39 P

Final Report

submitted to

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEORGE C. MARSHALL SPACE FLIGHT CENTER, ALABAMA 35812

August 28, 1993

for Contract NAS8 - 38609

Delivery Order 61

entitled

Reduce Fluid Experiment System Flight Data from IML-1

by

Gary L. Workman Ph.D. **Principal Investigator**

> Andrea Passeur and Sabrina Harper

Materials Processing Laboratory Center for Automation & Robotics University of Alabama in Huntsville Huntsville, Alabama 35899

0185010

DATA FROM (Alabama Univ. REDUCE FL IGHT Report (NASA-CR-193835) EXPERIMENT SYSTEM Final IML-1

TABLE OF CONTENTS

Introduction	1
HGS	2
TGS Experiment	3
Benefits of the TGS Crystal	
Objectives	3
Specifications	3
Experimental Approach	5
Background	
Scanning Procedure Discussion	
Conditions and Calculations	
Set-up Procedure (Initialization)	7
Image Archival	
Photographic Displays	10
Appendix A: Hologram and Optical Drive Databases	12
Appendix B: Images Matrices and Acquisition Procedures	24
Appendix C: Camera Alignment Procedure	29
Appendix D: Image Transfer and Storage Procedure	31
Appendix E: Optical Bench Layouts	34

INTRODUCTION

The Microgravity Science and Applications program at NASA has been instrumental in providing innovative research for the crystal growth community. Since a microgravity $(10^{-4} - 10^{-6} \text{ g})$ experiment is influenced by neither convection nor buoyancy, new information can be obtained from studying the growth of large single crystals in space. With the earth's gravitational force eliminated, forces otherwise negligible now become predominant and can therefore be more thoroughly investigated. In addition, crystal lattice defects can be theoretically minimized with the absence of gravity. As a result, researchers hope to produce crystals in space superior to those grown on earth.

The Fluid Experiment System (FES) is a Marshall Space Flight Center (MSFC) flight experiment facility, dedicated to the analysis of crystal growth experiments aboard the shuttle. The FES materials are grown from seed crystals placed in cell chambers filled with liquid growth solution. The cells are installed in a Spacelab double rack and controlled with standard facilities such as power, avionics, air and water, and the results from the forming crystal are recorded with holograms taken at chosen time intervals.

The Holographic Ground System (HGS) at MSFC is the FES ground support facility for applying optical techniques to the flight holograms to study solidification processes and surrounding fluid dynamics of the space grown crystals. It consists of a large air-suspended optical table located in a lightproof room. The table is outfitted with optical components that provide holographic construction and reconstruction, interferometry, schlieren, and microscopy. The HGS also includes a large quantity of computer equipment for processing resultant holographic images.

HGS

The Holographic Ground System (HGS) facility recently installed new equipment necessary for updating image transferral and storage procedures as well as improving the image acquisition capabilities.

- A fiber-optic ethernet running at 3500 baud and linked to the MSFC central computer network.
- A 2-Gigabyte optical storage drive, allowing for permanent storage of approximately 8000 images per disk.
- A high resolution (5u per step) x-y-z translation mount for image scanning in three dimensions. This mount possesses accuracies of 1u per inch of travel, 5 arcseconds of orthogonality, and maximum deviation (straightness or flatness) of 2u per 10 cm or travel.
- A high-sensitivity camera with microscope objective lens adaptor. This camera is lightweight to minimally stress the translation motors.
- The Imaging Technology, Inc. Series 151 image processing system with a library of image processing functions.

TGS EXPERIMENT

BENEFITS OF THE TGS CRYSTAL

The triglycine sulfate (TGS) crystal was chosen as a microgravity research material for a number of reasons. It has a high theoretical efficiency for light detection, detects a wide range of light wavelengths (visible to infrared), and is capable of detecting in ambient conditions. Commercial applications for TGS include medical imaging, earth resource surveying, fire detection, and astronomical telescope design. Current use of TGS has been limited, however, due to its slow growth rate which makes it highly susceptible to gravitational influences. In microgravity, researchers hope to minimize these imperfections by placing the seed in the near convection-free environment of space.

OBJECTIVES

The TGS experiment attempts to isolate and quantify fluid convection components, specifically from crystal growth, g-jitter, residual microgravity, and other acceleration forces. Identifying these components and correlating them with other events enables more accurate characterizations of the space shuttle environment and its effects on crystal growth. Therefore small particles or microspheres were seeded into the TGS fluid to depict these fluid forces.

SPECIFICATIONS

While performing the tests to determine the particle concentration in the TGS solution, it was noted that extremely small particles were invisible during the real-time recording. By contrast, large particles were usually damaged by the stir motor, which produced unwanted nucleation sites. Therefore, it became necessary to establish a median particle diameter range of approximately 200 u to 650 u, with enough spacing between diameters to distinguish each particle. The three diameters used were 199u, 383u, and 646u.

Due to the cohesive and adhesive properties of the particles, excess quantities were needed in the solution to accommodate for clumping and for sticking to the container walls. Although the large numbers of particles provided measurable data, they also caused tracking difficulties, especially during shuttle maneuvers or other large disturbances. A full scan to obtain statistics on sphere loss will be conducted in the future.

The particle spheres were measured in mass, from which the particle concentration per unit volume of solution could be calculated.

Particle	Measured	# particles
<u>Diameter</u>	<u>Mass</u>	<u>per gram</u>
199 u	0.0391 g	$2.3 \times 10^{5} / g$
383 u	0.2812 g	$3.2 \times 10^4 / g$
646 u	1.4060 g	$6.4 \times 10^3 / g$

The total number of spheres of each size is given by the following calculations.

199 u:
$$(2.3 \times 10 /g)(0.0391 \text{ g}) = 8993 \text{ spheres}$$

383 u: $(3.2 \times 10 /g)(0.2812 \text{ g}) = 8998 \text{ spheres}$
646 u: $(6.4 \times 10 /g)(1.4060 \text{ g}) = 8992 \text{ spheres}$
TOTAL = 26983 spheres

The cell's volume = 1.8 liters including the heat exchanger. Therefore, the average particle concentration was

EXPERIMENTAL APPROACH

BACKGROUND

Originally, two crystal growth experiments were planned, lasting approximately 24 hours and 60 hours. Due to problems encountered during flight, these two experiments were reduced to three shortened runs. The first, Run 1A, was 8.5 hours, Run 1B was 28.5 hours, and Run 1C was 19 hours. Run 1A was a cold cell with the cap never retracting. In Run 1B, the cell was heated, but the cap was never retracted. With Run 1C, the cell was heated and the cap raised successfully.

Data collected from these runs included approximately 1050 images reconstructed from the 114 holograms recorded during Run 1A. Run 1C contributed 136 holograms from which approximately 2350 images of moving microparticles were obtained. There were 133 holograms recorded during Run 1B, and more microparticle data will be collected from them in the future (refer to Appendix A for the complete Hologram Database).

The TGS experiments use the Computerized Holographic Image Processing (CHIP) program to record these images into computer files for velocity/acceleration data. The CHIP program was originally established for automated schlieren analysis, but it can be efficient for surveying holograms in a three-planar image matrix. Each image is saved with a filename indicative of its position in the matrix (see Figs. 1 and 2 of Appendix B). The following discussion explains how these images are acquired.

SCANNING PROCEDURE DISCUSSION

The image acquisition procedure uses the following equipment: the CHIP image processing program, the Series 151 Image Processing System with Itex 151 library of image processing functions, a high-sensitivity camera fitted with microscope objective lenses, two TV monitors and PC's, a UNIDEX stepper motor driver to control a three-axis mount for camera positioning. This UNIDEX motor controller can be controlled by the CHIP program or manually with a joystick for rough positioning.

