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Summary

The influence of a surface roughness element in the form of a two-dimensional hump on
the transition location in a two-dimensional subsonic flow with a free-stream Mach number up
to 0.8 is evaluated. Linear stability theory, coupled with the ¢V transition criterion, is used in
the evaluation. The mean flow over the hump is calculated by solving the interacting boundary-
layer equations; the viscous-inviscid coupling is taken into consideration, and the flow is solved
within the separation bubble. The effects of hump height, length, location, and shape; unit
Reynolds number; free-stream Mach number; continuous suction level; location of a suction
strip; continuous cooling level; and location of a heating strip on the transition location are
evaluated. The N-factor criterion predictions agree well with the experimental correlation of
Fage [Fage, A., Brit. Aero. Res. Council, 2120, 1943]; in addition, the N-factor criterion is more
general and powerful than experimental correlations. The theoretically predicted effects of the
hump’s parameters and flow conditions on transition location are consistent and in agreement

with both wind-tunnel and flight observations.
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1. INTRODUCTION

Roughness elements of varying shapes and dimensions exist on different aerodynamic
surfaces. These elements contribute to an increase in drag, so that the main issue becomes the
allowable shapes and sizes of these roughness elements such that the flow remains laminar. The
dimensions of some unavoidable roughness elements on aerodynamic surfaces can be reduced,
others cannot.! Therefore, control of the flow in the presence of roughness elements of various
shapes and dimensions and under different flow conditions is important. Manufacturing and

installation tolerances have not been developed to address this issue.

In addition to surface waviness, equally important types of surface roughness clements
include steps (both backward- and forward-facing), gaps, and three-dimensional roughness
elements such as flush screw-head slots and incorrectly installed flush rivets. For cxample,
steps exist at the joints between the wing and control surfaces on airplane flaps. The influences
of the compressibility, the shapes of roughness elements, and the wing sweep on manufacturing

tolerances for laminar-flow surfaces are still essentially unknown.

The mechanisms by which surface imperfections and roughness elements contribute to the
transition to turbulence in two-dimensional flows include enhancement of receptivity of free-
stream turbulence and acoustic disturbances:? linear amplification of Tollmien-Schlichting (T-S)
waves and shear-layer instability for separated flows:>*> Gortler instability; enhancement of
secondary parametric excitations of both the subharmonic®’ and fundamental types; nonlinear
interactions that have been captured partially by numerical simulation;®? and finally, the inter-
action between two or more of the above mentioned mechanisms. Furthermore, as was pointed
out by Spence and Randall,!® in the presence of multiple, closely spaced surface waves, the
possibility of a resonance between the critical T-S frequency and the surface waviness frequency
exists. Klebanoff and Tidstrom!! conducted an experiment to study the mechanisms by which

a two-dimensional roughness element induces boundary-layer transition. They found sufficient



evidence to conclude that the effect of a two-dimensional roughness element on boundary-layer
transition can be regarded as a stability-governed phenomenon. An interesting cxperimental study
on transition enhancement mechanisms, including the secondary instability caused by distributed

roughness, was conducted by Corke et al.1?

The difficulty in studying the stability characteristics of flows over roughness elements that
might induce flow separation is in solving the mean-flow problem. After the velocity and
temperature profiles are calculated, the stability analysis of the computed mean flow is almost
standard. The mean-flow problem can be solved with a triple-deck formulation, an interacting
boundary-layer (IBL) theory, or a Navier-Stokes (NS) solver. For flow over smooth roughness
elements with separating and reattaching boundary layers, the IBL can be used to solve for the
mean flow. If the edges of the roughness element are sharp or if the size is large enough to induce
massive global breakaway separation and vortex shedding, then the triple-deck formulation and
the IBL are not applicable, and a NS solver must be used. To accurately predict the flow field
with an NS solver in the presence of roughness elements that might induce separation, the grid
must be fine enough so that important flow structures are not smeared by the truncation errors
and the artificial dissipation. However, the number of flow cases that must be investigated is
very large, which makes this method very expensive. Because sharp roughness clements exist
on aerodynamic surfaces, the numerical study of the stability of the flow over these surfaces and
the prediction of the transition location require the use of the full NS equations. We point out
that the nonsimilar boundary layer (NSBL) theory, which is capable of predicting the location
of separation, fails to march through it. Moreover, the NSBL fails to accurately predict the
mean flow over roughness elements that do not even induce separation because of the abrupt
change in the geometry that causes viscous-inviscid coupling and an upstream influence that is

not accounted for by the parabolic NSBL equations.

The mean-flow profiles generated by IBL and the stability characteristics compare well with



those generated by an NS solver when a fine grid was used.!® The IBL was less computationally
demanding than the NS solver by one to two orders of magnitude. Large discrepancies between
the IBL computations and the NS results were found when a coarse grid was used for the NS
computations. Moreover, the IBL was used to compute incompressible and compressible flows
over smooth steps, wavy surfaces and humps, convex and concave corners, suction or blowing
slots, heating or cooling strips, and finite-angle trailing edges. In most of these applications,
separation bubbles and upstream influences exist; the comparisons of the IBL results with the

solutions of the NS equations and the experimental data showed good agreement.

