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Abstract

A summary is given of the dynamic-
optimization approach to speedup learning
for logic programs. The problem is to re-
structure a recursive program into an equiv-
alent program whose expected performance
is optimal for an unknown but fixed popu-
lation of problem instances. We define the
term “optimal” relative to the source of in-
put instances and sketch an algorithm that
can come within a logarithmic factor of op-
‘timal with high probability. Finally we show
that finding high-utility unfolding operations
(such as EBG) can be reduced to clause re-
ordering.

Purpose

This paper presents an outline of the motivation, prob-
lem, methods, and results of some recent work on
dynamic optimization of programs. An earlier paper
(Laird, 1992b) contains details, experimental results,
and more complete references to related work. In ad-
dition, this paper discusses some new results, partic-
ularly the efficient handling of unfolding transforma-
tions.

Dynamic Optimization

“Speedup learning” refers generally to the problem of
learning to perform more efficiently with practice (a
form of skill learning). A particular case of speedup
learning, called dyramic oplimizalion, is the prob-
lem of improving the average-case performance of a
program without affecting its the correctness. Un-
like static optimization, dynamic optimization requires
sample runs or other experience with the distribution
of problem instances to be solved.

One approach—known variously as memoization or
caching—is to retain results of solved problems for sub-
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sequent reuse in order to reduce the amount of redun-
dant computation. Explanation-based generalization
is a familiar example of this method. Another ap-
proach is to formulate and refine useful rules about a
search process. SOAR and PRODIGY have success-
fully exploited this idea.

The approach taken here, however, is different: the
structure of the program is modified in order to im-
prove the average-case performance; and instead of
making a priori assumptions about the “average case”,
we learn what we need to know about it by statistical
sampling.

As a generic task, automated program speedup has
great potential for commercial return. Data processing
programs are very complex because they must handle
correctly every contingency, but most of these con-
tingencies, occur rarely, if ever, during the lifetime of
the program. Restructuring the program so that it
runs fastest on the kinds of problems that it encoun-
ters most often is a sensible approach, one that is best
accomplished by automation: not only is restructuring
code a difficult and error-prone process, humans users
can seldom supply more than qualitative understand-
ing of the statistical properties of the data that the
program will be processing.

Formal Problem Definition

The goal of this work is to find practical optimiza-
tion methods, not just to prove abstract or asymptotic
properties of the problem. Still, a formal statement of
the dynamic-optimization problem is useful.

Fix a computational language £. Let 7 be a fam-
ily of correctness-preserving program transformations
for programs over £. We are given as input three
things: (1) a program P in £; (2) an unknown stochas-
tic process S that can be invoked to generate prob-
lem instances for the program; and (3) a computable
cost function C that assigns a real-valued cost to any
computation.! In cases where there may be multiple

! We also need some reasonability conditions on the cost




solutions, the cost of running a program on an input
instance is taken to be the cost of finding the first so-
lution. The task is to find a program P’ such that
(1) P’ is equivalent to P in the sense that there is a
finite sequence of transformations in 7 that maps P
into P’, and (2) P’ is optimal with respect to C and S,
i.e., the expected cost of solving problems drawn from
S is minimal (as measured by C) among all programs
equivalent to P.

For concreteness we apply our work to the Prolog
language? with three transformations (defined below):
predicate unrolling, clause reordering, and unfolding of
pairs of clauses. The cost functions I used in the exper-
iments were CPU time and and the number of atomic
unifications. The problem instances have been inde-
pendently selected with replacement from some fixed
distribution, often with unbounded support (i.e., the
number of possible problems is infinite).

The transformations we admit are as follows: (see Fig-
ure 1)

e (Unrolling) Copy all clauses of a predicate p and
assign the predicate a new name, e.g., pcopy.
Some references to the old predicate may be
changed to the new name. In practice, we shall
change all references in the tails of the unrolled
clauses to refer to the new name.

o (Reordering) Reorder the clauses of a particular
predicate.

¢ (Unfolding) Unfold two clauses C; and C; by re-
solving a premise goal from C, with the head of
Cj. The result is a new clause to be added to the
program.3

These are not the only possible semantics-preserving
transformations for logic programs, but they are suf-
ficient to obtain good results in practice and simple
enough to understand mathematically.

