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Satellite Inventory of Minnesota Forest Resources 

Abstract 

The methods and results of using Landsat Thematic Mapper (JM) data to classify and estimate 
the acreage of forest covertypes in northeastern Minnesota are described. Portions of six TM scenes 
covering five counties with a total area of 14,679 square miles were classified into six forest and five 
nonforest classes. The approach involved the integration of cluster sampling, image processing, and 
estimation. Using cluster sampling, 343 plots, each 88 acres in size, were photo interpreted and field 
mapped as a source of reference data for classifier training and calibration of the TM data classifications. 

Classification accuracies of up to 75% were achieved; most misclassification was between similar 
or related classes. An inverse method of calibration, based on the error rates obtained from the 
classifications of the cluster plots, was used to adjust the classification class proportions for classification 
errors. The resulting area estimates for total forestland in the five-county area were within 3% of the 
estimate made independently by the USDA Forest Service. Area estimates for conifer and hardwood 
forest types were within 0.8 and 6.0%. respectively, of the Forest Service estimates. A trial of a second 
method of estimating the same classes as the Forest Service resulted in standard errors of 0.002 to 0.015. 
A study of the use of multidate TM data for change detection showed that forest canopy depletion, canopy 
increment, and no change could be identified with greater than 90% accuracy. The project results have 
been the basis for the Minnesota Department of Natural Resources and the Forest Service to define and 
begin to implement an annual system of forest inventory which utilizes Landsat TM data to detect changes 
in forest cover. 

Introduction 

Forests covering 16.7 million acres or nearly a third of the land area of Minnesota are a significant 
component of the state’s natural resource base and a significant contributor to its economy. In spite of 
growing demands for information about the state’s forest resources, statewide inventories are conducted 
only at about 15-year intervals. Although forest stand growth models have become increasingly important 
for updating inventory information and projecting future forest conditions (Ek 1983). such updates are 
limited because of their concentration on existing forested plots. Total forest area and area by cover type 
change because of cropland abandonment, harvesting, and urban development. Such changes are 
extremely difficult to model; that is a major reason for wanting to use satellite data to determine forest 
areas. Since the mean characteristics of forest strata change relatively little, the major inventory problem 
is to estimate the amount and location of the strata 

For many years foresters have effectively utilized aerial photography as a tool to help monitor and 
manage forest resources and aerial photographs are an integral part of most forest inventory procedures. 
The launch of Landsat-1 in 1972 added an entirely new dimension to the capability to acquire Earth 
resources information and there has been much interest in the potential of satellite data and computer-aided 
analysis techniques to identify and map forest resources. Although it has generally not been possible with 
Landsat MSS data to achieve satisfactory classification accuracy for any but the most general 
classifications in the Great Lakes States, a number of studies have shown that the information content of 
Landsat Thematic Mapper 0 data is considerably higher than that of MSS data (Price, 1984; DeGloria, 
1984) and that the additional spectral bands and finer spatial and radiometric resolution of TM data result 
in significant improvements in classification accuracy for more specific information classes describing 
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forest species (Horler and Aheam, 1986; Moore and Bauer, 1990) and forest stand characteristics (Peterson 
et al., 1986; Williams and Nelson, 1986). The results of Moore and Bauer (1990), which provided much 
of the impetus for this research, showed a 1520% increase in classification accuracy of TM data over 
MSS data, with TM accuracies of greater than 80% for seven classes. 

Objectives 

The overall objective of the research was to develop and test procedures for using multispectral 
satellite data to inventory forest resources in the state of Minnesota. Specific objectives were to: 

1. Develop a methodology to use digital satellite data and computer-aided pattern recognition to 
classify forest covertypes which will be compatible with and complementary to the other surveys 
conducted by the Minnesota Department of Natural Resources and the U.S. Forest Service. 

2. Estimate forest areas and produce digital maps of the state’s forest resources by species group at 
county, region and state levels, and determine the accuracy and precision of the forest area 
estimates and maps derived from satellite data, compared to traditional forest inventory estimates. 

3. Investigate alternative innovative approaches to satellite data classification, sampling and 
estimation and determine to what degree satellite data classifications can be used to obtain 
additional information such as stand density, size class, and disturbance. 

4. Integrate the satellite data classification, sampling and estimation designs and procedures into the 
Forest Resource Assessment and Analysis Program of the Minnesota Department of Natural 
Resources @NR) and Forest Inventory and Analysis (FIA) of the U.S. Forest Service. 

The goal of the project was to develop and implement a methodology to provide cover type area 
estimates of +5% at the 95% confdence level at the state level and +lo% with 90% confidence at the 
county level. Other performance goals of the final inventory procedure include: cost $.01-.02 per forested 
acre, one year to acquire and analyze the data, procedures that can be implemented by the DNR with 
reasonable personnel and capital costs, and enough flexibility to meet changing conditions or requirements. 

Two important underlying premises of the objectives and approach tested in the investigation are: 
(1) the synoptic view of Landsat provides the opportunity to obtain forest inventory information over large 
areas (Le. state) and (2) by using computer data analysis methods to classify pixels distributed over 
counties and unique sampling designs, it is also possible to make accurate and precise estimates for local 
areas (Le., counties). This approach offers a means to improve upon the sampling methods now used for 
making area estimates from ground-based, two-phase surveys. At the same time the ground data (which 
is also used to estimate other parameters such as forest stand characteristics and therefore its collection 
cannot be abandoned) will be used to remove the bias from (i.e., correct) the satellite-based estimates. 
An important consideration in the proposed approach is that improved covertype estimation techniques 
would lead to more efficient and timely forest descriptions for a variety of purposes. 