Previous investigations of the stability and transition to turbulence in boundary-layer flow
over roughness elements have been primarily experimental. However, the purpose of many of
these studies has been the determination of only the location of transition in a naturally occurring
disturbance environment under different flow conditions. Thus, neither the spectral content
nor the growth and properties of instability waves were examined. In the early experiments,
the transition location was identified as the appearance of turbulent bursts downstream of a
roughness element. Some of these natural transition experiments were, in fact, flight experiments
performed on swept and unswept wings; therefore, they include the effects of pressure gradients,
compressibility, and occasionally surface suction, multiple roughness elements, three-dimensional
roughness elements, and sharp roughness elements. In spitc of these complications, these
studies provide some empirical criteria for the prediction of transition location in the flow over
roughness elements. 4! However, these criteria do not provide an understanding of the physical
mechanisms involved in order to eventually control them. Moreover, these criteria are valid only

for the specific configurations and conditions relevant to that particular experiment.

Nayfeh et al3  conducted theoretical research on the stability characteristics of two-
dimensional incompressible flows over two-dimensional humps and dips on a nominally flat

surface. They compared their results with the natural transition experimental data of Walker and



Greening reported in Fage.'* Nayfeh et al.® followed a primary wave with a fixed physical
frequency from the onset of instability (branch I) up to the experimentally determined location
of transition, computed the value of the N-factor at that location, then changed the frequency to
another value and repeated the calculation. The frequency that lead to the maximum value of
the N-factor at the experimentally determined transition location was taken as the numerically
predicted frequency of the disturbance wave that causes transition. Nayfeh et al.3 compared
their results with 14 sets of experimental results for humps and 6 sets of experimental results
for dips. The calculated N-factor values at the experimentally determined location of transition
in the case of the humps varied from N = 7.4 to N = 10.0, with an average value of N = 8.5.
In the case of dips, they varied from N = 6.7 to N = 9.2, with an average value of N = 8.0.
This comparison increases confidence in the ¢V method as a tool for predicting the transition
location. As we mentioned earlier, the calculations of Nayfeh et al.,? as well as the experimental
data of Walker and Greening, are for the incompressible case. Use of the ¢ method to predict
the location of transition is more successful in incompressible flows than in compressible flows
because the growth rates of the instability waves in incompressible flows are larger, which causes
the location where N reaches a certain value to be less sensitive to variations in that value. In
the presence of roughness elements that might cause separation, the growth rates are much larger
than in the case of smooth flat plates; in this case, the ¢¥ method would be expected to be more
successful. Despite some differences between the approaches of Cebeci and Egan* and Nayfeh
et al.,? the results from both approaches (including the comparisons with the experimental data

of Walker and Greening) agree.

Dovgal and Kozlov'® conducted a controlled (forced) experiment to study the stability
characteristics of incompressible flow over roughness elements. They placed a vibrating ribbon
upstream of a roughness element to introduce a two-dimensional small-amplitude disturbance

into the developing boundary layer. The different shapes considered in the experiment included



a hump, a forward-facing step, and a backward-facing step. In the presence of a hump, the
experimental transverse variations in the magnitude of the streamwise velocity component of
the disturbance measured by Dovgal and Kozlov have the same three-peak character found
numerically by Nayfeh et al.3  Furthermore, Masad and Nayfeh® calculated the transverse
distribution of the phase of the streamwise velocity component disturbance in the presence
of a hump; it exhibits the same two-jump character also found by Dovgal and Kozlov. In the
presence of a step, Dovgal and Kozlov!® reported the streamwise variation of the integral of the
growth rates. Masad and Nayfeh5 compared their results with all 12 cases presented by Dovgal
and Kozlov. The overall agreement between the two studies was very good; these results support
calculation of the mean flow with IBL and the use of quasi-parallel linear stability theory for

flows that separate in the presence of a roughness element.

In this work, we study the effect of a single two-dimensional roughness element (a hump)
on the predicted transition location in the subsonic boundary-layer flow over the roughness
clement. The transition location is correlated with the location at which the amplification factor
reaches a value of 9 within the context of the empirical €/ transition criterion. The separated or
attached mean flow over the roughness element is computed with interacting boundary layers.
The following effects are evaluated: the hump height, length, location and shape; the flow
frce-stream unit Reynolds number; the flow free-stream Mach number; the level of continuous
suction; the location of a suction strip; the level of continuous cooling; and the location of
a heating strip on the predicted transition location. The variation of the predicted transition

location with some of these parameters is compared with an existing experimental correlation.



2. FORMULATION AND METHODS OF SOLUTION

2.1 The Mean Flow

We consider a two-dimensional compressible subsonic flow (with a free-stream Mach number
no larger than 0.8) around a single smooth two-dimensional hump on a flat plate (Figure 1). We

consider a two-parameter family of symmetric hump shapes given by

y=y"/L" = (R/L*) f(z) = h f(2) (1)

where

z=2(z* — L") /X =2(z - 1)/) (2
and

0, if |2|>1 3)

fe) = { 1—322 4+ 2z)%, if || <1

Here, h” is the symmetric hump dimensional height, and )\” is the dimensional width of the
hump with the center located at x* = L.

