantage of the work that has aiready been done, lessons
that have been learned. Jump-start corporate strategic planning with these valuable
findings.

Transition is a major issue - When the objective of re-engineering is a redevelopment
project, a critical step in the implementation of projects is a transition plan. Such a
plan should include a mapping of old-to-new data, old-to-new processes, replacement
strategy for old programs and systems, conversion of old files to new formats for
historical reports, and replacement of hardware (some systems may be ported to the
new hardware prior to conversion, in an attempt to limit the time two platforms have
to be maintained). This transition period can be supported in significant ways with
data re-engineering tools, slice-and-dice analysis tools to modularize the code for
replacement and conversion and data conversion tools. Failure to plan this phase will
result in a bottleneck during implementation, which would be unfortunate, as these
are areas well-supported by automated tools.

SEL-92-004 page 350

24

o "Review of the Tax Systems Modernization of the Internal Revenue Service",
National Academy Press, 1992.

e Barry W. Boehm. "A Spiral Model of Software Development and Enhancement”.
Richard Thayer, Tutorial: Software Engineering Project Management; The IEEE
Computer Society Press, ©1988.

e Priscilla Fowler & Linda Levine. "Toward a Defined Process of Software
Technology TRANSITION." American Programmer, Vol. 5 no. 3, March 1992.

e Chris Gane. “Extracting Business Rules”; lecture, Software Maintenance and Re-
engineering Conference; DCI/CASE Trends; Washington, DC; 2/92.

o Al Kortesoja. "Redevelopment Engineering: A Management View." CASE
Trends, 4/92 & 5/92; ©1992 Software Productivity Group.

e Daniel J. Mosley. "A Framework for Technology Innovation.” American
Programmer, Vol. 5 no. 3, March 1992.

e John Palmer. "The Big Crunch: Achieving Software Development Process
Compression.” Object Magazine; May/June, 1992.

e Lamont Phemister. "Requirements for Reverse Engineering: Squirrel &
Butterflies for Functional Flow" CASE Trends, 10/92.

e David Sharon, CASE Associates, Inc. "Deliverable 27, White Paper on Tool
Integration Standards," prepared for IRS under subcontract, CBIS Task 88; October,
1992.

e Paul A. Strassman. "Information Management Topics: The Policies, Processes, and
Technologies of CIM." CrossTalk, The Journal of Defense Software Engineering;
Number 37, October, 1992.

e William Ulrich. "Re-engineering: Defining an Integrated Migration Framework".
CASE Trends, 11/90 - 6/91; ©1991 Software Productivity Group, Inc.

SEL-92-004 page 351

MYTHS AND REALITIES

Defming Re-engineering for a Large
Organization

Sandra Yin
Office of Transition Management
Internal Revenue Service, ISM:TM:S
8405 Colesville Rd., Suite 300
Silver Spring, MD 20910-3312
301/427-0151; fax 301/427-0276

Introduction

o Internal Revenue Service’s Tax Systems Modernization
e Reverse engineering, re-engineering, reuse = "R3»
e Three RS projects - findings and recommendations

« IRS corporate assessments, R? methods

* Proof-of concept prototype

o Market Survey of off-the-shelf tools

¢ Role of Infrastructure, Business Re-engineering, and Technology
. Transition

SEL-92-004 page 352

Concepts, Content and Context:
IRS Assessment and R3 Methods

Objectives

Taxonomy of R? terms and definitions |
Reverse engineering and re-engineering methods
Corporate assessment on broad needs

Project plans for four executive-selected, IRS systems

Software Re-engineering Taxonomy

® Re-engineering |

o IEEE: combined processes encompassing reverse and forward
engineering, resulting in a "new” system
« Guide; improving current systems without impacting current functions,
technical platforms or archictectures

e Ulrich: A combination of tools and techniques that facilitate the
analysis, improvement, redesign and reuse of existing software systems
to support changing information requirements
® Reverse engineering

« process taking existing system and migrating it back to a higher level of
abstraction |
® Reuse

L J

sof

lying knowledge about one system to another system; sharing
ftware components, requirements, and effort of maintenance