Properly, the dynamic optimization problem defined
above is ill-posed if one can construct a Prolog pro-
gram and an input source such that there exists an
infinite sequence of equivalent programs each of which
has lower expected cost than its predecessor. In fact
one can do just this. But in practice this technical-
ity is removable by requiring only that we construct a
program whose expected cost is, with high probability,
within € of optimum, for arbitrary ¢ > 0.

More than a technicality is the fact that the (corre-
sponding decision) problem is NP-hard. Even if we

function, e.g., if one computation extends another, the
cost increases. As a minimum the cost should be a Blum
measure.

2In this paper we treat only “pure” Prolog, but the
techniques extend to most impure constructs as well.

3The standard EBG algorithm unfolds the program
through all the resolution steps used in solving a single
problem instance (4).
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Note:In the programs below only the predicates are
shown, without their arguments—e.g., p instead of

p(...).

(a) Initial program:

[€C1): p <~ p.
fc2l: p.

(b) After an unrolling: (Clauses C3 and C4 are copies
of Cy and Cy, resp., but with the predicate re-

named.
[C’1]: p <- pcopy.
[c2]: p.
[c3]: pcopy <~ pcopy.
[C4]: pcopy.
{c) After reordering the pcopy predicate:
{c’1]: p <- pcopy.
[c2): p.
[c4]l: pcopy.
[c3]: pcopy <- pcopy.

(d) Let 0 be a unifier for the underscored literals
above; after unfolding C] through Cjy, we obtain:

[c’1.1): pf.

fc2): P-

[c’1.2] p <- pcopyrest.
[ca]: pcopy.

[c3]: pcopy <- pcopy.

[c3.1]:

Here, C3,; is a copy of Cs; note that the case Cjy is
covered by the unfolded clause C7 ;.

pcopyrest <- pcopy.

Figure 1: Basic Prolog transformations

restrict the transformations to clause reordering, the
problem of determining whether or not there is a re-
ordering such that the expected cost is no greater than
C is NP-complete, as demonstrated by a reduction
from the minimal set cover problem. We are, there-
fore, unlikely to find a polynomial time solution to
the problem, but we are certainly free to look for a
polynomial-time approximation algorithm with some
performance guarantee. Indeed, this is our approach.

The Learn/Optimize Cycle

Our main point of departure from the caching ap-
proach is to separate the learning phase from the pro-
gram transformation phase. A similar approach has
been employed by Greiner and Orponen (1991) for
non-recursive query languages. During the learning
phase one collects statistics about the probabilities and
costs of success and failure of specific clauses at spe-
cific points (contexts) in the proof. The transforma-
tion phase uses these statistics to select transforma-
tions that are likely to improve performance. Apply-
ing these transformations results in a revised program




P! equivalent to the original but with lower expected
cost for the same source of problem instances.

Ours is not a one-shot learning and transforming pro-
cess, however: we repeat this learn/optimize process
starting with P’, deriving yet another optimized pro-
gram P”  and so forth. To see why this is necessary,
imagine that we subject the program in Figure 1(b)
to the learn cycle and thereupon decide to reorder the
clauses C| and C2. As a result of this change the ex-
pected costs and probabilities for C3 and C4 will also
change; hence any decision about the optimal order of
C3 and Cj should be deferred until C{ and C; have
been reordered and the statistics revised.

In general, the cycle of learning and optimizing is re-
peated, with transformations occurring at successively
deeper levels of the program, until some kind of conver-
gence is achieved. Unrolling is followed by reordering
or unfolding in order to effect optimizations at specific
points in the computation. As the program is unrolled,
the total number of clauses increases, but in practice
the physical size of the program is a negligible part
of the run time. Note that unrolling has the effect
of separating out a finite, non-recursive initial part of
the computation from the later, recursive parts. For
example:

e In the transformation from Figure 1(a) to 1(b),
the initial call (to p) is distinguished from the re-
cursive calls to pcopy. Thus our learning phase
can gather different statistics for the initial pro-
gram call to p and for the subsequent recursive
calls to pcopy.

e If, in Figure 1(a) the subgoal p from clause C,
is solved more efficiently using a different clause
order (C> before Cy) from that of the main goal
P, then the program will be unrolled as in Figure
1(b) and reordered as in Figure 1(c).

