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Local isotropy in high Reynolds _
number turbulent shear flows

By Seyed G. Saddoughi

1. Motivation and background

This is a report on the continuation of the experiments, which Dr. Srinivas

Veeravalli and the present author started in 1991, to investigate the hypothesis of

local isotropy in shear flows. This hypothesis, which states that at sufficiently high

Reynolds numbers the small-scale structures of turbulent motions are independent

of large-scale structures and mean deformations (Kolmogorov 1941, 1962), has been

used in theoretical studies of turbulence and computational methods like large-eddy
simulation. The importance of Kolmogorov's ideas arises from the fact that they

create a foundation for turbulence theory.

Local isotropy greatly simplifies the problem of turbulence. The total average

turbulent energy dissipation e, which in the usual tensor notation is given by

': + 0x,] (1)

(summation on repeated indices) reduces to e = 15v(Ou/Ox) 2, in locally isotropic

turbulence (see Taylor 1935).

In the high-wavenumber region of the spectrum, Kolmogorov's universal equi-
librium hypothesis implies that Ell(kl)/(_vS)} is a universal function of (k]r/),

wherefoE11(kl)dk_ =-_, kl is the longitudinal wavenumber and r/= (va/¢)} is
the Kolmogorov length scale.

If the motion is isotropic, the transverse spectra E22(k_) (for the velocity com-

ponent normal to the wall) and Eaa(kl) (for the spanwise component) are uniquely

determined by the longitudinal spectrum (Batchelor 1953):

E22(kl) Eaa(kl) _(1 cO= = - k_b_x)El,(k_). (2)

In the inertial subrange, the 3D spectrum takes the form (Kolmogorov 1941)

E(k) = C_213k -5/3, (3)

where k is the wavenumber magnitude, and, assuming isotropy, the one-dimensional

longitudinal and transverse spectra are

Ell(k1) = C1c2/3k? 5/3 (4)

and

E22(k, ) = Eaa(k, ) : C_e2/3k? 5/3 (5)
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T-_CI, and equation (2) eval-respectively. The Kolmogor6v constant C is equal to 55
I

uated in the inertial subrange gives C I/C1 = 4/3.

In isotropic flow the shear-stress co-spectrum, E12(kl ), defined by .fo E12(kl) dkl =

-u--_, is equal to zero. This indicates that for local isotropy to be satisfied, the nor-

malized shear-stress co-spectrum,

R12(kl ) : -E12(k1)tEll (kl)E22(k,)] -1/2, (6)

should roll-off at high wavenumbers.

Kolmogorov (1941) proposed scaling laws in the inertial subrange region for struc-
ture functions, which are moments of the velocity differences evaluated at points

separated by longitudinal distances r. The second order longitudinal and transverse
structure functions are given by

Dll(r) = [u(x + r) - u(x)] 2 = C2_213r 213 (7)

and
D33(r) = D22(r) = [v(x + r) - v(x)] 2 = C'2_2/3r 2/s (8)

I

respectively, where C2 _ 4C1 and C2/C2 = 4/3. These ar e also known as gol-

mogorov's 2/3 law. The third order longitudinal Structure function was derived from
the Navier-Stokes equations by Kolmogorov, without any appeal to self-similarity

(Landau & Lifshitz 1987, p 140). In the inertial sub-range, this takes the following

form; 4

D,ii(r) = [u(x + r) - u(x)] 3 = -_¢r. (9)

Our previous report (Veeravalli & Saddoughi 1991, hereinafter referred to as I),

presented some spectral results taken at a single location in the boundary layer of
the 80' by 120' wind tunnel at a freestream velocity of 40 rn/s. These data indicated
that the w-spectrum followed, but the v-spectrum deviated from (by a large amount)

the isotropic relation in the inertial subrange region. No definite__. statement, could
be made for the dissipating eddies because our measurements were contaminated

by high-frequency electrical noise. Some of the shortcomings of those measurements
and their eventual improvement for the present experiments are discussed below in

section 2.1.