SEL-92-004 page 353

A Framework for Redevelopment

RSN AN

Technical Assessment Functional Assessment Re-development
Feasibility Assessment
« Environmental Analysis « Bottom-up Data Modeling * System Weighting Factor Analysis
» Process Analysis « Bottom-up Functional Mapping * Re-development Strategy Creation
« Data Definition Analysis « Current to New Data Mapping * Interim System Support
« Architecture Analysis « Current to New Functional Mapping * Re-development Plan
» Cost Assessment
« Datla Migration

HANSEFDORMATION

« Language Transiationpgrade - « Architecture Reconciliation
* Source Code Restructuring « Logical Data & Process Mapping
« Data Definition Rationalization * Physical Data & Process Mapping
and Standardization « System/Sub-system Migration
» Code Splitting/Code Re-aggregation « System Regeneration
« Data/Process Rule Externalization) « Data/DBMS Migration
« Redundancy Consolidation & Elimination |-

-development Framework—A Three Stage Approuch calumaisem

mat Figure 1¢ Re

Source: Wi U R T @91 SoftwateProﬁd Migration Pramework™.

Portfolio Analysis

Good
A Technical Quality
and or _
Enhance Reuse Functional Quality
Poor “*— _ * Good
Replace Technical Redesign
or | or
Retire Migration
Y
Poor

e An Enterprise-level Current Systems Assessment
e Not done at IRS, must be done
e Quality: Stable and represents requirements

e Categorize sets: Mission-critical, duplicate application functions,

latforms
SEL-92-004 page 354

Up, Over, and Down

(or, Look Before You Leap) - Applied Use of
Methods

© Objecﬁve:;‘:.Populatingan‘

e Source: Al Kortesoja, "Redevelopment Engineering: A Management
View”. 4/92 & 5/92 CASE Trends, ©1992 Software Productivity

Group.

Business Re-engineering

e Achieve strategic and competitive position

e Increase productivity

e Flexibility to respond rapidly and deploy new or changing
- mission-critical functions

© Be cost-effective

e Serve the customer - Total Quality Management

SEL-92-004 page 355

How does technology support business needs?

Citing Paul A. Strassman, DoDyDIC.’

Do not perpetuate obsolete ways by means of improved technologies
Functional improvement of business processes vs. technology program
Reduce unnecessary reduncy

Seamless information flows, just-in-time data

Decentralization

Total Quality Management

Common glue for making the infrastructure feasible comes from a
coherent approach to information management.

How does Software Re-engineering Framework
support Business Re-engineering?

e Wholesale replacements time-consuming and costly
e Determine co-existence and synchronization between legacy and new
systems
 Requirements or business functions
* Data migration
e Use of tools as enabling technology
e Aid analysis and maintenance
« Prepare for migration to open systems
¢ Existing production is mission-critical, The Bottom Line baseline

SEL-92-004 page 356

Source: Barry W. Boehm, A Spiral Model of Software Development and Enhancement”. ©1988

Risk Management

Figure 3: A Prioritized Top Ten List of Software Risk items

Risk item Risk Management Techniques
1. Personnel shortialls -— mmmmmmmmmm,m
training; pre-echeduling key people.
2. Unreslistic — Detailed, muit-esource cost and schedule estimation; design 10 cost; incremen-
schedules and tal development; software reuse; requirements scrubbing.
budgets
3. Deveioping the ~ Organization anslysis; mission analysis; ope-concept formulation; user sur-
wrong software veys; prototyping; earty users' manusis.
functions
4. Deveioping the - Task analysis; prototyping; scensrios.
wrong user
interiace
5. Gold pilating = Requirements scrubbing; prototyping; cost-benefit snalysis; design to cost.
§. Continuing stream — High change threshoid, information hiding; incremental development (defer
of requirement changes to iater increments).
changes
7. Shortfalls in - Benchmarking; inspections; reference checking; compatibliity anelysis.
externally-fumished
componems
8. Shortfalls in — Reference checking; pre-eward sudits; award-fes contracts; competitive
axtermnally- design or prototyping; tesmbuliding.
periormed tasks
9. Resl-time — Simulation; benchmerking; modeling; prototyping; instrumentation; tuning.
performance
shortistis)
10. Straining computer — Technical snelysis; cost-benefit analysis; prototyping; reference checking.
science capabliiities