CONDITIONS AND CALCULATIONS

Previous to the image acquisition, the camera was positioned correctly using the procedure located in Appendix C. Before obtaining any images with the computer, we first established the height and width of an image in reference to the UNIDEX motor. Since one "step" of the motor moves the camera 5 microns, we made the following measurements and calculations:

```
Image width (shown on monitor) = 2030 steps
Image width (actual) = 10.15 mm
Image height (shown on monitor) = 1562 steps
Image height (actual) = 7.81 mm
```

A 10% horizontal overlap and a 10% vertical overlap was employed between neighboring images to aid in later image comparisons. This required recalculating the above values to find the number of steps needed to move the camera to the next image.

Horizontal distance between each image

= 2030 steps x 90%

= 1827 steps (9.09 mm)

Vertical distance between each image

= 1562 steps x 90%

= 1405 steps (7.03 mm)

Therefore, to obtain neighboring images, the motor must move the camera 1827 steps horizontally or 1405 steps vertically. Since the distance between image depths was desired to be about 1 cm, this third dimension was chosen to also be 1827 steps or 9.09 mm for uniformity.

SET-UP PROCEDURE (INITIALIZATION)

The following steps are required for initialization of the Computerized Holographic Image Processing Program:

- 1. Make a directory of each hologram. Keeping a directory is important so that the image files (which have like labeling) are not overwritten. The directory name is the same as the sleeve number of the hologram (ex. 2T1CP100). Each image is stored into one file in this directory, the filename referring to its location in the matrix. The filename is in the form vertical position angle, where the vertical position is the matrix y-value, and the angle denotes the matrix x-value and focus positions. Referring to Fig. 2 of Appendix B, for example, the file 1405.2B stores the image located in the matrix block with the vertical (y) position "1405," horizontal (x) position "2," and plane (focus) position "B." The filename for the very first image is 0.1A. All directories are located on Bernoulli disks which contain 90 MB of memory.
- 2. <u>Find the reference point</u>. This step requires focusing on the middle plane, then finding the appropriate starting point on the plane.
 - Use the joystick manually to position the sting at approximately the monitor's center in order to offer a "good" sting view;
 - To focus, flip the x-axis dial to FOCUS and move the joystick in the positive or negative x-direction. The camera is now set at the "B," or middle plane.
 - Flip the x-axis dial back to HORIZONTAL and position the camera to center the matrix over the sting (500 steps were chosen).
- 3. <u>Initialize the CHIP program for use</u>. This step connects the CHIP program to the UNIDEX and prepares the files for storing the images.
 - On the UNIDEX, press RESET so that the display reads SYS RDY;
 - While in the hologram's directory, type CHIP to enter the CHIP program;
 - Once in the CHIP program, press the UDX ONLINE and AUTO UDX keys to connect the program to the UNIDEX;

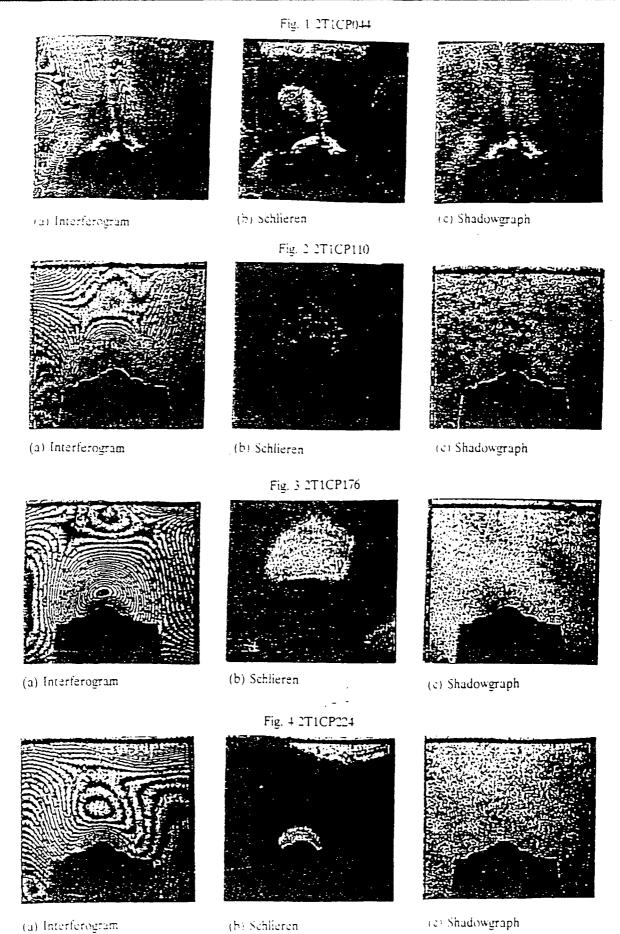
- Press HOLO CODE and enter the last six digits of the hologram name (from the earlier example, the last six digits would be 1CP100);
- Press ANGLE and enter the appropriate angle and plane (1A, 2B, etc.);
- Move the camera to the desired plane: on the UNIDEX, flip the x-axis dial to FOCUS. Press INCX, enter 1827, then press GO to execute. The image on the screen should change in focus but not in position.

Appendix B gives the step-by-step procedures to record all necessary images on the hologram matrix. There are separate procedures for TGS runs 1A and 1C due to the cell center's being obstructed (Run 1A) or unobstructed (Run 1C), but all initializations discussed up to this point are the same. Each procedure is written to capture a single plane or depth of the matrix, and at its conclusion the film must be replaced with the next hologram. After all necessary images are surveyed in one plane, the procedure may be repeated for the remaining planes. This approach is used to minimize position errors induced by the switching of step motors with the UNIDEX controller.

IMAGE ARCHIVAL

Once the images are scanned, they are then saved in a format unique to CHIP. A conversion needs to be carried out to transform these images to a more compatible format for other users. Imaging Technology, Inc. was chosen as a standard format. To transform the image files, they should be converted to the following format:

<u>Bytes</u>	<u>Contents</u>
0-63	Header area, consisting of the following parameters:
0-1	The letters IM (Hexadecimal values 49 and 4D)
2-3	Size of comment area
4-5	Width of the image, in pixels
6-7	Height of the image, in lines
8-9	Coordinates of original x-axis (horizontal) position
10-11	Coordinates of original y-axis (vertical) position
12-13	File type flag; values may be: 0=normal; 1=compressed; 2=special
14-63	Reserved
64-nnn	Comment area (variable in length; 255 bytes maximum. See bytes 2-3 for
• -	actual length)
nnn/1-mmm	Data area (1 byte per pixel stored in row order, from the top to the
	bottom of the image)


Once converted, the images occupy 0.25 Megabytes of memory. Locally, they are stored on 90 Megabyte Bernoulli disks; however, the optical disk drive is required for long-term storage. This drive is accessed through the fiberoptic network that is linked to the Marshall Space Flight Center central computer network, allowing for world-wide image communication. The images are transferred to the optical drive by way of a VAX controller (the complete procedure is located in Appendix D).

The optical drive is known as a WORM (Write Once Read Many) drive. It requires the disk to be preformatted with an organized structure and given numbers of files and sizes. The structure of the first disk is listed in Appendix A. The optical disk contains one Gigabyte of memory per side of the platter, which translates to approximately 8000 images per disk.

PHOTOGRAPHIC DISPLAYS

In addition to the particle velocimetry data discussed thus far, there will be further research into the changing fluid concentration environment around the growing crystal. To lay the groundwork for this work, three different photographs were taken of cell interior images from successive holograms. These photographs were of interferogram, schlieren, and shadowgraph images. Diagrams of the optical bench layouts to acquire these photographs are detailed in Appendix E.

Figures 1, 2, and 3 show sample photographs of some 2T1CP images (holograms 044, 110, 176, and 224). The interferograms will be used to show absolute fluid densities at given times in the run. The change in these densities or their gradients will be evaluated with the schlieren photograph data. The shadowgraph photographs will be used to show the changes that occur in the density gradients over time. It also gives a full, unobstructed view of the cell and crystal.