In I, we also presented a short review of the work on local isotropy. Further,

George &: Hussein (1991) and Antonia, Kim & Browne (1991) have proposed that
in shear flows the local-isotropy assumption should be relaxed to one of local ax-

isymmetry (invariance with respect to rotation about the streamwise direction) and
showed that the derivative moments obtained by experiments and by DNS in low-

Reynolds-number flows supported the local-axisymmetry assumption. In I, it was
concluded that, despite the many experiments conducted in a variety of flows to ex-

amine the validity of the local-isotropy hypothesis in shear flows, it appeared that
there was no consensus regarding this concept in the scientific community. This

conclusion still holds today. While the measurements in I were mainly intended

as a feasibility study, it is hoped that the results presented here will enhance our

understanding of the local-isotropy hypothesis.
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2. Accomplishments

_.I. Apparatus and measurement techniques

The experiments described here were conducted at nominM freestream velocities

(U_) of 10 and 50 m/s in the boundary layer on the test-section ceiling of the

full scale aerodynamics facility at NASA Ames. The test section is 80' high, 120'
wide, and approximately 155' long. All four walls of the test section are lined with

acoustic paneling, yielding a rough-wall boundary layer. The measurement station
was located towards the end of the test section on the centerline of the tunnel. The

data recording equipment and a small calibration wind tunnel were installed in an
attic above the ceiling.

Here we will highlight the modifications to the equipment used in I and only give
a very brief description of the instrumentation and techniques for the present mea-

surements. The full details are given by Saddoughi & Veeravalli (1992, hereinafter

referred to as II). One of the major alterations was done to the traversing mecha-

nism. In I, the hot-wire probe holders were permanently fixed to the traversing rod,

and it was necessary to calibrate the hot-wires using a different set of probe holders
and cables than those connected to the traverse. The hot-wires were disconnected

from the bridges after the calibration and reconnected to the anemometers via the

traverse cables and probe holders for the actual measurements. This can result in

a change in the hot-wire characteristics and a deviation from the calibration (Perry

1982). For the present experiments, this problem was avoided by redesigning some

parts of the traverse such that the same cables and probe ho|ders were used during

both the calibration and actuM measurements, without disconnecting the hot-wires.

For I, the measurements were conducted during the NASA Ames "swing-shift"
period from mid-afternoon to midnight. We found that during that shift the tem-

perature in the calibration tunnel was about 8°C higher than the temperature inside
the 80' by 120' wind tunnel. In I the intake of the blower of the cMibratlon tunnel

was packed with ice to overcome this problem. To ensure a uniform distribution of

mean temperature at the exit of the calibration tunnel, copper wool was placed in

the pipe. which connected the output of the blower to the intake of the cMibration

tunnel. This method reduced the temperature difference between the calibration

and the actual measurements but it did not give us a good control over the amount

of temperature reduction. Furthermore, the calibration temperature rose as the ice

melted. The present measurements were performed during the "graveyard" shift

from midnight to mid-morning during which the difference between the tempera-
tures in the attic and inside the tunnel is smaller. To allow a fairly good temperature

adjustment for the calibration, the intake of the blower of the calibration tunnel was

connected to an air-conditioner via pipes having valves for controlling the intake of

cold air. While for I the hot-wires were operated with an overheat ratio of 1.8, for

the present measurements this was set at 2.0, which further reduced the possibility
of drift due temperature changes.

For the present experiments, we acquired the latest instruments, which have lower

background noise than those used for I. In addition, all of our electronic equipment

was connected to an Oneac Power Conditioner (CB 1115) and Uninterruptible Power
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System (UPS Clary PC 1.25K), which supplied clean power and prevented loss of

data due to power failure. We also expanded our data acquisition capability from
simultaneous sampling of two to sampling of six time-series.

At this stage, it is important to elaborate on another major difficulty encountered

during I. Figure l(a) shows the longitudinal spectrum obtained in I at y/6 _ 1.4
at a nominal freestream velocity of 40 m/s. Note, apart from the apparent spikes,

the rise in the tail of the spectrum with frequency before the final roll-off due to

the low-pass filtering (cut-off set at 100 kHz). This rise, which apparently has a

slope of 2, was of great concern since it took place in the same region as that of the

expected Kolmogorov frequency for that speed.

To ensure that this was not peculiar to the flow inside the 80 t by 120 _ wind tunnel,

spectra were taken, both in the attic of the 80 _ by 120 r tunnel and at the Stanford

laboratory, in the freestream of our calibration tunnel at the same velocity and filter
cut-off frequency as those above. These spectra, Figure l(b), clearly show the same

problem being present in both the experimental facilities. Furthermore, to isolate
the source of this problem, the spectra were measured in the freestream of the
calibration tunnel at the Stanford laboratory using hot-wire bridges manufactured

by different companies (TSI, Dantec, and one designed by Dr. Watmuff of the Fluid

Mechanics Laboratory at NASA Ames). These results are shown in Figure l(c).