Tips, Tricks and Traps: The R® Prototype

Objectives

® Use integrated CASE toolset from source to target

® Single, integrated repository
Data standardization

Verify migration to CASE first, then try enlmncements

Technology transfer

SEL-92-004 page 357

Tips, Tricks and Traps: The R’ Prototype

Findings

Successful code generation, tracing to design level in CASE
Populate CASE tool with reuseable objects
Inventory/analysis assessments should drive objectives
Clean-up existing source before populating CASE

Services with tools needed for niche specialities

[T X e SR A

TECHNICAL APPROACH
DATA RE-ENGINEERING

Creste
Standardized .
Deta Eloment <— Edor Stanand Name
Names Mepping ADW
Edited Mapping Report ImsCASE Design
WS Data DMS 1100] o0k . ‘
COBOL Dats Structures
Text [(inpu Flows only) Mapping Tranelator} ["] Transiator

initial Mapping Ropoﬂ\ ?m.”

Sourcs DMS 1100| 'OMS 1OMS
c:: pOL | Transistor DOL

DMS 1100
DDL

SEL-92-004 page 358

.. %) .
N . ° - AP Ay e rulsa b B s e I T e lunintn.caiusclBN

TECHNICAL APPROACH
APPLICATION RE-ENGINEERING

Features and Futures:
Automated Tool Market Survey

Objectives

® Re-engineering methods are baseline for tool classifications.
e Interview representative maintenance and IEM community
e Apply tool evaluation criteria against an existing database

e Determine best-in-class, and integrated toolset.

® Visit top 15 vendors to discuss tool futures.

e Write white paper on standards and tool integration.

SEL-92-004 page 359

Features and Futures:

Automated Tool Market Survey
Interview results: IRS R3 Objectives

1. Creation of an Inventory of All Current Systems

2. Faster Software Maintenance While Capturing Information About
the Current Systems

3. Current System Verification and Validation of Business Area
Analyses Created by the Information Engmeenng Group

4. Information Extracted From Current Systems to Assist in the
Development of:

a. New BAAs ‘ _
b. An RS I-CASE Repository for Forward Engineering

5. Transition to New Target Environments Supporting the
Standards Based Architecture

Source: David Sharon, CASE Associates; CBIS Task #88

Features and Futures:
Automated Tool Market Survey

Findings

e Tool Integration S

e Multi-Vendor R3 Tool Set Examples

e Commercially Available Integration Environments
® Transition Challenge: Managing Multiple Tools

SEL-92-004 page 360

Multi-Vendor R3 Tool Set Examples

R3 Tool Classes

1.0 20 3.0 4.0 - 50 6.0 7.0 :
Tool Set Existing Repository New/Replace Repositories Integrated Testing/ Software/
Examples Systems Load Systems Tool Sets Validation Proj Mgt
Tool Set 1 Bachman Arree IEF IEF ~custom- None None
and Arrae
Tool Set2 Adpacand Cusmtom ADW ADW ~<ustom- Compu- None
Compuware Bridge ware
Tool Set3 Adpac - Infospan ADW ~ Infospan, -custom- Nonc None
ADW .
Tool Set4 Cadreto Infospan Bachman Infospan, .custom- None None
Tool Set5 Cadreor Cadreor Cadreor Cadre or © Softbench Many Softool
Procase Procase IDE IDE
Tool Set 6 Emst& - RE/Toolset ADW ADW -<custom- Viasoft None
Young Reltech
Adpac
Bachman

Source: David Sharon, CASE Associates; CBIS Task #88

Tool Integration

o Standards-driven open systems
® Mandatory to integrate -

* Process management
* Presentation
® Optional/as-needed to integrate -
* Data
* Control services