APPENDIX A: HOLOGRAM AND OPTICAL DRIVE DATABASES

Holo Number	Hologram Code	·	Hologram Type	Quality	GMT	MET	TGS Mode
65 667 689 711 73 74 75 77 78 81 82 84 85 87 88 88 88 88 88 88 88 88 88 88 88 88	2T1AP065 2T1AP066 2T1AP067 2T1AP068 2T1AP070 2T1AP071 2T1AP072 2T1AP073 2T1AP074 2T1AP075 2T1AP076 2T1AP077 2T1AP077 2T1AP078 2T1AP080 2T1AP080 2T1AP081 2T1AP082 2T1AP083 2T1AP084 2T1AP085 2T1AP086 2T1AP087	* * * * * * * * * * * * * * * * * * *		Drk	25:5:7:22 25:5:8:7 25:5:15:49 25:5:27:45 25:5:35:25 25:5:35:25 25:5:35:25 25:5:5:44:43 25:5:5:53:13 25:6:10:13 25:6:17:55 25:6:17:55 25:6:17:55 25:6:27:13 25:6:27:13 25:6:27:13 25:6:44:12 25:6:44:12 25:6:51:54 25:6:52:42 25:6:51:54 25:6:51:54 25:6:52:42 25:7:0:24 25:7:11:12 25:7:11:12 25:7:26:39 25:7:17:22 25:7:18:10 25:7:25:51 25:7:26:39 25:7:17:22 25:7:18:10 25:7:25:51 25:7:26:39 25:7:51:21 25:7:52:9 25:7:51:21 25:7:52:9 25:7:52:9 25:7:52:9 25:8:8:17:39 25:8:17:39 25:8:17:39 25:8:25:19	2:14:14:48 2:14:15:33 2:14:23:15 2:14:34:23 2:14:35:11 2:14:42:51 2:14:52:9 2:14:52:9 2:14:59:52 2:15:0:39 2:15:25:21 2:15:26:9 2:15:26:9 2:15:33:51 2:15:34:39 2:15:42:21 2:15:43:8 2:15:50:50 2:15:43:8 2:15:50:50 2:15:43:8 2:15:50:50 2:15:43:8 2:15:50:50 2:15:43:8 2:15:50:50 2:15:43:8 2:15:50:50 2:16:33:17 2:16:24:48 2:16:24:48 2:16:25:36 2:16:33:17 2:16:41:47 2:16:42:35 2:16:50:17 2:16:51:5 2:16:51:5 2:16:51:5 2:16:51:5 2:16:51:5 2:16:51:5 2:16:51:5 2:16:51:5 2:16:51:5 2:16:51:5 2:16:51:5 2:16:51:5 2:16:53:47 2:16:51:5 2:16:51:5 2:16:53:47 2:16:51:5 2:17:24:17 2:17:25:6 2:17:32:45	日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日
							_

^{**** -} DATA LOSS; GMT and MET may not be exact

Holo Hologram Number Code	Hologran Type	n Quality	GMT	MET	TGS Mode
90 2T1AP090 91 2T1AP091 **** 92 2T1AP092 **** 93 2T1AP093 **** 94 2T1AP094 **** 95 2T1AP095	SD · S SD S SD SD		25:8:26:7 25:8:33:49 25:8:34:37 25:8:42:19 25:8:43:7 25:8:50:48	2:17:33:33 2:17:41:15 2:17:42:3 2:17:49:45 2:17:50:33 2:17:58:14	3 3 3 3 3
96 2T1AP096 97 2T1AP097 98 2T1AP098 99 2T1AP099 100 2T1AP100 101 2T1AP101	SD SD S SD SD		25:8:51:35 25:8:59:17 25:9:0:5 25:9:7:48 25:9:8:36 25:9:16:18	2:17:59:1 2:18:6:43 2:18:7:31 2:18:15:14 2:18:16:2 2:18:23:44	3 3 3 3 3 3
102 2T1AP012 103 2T1AP103 **** 104 2T1AP104 **** 105 2T1AP105 **** 106 2T1AP106 **** 107 2T1AP107	SD S SD S SD S		25:9:17:6 25:9:24:48 25:9:25:36 25:9:33:18 25:9:34:6	2:18:24:32 2:18:32:14 2:18:33:2 2:18:40:44 2:18:41:32	333333333333333333333333333333333
108 2T1AP108 109 2T1AP109 110 2T1AP110 111 2T1AP111 112 2T1AP112	SD S SD S SD		25:9:41:45 25:9:42:33 25:9:50:16 25:9:51:4 25:9:58:46 25:9:59:33	2:18:49:11 2:18:49:59 2:18:57:42 2:18:58:30 2:19:6:12 2:19:6:59	3 3 3 3
113 2T1AP113 **** 114 2T1AP114 **** 115 2T1AP115 **** -116 2T1AP116 **** 117 2T1AP117 **** -118 2T1AP118 ****	S SD SD SD SD		25:10:7:16 25:10:8:4 25:10:15:46 25:10:16:34 25:10:24:16 25:10:25:4	2:19:14:42. 2:19:15:30 2:19:23:12 2:19:24:0 2:19:31:42 2:19:32:30	3 3
119 2T1AP119 **** 120 2T1AP120 121 2T1AP121 122 2T1AP122 123 2T1AP123 124 2T1AP124	S SD SD SD SD	Loan	25:10:32:46 25:10:33:34 25:10:41:15 25:10:42:3 25:10:49:45 25:10:50:33	2:19:40:12 2:19:41:0 2:19:48:41 2:19:49:29 2:19:57:11 2:19:57:59	3 3 3
125 2T1AP125 126 2T1AP126 127 2T1AP127 128 2T1AP128 ****	S SD S SD	Loan	25:10:58:15 25:10:59:3 25:11:6:45 25:11:7:33	2:20:5:41 2:20:6:29 2:20:14:11 2:20:14:59	3 3 3 3 3
416 2T2P160 417 2T2P161 418 2T2P162	S (man)	Blk Blk Blk	26:20:9:39 26:20:12:20 26:20:18:48	4:5:17:5 4:5:19:46 4:5:26:14	3 3 3

^{**** -} DATA LOSS; GMT and MET may not be exact

Holo	Hologram		Hologram		a		TGS
Number	Code		Type	Quality	GMT	MET	Mode
			•				
419	2T13P163	***	S (man)	Blk	27:15:41:50	5:0:49:16	
	2T1BP164			Blk	27:15:41:30	5:0:51:37	-
421			S (man) S (man)	Blk	28:3:50:9	5:12:57:35	3 6
	2T13P166		S (man)	Drk	28:4:52:36	5:14:0:2	6
423			SD	DIX	28:4:53:24	5:14:0:50	6
	2T1BP168		S ·		28:5:5:7	5:14:12:33	6
425			SD	Cut5%	28:5:5:55	5:14:13:21	6
	2T1BP170		S	Cut5%Drk		5:14:25:4	6
	2T1BP171			Cut10%	28:5:18:25	5:14:25:52	6
	2T1BP172		S		28:5:30:7	5:14:37:33	6
429	2T1BP173		SD		28:5:30:55	5:14:38:21	6
430	2T13P174		S		28:5:42:37	5:14:50:4	6
	2T1BP175		SD		28:5:43:25	5:14:50:51	6
	2T1BP176	•	S		28:5:55:7	5:15:2:33	6
	2T1BP1 77		SD		28:5:55:54	5:15:3:20	6
	2T1BP178		S	•	28:6:7:36	5:15:15:2	6
	2T1BP179		SD		28:6:8:24	5:15:15:50	6
	2T1BP180		S		28:6:20:6	5:15:27:32	6
	2T1BP181		SD		28:6:20:54	5:15:28:20	6
	2T1BP182		S		28:6:32:35	5:15:40:1	6
	2T1BP183		SD		28:6:33:23	5:15:40:49	6
	2T1BP184		S		28:6:45:5	5:15:52:31	6
	2T1BP185		SD		.28:6:45:53	5:15:53:19	6
	2T1BP186		S		28:6:57:35	5:16:5:1	6
	2T1BP187 2T1BP188		SD S		28:6:58:23	5:16:5:49 5:16:17:31	6
	2T1BP189		SD		28:7:10:5 28:7:10:53	5:16:17:31	6 6
	2T1BP109		S S		28:7:22:35	5:16:30:1	6
	2T1BP191		SD		28:7:23:23	5:16:30:49	6
	2T1BP192		S		28:7:35:5	5:16:42:31	6
	2T1BP193		SD		28:7:35:53	5:16:43:19	6
	2T1BP194		S		28:7:47:36	5:16:55:2	6
	2T1BP195		SD	•	28:7:48:24	5:16:55:50	6
452	2T1BP196		S	, -, -	28:8:0:7	5:17:7:33	6
453	2T1BP197		SD		28:8:0:55	5:17:8:21	6
454	2T1BP198	;	S	Cut10%	28:8:12:37	5:17:20:3	6
455	2T1BP199		SD		28:8:13:25	5:17:20:51	6
	2T1BP200			Cut20%	28:8:25:7	5:17:32:33	6
	2T1BP201			Cut30%	28:8:25:55	5:17:33:21	6
	2T1BP202			Cut25%	28:8:37:36	5:17:45:2	6
	2T1BP203		SD		28:8:38:24	5:17:45:50	6
	2T1BP204		S		28:8:50:6	5:17:57:32	6
	2T1BP205		SD		28:8:50:53	5:17:58:19	6
462	2T1BP206		S		28:9:2:35	5:18:10:1	6