An unfolding transformation may increase by one the
number of clauses in a procedure (e.g., p in Figure
1(c-d)). The “catchall” clause (C{,) invokes a differ-
ent version of the unfolded predicate, one that omits
the clause that was unfolded (here, C4 is omitted in
pcopyrest).

Unrolling the program in this way is another distin-
guishing feature of our approach. A reasonable ques-
tion is: instead of unrolling, why not just optimize the
program by reordering the existing clauses and un-
folding some of them for some number of steps? The
reason is that advice obtained early in a long search
has exponentially greater benefit than advice obtained
later, since more of the search space will be avoided.
After initial experiments in which no unrolling was
done, I found that the additional steps of unrolling
and optimizing the initial calls in the program pro-
vided substantially greater improvement.

To summarize, the learn/optimize cycle gradually un-
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rolls the program and optimizes it for calls first at
depth 0, then at depth 1, and so on. If on some cy-
cle no optimizations can be found and depth d, the
cycle still continues by optimizing depth d + 1. The
procedure halts, not because it runs out of transfor-
mations, but because of finite limits on the accuracy
of the learning algorithm. At this point the final op-
timization is to reorder the clauses of the recursive
procedures (without unrolling).

Below, we discuss several specific issues concerning the
learn/optimize cycle.

Well-foundedness

A problem can arise when some some of the clauses
of a procedure overlap in the cases that they cover,
i.e., more than one clause can successfully resolve cer-
tain goals. Suppose, for example, that in Figure 1(b)
C3 and C4 each cover almost all provable instances of
the pcopy predicate, with equal expected cost. Then
with the clause order shown, we will charge C3 with
almost all the cost of solving pcopy goals. Cj3 thus
appears to be more expensive than C4, and the trans-
formation phase will therefore place C4 before Cj in
the revised program. But after reordering and repeat-
ing the learning phase, Cy4 is now charged for the cost
of pcopy, and the original order appears preferable.
By continuing to reverse the order of these two clauses
we could get stuck in a loop that never improves the
program. As noted above, finding an optimal ordering
of a set of clauses is NP-complete, so no exact algo-
rithm is likely to be significantly faster than testing
every possible ordering.

A simple solution to this problem is that once the
clause order of a predicate is chosen, we should never
change it again, even if subsequent learn/optimize cy-
cles make a different order seem better. It turns
out that this “greedy” procedure for clause reordering
yields an approximation whose expected cost is within
a logarithmic factor of optimal

What about unfolding transformations? For these
there is no inverse folding transformation in the admis-
sible set, so once carried out they cannot be undone.
However the order of the unfolded clauses (e.g., C1 ;,
C1 4, and C; in Figure 1(d)) may be changed on the
next cycle. Below we shall show that the question of
whether the statistics can mislead us into performing a
sub-optimal unfolding transformation can be finessed,
and the search for unfolding transformations reduces
to one of finding good clause orderings.

Convergence

As discussed above, it may happen that as a result
of a transformation the measured expected cost of the
program actually increases on the next cycle; even so,
we continue the cycle even after a temporary increase,
because transformations on subsequent cycles can re-




duce the mean cost of the program substantially. Con-
sequently, this is not a hill-climbing procedure.

If the learning algorithm were to continue to unroll
clauses and collect statistics on them to arbitrary ac-
curacy, the learn/optimize cycle might never halt: ever
deeper transformations might be found that continue
reducing the expected cost of the program, ultimately
by very small amounts. In practice, however, it is the
learning algorithm, specifically its finite sample-size
limits, that bounds the cycle. The deeper one goes
in the search tree, the lower the probability that the
nodes will be encountered on any given problem, and
hence the larger will be the number of instances that
must be solved in order to estimate the likelihoods and
costs accurately.

Slightly more formally, one can characterize the pro-
gram to which the process converges by defining a
program to be d-optimized if all its calls at depths d
and below are optimal. Then if the learning algorithm
provides correct statistics (in the PAC sense), the op-
timized program will be (probably approximately) d-
optimized to some depth d.

Order of Transformations

Suppose that for a subgoal at some point in the pro-
gram, an unfolding transformation and a reordering
tranformation would each be effective, according to the
results of the most recent learning phase. Which trans-
formation(s) should we perform? My intuition tells
me that the clauses should be reordered before any of
them should be unfolded with subsequent clauses, but
initially I had difficulty justifying this fact. Below Il
argue why it is in fact true.