‘The foughness element under consideration could prbduce separation bubbles behind it. In
such flows, both a strong viscous-inviscid interaction and an upstream influence exist. The
conventional boundary-layer formulation fails to predict such flows; therefore, we use the IBL
theory to analyze them.

In the IBL theory, the Prandtl transposition theorem is used with the Levy-Lees variables
to obtain the nonsimilar boundary-layer equations and the corresponding boundary conditions.
The upstream initial condition is taken to be that of a flow over a smooth flat plate. To account
for the viscous-inviscid interaction, the inviscid flow over the displaced surface is calculated
with the interaction law, which relates the edge velocity to the displacement thickness. Then,
the thin-airfoil theory is used to supply the relation between the inviscid surface velocities with

and without the boundary layer; it is also used to calculate the inviscid surface velocity in
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the absence of the boundary layer. The continuity equation is then manipulated and combined
with the interaction law to yield a single equation that can be solved simultaneously with the
nonsimilar boundary-layer equations and boundary conditions.

2.2 Stability of the Mean Flow

In the stability analysis, small unsteady two-dimensional disturbances are superimposed on
the mean flow quantities, which are computed with the IBL theory described in section 2.1.
Next, the total quantities are substituted into the NS equations, the equations for the basic state
are subtracted out, the quasi-parallel assumption is invoked, and the equations are linearized
with respect to the disturbance quantities. The disturbance quantities are assumed to have the

so-called normal-mode form so that a disturbance quantity § is
é: g(y)ei(ar—wt) 1 ce (4)

where cc denotes the complex conjugate of the preceding term. The streamwise coordinate is x,
t is the time, and o and w are generally complex. In the stability analysis and the computations
throughout this work, the reference length is §F = \/v&,@*/U%, the reference velocity is
Uz, the reference time is 87 /U, the reference temperature is the free-stream temperature
T2, the reference viscosity is the free-stream dynamic viscosity s, and the pressure is made
nondimensional with respect to p* U2, where p? is the frec-stream density. The viscosity varies
with temperature in accordance with Sutherland’s formula; the specific heat at constant pressure
Cp* is constant, and the Prandt] number Pr is constant and equal to 0.72. For temporal stability,
« is real, and w = w,+iw; is complex, in which the real part w, is the disturbance frequency
and its imaginary part w; is the temporal growth rate. For the spatial stability considered in this
work, w is real, and o = a,+iq; is complex, in which the real part a, is the streamwise wave
number and the negative of the imaginary part —c; is the spatial growth rate. The frequency

w is related to the dimensional circular frequency w” through w = w*87/U%,, which leads, with



the definition of §,", to

w=FR (5)
where
w*vl,
F U—gg (6)
and
R=U8" /vy = Vz Re (7

Because w” is fixed for a certain physical wave as it is convected downstream, F is also fixed

for the same wave.

The normal-mode form given above separates the streamwise and temporal variations. The
resulting equations and corresponding boundary conditions form an eigenvalue problem that can
be solved numerically. For the results presented in this work, the computations were made with
an adaptive, second-order accurate, finite-difference scheme with deferred correction.!” The
disturbances considered in this work are two-dimensional because, as pointed out by Mack,!®
disturbances in subsonic (Mo, up to 0.8) boundary layers are most amplified when they are
two dimensional.

The quasi-parallel assumption that we used in the stability analysis was justified by Nayfeh
et al.3-® for a flow over a roughness element by arguing that the wavelength of the disturbance,
in the presence of a roughness element, is of the same order as the disturbance wavelength in
a flow over a smooth flat plate. If we consider a hump of a height » = 0.003, a length A =
0.2, and a free-stream Reynolds number R = 10°, then at the corresponding most dangerous
frequency of F = 64x107° our calculations show that the streamwise wave number o, within
the domain of the hump varies in a range of 0.1 to 0.2. If we average o, to be 0.15 in the domain
of the hump, then nearly five disturbance wavelengths exist within the extension of the hump.

Elli and Dam? questioned the validity of the quasi-parallel assumption and the validity of using



the linear stability theory in the case of separating flow over a roughness element. However,
Bestek et al.® performed direct numerical simulations of separating flow over a backward-facing
step and compared the results with those obtained with the linear quasi-parallel stability theory.
Both results were in very good agreement. Furthermore, this agreement between the results of
Masad and Nayfeh® with the quasi-parallel linear stability theory and the experimental data of
Dovgal and Kozlov!® for separating flow over forward- and backward-facing steps reinforces the
belief that the quasi-parallel assumption is reasonable. Similar comparisons in this paper with

the experimental correlation of Fage'* (section 3.3) also support this point of view.