SEL-92-004 page 361

Commercially Available Integration Environments

Vendor EProduct Primary Environment CASE Tooks Supported
Empbasis

BrownStone Data Dictionary/ Dau ‘MS-DOS, 0872, IEW/ADW, Bachman

Solutions . Solution DBYMVS

InfoSpan CaseSpan MS-DOS, 0872, IEW/ADW, Excelerator,
UNIX PM/SS

Rehech DB Excel MS-DOS, 052, IEW/ADW, Excelerator,
DB2MVS Bachman

Software Exchange . MS-DOS IEF, IEW,

One Exceleator, Anlo-_Mne

Pius, Systems Engineer,
Bachman/Analyst,

A Oracie, Ingres, Telon
Atherton Software Control VAX/VMS, Over 50 tools
Technology Backplane Uhtrix, MVS, SunOS
" Digul Cobesion VMS, Ultrix Teamwork, Excelerator,
Equipmeat Software through
Corporaticn Pictures, Netron/CAP
Hewiott-Packard SoftBench UNIX Over 60 tools
- IBM SDE000 UNIX Over 50 tools
SFGL EAST (European . UNIX Asy PCTE~complisnt
Advanced Software tool
Technology)
Softisd Maestro I MS-DOS, MicroFocus Cobol
. UNIX Workbench
Delphi Grovp SEE System Process MS-DOS, OS2 PM Any
Rspid System HyperAnalyst osn, Bachman
mﬁ! MVS/DB2

Source: David Sharon, CASE Associates; CBIS Task #38

Transition Challenge: Managing Multiple Tools

A = Current Systems, all existing production]

B = Change requests, testing, field operations, da}tabase admin

C = The Integrator - Configuration Mgt, Enterprise & Mgt Info
D = Requirements, Rationalized Data/Code, CSA, data migration
E = ICASE development, forward engineering

F.=IGASE verification & validation, model management

Roll up your shirt sleeves: R’

< Process Management & Tool Coordination >

Application
Layers yd _
; Re-engineering Tasks
e or
~| Tool Classes
yd
N

Software Lifecycle Phases

< Validation & Verification, Configuration Management >

- ———t

Recommendations for the Organization

Define and implement an infrastructure
Establish a R? team

Inventory current systems

Conduct business needs asssessment
Select R? projects from Portfolio Analysis

Procure tools
Rationalize, standardize corporate-wide data

SEL-92-004 page 363

Define and implement an infrastructure

Critical Success Factors for Tax Systems
Modemization

Objectiive- and requirement-driven processes
Configuration Management synchronizing oia & new
Traceability of requirements
Data Standardization |
Reuse: software components
Procurement

Technology Transition

»Paradigm Shift” means business-reengineering for Information
Technology

Prepare organization for "technology push”

Settle for ”good enough” vs. best-in-class tools

Have role as customer of IPSE (Integrated Project Support Environment)
and CASE

SEL-92-004 page 364

Credits

Julia McCreary, Barbara Shammas, & many IRS colleagues.

Barry W. Bochm. "A Spiral Model of Software Development and Enhancement”. Richard
Thayer, Tutorial: Software Engineering Project Management; The IEEE Computer Society
Press, ©1988.

Priscilla Fowler & Linda Levine, *Toward a Defined Process of Software Technology
TRANSITION.” American Programmer, Vol. 5 no. 3, March 1992.

Al Kortesoja. "Redevelopment Engineering: A Management View.” CASE Trends, 4/92 &

5/92; ©1992 Software Productivity Group.

Daniel J. Mosley. *A Framewark for Technology Innovation.” American Programmer, Vol. 5

no. 3, March 1992.

John Palmer. “The Big Crunch: Achieving Software Development Process Compression.”

Object Magazine; May/June, 1992.

Lamont Phemister. *Reguirements for Reverse Engineering: Squirrel & Butterflies for

Functional Flow” CASE Trends, 10/92. ‘ .

David Sharon, CASE Associates, Inc. "Deliverable 27, White Paper on Tool Integration

Standards,” prepared for IRS under subcontract, CBIS Task 88; October, 1992.

Paul A. Strassman. “*Information Management Topics: The Policies, Processes, and

Technologies of CIM.” CrossTalk, The Journal of Defense Software Engineering; Number 37,

October, 1992. '

William Ulrich. *Re-engineering: Defining an Integrated Migration Framework™. CASE
Trends, 11/90 - 6/91; ©1991 Software Productivity Group, Inc.

SEL-92-004 page 365