The Learning Algorithm

The statistics collected during the learning phase are
driven by the need to predict the efficiency of program
transformations during the subsequent phase. Con-
sider the predicate p in Figure 1(b) and the decision
about the ordering of the clauses Cj and C3. The
solution to this problem is well known: we need to es-
timate for each clause the a priori probability p; that
the clause will succeed (independently of whether the
other clause leads to a solution) and of the expected
cost C; of applying the clause (regardless of success or
failure). Then if we change the program by placing
these clauses in decreasing order of p;/C;, the order-
ing of the p clauses is optimal—provided no two clauses
cover (solve) the same problem instance. If multiple
clauses cover some instances, we still adopl the same
ordering: although this may not be an optimal order-
ing, it is (as noted above) a greedy approximation to
optimal. On subsequent passes of the cycle, the or-
dering of the clauses C] and C3 will not be altered,
so statistics on them need not be collected. Instead,
clause C3 will be unrolled (C4 has no subgoals to un-
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roll) and statistics p; and C; will be collected for clauses
Cs and C4.

Efficient statistical methods for estimating p and C
for a clause to within any given accuracy and confi-
dence are well known, and a sufficient sample size is
easily computed. For some clauses, p may be fall be-
low the accuracy limit and thus be estimated as zero:
such clauses are not optimized further. Typically the
deeper one gets in the program (i.e., the more unrolling
transformations have been performed), the smaller the
likelihood that any particular problem instance will
invoke that clause, and the larger the sample size re-
quired to collect the needed statistics. Consequently
we impose a lower bound on the absolute likelihood
that a clause will be invoked and refuse to optimize
clauses whose likelihood falls below that threshold. It
turns out (Laird, 1992b) that this lower bound is not
enough to guarantee termination of the cycle: we must
also impose an absolute upper bound on the depth
of the unrolling. In practice, however, this absolute
depth will probably not be reached.

Finally we are left with optimizing the recursive
clauses (like pcopy in Figure 1(d)). Unlike the clauses
that precede it in the computation, such clauses are
invoked multiple times. A Markov-tree learning algo-
rithm (called the TDAG algorithm) is used to com-
pute the probabilities of success for these recursive
procedures. Unfortunately there is no polynomial
time bound on the sample size needed to estimate the
probabilities for such clauses, since for Markov pro-
cesses successive events are not statistically indepen-
dent. The sample size needed to ensure the accuracy
of the statistics is highly dependent upon the struc-
ture of the underlying call graph and the transition
probabilities determined by the input source. As a
practical approach, I have determined this sample size
heuristically, with good results.

Finding Unfolding Transformations

We have seen that the necessary statistics and the
corresponding procedure for selecting good clause-
reordering transformations are straightforward, and
that we can quantify the relationship between the
optimal order and our approximation to it. What
about unfolding transformations? In a previous pa-
per (Laird, 1992a) I outlined a rather complicated
algorithm for finding unfolding transformations, with
special statistics collected for the purpose during the
learning phase. But it turns out that virtually the
same algorithm as for reordering transformations ap-
plies. In fact, unfolding can be viewed as a special case
of reordering.

The simple program in Figure 1(c) represents the SLD
search procedure for resolving goals with predicate p.
In Figure 2 a portion of the depth-first search tree for
this program is shown explicitly. The SLD-resolution
procedure searches this tree in pre-order left-to-right.
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Figure 2: Search tree for the program of Fig. 1(c).
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Figure 3: Reordered Search tree.

{c’1cal: pd.

[c2]: P-

[c’1C3]: p¢ <- pcopye.
fc3]: pcopy <- pcopy.
[cal: PCopy -

Figure 4: The program of Fig. 1(b) reordered to depth
two, according to Fig. 3. The substitution 8 is that
shown in Fig. 1(d), unifying the pcopy consequent of
clause C] with the head of C,;. The substitution ¢
unifies the pcopy term in clause C] with the head of
clause Cjs.

In the figure each node is labeled with the sequence of
clauses used to resolve subgoals. For example, to reach
the node labeled C’1:C3, one resolves the p-goal using
clause Cj, tries to resolve the resulting pcopy-subgoal
using clause Cy4 but fails, backtracks, and tries again
using clause Cj.