3. RESULTS

The presence of a roughness element on a flat plate creates local regions of favorable and/or
adverse pressure gradients. Because the pressure gradient has a direct effect on the stability of
the flow, the streamwise variation of the pressure coefficient must be considered in the vicinity of
the roughness element. In Figure 2, a typical streamwise distribution of the pressure coefficient
for a flow over a hump is compared with that for a flow over a smooth flat plate. An adverse
pressure gradient region exists ahead of the hump, which is followed by a region of favorable
pressure gradient that extends over a very short distance; finally, a strong adverse pressure
gradient follows, which causes the boundary layer to separate. Thus, the flow is expected to
become more unstable ahead of the hump (Figure 3), become more stable over the short favorable
pressure gradient region, and then become more unstable again in the separation region. For
certain parameters of the hump or under certain flow conditions, three unstable regions are
possible because of the two adverse pressure gradient regions and the smooth flat-plate region.
The splitting of the unstable regions can also occur because of the existence of flow control

devices that utilize surface suction or heat transfer.

In the next sections, we quantify the effects of the hump height, length, location, and shape,
as well as the effects of the flow unit Reynolds number, compressibility, suction, and heat
transfer on the predicted transition location. In discussing the effects of all of these parameters
and conditions, we will distinguish between how each parameter or condition enhances separation
and how it affects the location of transition. As we will see in some of the next sections, the
relation between separation and transition is not always a simple one.

3.1 Effect of Roughness Dimensions

The relation between the transition location and the height of a roughness element is
important. Earlier researchers who studied this problem believed that transition was located

at the roughness element when the height of the element was large and that the roughness
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element had no influence on transition when the height of the element was small. However,
Fage (sce reference 14) has shown experimentally that the point of transition moves continuously
upstream as the height of the roughness element is increased until it ultimately reaches the
position of the roughness element itself. In a discussion of the influence of roughness on
wransition, Schlichting!® pointed out the necessity of determining whether a maximum height
of roughness elements exists below which no influence on transition occurs. If such a critical
height exists, then the allowable tolerances on different unavoidable roughness elements on
aerodynamic surfaces will be determined based on this critical height. Such a critical height
is expected to depend on the free-stream unit Reynolds number, the Mach number, the length
and shape of the roughness elements, the roughness location, suction level, and heat transfer
level. To address this issue with linear stability theory, we use the &V transition criterion; the
predicted transition location is taken to be the point where the amplification factor (N-factor)
of the disturbances reaches the value of 9 in the shortest distance measured from the leading
edge. The value of Rey at that location is denoted by (Rex)n=g. Thus, we calculated the values
of (Rey)n9 and the corresponding frequencies for several hump heights that range from a zero
height (no hump) to the nondimensional hump height 2 = 0.006. Recall that the hump height
is made nondimensional with respect to L*, which is the distance from the leading edge of the
plate to the center of the hump so that k = h*/L". Variation of (Rey)y=¢ with the hump height
is shown in Figure 4, in which each point where the calculations were made is denoted by a
circle; the circles were then joined. The filled circles in all figures indicate the occurrence of

separation, and the hollow circles indicate that the flow remained attached.

Figure 4 clearly shows that the theoretically predicted transition location moves continuously
upstream as the hump height is increased. However, the variation is far from linear. The curve
that describes the movement of the location of N %: 9 becomes increasingly steeper as the

hump height increases; shortly after the flow separates, it becomes the steepest. When the
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hump height exceeds a certain value that is larger than the value responsible for separation,
the location where N first reaches 9 moves very slowly upstream toward a point that is only a
short distance downstream of the center of the hump (the location where the separation bubble
starts). At such large heights of the hump, the instability becomes explosive, and transition
is expected to occur via “bypass.” Note in Figure 4(b) that as the hump height increases the
most dangerous frequency increases. Close to separation, when the predicted transition location
moves considerably upstream, the most dangerous frequency increases sharply. Klebanoff and
Tidstrom'! found that close to the roughness the fluctuation is composed of relatively higher

frequencies.

In addition to the height of the hump, the length seems to influence the predicted transition
location. However, the role of the hump length is opposite that of the hump height. If the
nondimensional length A = A”/L" of a hump at a fixed height is increased, then the location
where the N-factor first reaches a value of 9 is shifted downstream (Figure 5(a)). This result
implies that if the height of the roughness element cannot be reduced, then transition can be
delayed by increasing the length of the roughness element. If the roughness element becomes
so short that its length falls below a certain critical value (smaller than the value that induces
separation), then the upstream movement of the transition location slows down considerably
and the predicted transition location approaches a point shortly downstream of the center of the
roughness element, but does not move upstream of it. As the predicted transition location moves
upstream because of the decrease in the length of the hump, the most dangerous frequency
increases (Figure 5(b)).

3.2 Effects of Unit Reynolds Number and Roughness Location

Another parameter of importance that affects the location of transition in a flow over a
roughness element is the free-stream Reynolds number Re given by Re = U, L*[v3,, where UZ,

is the free-stream dimensional velocity, v, is the free-stream dimensional kinematic viscosity,
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and L* is the dimensional distance from the leading edge to the center of the roughness element.
An increase in the value of the free-stream Reynolds number at fixed 2 and A causes the flow over
the hump to separate at lower heights or larger lengths of the hump. The effect of Re is actually
a combination of two separate effects: the free-stream unit Reynolds number Re = UX /v,
and the location of the center of the roughness element L*. As pointed out by Morkovin, 2
the effect of the unit Reynolds number on the stability characteristics of any flow is always a
factor whenever the mean flow is nonsimilar. To study the effect of the flow unit Reynolds
number, Re is varied by varying U% /v, and L™ is fixed. Therefore, to maintain the same
dimensional roughness height h*, the nondimensional roughness height h = h*/L* must also
remain fixed. On the other hand, to study the effect of the roughness location, Re is varied
by varying L”, and U /v%, is fixed. To keep the dimensional roughness height h* fixed, the
nondimensional roughness height A = h*/L* must vary in accordance with the variation of L™

Similar arguments apply for the roughness length.