Multispectral Landsat TM data, together with ground-based forest inventory data were used to 
produce an inventory of Minnesota forest lands, along with a methodology for frequent updates. The 
following sections describe the sample design and survey model, satellite data classification, calibration 
and evaluation of Landsat area estimates, change detection using multidate Landsat data, and, lastly, the 
use of satellite remote sensing for operational forest inventories in Minnesota. The emphasis is on 
describing new approaches to forest inventory using satellite data. 
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Background 

Studv Area 

The study area for the project consisted of five forested counties in northeastern Minnesota 0;igure 
l), totaling some 8.8 million acres. The region stretches nearly 230 miles east/west and 170 miles 
north/south. The study area corresponds to the USDA Forest Service's Forest Inventory and Analysis 
(FIA) survey unit one, the Aspemirch unit (Miles and Chen, 1992). The study area is comprised of a 
variety of forest types, with primary types being aspen-birch, spruce-fir and pine. 

The geology of this region is largely the result of glaciation (Wright, 1972). The northeastern 
portion of the area, Lake and Cook counties, is marked with an abundance of Canadian Shield lakes, and 
displays relatively large topographic variations. The western half of the region, Koochiching county, is 
a vast lowland, with intermittent moraines. The central portion of the region is characterized by a variety 
of geologic formations, and is heavily forested. The central portion of St. Louis county is dominated by 
granite highland termed the "Iron Range," and is home to numerous mining operations. In southern St. 
Louis and Carlton counties, agriculture and other non-forest landuses, are more prevalent. Even so, these 
areas are still predominately forested. 

Landsat Data 

The image data for the project consisted of portions of six Landsat TM scenes (Figure 2). Data 
were collected between 5/29/88 and 6/14/88, with scenes along the same path being collected on the same 
day. All images were virtually cloud free, with any clouds occurring outside of the study area. Haze was 
observed over water bodies within the path 26, row 26 scene covering the northeast portion of the study 
area. 

All scenes were rectified to the UTM (zone 15) projection and coordinate system using a nearest 
neighbor resampling scheme to pkserve the original DNs. Rectification allowed for relatively easy 
overlay of reference data sets for training and accuracy assessment. Because of the inherent problems of 
working across scenes of differing acquisition dates (changes in atmosphere, sun angle, and phenology), 
processing was limited to within scene (or path) processing. Consequently, three separate image datasets 
were processed, and merged only as classified (GIS) files. 

Reference Data 

Reference data sets were generated using 35-mm color infrared aerial photography flown at a scale 
of approximately l:lO,OOO. Seven lines of photography were gathered at equal intervals across the study 
area (Figure 3). Interpretation units were defined as 88-acre clusters spaced roughly one mile apart over 
the entire length of the flightlines (Figure 4). A total of 343 clusters were interpreted into approximately 
100 covertype, size and density classes (Table 1). Subsequent to photo interpretation, all clusters were 
visited on the ground, or viewed from the air if ground access was limited. Clusters were located on 
USGS 7.5' minute quadrangles, and then digitized using PC Arcmo. Reference datasets were then 
rasterized and linked to attribute data (i.e. type, size, and density) and registered to the Landsat image data 
using ERDAS. 
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Figure 1. Fivecounty project study area in northeastern Minnesota (FIA aspen-birch unit). 

POZBR026 - PO26R026 

Figure 2. Project study area and Landsat TM scenes. 
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Hardware and Software Environment 

Image processing was performed on SUN SparcStations and 386 microcomputers. Raster-based 
image processing and GIS procedures were completed using workstation ERDAS. Vector GIS and data 
development procedures were completed using PC Arc/Info 3.4D. Additional routines were developed 
in-house using C and A M .  

Survey Design 

Given the emphasis on forest area estimation and satellite data, there is much potential for gains 
from refinements in survey design. Designs using large clusters have been shown to be an effective means 
of collecting forest inventory information (Scott et al., 1983). In particular, Benessalah (1985) has shown 
that such layouts have decided advantages for ground checking of remotely sensed data. Advantages 
include ease of field work, variance reduction, and the provision of area data as proportions rather than 
binary (0-1) counts. Proportion data facilitate the use of remote sensors because it is relatively insensitive 
to scale problems. The sampling design considered for covertype area statistics was a single phase design 
involving remote sensing-based classification of the entire area and ground checking of a sample of large 
clusters. This exploited the synoptic coverage of satellite-acquired digital remote sensing information and 
included all of the pixels in the population in addressing area estimation. 

A sample of clusters on the "imagery" was observed on the ground to assess forest type. The 
clusters might be 10 to 100 or more acres in size, however the size used here was a consistent 88 acres 
(a size equivalent to 17 x 23 TM pixels). The ground sampling (field visit) established an accurate type 
map for the cluster, Le., polygons in the cluster were identified and labeled as to covertype. This meant 
usage of boundaries and labels according to standards of interest to forest management. Clusters were 
distributed systematically (with a random start) across the s w e y  unit. The ground sample clusters were 
then used to train the classifier and subsequently the classifications became the predictor variables for 
regression estimates of the proportion of the clusters in various covertypes. 