^{**** -} DATA LOSS; GMT and MET may not be exact

Holo Number	Hologram Code	Hologram Type	Quality	GMT	MET	TGS Mode
Number 3455678901234567890123447756789012344884889012344967899	Code 2T13P207 2T18P208 2T18P210 2T18P210 2T18P211 2T18P212 2T18P213 2T18P215 2T18P216 2T18P217 2T18P218 2T18P220 2T18P221 2T18P222 2T18P222 2T18P223 2T18P222 2T18P225 2T18P226 2T18P226 2T18P227 2T18P228 2T18P228 2T18P230 2T18P231 2T18P232 2T18P233 2T18P233 2T18P234 2T18P235 2T18P236 2T18P237 2T18P238 2T18P238 2T18P239 2T18P239 2T18P240 2T18P241 2T18P242 2T18P243	Type SD S	Quality	28:9:3:23 28:9:15:5 28:9:15:53 28:9:27:35 28:9:28:23 28:9:40:53 28:9:52:35 28:9:53:23 28:10:5:5 28:10:5:53 28:10:5:53 28:10:30:5 28:10:42:35 28:10:42:35 28:10:55:6 28:10:55:6 28:11:7:37 28:11:8:25 28:11:7:37 28:11:8:25 28:11:20:6 28:11:32:37 28:11:32:37 28:11:45:7 28:11:45:7 28:11:57:38 28:11:57:38 28:11:57:38 28:11:57:38 28:11:57:38 28:11:57:38 28:11:57:38 28:11:57:38 28:11:57:38 28:11:57:38 28:11:57:38 28:11:57:38 28:11:57:38	5:18:10:49 5:18:22:31 5:18:35:1 5:18:35:1 5:18:35:49 5:18:47:31 5:18:48:19 5:19:0:49 5:19:0:49 5:19:12:31 5:19:25:1 5:19:25:1 5:19:25:1 5:19:37:31 5:19:37:31 5:19:30:49 5:19:50:49 5:20:2:32 5:20:3:20 5:20:15:4 5:20:27:32 5:20:28:20 5:20:40:4 5:20:40:51 5:20:27:32 5:20:28:20 5:20:40:4 5:20:55:51 5:20:53:21 5:21:5:4 5:21:5:52 5:21:17:34 5:21:5:52 5:21:18:22 5:21:30:4 5:21:55:51 5:21:55:51	e 666666666666666666666666666666666666
501 2 502 2 503 2 504 2 505 2 506 2 507 2	2T1BP244 2T1BP245 2T1BP246 2T1BP247 2T1BP248 2T1BP249 2T1BP250 2T1BP251 2T1BP252	S SD S SD S SD S	Blk	28:13:0:7 28:13:0:55 28:13:12:37 28:13:13:25 28:13:25:7 28:13:25:55 28:13:37:37 28:13:38:25 28:13:50:7	5:22:7:33 5:22:8:21 5:22:20:3 5:22:20:51 5:22:32:33 5:22:33:21 5:22:45:3 5:22:45:51 5:22:57:33	6 6 6 6 6 6 6

^{**** -} DATA LOSS; GMT and MET may not be exact

Holo Number	Hologram Code	Ŧ	Hologram Type	Qualit	y GMT	MET	TGS Mode
900123456789012345678901233456789012334567890123345678901233456789012334567890123345678901233456789012345678	2T1BP253 2T1BP254 2T1BP255 2T1BP000 2T1BP001 2T1BP002 2T1BP003 2T1BP006 2T1BP006 2T1BP007 2T1BP007 2T1BP010 2T1BP010 2T1BP011 2T1BP011 2T1BP015 2T1BP016 2T1BP016 2T1BP017 2T1BP016 2T1BP017 2T1BP018 2T1BP020 2T1BP020 2T1BP020 2T1BP020 2T1BP020 2T1BP021 2T1BP021 2T1BP022 2T1BP023 2T1BP026 2T1BP026 2T1BP027 2T1BP027 2T1BP036 2T1BP037	***		Blk Blk Blk	28:13:50:55 28:14:2:36 28:14:3:24 28:14:15:6 28:14:15:54 28:14:27:36 28:14:28:24 28:14:40:5 28:14:40:5 28:14:52:35 28:14:53:23 28:15:5:6 28:15:5:54 28:15:30:6 28:15:30:6 28:15:42:37 28:15:42:37 28:15:42:37 28:15:55:55 28:16:7:38 28:15:55:55 28:16:30:53 28:16:53:23 28:16:53:23 28:16:53:23 28:17:15:6 28:17:15:6 28:17:35:23 28:17:35:23 28:17:35:23 28:17:35:23 28:17:35:23 28:17:35:23 28:17:35:23 28:17:35:23 28:17:35:23 28:17:35:23 28:17:35:23 28:18:0:53 28:18:23:22 28:18:45:4 28:18:45:51 28:19:7:32 28:19:30:3	5:22:58:21 5:23:10:2 5:23:10:50 5:23:22:33 5:23:23:20 5:23:35:2 5:23:47:31 5:23:48:20 6:0:0:1 6:0:0:50 6:0:12:32 6:0:25:2 6:0:25:50 6:0:25:50 6:0:25:50 6:0:37:32 6:0:38:20 6:0:50:3 6:0:50:51 6:1:2:33 6:1:3:21 6:1:15:4 6:1:15:51 6:1:37:31 6:1:38:19 6:2:0:49 6:2:22:32 6:2:23:19 6:2:45:1 6:2:45:49 6:3:52:30 6:3:52:30 6:3:52:30 6:3:52:30 6:4:14:58 6:4:15:46 6:4:37:29 6:4:38:17	
	2T1BP038 2T1BP039	S S				6:4:59:59 6:5:0:47	6 6