The effect of varying the unit Reynolds number on the predicted transition location in flows
over two humps of different heights is shown in Figure 6(a). Low values of Re correspond to
locations far upstream of branch I of the neutral stability curve. In the absence of roughness,
the waves at these locations are strongly damped. The adverse pressure gradient induced by the
roughness element causes the waves to become less damped, but they remain damped or weakly
amplified. The net result is the lessening of the effect of the roughness element. Therefore,
at low values of Re, the predicted transition location for the flow over the roughness element
approaches that of a flow over a smooth flat plate. On the other hand, large values of Re
correspond to locations far downstream; therefore, the N-factor reaches a value of 9 before
the roughness element is reached, and the predicted transition location for the flow over the

roughness element again approaches that of a flow over a smooth flat plate.
Moderate values of Re correspond to locations within the unstable regions; therefore, the
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existence of a roughness element and its adverse pressure gradient causes the predicted transition
location to move upstream in comparison with the case of a flow over a smooth flat plate. This
effect on transition was recognized in the flight experiments of Holmes et al.! In an explanation
of the strong beneficial effect of higher altitudes on allowable step heights and gap widths, they
noted that, “The increases in tolerances with increased altitude result directly from the decrease
in unit Reynolds number. As the unit Reynolds number decreases, the length of the laminar
separation regions associated with the steps decreases, reducing the growth of the inflectional

instability and increasing the allowable step height.”

The sharp drop in the predicted transition Reynolds number in Figure 6(a) at an Re of
approximately 3 million is caused by the movement of the location where N reaches a value of 9
from the downstream unstable region (created by an adverse pressure gradient) to the upstream
unstable region (created by the adverse pressure gradient and the smooth flat-plate instability).
Because the two regions are separated by a stable region that is caused by the favorable pressure
gradient (created by the roughness clement), the value of the predicted transition location is
expected to jump. Note in Figure 6(a) that at large values of the unit Reynolds number the flow
separates. However, this separation is not harmful as far as the transition location is concerned

because at such values of Re transition occurs before the separation bubble is reached.

By comparing Figures 6(a) and 6(b), we note a strong correlation between the variation of
the predicted transition location with Re and the variation of the corresponding most dangerous
frequency with Re. As the predicted transition location moves upstream, the most dangerous
frequency increases, which also occurs in the region of the jump. At both small and large
values of Re, the most dangerous frequency approaches 26x 1079, which is the most dangerous

frequency for incompressible flow over a smooth flat plate.

The effect of varying the hump location on the predicted transition location is shown in

Figure 7(a). The value of L™ equal to L*) is the reference location for the center of the hump.
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With the hump centered at L*p, Req = UL Ly/vE is equal to 1 million, the hump height
ho = h*/L} is equal to either 0.0014 or 0.00195, and the hump length \g = M /L is equal
to 0.2. By moving the center of the hump upstream or downstream of L§ so that the hump’s
center is at L', Re becomes RegL*/L, the hump height h becomes hyLg/L*, and the hump
length A becomes AL§/L*. The center of the hump is moved to keep the dimensional hump
height, the hump length, and the unit Reynolds number fixed. By increasing L*, Re increases,
but the nondimensional hump height and length decrease. At hump locations far upstream or far
downstream, the predicted transition location approaches that of a flow over a smooth flat plate,
which can be explained by arguments similar to those made earlier in this section in regard to the
results of Figure 6(a). The upstream movement of the predicted transition location is associated
with an increase in the most dangerous frequency, as shown in Figure 7(b).

3.3 Comparison with Experimental Correlations

Fage! used his own experimental data on the effects of surface roughness on transition, as
well as the experimental data of Walker and Greening, Walker and Cox, and Hislop (as reported
in Fage'#), to correlate the transition location with the height and length of the roughness element
and the Reynolds number at the edge of the boundary layer. If we replace the nondimensional
velocity at the edge of the boundary layer ue = ug JU%, with unity, then Fage’s criterion can

be wrilten as

9x10% [ A h Rel
3 = — when —— ]
(Rer),, ; oo when 9% 10° > 0.09 (8)

and

) 2/3
(Rex)y, = (1_3_5_><£_0_\/_X) when

A6 Re 12/
(13.5)%/® x 10

where (Re,),, is the value of Re, = Ul x* /v, at the transition location. Fage’s criterion is

&)