Again it appears that, as far as this phenomenon is concerned, the responses of all

three bridges are similar. Finally, with a TSI IFA-100 bridge, spectra were taken
in still air with 2.5 ILrn Tungsten wires and also with a standard fuse wire. These

data are compared in Figure l(d), where the same trend is clearly present.

The conclusion drawn from these tests is that when the turbulent energy of the

flow is very small, the performance of the hot-wire bridges at high frequencies is

limited by this phenomenon. This means that at the freestream velocity of 50 re�s,

where the Kolmogorov frequency near the mid-layer of the boundary layer is of
the order of 60 kHz, this rise in the tail of the spectrum is inevitable. In I it

was suggested that, to allow accurate measurement of the dissipation range of the
spectrum in this facility, experiments ought to be conducted at a nominal freestream

velocity of 10 re�s, where the expected Kolmogorov frequency would be of the order

of 5 kHz and this phenomenon could be avoided. As will be shown later, this aim

has been accomplished.

Unlike the experiments in I, where data were obtained while NASA engineers

were investigating the flow around an F-18 fighter aircraft in the central region of

the working section, the present experiments were performed in an empty tunnel

fully dedicated to our experiment.

The hot-wire instrumentation consisted of Dantec models 55P01 single wire and

55P51 cross-wire probes, modified to support 2.5 urn Platinum plated Tungsten

wires with an etched length of approximately 0.5 rnm, TSI IFA-100 model 150

hot-wire bridges, and model 157 signal conditioners. The high-pass and low-pass

filters were Frequency Devices model 9016 (Butterworth, 48dB/octave). The hot-

wire output voltages were digitized on a micro computer equipped with two Adtek

ADS30 12-bit analog-to-digital converters. To improve the frequency bandwidth of

z
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FIGURE 1. Comparison of noise spectra measured under different experimental

conditions. (a) NASA 80- by 120-foot wind tunnel at freestream velocity of 40 m/s

from I. (b) Calibration tunnel freestream at NASA and Stanford• (c) Calibration

tunnel freestream at Stanford with different bridges. (d) TSI IFA-100 bridges with
different wires in still air.
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the spectrum at low frequencies, the data were obtained in three spectral bands.

For the low-speed measurements around the mid-layer, these three bands were 0.1

Hz to 100 Hz, 0.1 Hz to 1 kHz, and 0.1 Hz to 10 kHz, which were chosen to

resolve the large scales, inertial range, and the dissipation region respectively. The

corresponding bands for the high-speed case were 0.1 Hz to 1 kHz, 0.1 Hz to 20

kHz, and 0.1 Hz to 100 kHz. In I, for each spectral segment, the high-pass filter-
cutoff frequency was increased =. The advantage of this method was that it permitted

us to change the dynamic range of the analog-to-digital convertor to match that

expected in a given band. However, recall from Figure 1 that a good resolution of

the high-frequency end of the spectrum at high-speeds was not necessary since that

part of the spectrum was contaminated by the f2 behavior. It will be shown in
section 2.2 that as expected, keeping all the other parameters the same, this change

in the high-pass cutoff frequency did not affect our results.

In general, for spectral measurements, 200 records of 4096 samples each were
recorded in the low-frequency band and 400 such records in the higher-frequency
bands. In each case, the sampling frequency was three to four times larger than the

low-pass filter cut-off frequency in order to avoid aliasing errors. The spectral den-

sity of each band was computed by a fast-Fourier-transform algorithm. To convert

frequencies to wavenumbers, Taylor's hypothesis was used. The time series for both
the X-wires (UV- and UW-mode) and the single wire were obtained simultaneously.

For the low-speed experiment the measurement positions were at y/6 _ 0.025, 0.1,

0.3, 0.5, 0.9 and for the high-speed case they were at y/6 ._ 0.1, 0.4, 0.8. Here we

only present the data taken around mid-layer at both freestream velocities. These,
as well as the results taken at other y/_5 positions, are given in II.

_.2. Re_ult_ and discussion

It is shown in II that the large-scale characteristics of the boundary layer followed

the standard behavior in the outer part of the layer at both nominal freestream ve-

locities of 10 m/s and 50 m/s. Also, it appeared that the thickness of the boundary

layer, 6, in both cases was about the same (_ lm) at this measurement location.