^{**** -} DATA LOSS; GMT and MET may not be exact

Holo Hologram Number Code	Ħ	ologram Type	Quality	GMT	ŅЕТ	TGS Mode
552 2T1CP040 553 2T1CP041 554 2T1CP042 555 2T1CP043 556 2T1CP044 557 2T1CP045 558 2T1CP046 559 2T1CP047 560 2T1CP048			Blk	29:0:55:0 29:1:6:42 29:1:18:24 29:1:30:6 29:1:48:45 29:2:0:27 29:2:12:7 29:2:23:48	6:10:2:26 6:10:14:8 6:10:25:50 6:10:37:32 6:10:56:11 6:11:7:53 6:11:19:33	7 7 8 8 10 10 10
560 2T1CP048 561 2T1CP049 562 2T1CP050 563 2T1CP051 564 2T1CP052 565 2T1CP053 566 2T1CP054 567 2T1CP055 568 2T1CP056 569 2T1CP057 570 2T1CP058	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		Drk	29:2:35:30 29:2:47:12 29:2:58:54 29:3:10:36 29:3:22:19 29:3:34:1 29:3:45:43 29:3:57:25 29:4:9:7 29:4:20:49 29:4:32:31	6:11:42:56 6:11:54:38 6:12:6:20 6:12:18:2 6:12:29:45 6:12:41:27 6:12:53:9 6:13:4:51 6:13:16:33 6:13:28:15 6:13:39:57	11 11 11 11 11 11 11 11
571 2T1CP059 572 2T1CP060 573 2T1CP061 574 2T1CP062 575 2T1CP063 576 2T1CP064 577 2T1CP065 578 2T1CP066 579 2T1CP067 580 2T1CP068 581 2T1CP069 582 2T1CP070	S S S S D D S D D S D D D D D D D D D D		Drk Lgt Drk Lgt	29:4:44:14 29:4:55:56 29:5:7:38 29:5:21:19 29:5:22:7 29:5:22:55 29:5:32:21 29:5:33:9 29:5:43:23 29:5:44:11 29:5:44:59	6:13:51:40 6:14:3:22 6:14:15:5 6:14:28:45 6:14:29:33 6:14:30:21 6:14:39:47 6:14:40:35 6:14:11:23 6:14:50:49 6:14:51:37 6:14:52:25	11 11 11 11 11 11 11 11 11
582 271CP070 583 2T1CP071 584 2T1CP072 585 2T1CP073 586 2T1CP075 588 2T1CP076 589 2T1CP077 590 2T1CP078 591 2T1CP079 592 2T1CP080 593 2T1CP081 594 2T1CP082 595 2T1CP083 596 2T1CP084			Lgt , -	29:5:44:59 29:5:54:26 29:5:55:14 29:5:56:2 29:6:5:28 29:6:6:15 29:6:7:3 29:6:16:29 29:6:17:17 29:6:18:5 29:6:27:32 29:6:27:32 29:6:28:20 29:6:29:8 29:6:38:35 29:6:39:23	6:14:52:25 6:15:1:52 6:15:2:40 6:15:3:28 6:15:12:54 6:15:13:41 6:15:14:29 6:15:23:55 6:15:24:43 6:15:25:31 6:15:34:58 6:15:36:34 6:15:36:34 6:15:46:1 6:15:46:49	11 11 11 11 11 11 11 11 11 11

^{**** -} DATA LOSS; GMT and MET may not be exact

Holo Hologram Number Code	Hologram Type	Quality	GMT	MET	TGS Mode
		Cut50% Cut50% Cut50%	GMT 29:6:54:39 29:6:55:27 29:6:56:15 29:7:5:41 29:7:6:29 29:7:7:17 29:7:16:44 29:7:18:19 29:7:29:21 29:7:29:21 29:7:29:21 29:7:38:47 29:7:39:35 29:7:49:49 29:7:50:37 29:7:50:37 29:7:51:25 29:8:1:40 29:8:2:27 29:8:11:54 29:8:12:41 29:8:13:29 29:8:22:55 29:8:23:43 29:8:24:31 29:8:33:58 29:8:34:46 29:8:35:34 29:8:35:34 29:8:45:48 29:8:45:48 29:8:56:50 29:8:56:50 29:8:57:38 29:9:7:53 29:9:7:53 29:9:7:53 29:9:7:53 29:9:7:53 29:9:19:43	MET 6:15:2:5 6:16:2:53 6:16:3:41 6:15:13:7 6:15:14:43 6:15:14:43 6:16:24:10 6:16:24:57 6:16:35:45 6:16:35:45 6:16:35:11 6:16:35:59 6:16:36:47 6:16:47:1 6:16:47:1 6:16:57:15 6:16:58:3 6:16:58:3 6:16:58:51 6:17:9:53 6:17:9:53 6:17:9:53 6:17:20:7 6:17:20:7 6:17:20:55 6:17:31:9 6:17:31:9 6:17:31:57 6:17:41:24 6:17:42:12 6:17:43:0 6:17:52:26 6:17:53:14 6:17:54:2 6:18:15:19 6:18:15:19 6:18:15:19 6:18:15:19 6:18:27:9	
640 2T1CP128 641 2T1CP129 642 2T1CP130 643 2T1CP131	S SD DD S		29:9:29:10 29:9:29:58 29:9:30:46 29:9:40:11	6:18:36:36 6:18:37:24 6:18:38:12 6:18:47:37	12 12 12 12

^{**** -} DATA LOSS; GMT and MET may not be exact

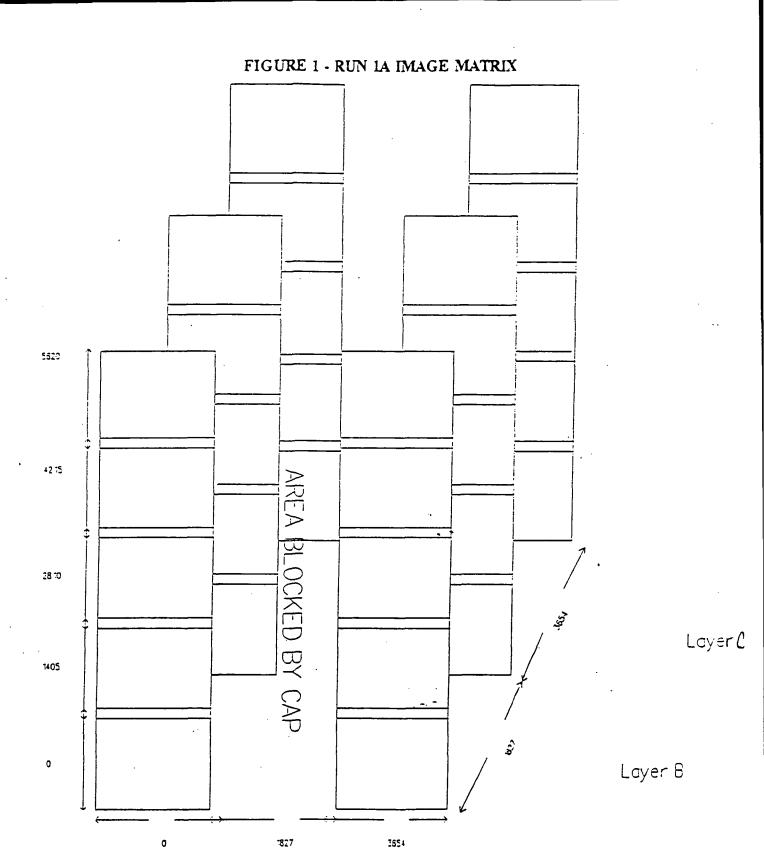
Holo Number	Hologram Code	Hologram Type	Quality	GMT	MET	TGS Mode
Number 1:567890123456789012345678901234567890123456789012345677778901234568885	2T1CP132 2T1CP133 2T1CP134 2T1CP135 2T1CP136 2T1CP136 2T1CP138 2T1CP139 2T1CP140 2T1CP141 2T1CP142 2T1CP144 2T1CP145 2T1CP145 2T1CP145 2T1CP145 2T1CP147 2T1CP148 2T1CP150 2T1CP151 2T1CP152 2T1CP153 2T1CP153 2T1CP154 2T1CP155 2T1CP156 2T1CP156 2T1CP160 2T1CP160 2T1CP161 2T1CP162 2T1CP163 2T1CP163 2T1CP165 2T1CP166 2T1CP167 2T1CP168 2T1CP168 2T1CP169 2T1CP170 2T1CP171 2T1CP171	Type SD SDD SDD SDD SDD SDD SDD SDD SDD SDD	Quality	29:9:40:59 29:9:41:47 29:10:8:25 29:10:10:1 29:10:10:1 29:10:20:15 29:10:30:30 29:10:31:18 29:10:32:6 29:10:41:33 29:10:52:34 29:10:53:22 29:10:54:10 29:11:3:36 29:11:4:24 29:11:5:12 29:11:14:39 29:11:15:27 29:11:16:15 29:11:25:41 29:11:26:29 29:11:37:31 29:11:36:43 29:11:37:31 29:11:36:43 29:11:47:45 29:11:48:33 29:11:49:21 29:11:59:35 29:11:49:21 29:11:59:35 29:12:0:23 29:12:2:28 29:12:21:40 29:12:22:28 29:12:31:55	MET 6:18:48:25 6:18:49:13 6:19:15:51 6:19:16:39 6:19:26:53 6:19:27:41 6:19:28:29 6:19:38:44 6:19:39:32 6:19:39:32 6:19:48:59 6:19:49:46 6:19:50:34 6:20:0:0 6:20:0:48 6:20:11:2 6:20:11:50 6:20:12:38 6:20:22:5 6:20:22:53 6:20:23:41 6:20:33:7 6:20:33:55 6:20:34:43 6:20:44:9 6:20:44:57 6:20:45:45 6:20:55:11 6:20:55:59 6:20:44:57 6:21:6:13 6:21:7:1 6:21:7:1 6:21:7:1 6:21:7:1 6:21:7:1 6:21:7:1 6:21:7:1 6:21:7:1 6:21:18:4 6:21:18:52 6:21:29:54 6:21:29:54 6:21:29:54 6:21:39:21 6:21:40:9	
687 688	2T1CP174 2T1CP175 2T1CP176 2T1CP177	SD DD S SD		29:12:32:43 29:12:33:31 29:12:42:58 29:12:43:46	6:21:40:57 6:21:50:24 6:21:51:12	12 12 12