< 0.09

valid in a range of (Re;),, that extends from I million to 3.5 million. Fage’s criterion accounts
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for the effects of roughness height, length, and the free-stream Reynolds number. The criterion
is applicable in two-dimensional incompressible flow over a single roughness element on a flat
plate or an airfoil, but does not account for the effects of suction or heat transfer. To compare
the results of the ¢V transition criterion with Fage’s criterion for predicting transition location
for a flow over a hump on a flat plate, we considered several combinations of hump height
h, hump length ), and frec-stream Reynolds number Re. The mean flow problem was then
solved, and the stability calculations were performed. The hump used in our computations has
the same shape that was used in Fage’s experiments. For each considered combination, the
most dangerous frequency (at which the N-factor reaches a value of 9 in the shortest distance
from the leading edge) was determined within AF = 1 x 1078 with the corresponding predicted
transition location. Variation of the predicted transition Reynolds number with the shape free-
stream Reynolds-number parameter \/X/ hv/Re is shown in Figure 8(a) and compared with
Fage’s experimental correlation. The agreement is very good; in fact, the scatter of the N-factor
correlation points with respect to Fage’s correlation is less than the scatter of the experimental

points with respect to the experimental correlation.

In the experimental data (the basis for Fage’s criterion), the unit Reynolds number varicd
frorh 0.5 million to 1 million, which was the range considered in the calculations that were
performed to produce the N-factor correlation points in Figure 8. Note that in Fage’s experimental
correlation the transition Reynolds number varies with Re in accordance with 1 / Vv Re and,
therefore, decreases as Re increases. In Figure 6(a), we note that although this correlation might
be the casc for Re between 0.5 million and 1 million, (Re,)y_g increases as Re increases over
a wide range of high values of Re. This observation shows that the ¢V approach for predicting
the transition location in flow over a roughness element is more gencrally applicable and more
powerful than the experimental correlations. Furthermore, to develop an experimental criterion

for the transition location in a flow over a roughness element, an extensive number of cases
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must be considered to account for all of the parameters of the roughness element and the flow
conditions. Therefore, computation of the predicted transition location with the N-factor criterion
for those roughness-element parameters and flow conditions that arise is much easier. However,
experimental data and additional correlations are still needed to verify and calibrate the ¢V method

for different configurations and flow conditions.

A second experimental correlation that is available is that of Carmichael."” Carmichael’s
criterion applies for single and multiple bulges or sinusoidal waves above the nominal surface
of a swept or unswept wing. Carmichael’s criterion partially accounts for the effects of
compressibility, suction, pressure gradient, wing sweep, and multiple waves, which makes a
quantitative comparison of theoretical results with this criterion a difficult task. However,
a quantitative comparison of our results from the N-factor criterion with the predictions of
Carmichael’s criterion for unswept wings showed that those transition locations predicted by the
N-factor method are far upstream of those predicted by Carmichael’s criterion. This result is
expected because Carmichacl’s criterion accounts for compressibility, suction, and the favorable
pressure gradient on the unswept wing; these effects tend to move the transition location
downstream, as will be shown in the next sections.

3.4 Effect of Compressibility

The effect of compressibility on the stability characteristics of two-dimensional flow over
roughness elements is complicated by the fact that although an increasing Mach number stabilizes
the flow in the attached regions, it increases the size of the separation bubble. An increase in the
value of the free-stream Mach number My, at subsonic and supersonic speeds causes the flow
over the hump to separate at lower hump heights because compressibility makes the pressure
gradient more adverse and enhances separation. In their experimental work, Larson and Keating?!
noticed a large increase in the streamwise length of the separation region when the Mach number

of the flow over the roughness element was increased. We point out here that what Larson and
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Keating?! refer to as the transition Reynolds number in the case of separation is actually the
product of the flow unit Reynolds number and the streamwise length of the separation bubble.
Therefore, at the same unit Reynolds number, an increase in what they refer to as the transition

Reynolds number is actually an increase in the streamwise length of the separation bubble.

The widening of the separation region because of the increase in M, partially offsets the
stabilizing effect of compressibility. Overall, in two-dimensional flow, the stabilizing effect of
compressibility in the attached regions overcomes the destabilization caused by the increase in
the size of the separation bubble (Figure 9(a)). The downstream movement of the transition
location of a flow over a step as the Mach number increases was noticed and reported by
Chapman et al.?2  Furthermore, the stability of a laminar shear layer (that develops in the
case of separation) was found by Lin?? to increase markedly as the Mach number increases.
At supersonic speeds in wind-tunnel operation, larger wire diameters are required to trip the
boundary layer (make it turbulent) as the Mach number increases. At large heights of the
roughness element, compressibility has almost no effect on the movement of predicted transition
location (Figure 9(a)).

In boundary-layer flow over smooth surfaces (h = 0), an increase in the Mach number shifts
the most dangerous frequency toward lower values (Figure 9(b)). On the other hand, as we
saw in section 3.1, an increase in the height of a roughness element at the same Mach number
increases the value of the most dangerous frequency. Figure 9(b) shows that at large heights of
the hump an increasing Mach number still reduces the value of the most dangerous frequency.
The general trend in Figure 9 is that as the predicted transition location moves downstream the
most dangerous frequency decreases.