It is important to emphasize that the objective of the present experiments is not to

investigate the concept of local isotropy in a canonical boundary layer. However,

if it so happens that the boundary layer behaved reasonably close to the canonical

form, this would be considered a bonus.

The mid-layer position is perhaps the best point at which to analyze the spec-
tral results because of its following advantages: (a) the rms longitudinal veloc-

ity fluctuation normalized by the local mean velocity, V_u2/U, is less than 0.1,

so that errors arising from the use of Taylor's hypothesis will be small (Lumley

1965); (b) the Reynolds number Rx (- V_u2,_/u), based on the Taylor microscale )_

j-_'_/(Ou/Ox) 2] is close to its maximum value, and (c) it is well inside the layer[=
so that_ boundary-layer edge intermittency effects are not present.

m
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The main aim of the present study has been to investigate the effects of mean-

strain rate (S = OU/c3y) on local isotropy. The non-dimensionai quantity

s*= Sq-- (lO)

the shear-rate parameter, which is the ratio of the eddy turnover time (q2/g) to

the timescale of mean deformation (S-1), characterizes the effects of mean-strain

rate on the turbulence (Moin 1990; Lee, Kim & Moin 1990). Durbin & Speziale

(1991) examined the equation for the dissipation rate tensor and showed that local

isotropy is inconsistent with the presence of mean-strain rate. The profile of shear-

rate parameter for a turbulent channel flow (Lee, Kim & Moin 1990), reached its
maximum value of about 35 at y+ (= yU_/v, where U, is the friction velocity) _ 10

in the viscous sublayer and decreased to a value of about 6 for y+ > 50.

On the other hand, Corrsin (1958) proposed that local isotropy in shear flows can
exist when

( _ _1/2¥,
S_ = S__ << i. (II)

This is the ratio of the Kolmogorov and mean-shear timescales. The channel-flow

profile of S*, presented by Antonia & Kim (1992), indicates a constant value of

about 2.5 in the viscous sublayer and a reduction to a very small values for y+ > 60.

These authors suggested that the Corrsin criterion is too restrictive and may be

relaxed to S* < 0.2 for the small scales robe isotropic.

Table 1. shows the flow parameters for spectral measurements at mid-layer loca-

tion. In general, there is some degree of uncertainty associated with the estimation

of S* and S* because they involve gradients at data points that are widely spaced,
and, as will be shown later, the dissipation values are accurate to 20%. In Table 1, it

can be seen that the value of S*/'v/_ becomes independent of freestream velocity.

It is shown in II that as the wail is approached the values of these two parameters

increase, and, at a given y/_, the trend seen in Table 1 prevails.

Freestream velocity, Ue (re�s) 50 _ 10

Boundary layer thickness, 6 (m)

Measurement location, y/6

Local mean velocity, U (re�s)

Local turbulence intensity, V_u2/U

Microscaie Reynolds number, R_

Ratio of hot-wire length, 1 to r/
Shear-rate parameter, S*

s'/v 
Corrsin parameter, S_*

1.0 _ 1.0
-._ 0.4 _ 0.5

= 43.2 = 8.95

=- 0.07 = 0.065

1500 ._ 600

_5 ._1.5

._8 _5
0.21 _-. 0.21

0.0107 _ 0.016

TABLE 1: Flow parameters for spectral measurements around mid-layer.
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FIGURE 2. Longitudinal power spectra measured around mid-layer at different

freestream velocities.

Figure 2 shows Eli (f) for both freestream velocities, obtained in the three mea-
surement bands given in section 2.1. Clearly, in each case, the agreement between

the three segments of the spectrum is very good. The collapse for the transverse

spectra was equally good. The Kolmogorov frequencies, f,l(= U/27rq, where r/was
calculated by using the isotropic relation) were about 69 kHz and 4.5 kHz for the

high- and low-speed measurements respectively. To avoid the f2 behavior of the
tail of the spectrum (section 2.1), and also due to lack of sufficient spatial resolution

(Wyngaard 1968; Ewing & George 1992), only frequencies up to about 30 kHz could
be resolved for the high-speed case. However, for the low-speed measurements, five-

decades of frequency were obtained with no contamination from electronics noise

and with good spatial resolution. As explained in section 2.1, the low-speed mea-

surements were required mainly to resolve the dissipation range of the spectrum,

but it is important to bear in mind that the high-speed results are more appropriate

for the investigation of inertial-subrange scaling because they are at a much higher
Rx. It will become clear in the following sections that without the measurements

at 50 m/s in the inertial range, one may reach erroneous conclusions.