The ground clusters were very inexpensively mapped and field checked using large scale aerial 
photography. Cluster visitation costs were approximately $100 each, including travel, preliminary 
covertype mapping of the cluster on large scale 1:1O,OOO color infrared aerial photography and field 
verification of covertype boundaries and lines. The photography itself cost approximately $23 per cluster 
and digitizing the corrected cluster covertype map cost approximately $15. The photography was 
employed here to help locate the clusters and assist with access (a nontrivial task) and to assist in 
developing accurate ground reference data. 

Landsat TM Classification Methodology and Results 

Although more than 100 landcover classes resulted from interpretation of the aerial photography, 
it was apparent that such a detailed Landsat-data classification was not possible. In many cases there was 
simply not enough training information in the cluster samples to permit further work. In other cases, 
initial tests showed no promise in separating certain classes (e.g., aspen vs. birch). Ground truth classes 
(both forest and non-forest) were then condensed into 11 (6 forest, 5 non-forest) covertypes based on 
spectral and management considerations as listed in Table 1. 
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Urban and Industrial 

Agriculture 

Developed 
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Table 1. Hierarchy of information classes for photo interpretation and classification of Landsat TM data. 

Satellite Classes Photo Interpretation Classes+ Code 

LH Ash 

Elm 

Aspen/Birch Aspen/Birch A/B 

Birch 

I NorthernHardwOOds 
~ ~~ 

Northern Hardwoods NH 
~ ~~ I UplandConifers uc 

I RedPine 

I white Pine 

BE/WS Balsam FuNhite Spruce 

I Spruce 

1 Lowland Conifers Lowland Conifers LC 

I Lowland Black Spruce 

Tamarack 

Northern White Cedar 

Stagnant Spruce 

Stamant Cedar 

I cutover k e a  I Shmb/Cutover/Grass SICIG 

I LowlandGrass I 
1 UplandGrass I 
I LowlandBrush I 

Dev 

I Recreational Development I 
I water I water W 

I Marsh I Marsh M/M 

ee crown 
Muskeg 
Forest cover types were further subdivided into 1 losure and three size classes. 
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In addition to the six reflective TM bands, a set of six vegetation indices (VIS) were added to form 
twelve feature sets used for processing. The VIS were chosen to be a representative sample of possible 
such indices. The first set of indices consisted of the first three Tasseled Cap transformations, greenness, 
brightness and wetness. with coefficients given by Crist and Cicone (1984). While greenness is the most 
indicative of vegetative cover, brightness is also related to vegetative cover. Wetness is related to moisture 
content and may be useful for wetland delineation and separation of upland and lowland forest types. The 
second group of VIS were ratios that have been found to intensify forest canopy characteristics. This 
group consists of TM4/l"h43, T M 4 m  and TM5/l"h44 ratios. Jensen (1983), among others, states that 
TM4DM3 provides information with respect to vegetation and canopy condition and that TM4RM2 may 
be a promising feature for wetland studies. The T M 5 m 4  ratio has been used in studies related to conifer 
canopy structure. 

A number of classification processing approaches were evaluated for their utility in large area 
classification. Supervised, unsupervised and combination approaches were examined. Supervised 
techniques were judged inappropriate for a number of reasons: extreme forest complexity, low ability to 
automate processing, and narrow covertype spectral separability. Several types of clustering methodologies, 
from standard ISODATA clustering (ERDAS, 1991) to hierarchical strategies defining more than 1,OOO 
classes, were tested. In all cases, the ability to name the resulting classes was limited by the dominance 
and variability of a few well represented classes. In most cases, less than 50% of unsupervised classes 
could be named, and in no cases could classes be developed for all target classes. 

An alternative to the supervised and unsupervised approaches is what we have called "guided" 
clustering. The procedure makes use of both supervised and unsupervised techniques, but avoids many 
of problems associated with each individually. The method uses of analyst-defined training data, in our 
case digitized covertype polygons from the interpreted and field-checked aerial photo plots, and uses this 
data to isolate image pixels that are clustered into spectrally homogenous sub-classes. The processing 
stream is as follows: 

1. Isolate image pixels for target class A. 
2. Cluster resulting pixels into sub-classes AI, ...An. 
3. Repeat 1 and 2 for all 11 target classes. 
4. Perform maximum likelihood classification using all sub-classes. 
5. Collapse subclasses back to original 11 target classes. 
6. Perform any post-processing procedures. 

Guided clustering provided consistently superior results to any of the other methods Ested. The process 
is highly automated, so was ideal for large area application. The approach combines the training and 
classification approach with statistical information from the cluster sampling units. 

The sheer size of the area to be classified created many obstacles that had to be overcome. It was 
clear from visual assessment of the imagery that landcover gradients existed within the scenes. In 
addition, atmospheric and phenological differences existed from north to south, and to a lesser extent from 
east to west, through the study area. To compensate for such differences, physiographic regions delineated 
by Wright (1972) were used to segment the study area into eight sub-regions (Figure 3). TM images for 
paths 26 and 28 were not segmented into sub-regions because there was not sufficient training data for 
all of physiographic regions falling within each image. The resulting covertype distributions for the 
reference data are shown in Table 2. The distribution of covertypes across physiographic regions is not 
constant, and is actually quite varied, a good indication that the segmentation scheme accomplished what 
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Figure 3. Overlays on Landsat TM image mosaic of aerial photography flightlines and boundaries of 
physiographic strata. 