^{**** -} DATA LOSS; GMT and MET may not be exact

Holo Hologram Number Code	Hologran Type	n Quality	GMT	MET	TGS Mode
690 2T1CP178 691 2T1CP179 692 2T1CP180 693 2T1CP181 694 2T1CP182 695 2T1CP183 696 2T1CP184 697 2T1CP185 698 2T1CP186 699 2T1CP187 700 2T1CP188 701 2T1CP189 702 2T1CP190	DD S S D S S D D S D D S S D D S S D D S S D D S S D D S S D D S S D D S S D D S S D D S S D D S D D S D D D S D D	Blk Exp20%	29:12:44:33 29:12:54:0 29:12:54:48 29:13:11:54 29:13:12:41 29:13:22:55 29:13:23:43 29:13:24:31 29:13:33:58 29:13:34:46 29:13:35:34 29:13:44:59	6:21:51:59 6:22:1:26 6:22:2:14 6:22:19:20 6:22:20:7 6:22:20:55 6:22:30:21 6:22:31:9 6:22:31:57 6:22:41:24 6:22:42:12 6:22:43:0 6:22:52:25	12 12 12 12 12 12 12 12 12 12 12 12 12
703 2T1CP191 704 2T1CP192 705 2T1CP193 706 2T1CP194 707 2T1CP195 708 2T1CP196 709 2T1CP197 710 2T1CP198 711 2T1CP199 712 2T1CP200 713 2T1CP201 714 2T1CP202 715 2T1CP203 716 2T1CP204 717 2T1CP205 718 2T1CP206 719 2T1CP207 720 2T1CP207 720 2T1CP208 721 2T1CP209 722 2T1CP210 723 2T1CP211 724 2T1CP212 725 2T1CP213 726 2T1CP213 726 2T1CP214 727 2T1CP215 728 2T1CP217 730 2T1CP217 730 2T1CP218 731 2T1CP219 732 2T1CP219 732 2T1CP220 733 2T1CP221 734 2T1CP222 735 2T1CP223		Blk	29:13:45:47 29:13:46:35 29:13:56:1 29:13:56:49 29:13:57:37 29:14:7:4 29:14:7:52 29:14:8:40 29:14:18:6 29:14:19:41 29:14:29:6 29:14:29:54 29:14:40:8 29:14:40:8 29:17:17:35 29:17:18:23 29:17:19:11 29:17:28:37 29:17:29:25 29:17:30:13 29:17:40:27 29:17:50:41 29:17:50:41 29:17:50:41 29:17:50:41 29:17:50:41 29:17:51:29 29:17:52:17 29:18:1:44 29:18:2:32 29:18:13:34 29:18:14:21	6:22:53:13 6:22:54:1 6:23:3:27 6:23:4:15 6:23:5:3 6:23:14:30 6:23:15:19 6:23:25:32 6:23:26:20 6:23:26:20 6:23:27:7 6:23:36:32 6:23:37:21 6:23:38:8 6:23:47:35 7:2:25:1 7:2:25:50 7:2:26:37 7:2:26:37 7:2:36:3 7:2:36:52 7:2:36:52 7:2:47:5 7:2:47:5 7:2:47:5 7:2:47:5 7:2:48:41 7:2:58:7 7:2:58:5 7:2:59:43 7:3:9:10 7:3:9:58 7:3:10:46 7:3:21:0 7:3:21:47	12 12 12 12 12 12 12 12 12 12 12 12 12 1