Figure 3, which is plotted with Kolmogorov scaling, shows a comparison between

the present data and a compilation of some experimental work taken from Chapman

(1979) with later additions. The agreement is good. With this type of scaling, the

w

m
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FIGURE 3. Kolmogorov scaling for the longitudinal spectra compared with data

from other experiments. This compilation is from Chapman (1979) with later ad-
ditions.
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R_ _ 600. (a) u-spectrum; (b) v-spectrum; (c) w-spectrum.

spectra peel off from the -5/3 law at the low-wavenumber end in order of increasing

Reynolds number. The present spectrum for Rx _- 1500 has a -5/3 slope over

approximately two decades in wavenumber; one of the longest -5/3 ranges seen in

laboratory flows.

For U_ _ 10 m/s and Rx _ 600, dissipation spectra defined by the isotropic re-

lation, _ = 15u fo k_Ell(kl)dk] = 7.5u fo k_E22(kl)dkl = 7.5u fo k_Eaa(kl)dkl,

are plotted in Figure 4. For Rx _ 1500, a similar plot for only the u-spectrum

is shown in Figure 5. These figures show that in the high-speed case, it is only

possible to take measurements up to klr I _ 0.4, but for the low-speed experiments,
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Dissipation spectrum measured at y/_ _, 0.4 for Ue _ 50 m/s and

the entire dissipation spectrum is obtained. However, for R,x _ 600 the scatter of
the data around the peak is about :t:10%, and, as will be shown later, the data for

klq > 0.9 may not be reliable. The integrations of these data satisfy the above

isotropic relation to within 10%.

To investigate the isotropy of scales within the inertial subrange, we use equations

(4) and (5) and analyze the compensated spectra k_/3Eii(kl), where i = 1, 2 or 3 (no

summation over i) corresponds to u, v, or w respectively. In the inertial subrange,
these compensated spectra should be independent of wavenumber, and the v- and

w-spectra should be equal to each other and larger than the u-spectrum by a factor

4/3.

In Figure 6, the compensated spectra for Ue _ 10 m/s, Rx ,_ 600 are plotted
against klq. The 9t_-order, least-square polynomial fit to these data presented in

Figure 7 prove to be very instructive in analyzing the data. Using the dissipation

value (e _ 0.33 m2/s 3) obtained by integrating over the third-spectral band, which

covered the entire frequency range of interest in Figure 4(a), and taking the classical

value for the Kolmogorov constant, C = 1.5 (i.e. C1 _ 0.5), the isotropic values in

the inertial subrange for the compensated spectra were calculated. These are shown
as straight lines in Figures 6 and 7. For the u-spectrum, shown in Figure 7, there is

slightly less than one decade of -5/3 region, and in that region C = 1.5 agrees well

with the present data. Noting that our dissipation accuracy was to +10%, this gives

C = 1.5 + 0.1. The w-spectrum shows more than half a decade of -5/3 region, with

an amplitude equal to 4/3 times that of the u-spectrum (the difference between

the flat region of the w-spectrum and the isotropic line is about 5%). However,
it appears that in the region under consideration, the v-spectrum does not show a

perfectly flat portion. It will be shown later that this is a Reynolds number effect.

All three spectra have a "bump" between the inertial subrange and the dissipation

range. These "bumps" have also been observed in other experiments (Williams &

Paulson 1978 and Champagne, Friehe, LaRue & Wyngaard 1977 for temperature

variance spectra; Mestayer 1982 for velocity spectra) and theoretical predictions
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FIGURE 6. Compensated longitudinal and transverse spectra measured around

mid-layer for U_ ._ 10 m/s and Rx -_ 600. (a) u-spectrum; (b) v-spectrum; (c)

w-spectrum.

such as Eddy-Damped Quasi-Normal Markovian (EDQNM), as discussed by Mes-

tayer, Chollet & Lesieur (1984). Also, in his review talk, Saffman (1992) mentioned

the existence of this "bump" in the 3D-spectrum.