Figure 4. Overlays for two cluster samples of forest type polygons on Landsat TM imagery (left). 
Locations of aerial photography flightlines and sample clusters are shown on right image. 
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Table 2. Distribution (%) of covertypes for each physiographic region from reference data 

Tlmuact: 4.1 222 4.0 0.0 3.7 345 182 3.9 4.9 

Ls HighLnb 1.1 39.9 11.8 3.0 3.6 10.2 9.4 7.1 5.1 

Tanunck II 2 1  39.9 1.3 3.3 1.3 19.8 124 2 9  1.9 

4.4 

6.4 

7.6 , 

we had hoped. Each physiographic region image was classified using the guided clustering approach 
described above. The physiographic stratification prior to training and classification increased 
classification accuracy an average of 15% over full-scene classifications. Once classified, the subregion 
GIS files were re-assembled into the county and unit files. 

After classification the images were filtered to remove "salt-and-pepper" artifacts in an attempt 
to recreate the forest stand (polygon) structure inherent in the reference data. Tests against reference data 
indicated an optimal window size between 4 and 5 pixels square. A 5 x 5 window was chosen for ease 
of application and to minimize bias. Summary statistics for use in area estimation procedures, discussed 
in later sections of this paper, were created using AWK scripts. 

Final classifications were completed for the 11 target classes for the entire study area (Eigures 5 
and 6). Overall classification accuracies ranged from 64 to 80%. with average class accuracies from 63 
to 76% (Table 3). Kappa statistics (Congalton and Mead, 1986) ranged from 0.56 to 0.76. Example e m r  
matrices are given in Tables 4 and 5. Overall accuracy of classification of forest, nonforest, and water 
for these two examples was 86% for Koochiching County and 85% for Lake Superior Highlands. The 
overall accuracy of classifying conifer vs. hardwood forest, along with nonforest land and water, was 79% 
in Koochiching County and 77% for the Lake Superior Highlands. 

The majority of classification errors for forest classes occumd in adjacent classes such as lowland 
hardwood and aspenbirch, lowland conifer and balsam fuhhite spruce, and northern hardwood and 
aspenbirch. The classes of agriculture (cropland/pasture), developed/other, water, and marsh were 
classified relatively accurately, generally 75% or higher. The class, shrub/grassland/cutover, was the most 
prone to misclassification; it was confused with all classes, especially other types of forest and nonforest 
vegetation. In general, similar-related classes were more! likely to be confused with each other than with 
different classes. 
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Figure 5.  Final classification of Landsat TM data of St. Louis County. 

Figure 6. Final classification of Landsat TM data of entire five-county study area (FIA unit 1). 
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Cormt). or phpiognphic regian 

KOOChiching @8th 28) 

Table 3. Number of clusters used, Kappa statistic, overall and average class accuracy for 
counties (or image subsets) based on training data 

N Q P P  Ovcnll Aocuncy (%) Avenge Clan Amurcy (%) 

61 .61 73.0 63.0 

Part of the misclassification results from the considerable difficulty in assigning a unique label to 
each polygon in the reference data or pixel in the Landsat data. The traditional concept of a forest stand, 
which we used in developing the reference data, often does not relate to or capture the variability that is 
present in the multispectral satellite imagery. Forest stands tend to be defined by management 
considerations. whereas the multispectral radiances measured by the TM data are determined by the 
biophysical pmperties of the covertye(s) within each pixel. 

Two additional observations can be made about classification accuracy. First, while satellite 
imagery is typically referred to as having low resolution (at least in comparison to aerial photography), 
it actually has much higher resolution than forest covertype maps. The minimum mapping unit for our 
reference data was 2.5 acres, compared to the 1/4-acre pixel size of the TM data. Many inclusions of 
spatially small covertypes were not mapped in the reference data, and even if correctly classified in the 
TM data would show up as classification errors. Second, at the pixel level the accuracy of the reference 
data is probably no better than 7580%. Therefore, it is impossible to achieve measured classification 
accuracies of more than that. It also can be noted that large area classification is a more difficult 
problem, likely to result in lower classification accuracy, than found in previous studies which were 
typically classifications of small areas. 
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Water 

0 

132 

0 

8 

2 

39 

5 

Table 4. Classification accuracy assessment for Koochiching County. 

M/M 

0 

54 

0 

2 

6 

11 

7 

Overall Accuracy = 73.1%. Average Class Accuracy = 69.4%. KHAT = .61 

uc 
BF/WS 

Table 5. Classification accuracy assessment for Lake Superior Highland physiographic region. 

0 117 2 

0 23 8 2 

I Ref. I . . 

