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1. Motivation and objectives

At low temperatures (below 5 Kelvin), helium is a liquid with a very low kinematic

:: viscosity. It has been proposed (Liepmann and Coles (1979), DonneUy (1991)) that

wind tunnels could be built using liquid helium as the test fluid. The primary

advantages of such wind tunnels would be a combination of large Reynolds numbers

and a relatively small apparatus. It is hoped that this combination will allow the

study of high Reynolds number flows in an academic setting.

There are two basic types of liquid helium wind tunnels that can be built, corre-

sponding to the two phases of liquid helium. The high temperature phase (between

approximately 2 to 5 Kelvin) is called helium I and is a Navier-Stokes fluid. There

are no unanswered scientific questions about the design or operation of a wind

tunnel in the helium I phase.

The low temperature phase (below approximately 2 Kelvin) of liquid helium is

called helium II. This is a quantum fluid, meaning that there are some properties

of helium II which are directly due to quantum mechanical effects and which are

not observed in Navier-Stokes fluids. The quantum effects that are relevant to this

paper are:

(1) Helium II is well described as a superposition of two separate fluids called the

superfluid and the normal fluid. The normal-fluid component is a Navier-Stokes

fluid and the superfluid is an irrotational Euler fluid.

(2) Circulation in the superfluid exists only in quantized vortex filaments. All

quantized vortex filaments have identical circulations _ and core size a.

One would expect that with these quantum effects the flow of helium II would

show departures from Navier-Stokes behavior. Indeed, helium II flows with thermal

gradients do not show classical Navier-Stokes behavior. This type of helium II flow

has been the most widely studied precisely due to its unusual properties. Recently,

isothermal flows have been examined in numerous experiments (see Walstrom et

al. (1988) and Borner et al. (1983) for example). The surprising result of these

experiments is that the isothermal flow of helium II appears to behave as a Navier-

Stokes fluid. It has been consistently observed in a wide range of flow geometries

that the measurable parameters of the flow obey the same laws (empirical and

theoretical) as Navier-Stokes fluids. For a description of some of these experiments,

see Donnelly (1991).

This apparent Navier-Stokes behavior of isothermal helium II flows could be ex-

ploited to study turbulence with a helium II wind tunnel. Some advantages of a
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helium II wind tunne ! over the helium I wind tunnel are listed by Donnelly (1991)
and I will not repeat them here except to say that the technology exists to directly

observe vorticity in helium II. This measurement is made possible through the at-
tenuation of second sound, a type of sound which only exists in superfluids, by the

quantized vortex filaments in the superfluid component. This is a basic technique

very commonly used in helium II experiments.
The objective of my research at CTR has been to develop an understanding of

the microscopic processes responsible for the observed Navier-Stokes behavior of

helium II flows.

2. Accomplishments

The simplest interpretation of the experimental clata on helium II flow is that

the normal fluid is somehow entraining the superfluid so that both components
have the same, Navier-Stokes flow behavior. Since the superfluid can only contain
circulation in the form of quantized vortex filaments, it is natural to suspect that the

interaction of these quantized vortex filaments with the normal-fluid flow is somehow

the cause of the superfluid entrainment. I investigated the vortex filament behavior

by simulations of the filament motion in a spatially non-uniform flow field of the

normal-fluid. The vortex filaments are represented in the simulations by a series of

mesh points placed along the filament. The equation of motion of each mesh point
is

dX
d-7- = v, + v,, + a,t × (v, - (v, + v,,)), (1)

where X is the position of the point on the vortex filament, vs is the irrotational

part of the superfluid velocity field, v,, is the local velocity due to all the vortex
filaments in the fluid, _ is a temperature dependent coefficient, t is the local unit

tangent vector of the filament, and vn is the local velocity of the normal fluid.
The first two terms on the right hand side of equation 1 are simply the total local

superfluid velocity. The third term describes the response of the vortex filament
to the normal-fluid velocity vn due to the scattering of the normal fluid by the

vortex filament. This process is called mutual friction and is well understood from

first principles (Samuels and Donnelly (1990)). The numerical methods used to

integrate equation 1 and to form and update the meshing of the vortex filaments

are described in Samuels (1991) and Samuels (1992a).