The compensated spectra and their corresponding 9_h-order polynomial fits for

U_ _-. 50 re�s, R_, ._ 1500, are shown in Figures 8 and 9 respectively. It is clear that

for these high-speed data, a good estimate for dissipation is not possible (see Figure

5). However, since our low-speed data indicates that C = 1.5-4-0.1, we will use this

value and the fitted isotropic lines shown in Figures 8 and 9, to calculate e _ 49

m

=



Local isotropy in turbulent shear flows 249

(a)

0.3 Inedia_ range isolrol_ value, C = 1.5 "I

0.2

UJ

0.1

0 I : , ,,,,,
Inedial range Isolroplc value, C = 1.5 (b)

f
0.3- -

_ 0.2
w

0.1

Illlll
0 I _ i ...... I i, ,i .... I i ....... I

__ Inedial range isolroplc val_, C = 1.5 (C)

f
0.3- -

m 0.2
LU

0.1

I 0s 10.4 10.3 10.2 10"I

kin
FIGUltE 7. Compensated spectra obtained from 9th-order, least-square polynomial

fits to the data presented in Figure 6.

m2/s 3. We will show later in the discussion of the third-order structure functions

that this estimation is within the 20% uncertainty associated with our dissipation

calculations. It can be seen from Figure 9 that for the higher R_,, the compensated

u-spectrum exhibits more than one decade of -5/3 region, but less than the log-log

plot (Figure 3) suggested. Here the v-spectrum, as well as the w-spectrum contain
well defined -5/3 inertial-subrange regions. They are, as predicted, equal to each

other and axe larger than the u-spectrum by the 4/3 factor. The "bumps" again

appear on all the three spectra at almost the same k17/as for the low-speed case.

There is no indication that the amplitude of the "bump" reduces with increasing
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FIcVltl_ 8. Compensated longitudinal and transverse spectra measured around

mid-layer for U_ _ 50 m/s and R_ _ 1500. (a) u-spectrum; (b) v-spectrum; (c)

w-spectrum.

F

Reynolds number once a well-defined inertial subrange is present.
The above observations suggest that only the linear-log plot of compensated spec-

tra can clearly show these intricate behaviors in the inertial-subrange region. Any
claim for the existence of an inertial subrange should be substantiated with this

kind of plot. Recall from Table 1 that the high-speed S* value was larger than that
of the low-speed case, which apparently indicates that here the deviation from the

isotropic relations of the v-spectrum is mainly a function of the Reynolds number.

Mestayer (1982), who presented u- and v-spectra (no w-spectrum was measured)

r
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FIGURE 9. Compensated spectra obtained from 9th-order, least-square polynomial

fits to the data presented in Figure 8.

for only one position (y16 = 0.33) in a boundary layer at Rx _ 616 and 5'_*= 0.02,

concluded that the local-isotropy criterion was not satisfied in the inertial-subrange
region. Our measurements indicate that in his flow the Reynolds number was not
large enough to produce -5/3 regions in the spectra.

The ratio of the measured w-spectrum to v-spectrum, E_ea'(kl)/E_ea'(k]), in

the inertial and the dissipation ranges should be equal to 1.0 if the turbulence is

isotropic. As mentioned earlier, in I, for measurements at y/6 _, 0.4, U, _ 40 m/s

and Rx _ 1450, this ratio deviated substantially from unity. Figure 10 shows the

ratio of these spectra from I. The present measurements of this ratio at y/6 ,_ 0.4
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Ratio of the measured w-spectrum to v-spectrum at y/,5 ,_ 0.4 for

for R._ _ 1500 are shown in Figure 11. The three plots of Figure 11 present data

taken with different sets of X-wires having different calibrations. The data in Figure

ll(c) were measured with the same high-pass filter-cutoff frequencies as in I (see

section 2.1). As can be seen, the day-to-day variation among the present data is

_10%, a fairly good repeatability. The present data are quite different from I, and,
in view of all the measurement problems encountered during I (see section 2.1), we

have greater confidence in the present data.

The ratio of the spectra measured around mid-layer in the present experiments for

both the freestream velocities are shown in Figure 12. For R_ _ 600 and Rx _ 1500,

the w-spectrum becomes equal to v-spectrum, to =k10%, for klr/ > 2 x 10 -_ and

klr/> 3 x 10 -3 respectively.

The transverse spectra, E_tC(kl) and E_tc(kl) can be calculated from the mea-

sured longitudinal spectrum, E_ea_(kl) using equation (2). An anisotropy measure

may be defined as E_lc(k])/E'_,e'_(kl), where i = 2 or 3 corresponds to v or u,

respectively. These anisotropy measures should be equal to 1.0 in an isotropic flow.