3.5 Effect of Roughness Shape

The influence of varying the shape of a roughness element on the transition location is a

controversial issue. Based on the experiments that he conducted, as well as on other available
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experimental data, Fage!* reported that the shape of a roughness element has almost no effect on
the transition location. In fact, the same experimental criterion of Fage applies for smooth bulges,
smooth hollows, flat ridges, and arched ridges. Fage’s criterion is applicable for roughness

elements on two-dimensional configurations such as flat plates and airfoils.

On the other hand, in some of their flight experiments on an unswepl wing, Holmes et al.!
compared the effect of a rounded forward-facing step close to the leading edge on its allowable
(critical) height with the effect of a square step on such a critical height. An increase of 50 percent
in the critical step height was possible when the step was rounded with a radius approximately
equal to the step height. In these experiments, the critical height was established based on the
conditions where the first turbulent bursts occurred far downstream from the roughness element,
as in the experiments used to develop both Fage’s'* and Carmichael’s? criteria. However,
we emphasize that what we mean by varying the shape of the roughness element here is a
variation in contour and not in length or height. When a square step is rounded, its length is
expected to increase somewhat; therefore, as shown in section 3.1, the transition location moves
downstream. In their wind-tunnel experiments, Dovgal and Kozlov'® showed that by tapering the
forward face of a square hump, the amplitude of the disturbances is reduced. They also showed
that by tapering both faces of the square hump, the amplitudes of the disturbances were reduced
considerably. In both cascs, the hump was tapered by increasing its length. As mentioned, this
section examines the effect of varying only the contour of the hump on the predicted transition

location; the height and length of the hump remain fixed.

To evaluate the effect of varying the contour of the hump on the predicted transition location,
we considered two hump shapes with the same height and length, but different contours. The
first shape is referred to as shape A and is given by equation (1); the second shape is referred

to as shape B and is given by equation (1), where f is now given by
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=22z <
f(z)‘{ 0, if |2]> 1 (10

and z is given by equation (2). The contours of shapes A and B are shown in Figure 10. Shape
A is rounded in comparison with shape B, but the length of both humps is fixed. Furthermore,
shape B is fuller in comparison with shape A. The effect of varying the height of both humps
A and B on the predicted transition location is shown in Figure 11(a). Clearly, the flow over
hump B separates at a lower hump height than the flow over hump A. As the hump’s height
is increased from the zero value (smooth flat plate), the effect of the shape on the predicted
transition location increases and then starts to decrease. At large heights of the hump, the effect
of the hump’s shape on the predicted transition location is negligible. The corresponding most
dangerous frequencies (Figure 11(b)) are higher for hump B except at large heights of the hump,

where the frequencics become the same.

3.6 Effect of Continuous Uniform Suction

Although continuous suction thins the boundary layer, (which makes the boundary layer more
sensitive to roughness), continuous suction also reduces the size of the separation bubble. In
fact, suction can be used in applications to remove the decelerated fluid from the boundary layer
before it causes separation. This technique makes the boundary layer capable of overcoming a
stronger adverse pressure gradient. The reduction in the size of the scparation bubble by suction
was observed and reported in the experimental work of Hahn and Pfenninger®* for the case of

flow over a backward-facing step.

In two-dimensional flow, continuous uniform suction might affect the flow in the separation
region differently than the flow in the attached regions. This possibility might be attributed
to the coexistence of both viscous and shear-layer instability mechanisms in the separation

region, whereas in the attached regions only the viscous instability mechanism exists. Although
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continuous suction might increase the growth rate of disturbances within the reduced separation
bubble, the overall effect of continuous suction on the stability of flow over a roughness element
of low to moderate height is stabilizing, as shown in Figure 12(a). Carmichael et al.?> and
Carmichael and Pfenninger?® performed flight experiments on the wing of an airplane in the
presence of single and multiple roughness elements and suction. Their results show that the
allowable sizes of the roughness elements increase when embedded in the suction region. Despite
a different configuration, our results for a flat plate are in qualitative agreement with these
experimental findings. The overall stabilizing effect of suction on the flow over surface waves

was demonstrated in the theoretical asymptotic work of Spence and Randall.!®

At large roughness-element heights, continuous suction has little effect on the movement of
the location of transition unless the suction level exceeds a certain value, at which the predicted
transition location for the flow over the roughness element moves sharply to the predicted
transition location for a flow over a smooth flat plate (Figure 12(a)). This result is significant
for laminar-flow control applications. The existence of such a threshold level of continuous
suction means that in the presence of a large-height roughness element on a smooth surface
the applied suction level needs to ¢xcee§l this thlfeshold value to delay transition. We are not
aware of any experiments on the effect of continuous suction on the transition location for a
flow over a roughness element in which the variation of the transition location with the mass
flow rate was measured. Therefore, the design of an experiment to verify the existence of a
threshold level of suction at which the transition location moves considerably downstream is of
practical interest. However, in their experiment on the effect of suction on the stability of flow
over a backward-facing step, Hahn and Pfenninger?* noticed that at weak suction rates turbulent
bursts remained in flow that was mostly laminarized. Also, a further incrcase in the suction rate

entirely suppressed the turbulent bursts.
In sections 3.1 and 3.4, we have shown that as the hump height reaches a certain large value
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the variation of the predicted transition location with the hump height “saturates.” An increase
in the hump height beyond this value has virtually no effect on the upstream movement of
the predicted transition location. However, the threshold levels of continuous suction, beyond
which the predicted transition location moves considerably downstream, are different for different
hump heights in the saturation region. For example, in Figure 12(a) for & = 0.003, the threshold-
continuous suction level is close t0 vy, = —7.5 x 107°; for & = 0.004, the threshold suction
level was not reached even at values of v, up to —15 x 107>, beyond which the IBL code

failed to converge.