5 

404 

15 27 2 7 

27 61 3 17 

LC 

SKIG 

Water 76 

0 574 86 

3 47 1 3 

uc 

79 

18 

0 

1449 76 0 29 

6 727 38 50 

83 

20 

348 

3 

0 

20 

18 

4 

5 

Landsat Class 

103 

Overall Accuracy = 70.3%, Average Class Accuracy = 73.396, KHAT = .64 
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Calibration and Evaluation of Landsat Area Estimates 

Calibration of Landsat Estimates 

The satellite imagery provided estimates of type acreages for the area as a whole. However, it is 
probable that those estimates have a bias associated with them. The ground survey clusters provided 
observations on how the satellite data classifications compared to ground classifications, with the ground 
classifications assumed to be truth Observations from the clusters can thus be used to adjust the 
satellite-data-based estimates, a procedure we hope will result in a reduction or elimination of bias. This 
adjustment is commonly referred to as calibration 

As part of the project, Walsh and Burk (1993) compared the classical and inverse methods of 
calibrating satellite classifications where the ground survey units were pixels. They found, through 
extensive simulations, that the inverse method was superior. We based our choice of the inverse method 
of calibration for cluster-based ground units on that previous result and more theoretical reasons. With the 
inverse method, the satellite classifications are used as "independent" (without error) variables in the 
regression-based calibrator, while the ground classifications act as "dependent" (with error) variables. 
These are reasonable roles for these variables as the satellite classifications are surely fixed once the 
classifier is trained (results are conditional on that training) and interest lies directly in predicting ground 
classifications (truth). 

The unit of observation for the calibration problem was the ground cluster. For each cluster we 
have a vector of satellite data classifications and a vector of ground classifications, the length of each 
vector being the total number of types being classified (each vector may have several zero elements). The 
elements of the vectors are percentages of the total cluster area classified as belonging to a particular type. 
The smallest area of interest in our application is the county, with each county having a number of ground 
clusters on which classification results were recorded. The total area of interest, an FIA survey unit, is a 
set of counties (five in the present case) that are contiguous and of similar forest composition. 

Eleven types (classes) were used in classification. If there are n, ground clusters present in county 
I, we can specify an n, x 11 matrix X for the county that contains the satellite-data-based classification 
results for the clusters located in the county. This provides a system of (1 1) equations relating the true 
type classifications to X: 

Y, = xp, + E, 

Yz = xa + E, 

Yl, = XPll + Ell 

where: Yi = 
X = 
pi = 

= 

percent of cluster area ground classified into type i for each of n, clusters 
matrix of satellite-data classifications 
regression coefficients relating ground classifications for type i to satellite data 
classifications for a county 
error in predicting ground classification from the satellite-data-based classifications. 
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This system of equations was fit separately to each of the five counties in the survey unit. 
Ordinary least squares (OLS) was used. The results showed that 85% of the variation, on average, in the 
ground classifications was explained by X. With few exceptions, each regression was dominated by the 
satellitedata classification corresponding to the type being predicted. However, all elements of X were 
retained in each equation to insure additivity of the predicted percentages. Individual residual plots gave 
no indication of heterogeneous variance within any particular equation. 

The system of equations [l] is most properly considered as a seemingly unrelated regressions 
(SUR) problem. While OLS provides unbiased estimates of p for SUR problems, accounting for 
cross-equation correlations (the ground type classifications would likely seem correlated) can result in a 
more efficient estimate of fl. However, Ericksson (1989, p. 45) showed that when X is identical for each 
equation in the system, S U R  solved by generalized least squares is equivalent to OLS on each equation 
separately (assuming homogeneous errors within an equation). That is the case in the present application. 

For notational convenience we stack the system of equations [ 11 for a particular county and write 
them as: 

YI = XIPI + E1 

where the subscript I denotes the county. Here Y, and 
blocks of X along the diagonal, and PI is a vector of length 121 (the coefficients vary by county). 

are vectors of length llnI, XI is a matrix with 

While, overall, the results of fitting [2] were satisfactory, individual equations where there were 
few non-zero observations of ground type in a county had high standard emrs  of prediction, often 
exceeding 100 percent of the estimated proportion. As an alternative to calibrating counties Separately, data 
acms counties (within the survey unit) can be combined to estimate a pooled regression equation. The 
assumption needed to justify such an approach is that the coefficients relating ground types to 
satellitedata-based classifications are similar across counties within a survey unit (not that the proportions 
of the various types are similar). Under this assumption the calibration equation becomes: 

Y, = x,e + VI 131 

where the 8 are pooled or survey unit wide coefficients. Each type has a separate set of calibration 
Coefficients, but the coefficients for a type are constant across counties. Equation [3] was also fit to 
available cluster data. 

If x, is the vector of satellite-data-based classifications for county I (classifying the entire land area 
in the county), we have two calibrated estimates of percent land area by type: 

YI = XIPI 
y; = x,e 

The two calibrations y, and y; can be combined to produce an estimate that should have lower 
error than either of the two individually murk and Ek, 1982): 
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I ClUI Cadton Cook K d i c h m g  Lake St. Louir 

Both yI and y,' are additive; the predicted type percentages add to 100. For the combined estimate 
to be additive requires that w be a constant across types. The optimal w for a type is a function of the 
ratio of the prediction variances of yI and y;. Computation of estimates of those variances indicated that 
their ratios were relatively constant across type. An average value (0.65) was used to obtain final 
estimates: this gives weights 0.606 and 0.394 for y, and y,', respectively. The final calibrated percentages 
of each covertype are given in Table 6. 

Total 

Table 6. Calibrated Landsat estimates of area (OOO acres) of six forest and five non-forest classes. 