^{**** -} DATA LOSS; GMT and MET may not be exact

Holo	Hologram		Hologram				TGS
Number	Code		Type	Quality	GMT	MET	Mode
				_			
			_				
736	2T1CP224		S .		29:18:23:47	7:3:31:13	12
737	2T1CP225		SD		29:18:24:35	7:3:32:1	12
738	2T1CP226		DD		29:18:25:23	7:3:32:49	12
739	2T1CP227		S	Exp25%	29:18:34:49	7:3:42:15	12
740	2T1CP328		SD		29:18:35:37	7:3:43:3	12
741	2T1CP229	,	DD		29:18:36:25	7:3:43:51	12
742	2T1CP230	***	S	,	29:18:45:51	7:3:53:17	12
743	2T1CP231	****	SD .		29:18:46:39	7:3:54:5	12
744	2T1CP232	***	DD		29:18:47:27	7:3:54:53	12
745	2T1CP233	***	S		29:18:56:53	7:4:4:19	12
746	2T1CP234	***	SD .	•	29:18:57:41	7:4:5:7	12
747	2T1CP235	***	DD		29:18:58:29	7:4:5:55	12
748	2T1CP236	***	S		29:19:7:55	7:4:15:21	12
749	2T1CP237	***	SD		29:19:8:43	7:4:16:9	12
750	2T1CP238	***	DD		29:19:9:31	7:4:16:57	12
751	2T1CP239	***	S		29:19:18:57	7:4:26:23	12
752	2T1CP240	***	SD		29:19:19:45	7:4:27:11	12
753	2T1CP241	***	DD		29:19:20:33	7:4:27:59	12
754	2T1CP242	***	S		29:19:29:59	7:4:37:25	12
755	2T1CP243	***	SD		29:19:30:47	7:4:38:13	12
756	2T1CP244	***	DD		29:19:31:35	7:4:39:1	12
757	2T1CP245	***	S		29:19:41:1	7:4:48:27	12
758	2T1CP246	***	SD		29:19:41:49	7:4:49:15	12
759	2T1CP247		DD		29:19:42:37	7:4:50:3	12
760	2T1CP248		S		29:19:52:3	7:4:59:29	12


```
[RUNIA]/13
                                              [RUNIC]/21
 RUNIA RUNIA_010S1<u>/4</u>
                                              [RUNIC.RUNIC_040S]/9
 [RUNIA.RUNIA_010S.016]/20
                                              [RUNIC.RUNIC_040S.041]/20
 FRUNIA.RUNIA 0105.0171/20
                                              [RUNIC.RUNIC 0405.042]/20
 RUNIA.RUNIA_0105.018]/20
                                              [RUNIC.RUNIC 0405.043]/20
                                              [RUNIC.RUNIC_0405.044]/20
[RUNIC.RUNIC_0405.045]/20
  RUNIA.RUNIA_010S.019]/20
 RUNLA.RUNLA_0208]/10
RUNLA.RUNLA_0308.020]/20
                                           {\tt [RUNLC.RUNLC\_040S.046]/20}
 RUNLA_020S.021]/20
                                              [RUNIC.RUNIC_040S.047]/20
 (RUNIA.RUNIA_0208.032]/20
                                              [RUNIC.RUNIC_040S.048]/20
 RUNIA.RUNIA_0205.023]/20
                                              [RUNIC.RUNIC 0405.049]/20
 RUNLA.RUNLA_0205.024]/20
 RUNIA.RUNIA 0208.0251/20
 RUNIA.RUNIA 0205.0361/20
 [RUNIA.RUNIA_0308.027]/20
[RUNIA.RUNIA_0308.028]/20
                                             [RUNIC.RUNIC_2405]/9
[RUNIC.RUNIC_2405.240]/20
[RUNIA.RUNIA_020S.029]/20
                                              [RUNIC_RUNIC_240S.241]/20
                                             [RUNIC.RUNIC 2405.242]/20
                                             [RUNIC.RUNIC_240S.243]/20
                                             [RUNIC.RUNIC_2405.244]/20
[RUNIC.RUNIC_2405.245]/20
[RUNIA.RUNIA_1205.123]/20
[RUNIA.RUNIA_1205.124]/20
                                             [RUNIC.RUNIC_2405.246]/20
[RUNIA.RUNIA_1205.125]/20
                                             [RUNIC.RUNIC_2405.247]/20
[RUNIA.RUNIA_120S.126]/20
[RUNIA.RUNIA 1208.127]/20
                                             [RUNIC.RUNIC_2405.248]/20
[RUN1A.RUN1A_120S.128]/20
[RUN13]/14
[RUNIB.RUNIB 0015]/10
[RUN1B.RUN1B_001S.001]/20
[RUN1B.RUN13_001S.002]/20
[RUNIB.RUNIB_0015.003]/20
[RUN1B.RUN13_0015.004]/20
[RUNIB.RUNIB_001S.005]/20
[RUN1B.RUN1B 001S.006]/20
[RUNIB.RUNIB_001S.007]/20
[RUN13.RUN13 0015.008]/20
[RUN1B.RUN13_001S.009]/20
[RUNIB.RUNIE 010S]/10
[RUN1B.RUN13_010S.010]/20
[RUN1B.RUN1B_010S.011]/20
[RUN1B.RUN15_010S.012]/20
[RUN1B.RUN13_010S.013]/20
[RUN13.RUN13_010S.014]/20
[RUN1B.RUN1B_010S.015]/20
[RUN1B.RUN13_010S.016]/20
[RUNIB.RUNIB_010S.017]/20
[RUN13.RUN13 0105.018]/20
[RUN13.RUN13_010S.019]/20
[RUNIB.RUNIB_250S]/2
[RUN1B.RUN13_250S.250]/20
[RUN13.RUN13_250S.251]/20
```

APPENDIX B: IMAGES, MATRICES, AND ACQUISITION PROCEDURES

IMAGE ACQUISITION PROCEDURE FOR THE TGS 1A EXPERIMENT

Using the Unidex, move the camera to the reference point on the image. While in the appropriate directory, enter the CHIP program. If the camera is not in the correct plane of focus, move to it now.

CM TRANSLATION HOLOCODE ANGLE 1(PLANE A,B,OR C) **AUTOGRAB** INC X -100 GO INC X 0 INC Y -1405 GO (4 TIMES) ANGLE 3(PLANE A,B,OR C) **INC X 8400** INC Y 0 GO INC X 0 **INC Y 1405** GO (3 TIMES) **AUTOGRAB OFF** RESET X,Y **AUTO UNIDEX OFF** UNIDEX ONLINE OFF EXIT **EXIT**

Column 1

Column 3

Layer A

26

All units in steps (1 step = 5 microns).

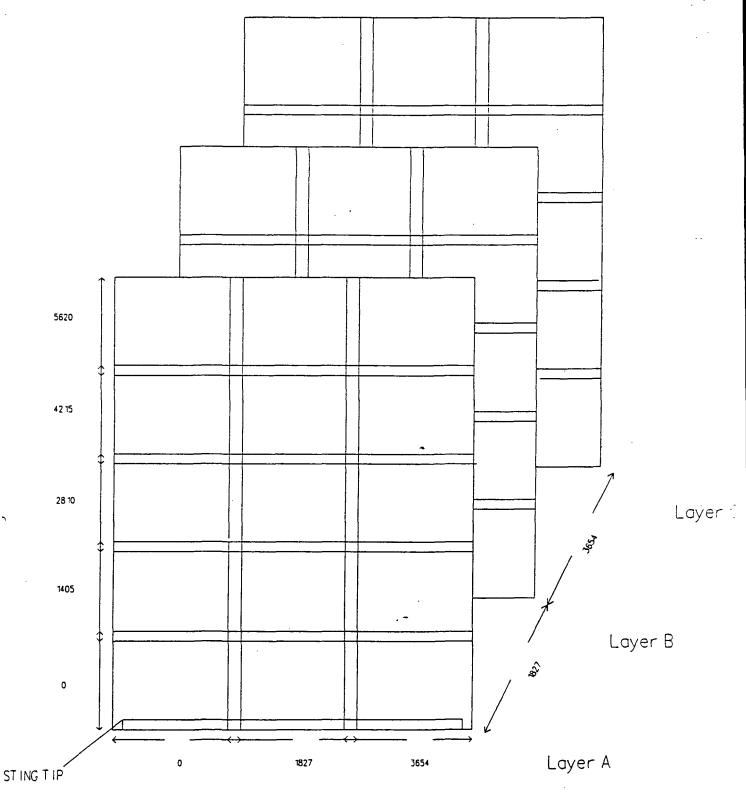

Frame size = 2030W x 1562H

IMAGE ACQUISITION PROCEDURE FOR THE TGS 1C EXPERIMENT

Using the Unidex, move the camera to the reference point on the image. While in the appropriate directory, enter the CHIP program. If the camera is not in the correct plane of focus, move to it now.

CM TRANSLATION HOLOCODE ANGLE 1(PLANE A,B,OR C) **AUTOGRAB INC X 500** GO INC X 0 **INC Y -1405** GO (4 TIMES) ANGLE 2(PLANE A,B,OR C) INC X 1827 INC Y 0 GO INC X 0 **INC Y 1405** GO (4 TIMES) ANGLE 3(PLANE A,B,OR C) **INC X 1827** INC Y 0 GO INC X 0 **INC Y -1405** GO (4 TIMES) **AUTOGRAB OFF** RESET X.Y **AUTO UNIDEX OFF** UNIDEX ONLINE OFF **EXIT EXIT**

FIGURE 2 - RUN 1C IMAGE MATRIX

Column 1

Column 2 Column 3

28

All units in steps (1 step = 5 microns)

Frame size = 2030W x 1562H

APPENDIX C: CAMERA ALIGNMENT PROCEDURE

CAMERA ALIGNMENT PROCEDURE

- 1. Insert neutral density filters so that the camera can be placed in the direct path of the reference beam without washing out the image.
- 2. Turn the glass platen so that it is perpendicular to the reference beam and the face of the camera.
- 3. Make sure that there is not too much light. To control the amount of light recorded by the camera, adjust the camera's shutter or gain as necessary.
- 4. Translate the camera to find the horizontal vacuum groove in the platen.
- 5. Make sure this groove is parallel with the table surface.
- 6. Rotate the camera in its mount so that the groove appears to be at the same height on both sides of the screen.
- 7. Start at one end of the groove and translate horizontally to make sure it remains at a constant height. If not, then make necessary adjustments to level the mount base.
- 8. Translate the camera to the vertical groove.
- 9. Start at one end of the groove and translate vertically to check that there is no horizontal movement of the groove. If so, then make the necessary adjustments to level the mount base.
- 10. Translate back to the horizontal groove and change the focus of the camera. If there is vertical movement, then adjust the screws on the base as needed and repeat steps 7 through 10 as necessary.
- 11. Mount a hologram on the platen, remove the filters, and rotate the platen back to the normal 22.5 degrees from the reference beam. Make sure the shutter and gain are set correctly.
- 12. Translate the camera in the focus direction. Repeat step 10, checking for horizontal instead of vertical movement.
- 13. If the image has an inherent tilt, adjust the rotation of the film platen.