2.1 Laminar flows

Though the final goal is to gain an understanding of the superfluid entrainment

process in turbulent flows, I began this project with simulations of Poiseuille flow of
helium. There was some indication in the experiments that the superfluid entrain-

ment was not limited to high Reynolds number flows, but may also occur in low

speed, laminar flows (Murakami and Ichikawa (1989)). The experimental evidcncc

for this is small simply because there were very few experiments actually done in the

low Reynolds number range due to the very low flow speed required for the laminar
flow of helium II. If laminar flows did show supcrfluid entrainment, I expected that

some basic understanding of the entrainment process could be more easily gained
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in this simple flow. I would then attempt to apply this understanding to the more

complex flows characteristic of turbulence.
From the results of my laminar flow simulations, I proposed two necessary con-

ditions for the entrainment of the superfluid in a general flow. These conditions

are:

(1) A region of locally matched velocity vn = vs must initially exist in the flow.

(2) A source of quantized vortex filament must be present.

Through the mutual friction term in the equation of motion (equation 1), vortex
filaments will move toward the region of locally matched velocity (called the nodal

surface). The effect of the mutual friction is to hold and orient the vortex filaments
at the nodal surface so that the circulation of the vortex filament is in the same

direction as the local circulation of the normal fluid. As more filaments accrete onto

the nodal surface (hence the need for condition 2), the filament density increases

until the superfluid circulation, averaged over a region containing many filaments,

equals the local normal-fluid circulation. Filaments that are too far apart will be

moved closer together by mutual friction and filaments that are too close will be

pushed farther apart. The stable point is where the local superfluid and normal-
fluid velocity fields are equal, which makes the mutual friction term in the equation

of motion equal to zero. The result of this process is that an ordered array of

quantized vortex filaments forms around the nodal surface with sufficient density to
equal the local circulation density in the normal fluid, thus entraining the superfluid
to the normal fluid.

A simple example of the entrainment of the superfluid by the normal fluid is

given in figure 1. In this example, I am considering the flow of helium II through a
circular pipe. Figure la shows the initial velocity profiles of both the superfluid and
the normal fluid. The normal fluid has a parabolic profile with zero velocity at the

pipe wall. The superfluid, with no initial vortex filaments, has a flat velocity profile

that slips completely at the pipe walls. The magnitude of the superfluid velocity is
set to be equal to the average normal-fluid velocity. Though the flow rates of the

two fluids are equal, the local velocities are only equal at a specific radius inside the

pipe. This radius marks the nodal surface (condition 1 above) for this geometry.

As the quantized vortex filaments are generated by the velocity difference at

the pipe wall (a process described in detail in Samuels (1992a)), they gather in
an ordered manner about the nodal surface. The combined velocity fields of all

the vortex filaments produce an approximately parabolic velocity profile in the

superfluid that matches the local velocity profile of the normal fluid (figure lb).

_._ A simple model of turbulent flows

With the experience gained from the laminar simulations, the problem of super-
fluid entrainment in turbulent flows is reduced to a question of identifying the nodal

surfaces and the process responsible for quantized vortex filament formation in a

turbulent flow. For a simple model of turbulence, I chose an isolated, concentrated
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FIGURE 1A. Initial velocity profiles of the normal fluid and superfluid in laminar
pipe flow. R denotes the pipe radius. I7.0 denotes the average normal fluid flow
rate. The nodal surface is at a radius of .707R.
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FIGURE lB. Normal fluid and superfluid velocity profiles after the formation of

quantized vortex filaments.
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vortex in the normal fluid. This is meant to represent the vortex tubes reported

in experiments (Douady et al. (1991)) and simulations (Siggia (1981), Kerr (1985),

Ruetsch and Maxey (1991)) of Navier-Stokes turbulence. I assume that the super-

fluid is initially at rest. With these initial conditions, there is a nodal surface on
the axis of the normal-fluid vortex tube where both the superfluid and normal-fluid

velocities are zero.

With the nodal surface identified, we must now find a process that will form large

amounts of quantized vortex filaments. In the simulations reported in this paper, the

normal-fluid vortex tube was represented by a gaussian distribution of circulation

with the vorticity vector aligned along the Z axis. The core size of the vortex tube

is denoted by re. In order to make the calculation spatially finite, the vortex tube

was limited to a length of 20re. This was accomplished by rapidly expanding the
vortex-tube core size beyond this length. The geometry of the vortex-tube core is

outlined by the dashed line in figure 2a. None of the results presented here were

dependent on the length of the vortex tube as long as the length was greater than
approximately 10v,. I typically used normal-fluid vortex tubes with circulations

much greater than the small circulation of the quantized vortex filaments, so many
vortex filaments must be formed to equal the normal-fluid circulation.