~~ 

Lowland Hardwood 

county 

~~~~ ~ ~~ ~~ 

3.1 0.0 131.6 0.0 34.3 169.0 

Northern Hardwood 

Upland Conifer 

Balsam Fir/Whitc SPNCC 

Lowland Conifer 

Shrub/GrassKutover 

Croplandlparturc 

- 

50.7 68.7 0.0 78.8 56.4 254.6 

9.1 135.7 3.8 269.1 418.6 836.3 

2.7 83.9 144.5 44.2 112.9 388.2 

745  104.1 789.6 306.4 771.7 2,046.2 

83.4 17.8 223.2 42.6 415.1 781.1 

813 0.0 81.1 0.0 124.7 287.2 

I AspedBirch I 209.3 I 474.9 I 548.3 I 547.5 I 1.667.4 I 3.447.4 

DcvelopedlOther 

Water 

MarsNMuskeg 

Total 

13.1 3.6 9.3 13.4 202.8 242 1 

163 115.3 65.4 149.3 453.5 668.2 

18.0 30.1 21.6 15.3 58.6 143.6 

560.4 1,033.1 2,018.5 1,466.5 4,315.9 9394.4 

Comparison of H A  and TM Estimates 

By aggregating the H A  statistics (Miles and Chen, 1992) we are able to make a rough comparison 
of estimates from the calibrated Landsat classifications and the FIA statistics for conifer, hardwood and 
total forestland at the county and region levels. Because of differences in definition of classes in the two 
inventories, it is difficult to make comparisons of more specific covertypes. The problem is that, on the 
one hand, the FIA covertype area statistics are reported only for commercial forests or "timberland" 
(defined as forest land capable of producing 20 cubic feet per acre of industrial wood crops ...) and 
therefore does not include detailed breakdowns of the cover types for non-commercial, as well as reserved, 
forest land (reserved land includes state parks and the Boundary Water Canoe Area Wilderness). On the 
other hand, the Landsat classifications are for a l l  forest lands. 

In comparing the results of the two surveys we have assumed the same proportions of covertypes 
for unproductive and reserved lands as for the timberland. However, it is well understood that much of 
the unproductive land will be in lowland conifer types such as black spruce. We have therefore restricted 
the comparison to conifer, hardwood and total forest. The comparison of area estimates for these classes 
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TM 

from the TM classifications and the FIA is shown in Table 7. At the region level, the differences in the 
two estimates (with FIA as the standard or base) are M.8, -6.0, and -3.0% for conifer, hardwood, and total 
forest, respectively. Differences in total forest area estimates at the county level range from -5.0% to 
+3.9%. The sampling emrs for timberland (not total forestland) range from 0.85 to 2.39% at the county 
level and is 0.57% at the region (survey unit) level. 

349.4 867.2 1,617.8 1246.0 3.061.3 7.141.7 

Table 7. Comparison of FIA and Landsat TM estimates (in OOO of acres) of conifers, 
hardwoods, and total forest land. 

Class 

Conifer 

3527 I 854.9 I 1.732.8 I 1.199.0 I 3223.7 I 7,363.1 I TotalForest I 

Hardwood 

Total Forest 

There are several sources or causes for differences in the two estimates. The first is that in three 
cases, the available reference data did not include samples of all HA classes; in other words n, as reported 
in Table 3, was too small. A larger, more fundamental problem is that the forest lands in northern 
Minnesota are very complex ecosystems with a wide range of variability in composition and uniformity. 
This heterogeneity limits the accuracy of the photo interpretation and field checking, and in turn the 
reference data. This in turn affects the accuracy of class labeling. In many respects we are attempting 
to classify continuous data into discreet classes; doing so results in errors in the areas of transition from 
one type to another. The Forest Service recognizes the complexity of the forests and the presence of 
mixtures in its definitions of classes. For example, the description of red pine is, "forests in which red 
pine comprises a plurality of the stocking; common associates include eastern white pine, jack pine, aspen, 
birch, and maple. 
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Cluster-Based Estimation of FIA Covertype Areas 

While satellite data classifications were limited to six forest types, forest management needs are 
often more specific. However, the Yi need not be constrained to the same classes for the image 
classification: instead they can be defined as any ground truth variable. For example, the cluster samples 
used in this study were originally typed in 13 forest types. To estimate HA covertype acreage directly, 
we define Yi, i = 1, ... ,13, as the proportion of a cluster in FIA type i. The estimation model is then the 
same as [ 11. Again, this system of equations is additive. 

The approach is described below for SL Louis County. Figure 7 shows the standard errors of the 
mean proportions for 13 standard FIA covertypes, plus an other/nonforest category, as estimated from the 
88-acre clusters, in comparison with theoretical standard errors. The theoretical standard errors were 
developed in two ways: (1) assuming each cluster location was instead the location of a standard FIA plot 
(covering approximately one-acre) and (2) a lower bound assuming the clusters were broken up and 
distributed as n x 88 one-acre FIA plots. The fact that the standard e m n  for the cluster sample lie 
approximately midway between the two theoretical estimates suggests that the clusters are far more 
effective at e m r  reduction than a sample of n FIA plots and substantially less effective than the much 
larger number of plots that might have been distributed at random had the clusters been broken up and 
checked as one-acre components. 

Ultimately, the choice of survey design must be considered on a cost basis. While the clusters 
are clearly less efficient than an equivalent acreage of random plots, the travel costs are dramatically 
reduced (fewer clusters than plots) and the cost of a cluster need not be much if any more expensive than 
the current FIA plots. The latter typically cost $150-300 each and involve 1-2 people and approximately 
one day of time including travel. Of that day, much of the effort goes into establishing and measuring 
a ten point cluster of small plots on an acre. We propose instead that those small plots be spread across 
the cluster and be used to verify the covertype of the polygons on the cluster. Use of large clusters is not 
unlike what has been done in Scandinavia (Kuusela 1978; Svenson 1980) and what was found as an 
optimal "supercluster" by Scott, et al. (1984). 

A spreadsheet analysis of alternative forest inventory designs is currently being developed 
including this cluster design, the current multiphase FIA procedures and other designs. That effort will 