The order of the nodes C{ and C; at depth 1 is estab-
lished, as described above, by placing them in order
left-to-right with decreasing values of p/C. The or-
der of the clauses C3 and C4 below C] is determined
similarly.

Note that the option to consider node C2 after node
C’1- C4 but before C’1- C3 is not available if we may
only reorder clauses for a single predicate. It is, how-
ever, if we consider reordering all the nodes at depths
< 2—i.e., the nodes C’1- C4, C’1. C3, and C2. To do
so we need to estimate the p/C values for the pairs of
steps that lead to the depth-two nodes—e.g, we need
to find the likelihood that a successful solution will be
found using clause C’1 followed by C4, in comparison
to the other two possibilities of C’1 followed by €3
or C2. Suppose we do this and we discover that the
p/C value for C2 is between that of the two nodes at
depth two; then we should reorder the tree as in Figure
3. The corresponding program is shown in Figure 4.
Note that there are now three clauses for the predicate
p, since there are three nodes of depth < 2 in the tree;
the first and third clauses have each been unfolded one
level.

This example illustrates how appropriate unfolding
transformations can be found using the same learning
statistics as for reordering. Actually, there is a mi-
nor difference between reordering one-step nodes and
two-step nodes: in the event of failure, the program
of Figure 4 must unify the p goal with the head of a
p-clause three times, instead of two in Figure 1(c); this
small additional expense can be estimated and taken
into account in the decision about whether to change
the order of the tree in Figure 2 to that of Figure 3.

Although we have treated only a special case, the gen-
eral procedure for determining unfolding transforma-
tions is the same: Determine the best ordering for pairs




of resolution steps instead of single steps; if in the re-
sulting order a clause at the lower level has only one
immediate child node (e.g., the nodes labeled C’1 in
Figure 4), go ahead and unfold. By iterating this pro-
cedure during the learn/optimize cycle, one can end
up unfolding multiple steps into a single clause, with-
out the need to estimate statistics for more than two
steps at a time.

Conclusion: Where do we go from here?

The work described here builds upon and extends the
work of many researchers, including Smith and Gene-
sereth (1985), Prieditis and Mostow (1987), Gooley
and Wah (1989) , and Greiner and Orponen (1991).
The principal contributions are as follows:

e We have shown that recursive programs can be
dynamically optimized efliciently and effectively.
Previous work has reported difficulties speeding
up recursive programs.

o The nature of that optimization can be quantified
better than previous heuristic methods were able
to.

" We have shown how search control can be embed-
ded in the program instead of being added on in
the form of a time-consuming meta-theory that
must be evaluated outside the actual program.

o By averaging over several runs we have removed
the dependency of the resulting optimized pro-
gram on the order of the examples. This has been
a consistent problem with caching methods.

e We have integrated the utility estimates into the
learning procedure: no transformations are even
generated unless their utility justifies it with high
probability. The learning data and the utility
evaluation data are one and the same.

o We have eliminated all ves-
tiges of the “generalization-to-N” anomalies and
tricky “operationality” decisions that occur with
EBG-based methods. In fact, unfolding itself has
been reduced to a minor transformation that oc-
curs after consecutive pairs of clauses have been
reordered.

This work is still in progress. Future plans call for
redoing the previous dynamic optimizer for Prolog to
incorporate the improvements described here and to
handle many of the so-called impure constructs in Pro-
log, including negation-as-failure, call, and and or.
Mathematical analysis of this approach is still incom-
plete, and we cannot yet argue that a strategy different
from unrolling and reordering will not provide superior
optimization.

Finally, for dynamic optimization of programs to be
of commercial value, we must be able to optimize pro-
grams written in commercial programming languages.
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Prolog is not a commercial data-processing language
and, in my estimation, is not likely to become one.
The method described here does not apply to proce-
dural languages like C and Fortran, where order of
decisions cannot be changed. One could add non-
deterministic search primitives to such languages, but
such new constructs are unlikely to gain wide accep-
tance. Constraint-logic programming, on the other
hand, is growing in popularity as a programming lan-
guage, and it is quite likely that these optimization
methods are applicable. Also, very similar dynamic-
optimization problems occur in database query lan-
guages, where further opportunities for commercial-
ization may be found.
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