Figure 2 illustrates the process responsible for the formation of the vortex fila-
ments. The simulation begins with a small vortex filament ring near the normal-

fluid vortex tube (figure 2a). The vortex ring is aimed so that it moves toward
the normal-fluid vortex tube under its own self-induced velocity. When the vortex

ring reaches the normal-fluid vortex tube, it is captured on the center of the vor-
tex tube (at the nodal surface) by mutual friction (figure 2b). It is then stretched

along the vortex tube axis (again by mutual friction). As the vortex filament ring is

stretched, it also twists around the vortex tube axis under its self-induced velocity

(figure 2c). This three-dimensional twisting motion causes a section of the vortex

filament ring to turn towards the azimuthal direction of the normal-fluid vortex
core. At this section of the quantized vortex filament, there is now a normal-fluld

velocity component (from the vortex tube) along the axis of the vortex filament. A

quantized vortex filament with an axial normal-fluid flow is known to be unstable

to the growth of a helical wave on the vortex filament (Ostermeier and Glaberson

(1975)). Since the unstable length of the vortex filament is small in this situation,
the instability to helical wave growth typically leads to the growth of a single loop

(figure 2d) on the vortex filament, though I have seen situations where multiple
loops are formed simultaneously. This new loop of quantized vortex filament is

itself captured by the core of the normal-fluid vortex tube and will follow the same
evolution as the initial vortex ring. Meanwhile, the initial vortex ring is still un-

stable and will continue forming new vortex loops until it eventually moves off the

lower end of the vortex tube. This process of loop formation leads to an exponential

growth in the length of quantized vortex filament. Figure 2e shows a later stage
of this growth. By this time, a dense grouping of highly ordered quantized vortex
filaments has formed within the normal-fluid vortex tube. To summarize, a concen-

tration of vorticity in the normal fluid will form a corresponding concentration of
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FIGURE 2. Evolution of the quantized vortex filament. Z denotes the direction

along the axis of the normal-fluid vortex tube and X denotes the distance along one

axis perpendicular to the vortex-tube axis. (a) Initial state. The solid lines denote
the quantized vortex filament. Dashed lines outline the core of the normal-fluid

vortex tube. (b) The quantized vortex filament is captured by the vortex tube. (c)

Instability begins at the section of vortex filament marked by the arrow. (d) A

new loop forms. (e) Quantized vortex filaments are concentrated in the core of the
normal-fluid vortex tube.

quantized vortex filaments in the superfluid.

Figure 3 shows the velocity profile of the superfluid and the normal fluid along a

line in the plane of the normal-fluid vortex tube and through its axis. At this point
in the simulation, the quantized vortex filament was still growing (see figure 4), but

the computation time per timestep had grown too large to continue the sinmlation.
It is not yet known when this growth will eventually stop. Figure 4 shows the

growth of the superfluid circulation within the core of the normal-fluid vortex tube.
As expected, the growth is exponential. By the end of the simulation, the superfluid

circulation had grown to approximately 35% of the normal-fluid circulation and was

still growing exponentially.

From a large number of these simulations, I developed an empirical equation for

the time constant r of the exponential growth of the superfluid circulation Ft. This

equation is

r - (2)
v/-gr,

where rc is the core radius of the vortex tube, F, is the circulation of the vortex

tube, c_ is the mutual friction parameter from equation 1, and C is a dimensionless
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FIGURE 3. Superfluid and normal-fluid velocity profiles in the plane of the vortex
tube. Velocities are normalized by the velocity at the core radius V.(rc) and position

X is normalized by the vortex-tube radius. The position is taken along an axis

perpendicular to the vortex-tube axis.
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FIGURE 4. Exponential growth of the superfluid circulation inside the core of
the normal-fluid vortex tube. The dashed line denotes the circulation of the vortex

tube.
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constant determined by least squares fit to be C =- 458 4- 5.

This process of superfluid filament growth is only useful if the time scale r is small

compared to the lifetime of the concentrated vortex tubes present in the turbulent

normal fluid. To make this comparison, we must know the lifetime, core size, and

circulation of typical vortex tubes in Navier-Stokes turbulence. These values are

not well known at the current time. We take the lifetime to be one large eddy

turnover time (Douady et al. (1991), the core radius to be rc _. 37/ where 77 is

the Kolmogorov length scale (Ruetsch and Maxey (1991), Vincent and Meneguzzi

(1991)), and the circulation to be Fn = (300 4- 100)u (Jimenez (1992)) where u is

the kinematic viscosity of the normal fluid. All of these values are taken from fairly

low Reynolds number experiments or simulations and may very well change with

future research. With this caveat, the ratio of the vortex tube lifetime tal, to the

growth time scale 7" is

ttil¢ __ (.23 4- .0S)_, (3)
T

where I have defined a Reynolds number Re = UiLt/vn with the large eddy velocity

scale Ut and length scale Lt, and vn is the kinematic viscosity of the normal fluid.