also consider optimal cluster size. However, the optimal cluster size will also depend on practical 
concerns for being able to locate it and potential data analysis as described below. For analysis, precision 
of this approach will be developed empirically from these results and additional cluster sizes to be tested. 
It is probable that a planning model useful to inventory design and analysis will express sampling error 
(or variance) as a function of the covertype proportion and the area or size of a cluster for any given 
classifier and costs. 

Additional important aspects of the cluster based design are its statistical simplicity and its 
potential utility for monitoring landscape patterns. The simplicity comes from observation of operational 
sized land units and the fact that it requires only single phase estimation and ordinary least squares 
procedures for area estimates. The power of the approach is that it uses as covariates of the pixels in 
the county or area of interest yet it doesn't necessarily require high accuracy in the satellite classification. 
Additionally, one could improve estimates by the methods described in the earlier calibration section. 
Statistically one may view the cluster as simply a large number of large image classification plots. The 
precision of clusters overall will be less than the same acreage small plots distributed randomly over the 
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survey unit, but the cost of assessing them and particularly the realism it adds to classifier training, plus 
their modest ground assessment cost provide significant gains for the survey design. 

0.0400 T 

0.0300 

O.oo00 0.1000 0.2000 0.3000 0.4000 0.5000 0.6000 

Proportion of area 

Figure 7. Standard e m r  comparisons for estimations of proportions of 14 H A  covertypes and other 
category for 163 plots. n = 163 plots, n x acreage of cluster, and actual clusters as estimated for 
St. Louis County. 
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Change Detection using Multidate Landsat Data 

Renewable natural resources such as forests are continually changing. Some forest cover 
modifications are human-induced, such as hamest, while others have natural causes, such as insect or 
disease damage. The rate of change may be abrupt (e.g. logging) or subtle/gradual (e.g. growth). The 
potential of using satellite data to detect and characterize changes in forest cover depends on the ability 
to quantify temporal effects using multitemporal data sets. As a part of the research under the EOCAP 
project we investigated the potential of multitemporal Landsat TM for forest cover change detection 
(Coppin, 199 1). 

TM data, along with detailed ground reference data, for three different y e m  (1984, 1986, and 
1990) covering a 400 km2 (5 townships) test site in Beltrami County were acquired. To minimize sensor 
calibration effects and standardize data acquisition effects, the TM data were calibrated to exoatmospheric 
reflectance. After geometric rectification and registration, an atmospheric correction routine was applied, 
combining two major components: atmospheric normalization and transformation to ground reflectance. 
The normalization consisted of a statistical regression over time, based on five spatially well defined 
landscape features with unchanging spectral-radiometric characteristics. Linear correlation coefficients for 
all bitemporal band pairs ranged from 0.9884 to 0.9998 Figure 8). The transformation made use of a 
simplified dark object subtraction technique incorporating published values of water reflectance. 

For each time interval (two, four and six) years, 14 change features were determined using seven 
spectral bands and vegetation indices and two change detection algorithms (standardized differencing and 
pairwise principal components) were evaluated. The best four features for classification were selected 
based on J-M distance calculations of the best minimum separability between change signatures. A 
maximum likelihood classifier was used for the final classification. Classification accuracy and areal 
correspondence were evaluated from contingency matrices and KHAT values. 

The results (Figure 9) demonstrated that disturbances and other changes can be detected very 
accurately if categorized in classes that relate to their effect on the forest canopy, and if their size 
exceeded one hectare. Forest stands as the classical management units were ascertained to be too 
spectrally heterogeneous to have the change phenomena differentiated at that level. However, for the three 
classes, canopy depletion, canopy increment, and no change, the methodology correctly identified 714 out 
of 759 (94%) stands reported as disturbed over the six-year interval (Table 8), indicating that the change 
event was portrayed in a majority of the stand’s pixels. The Kappa statistic, which removes the 
contribution of correct classification due to chance was 0.82. The results show that the preprocessing 
sequence summarized above is critical to the forest cover monitoring; similar preprocessing and calibration 
procedures are being used in the large scale application of this technology by the Minnesota DNR 
described below. 
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Time Interval 
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Figure 8. Example of the relationship between band-specific scaled reflectances of calibration sites 
over time. 
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(a) Reference data. 

(b) Classification results. 

Figure 9. Comparison of change events in the reference data and the Landsat TM classification of 
Jones Township, 1984-90. Red = canopy depletion, blue = canopy increase, green = no 
change. 
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Operational Use of Landsat Data for Forest Inventory in Minnesota 

As a result of the research described above, the Minnesota DNR and the U.S. Forest Service have 
jointly undertaken to develop an Annual Forest Inventory System (AFIS) based on annual sampling of 
existing Forest Inventory and Analysis (FIA) ground plots in Minnesota (Befort and Heinzen, 1992). 
Satellite remote sensing plays an important role in the AFIS plan, and initial Landsat data analysis is well 
under way. 

The objective of AFiS  is to create and maintain a current and continuously updated FIA database. 
Under the proposed system, a relatively small proportion of FIA plots will be chosen each year for field 
remeasurement; information on other plots will be updated by use of forest growth models. Selection of 