APPENDIX D: IMAGE TRANSFER AND STORAGE PROCEDURE

IMAGE TRANSFER AND STORAGE PROCEDURE

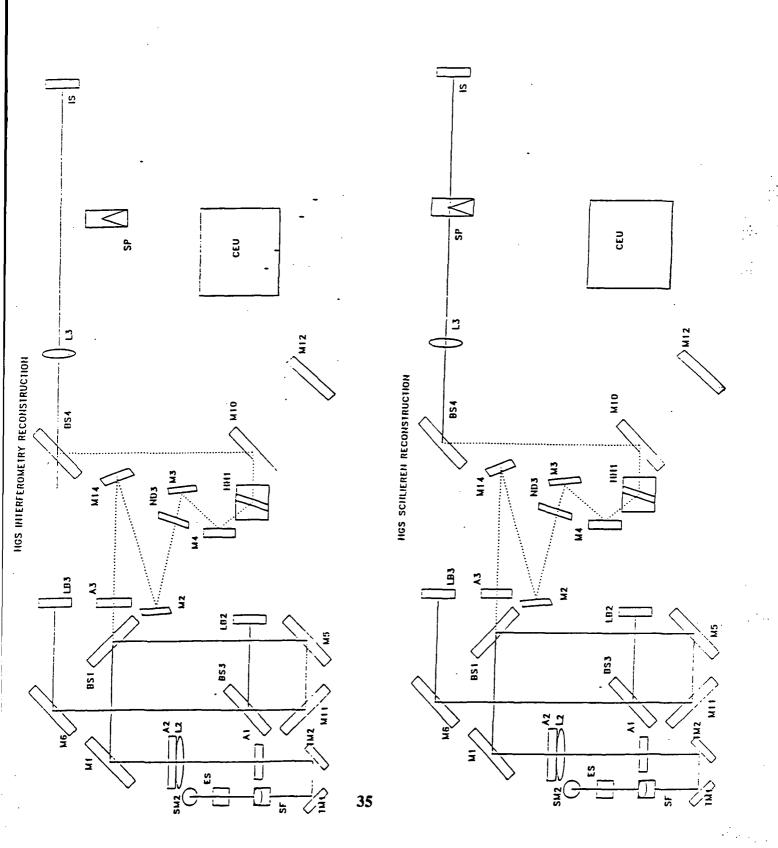
The following steps will allow the user to store image files on the optical disk housed in SSL (Space Science Lab). This procedure assumes that the images have already been acquired using the CHIP program and are stored on the Bernoulli disks.

-	Type "CD DECNET" to change the current to the network directory
•	Type "STARTNET" to start the network
-	Type the username and password at the SSLMOR VAX prompt USERNAME: PASSWORD: (The system forces a password change periodically.)
-	Create the needed directories on the SSL VAX scratchpad: CREATE /DIR SSL\$SCRATCH:[SCRATCH.2T1CP099]
-	Type "set host sam" to logon onto the SAM VAX
-	Type the username and passowrd at the SAM VAX prompt: USERNAME: PASSWORD: (The SOAR software menu should appear.)
-	Use the OMOUNT (option #3) menu selection to mount the optical disk: - accept default pseudo device name (QSA0:) - accept default physical device name (SAM\$DUA0:) - specify the disk label (iml1_mic_pab) - specify the magfile disk and filename: DISK3:[SOARDATA]MAG_HML1_PAB.\$SOAR\$ - answer "Y" to the /SYSTEM prompt - answer "Y" to the /WRITE prompt - answer "N" to the /NOSECURE prompt
+	Press <ctrl+f9> to get back to the DOS prompt</ctrl+f9>
+	Type NFT to enter the Network File Transfer program
+	Transfer the image files using the following syntax COPY/IMAGE E:\2T1AP099*.*

SSLMOR"HGS"::SSL\$SCRATCH:[SCRATCH.2T1AP099]*.*

(The previous step copies the images from the Bernoulli disk (d: or e:) to the directory specified on the SSLMOR disk.)

- + Type "exit" to return to the DOS prompt
- + Type "exit" to return to the SAM VAX prompt
- + Use the OCOPY (option #4) menu selection to copy files to the optical disk:
 - specify input file SSL\$SCRATCH:[SCRATCH.2t1AP099]*.*
 - specify output file OSA0:{RUN1A.RUN1A 090S.099}*.*
 - · answer "Y" to the /LOG prompt
 - · answer "Y" to the /VERIFY prompt
 - answer "Y" to the /ERROR prompt
- Repeat the steps marked above with "+" symbol until all the image files have been copied to the optical disk


NOTE: At this point in the procedure all the files should have been successfully copied onto the optical disk. The following steps prepare the optical disk for removal and cleans up the SSLMOR VAX scratchpad disk.

- Use the ODISMOUNT (option #5) menu selection to dismount the optical disk.
 - accept default pseudo device name (QSA0:)
 - accept default physical device name (SAM\$DUA0:)
 - enter disk label (iml1 mic pab)
- Use the LOGOFF FROM THE NODE (option #0) menu selection to escape from the SOAR software. This will put you back to the SSLMOR VAX prompt.
- Delete all the files in each subdirectory created on the scratchpad disk:
 DEL SSL\$SCRATCH:[SCRATCH.2T1AP099]*.*;*
- Change the protection for each subdirectory created on the scratchpad disk:

 SET PROTECTION SSL\$SCRATCH:[SCRATCH]2T1AP099.DIR

 /PROTECTION=OWNER:D
- Delete each subdirectory that was created:
 DEL SSL\$SCRATCH:[SCRATCH]2T1AP*.DIR;*

APPENDIX E: OPTICAL BENCH LAYOUTS

TABLE OF ABBREVIATIONS

M - Mirror	ND - Neutral Density Filter	SF - Spatial Filter	SM - Steering Mirror	SP - Schlieren Probe	TM - Turning Mirror)
	by - Beamspitter	n <u>i</u>	HH - Hologram Holder	rometric Screen	L · Lens	LB - Light Blocker

National Alegoratings and	Report Docume	lentation Page				
1. Report No.	2. Government Accession	n No.	3. Recipient's Catalog	No.		
4. Title and Subtitle Reduce Fluid Experiment	System		5. Report Date 6. Performing Organiz	zation Code		
			UAH/CAR			
7. Author(s) Gary L. Workman			8. Performing Organiz	zation Report No.		
		Ì	10. Work Unit No.			
9. Performing Organization Name and Add	7853					
University of Alabama Research Institute, I	•	11. Contract or Grant NAS8-38609	No.			
Huntsville, Alabama	35899 		13. Type of Report and Period Cove			
12. Sponsoring Agency Name and Address			Quarterly Fil	na/		
			14. Sponsoring Agency	y Code		
			NASA/MSFC			
Processing and data reduction of holographic images from Spacelab presents some interesting challenges in determining the effects of microgravity on crystal growth processes. Evaluation of several processing techniques, including the Computerized Holographic Image Processing System and the Software Development Package (SDP-151) will provide fundamental information for holographic and schlieren analysis of the space flight data.						
17. Key Words (Suggested by Author(s))		18. Distribution Statem	nent cc. CN22D AT-01	(3) (1)		
Holography, Schlieren,	Microgravity		EL64/McIntosh ONRR	(1) (1)		
Materials Processing,	Crystal Growth		NASA/Sci. & To Inf. Fac. Vaughan/UAH	ech. (1+ repro) (1)		
19. Security Classif. (of this report)	20. Security Classif. (of the	nis page)	21. No. of pages	22. Price		