We have used least-square fit data that were shown in Figures 7 and 9 to calculate

these measures, which are shown in Figure 13. It appears that in both cases the

isotropic value (to =1=10%) is obtained for the dissipation regions, and for R._ _ 1500,

local isotropy is indicated for the entire inertial subrange of the transverse spectra.

For R_ _ 600, the anisotropy coefficients for v and w become equal to 1.0 :k 10%

at about kl_? > 8 x 10 -a and k]77 > 4 x 10 -3 respectively. Comparison of the

low- and high-Reynolds-number cases suggests that for the latter case, the rise in

the anisotropy coefficients at the high-wavenumber end is not real, but rather an

artifact of extending the polynomial fit to a region where no data was available.

F

=

Y.
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FIGURE 11. Ratios of the measured w-spectrum to v-spectrum at y/_ ,_ 0.4 for

U, _ 50 rn/s and Rx _ 1500 obtained under different experimental conditions.

For both Reynolds numbers under consideration, the normalized shear-stress co-

spectrum, defined by equation (6), are shown in Figure 14. As expected (e.g. Mes-

tayer 1982; Nelkin & Nakano 1983), these spectra roll-off to zero at high wavenum-

bers after showing initial values of about 0.6 to 0.7 in the low-wavenumber region.

However, for R,x _ 1500, this coefficient reaches the zero value about half a decade

later than the start of the -5/3 region.

Kraichnan (1959) proposed that the dissipation region of the 3D energy spectrum

has a simple exponential decay with an algebraic prefactor of the form,

E( k ) = A( ko )_exp[- /_( k_7) ]. (12)

Since then, his form has also been found in numerical simulations (DNS), but nec-

essarily at very low Reynolds numbers, by other researchers who have proposed

that for 0.5 < kr/ _< 3, /3 _ 5.2 (Kida & Murakami 1987; Kerr 1990; Sanda 1992;

Kida et al. 1992). It can be readily seen that for a locally-isotropic turbulence, the

form of equation (12) and the numerical value of _, what ever it may be, should
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FIGURE 12. Ratios of the measured w-spectrum to v-spectrum obtained around

mid-layer. (a) V_ _ 10 m/s, Rx _ 600; (b) V_ _ 50 m/s, Rx .._ 1500.

be preserved for all three one-dimensional spectra. The exponential form for the u-

spectrum in the far-dissipation region was observed in experiments by Sreenivasan

(1985), but he proposed/3 = 8.8 for 0.5 < kit/< 1.5.

The compensated spectra can also be presented (see e.g. Smith & Reynolds 1991)

as e-_/Zk_/_Eii(kl), where i = 1, 2 or 3 (no summation over i) corresponds to u,

v or w respectively. Log-linear plots of these spectra at mid-Iayer for Rx _ 600
are shown in Figure 15. This figure also contains the low-speed spectra measured

close to the wall at y/6 ,_,0.025. It appears that in the dissipation region, all three

components of spectra show an essentially exponential decay and follow reasonably

well the straight lines with t3 = 5.2 for 0.5 <_ kir/_< 1. Note that for the u-spectrum,

the flat region for ka 7/> 0.9 is perhaps due to noise and/or lack of resolution.

Local isotropy in the inertial subrange was also investigated, for consistency,

with Kolmogorov's scaling laws for the structure functions, given by equations (7),

(8), and (9). For both freestream velocities, the compensated third-order structure
functions for the longitudinal velocity fluctuations, (-5/4)r -1 Dill(r), are plotted

versus (r/r/) in Figure 16. With this scaling, the compensated third-order structure
functions should become independent of r in the inertial subrange at a value equal

to the dissipation. This is a good way to estimate e if an inertial subrange exists.

In each section of this figure, as explained in section 2.1, there are three different

data sets corresponding to the three measurement bands used for resolving the

large scales, inertial subrange, and the dissipation region. For Rx _ 600 and Rx
1500, about one-and-a-half and two decades of relatively flat regions can be seen

respectively. The corresponding dissipation values taken from these plots were

-z

__-_-

z
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FIGURE 13. Anisotropy coefficients obtained around mid-layer. (a) Ue _ 10 m/s,

Rx _ 600; (b) U_ _ 50 re�s, Rx ,_ 1500.

e _ 0.26 m2/s 3 and _ 40 m2/s 3, which are about 20% lower than those estimated

from the spectra.