plots for measurement is to be based on 1) likelihood of plot disturbance since the last field measurement, 
and 2) requirements of a 20-year sampling rotation in which all plots are ultimately field-visited. Satellite 
remote sensing has two roles: it will be used to stratify a statewide array of some 45,000 established FIA 
plot locations as a means to reduce variance, and second, to estimate the likelihood of change or 
disturbance on each plot in order to prioritize plots for field measurements. In the past, aerial photography 
has been used for both these purposes, but the cost of obtaining, handling and interpreting aerial 
photography is prohibitively expensive and time consuming. The use of satellite imagery is expected to 
reduce costs and allow an increase in the frequency of inventory updates. 

The general remote sensing approach is to move through the sbte on a four-year rotation, covering 
one of the four major forest inventory regions each year. For each region, geo-referenced Landsat data 
of the most recent late summer date is obtained. (Work on the Aspen-Birch (unit 1) region is currently 
underway using Landsat data acquired in 1988 and 1992). After preprocessing, including rectification, 
radiometric calibration, and atmospheric normalization, a general land cover classification (stratification) 
is performed across multi-county survey units. Because of the difficulties in achieving accurate Landsat 
classifications of forest cover types, only broad categories of water, agriculture, other nonforest (e.g. 
developedhrban, clouds, etc.), conifer forest and hardwood forest will be mapped. The new imagery is 
then registered to that of the previous iteration and analyzed for change. Based on changes in the 
vegetation index (e.g. greenness) a change ranking or probability is generated for the pixels in the two 
forest classes. Change classes might be: no change between time 1 and time 2; minor change, but with 
the same stratum class, or major change fmm one stratum to another. Digitized locations of the FIA plots 
are then queried for stratum identity and change ranking. These two data elements, together with area 
expansion factors for all cover classes, are entered into the plot database for use in an algorithm that 
selects plots for field measurements in the following season or for projection forward by a forest growth 
model. Annual field measurements will serve as a check on image processing accuracy. 

Because of its annual schedule, the AFIS plan requires current, inexpensive large-area imagery 
together with low-cost, but robust, interpretation methods for both stratification and disturbance detection. 
The research by Coppin (1991) has indicated that computer analysis of multidate Landsat data 
(summarized above) offers a cost-effective alternative to reliance on aerial photography. We believe that 
Minnesota is the first state to incorporate satellite remote sensing into its forest inventory system. If 
successful, the techniques could be easily modified for implementation in other states. 
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Summary and Conclusions 

The objective of this research was to develop and test the use multispectral satellite data together 
with improved classification and sampling designs to inventory the forest resources of northeastern 
Minnesota. Two design alternatives were considered: one based on cluster sampling concepts and a 
second that considered disturbance classification as the basis for stratified, two-phase sampling. 

Classification accuracies of up to 75% for six forest classes and five nonforest classes were 
achieved. Misclassification tended to be between similar-related classes. A major contributing factor to 
the difficulty in classification is the fact that the majority of forest stands are complex mixtures of two 
or more species which may also differ in size, density, crown closure, and age. 

An inverse method of calibration was used to adjust the classifications for classification bias. At 
the survey unit level, the resulting estimates of forest land area were 3% less than comparable Forest 
Service estimates. Agreement between the two surveys at the county level ranged from -5.0 to +3.9%. 
The difference in estimates is attributed to differences in definitions and approaches used in the two 
surveys, as well as the complexity and variability of the forest landscape. A trial of estimating the acreage 
of 14 traditional forest covertypes as determined from sample 88-acre clusters as a function of the 11 
satellite classes using a system of additive linear equations was also conducted. Emrs were found to be 
comparable in magnitude to standard forest inventory estimates. This type of cluster-based estimate is 
potentially very cost-effective and provides data of increasing interest to the assessment of covertype and 
land use pattern over landscapes. 

For the disturbance classification approach (also known as change detection) working with 
multidate imagery, classification accuracies of greater than 90% were obtained for the following four 
classes for time intervals of two, four and six years: active canopy depletion, active canopy growth, no 
change and storm damage (two years only). The success rate for the detection of stand-based canopy 
change events over the six year interval was 94%, while the pixel-based thematic accuracy resulted in an 
average class accuracy of 91% with a KHAT value of 0.82. The key to obtaining these results was a 
rigorous approach to reflectance calibration and normalization for atmospheric effects. 

The results have provided the basis for the Minnesota Department of Natural Resources and the 
USDA Forest Service to define and begin to implement a statewide inventory system which utilizes 
multidate Landsat TM data to detect changes in forest cover. Landsat TM imagery acquired at four year 
intervals will be used to detect major changes in forest inventory plot characteristics. The likelihood of 
change as determined from the satellite data will be used to determine which plots should be revisited for 
field measurement. The general approach will be to classify one of the four major forest inventory regions 
of the state each year. Forest growth models will be used to project the growth of plots which are not 
measured in a given year. Satellite-acquired data are an integral part of the system along with model 
predictions, sampling and date base techniques. We believe that Minnesota is the first state to incorporate 
satellite remote sensing into its forest inventory system. 
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