The mutual friction parameter a has a typical value of a = .1, so for Reynolds

numbers on the order of 1000 or higher, we expect the vortex tube lifetime to be

large compared to the growth time constant r. Therefore, in high Reynolds number

flows the time required for the growth of the superfluid circulation should be small

compared to the lifetime of the vortex tubes.

The growth process described above only occurs for normal-fluid vortex tubes

with circulations stronger than a minimum value Fn,min. From least square fits of

many simulations, this minimum value is found to be well described by the empirical
formula

F n , rn i n_ss D= In(a )r__ E, (4)

where Fs is the circulation of the quantized vortex filaments, a is the temperature

dependent mutual-friction parameter, a is the core size of the quantized vortex

filaments, and D and E are constants fit from the simulation results. The values

found for the constants are D = 1.304-.05 and E = 7.84-.3. This formula for F,,mi,

should be compared to the observed circulations of vortex tubes in Navier-Stokes

turbulence. From simulation results, Jimenez (1992) gives a value of

Ftube -_ Re-_v (5)

for the circulation of vortex tubes, where v is the kinematic viscosity of thc fluid and

the circulation Reynolds number Re-y is found to lie in the range 200 < Re._ < 400.
As was stated before, this value for tile vortex tube circulation was taken from low

Reynolds number simulations and may change with higher Reynolds number. A

comparison of F.,min and the range of vortex tube circulations from equation 5

is given in figure 5. Ftub¢ has a temperature dependence (and hence an c_ depen-

dence) through the kinematic viscosity of the normal fluid. For reasonable values

of re, the minimum circulation Fn,mi. lies within the range of expected vortex tube
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FIGURE 5. Minimum circulation for the vortex filament instability vs a. The

solid lines are from equation 5. The dashed lines outline the expected range of
circulations of the normal-fluid vortex tubes.

circulations. The reader should remember that these simulations were done with

a very simplified geometry, using a perfectly straight vortex tube with a uniform
cross section. It is reasonable to expect that any nonuniformities in the vortex tube

radius or direction would decrease the value of F,,,mi, since they would act to lo-

cally increase the normal-fiuid flow along the axis of the quantized vortex filament,
which increases the instability of the filament. Thus, the values of F,,mi, given by

equation 4 should be considered as upper bounds to the actual minimum unstable
circulation. More details of these results are given in Samuels (1992b).

In summary, these simulations have identified a process which generates localized

superfluid circulation inside the cores of the normal-fluld vortex tubes found in
Navier-Stokes turbulence. This growth process is exponential with a time constant

small compared to the vortex-tube lifetime taken from current turbulence research.

The minimum circulation Fn,mi, compares well with the vortex-tube circulations
taken from Navier-Stokes turbulence simulations. It also should be pointed out that

the dense array of quantized vortex filaments formed in the cores of the normal-fluld

vortex tubes should allow the detection of these vortex tubes by the attenuation of
second sound.

3. Future plans

Though the central objective of the research project has been met, there re-
main several unresolved issues. Primarily among these is the question of when the

growth process shown in figure 4 stops. As stated earlier, the computation time

necessary for such a large amount of vortex filament prevented me from running
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the simulations to a final steady state. It is possible that simulations in a different

parameter range will converge to a steady state within a reasonable computation

time. Preliminary work on this approach has been promising.

Once a steady state configuration is available from the simulations, the response

of this coupled normal fluid - superfluid state to external perturbations could be

examined. This would be an important test of the approximation that the coupled

state can be treated as a single component fluid obeying the Navier-Stokes equation.

The most difficult extension of this work would be to include a true interaction

between the two fluids. The present simulations are done with an imposed normal-

fluid velocity field which is constant in time. In reality, the normal fluid must

respond to the motion of the superfluid. To directly include this interaction in the

simulations would require an enormous increase in the complexity of the problem.

We can say that the use of a non-reacting normal-fluid velocity field is likely to be a

good approximation at higher temperatures (near 2 Kelvin) where the normal-fluid

density is greater than the superfluid density.
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