For Rx _ 600, the second-order compensated structure functions, r-2/3Dii(r),

where i = 1, 2, or 3 correspond to u, v, or w respectively, are plotted in Figure 17.

For R,_ _ 1500, a similar plot is shown in II. The three components of the second-

order structure functions showed inertial-subrange regions, albeit the v-component

for the low-speed case shows the least extent. For each Reynolds number considered

independently, the v- and w-structure functions in the inertial subrange are equal

to each other and are larger than the u-structure function by the factor 4/3, to

within the measurement accuracy. Taking the Kolmogorov constant C2 _ 2 and for

each Reynolds number using the dissipation obtained from its respective third-order

structure function, the isotropic values of the second-order structure functions can

be calculated. For the low speed case, these are shown as straight lines in Figure

17. For the high-Reynolds-number case, the deviation of the straight lines from the

plateau regions was equivalent to a 10% change in the dissipation; better agreement

was obtained if the e estimated from spectra was used (see II). Therefore, here

c2 =2.0+0.1.
Overall, as the above tests show, it is important that the concept of local isotropy

be investigated by different means. The linear-log plot of compensated spectra

9
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FIGUIIE 14. Normalized shear-stress co-spectra obtained around mid-layer. (a)

U_ _ 10 m/s, R_ ._ 600; (b) U_ _ 50 ml_, R), ,_ 1500.

proved to be a very important test in the inertial-subrange region. The different
sets of data taken around the mid-layer of the boundary layer at the two Reynolds

numbers, Rx _ 600 and _ 1500, were complementary to each other. It appeared

that the determining factor for the existence of a well-defined -5/3 region on all the

three components of spectra was the Reynolds number: the v-spectrum appeared
to be the most sensitive indicator of low Rx effects. Spectral "bumps" between the

inertial subrange and the dissipative region were observed on all the spectra. One

may obtain an anomalously large Kolmogorov constant if these "bumps" are not
identified. For the present experiments, we obtain C = 1.5 -t- 0.1 from the spectra

and C2 = 2 -t- 0.1 from the second-order structure functions. While in both high-

and low-speed cases local isotropy is found (to -t-10%) in the dissipation regions,

for Rx _, 1500, it was also found over the entire inertial subrange of the transverse

spectra. However, the normalized shear-stress co-spectra reached the zero value
about half of a decade later than the start of the -5/3 region. It was observed that

in the dissipation region, all three components of spectra had an exponential decay

and/3 = 5.2 for 0.5 _< k] r/_< 1 agreed reasonably well with the present data.
In II we have analyzed the results taken in the log-layer at both nominal freestream

velocities of -._ 10 m/s and _ 50 m/s. When the wall is approached, as expected,
the shear-rate parameter increases and the Reynolds number decreases. In the

w
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log-layer, comparison of the results taken at two freestream velocities gave some
support to the conclusion of the above section that for the same y/6 the behavior

of spectra for different freestream velocity was apparently determined only by the

magnitude of the Reynolds number. The order in which the different components
of spectra deviate from the -5/3 region, when the Reynolds number is decreased,

is v, w, and then u. Referring back to Figure 15, which shows the exponential

decay of the three components of spectra, it appears that the data for the near-wall

position (y/6 ,_ 0.025) agree with the mid-layer measurements in the dissipation
region. This perhaps implies some universality of the dissipating scales.

3. Future plans

The immediate task is to analyze all of the data completely. Also, it is important

that the concept of local isotropy is examined in a variety of high-Reynolds-number
flows with different amount of mean strain. This should enable us to establish a

relationship between the degree of anisotropy of the small scales and the magnitude
of the mean strain, if such a relation should exist. One possible experiment is

the case where an initially two dimensional turbulent boundary layer, which has

been developed on a flat plate, is forced to encounter an obstacle placed vertically

r

w
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in the boundary layer (e.g. a cylinder placed with its axis perpendicular to the

plate). In this type of boundary layer, the pressure rises strongly as the obstacle
is approached and in the imaginary plane of symmetry of the flow the boundary

layer is also influenced by the effects of lateral straining. The size of this cylinder
should be of the order of the thickness of the boundary layer. To conduct such an

experiment in the 80' by 120' wind tunnel, a cylinder, which its diameter and length
are approximately 1 m and 2 m respectively, are to be fixed to the ceiling of the

tunnel. This presents an enormous amount of construction difficulties. However,

we are investigating the possibilities of conducting such experiments.
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