For a boundary-layer flow over a smooth flat plate (h = 0), and in the oresence of a roughness
element, the application of suction shifts the most dangerous frequency toward a lower value,
which is shown in Figure 12(b).

3.7 Effect of a Suction Strip

Previous theoretical and experimental studies have shown that for the same amount of mass
flow rate the application of suction through discrete porous strips on smooth flat plates is more
effective for laminar-flow control than for continuous suction. Reed and Nayfeh?” studied the
effect of suction through discrete porous strips on the stability of incompressible flow over
a smooth flat plate. In the work of Reed and Nayfeh, the mean flow was calculated with
the triple-deck theory. The calculations were performed both with and without suction at the
same disturbance frequency; the results were in reasonable agreement with the results of the
companion forced cxperiment of Reynolds and Saric.?® The major conclusion of the work of
Reed and Nayfeh is that at the same disturbance frequency the optimal location of a suction strip
is shortly downstream of branch I of the neutral stability curve. Masad and Nayfeh? extended
the work of Reed and Nayfeh?” to compressible subsonic flow and found Reed and Nayfeh’s
conclusion to hold in these flows as well. Furthermore, Masad and Nayfeh showed that after

the possibility of a shift in the most dangerous frequency (caused by the presence of a suction
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strip) is taken into account the optimal location of a suction strip is not necessarily close to
branch I of the neutral stability curve. As pointed out by Masad and Nayfeh, accounting for
the shift in frequency corresponds to the sitvation in a natural transition experiment, whereas
the conclusion about the optimal location of a suction strip at the same disturbance frequency
corresponds to the situation in a controlled (forced) experiment such as that of Reynolds and
Saric.2® In the work of Masad and Nayfeh, the compressible mean flow over the smooth flat

plate with a suction strip was calculated with IBL theory.

Calculations similar to those in reference 29 were performed with and without a hump after
the possibility of the shift of the most dangerous frequency in the presence of a suction strip was
taken into account. The results shown in Figure 13(a) demonstrate the variation of the predicted
transition location with the Reynolds number Rey, based on the distance from the leading edge
of the flat plate to the center of the suction strip. ‘The horizontal dashed lines in Figure 13(a)
indicate the predicted transition location in the absence of the suction strip. The four dashed
lines that proceed downwards correspond to h = 0, 0.001, 0.002 and 0.003, respectively. Clearly,
the application of suction through a strip has an overall stabilizing effect both with and without
a hump. The optimal location for the suction strip is downstream of the center of the hump and
moves upstream and toward the strong adverse pressure gradient region as the hump’s height
increases. Note that the center of the hump in Figure 13(a) is at an Re, of 1 million. These
results with an optimally located suction strip agree with the experimental findings of Hahn and
Pfenninger:?* the optimal location for a suction strip in a separating flow over a backward-facing
step is near the reattachment region that occurs without suction. In Figures 13(a) and 13(b),
note the shift in the most dangerous frequency toward lower values as the predicted transition

location moves downstream.

3.8 Effect of Continuous Cooling
Although thinning the boundary layer by continuous cooling makes it more sensitive to
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surface roughness, continuous cooling also delays separation until the hump height becomes
large and reduces the size of the separation bubble when separation occurs. Therefore, cooling
can actually be used to make the boundary layer capable of overcoming stronger adverse
pressure gradients before separation occurs. A consistent decrease in the streamwise length
of the separation region with cooling in a flow over a roughness element was noticed in the
experiment of Larson and Keating.?! Furthermore, Larson and Keating observed that in some

instances cooling caused reattachment of the separated boundary layer onto the surface.

Cooling of subsonic air boundary layers on smooth flat plates is known to cause the
streamwise velocity profile to become fuller and to make the boundary layer thinner. Both of
these changes in the attached mean flow have stabilizing effects through the viscous mechanism.
However, the existence of a roughness element induces an adverse pressure gradient that might
cause the velocity profile to develop an inflection point near the wall, which has a destabilizing
effect on the flow. The existence of a roughness element in the flow field might also cause the
flow to separate, which introduces a free shear-layer instability mechanism that is inviscid and

different from the viscous instability mechanism.

From practical and experimental points of view, fixing the wall temperature is easier than
fixing the heat flux through the wall. Therefore, we express the level of heat transfer by
specifying the ratio of the actual wall temperature to the adiabatic wall temperature Tw/Taa.

For T,,/T,q = 1, we have an adiabatic condition; values of Ty/Thwa < 1 indicate cooling.

Although continuous cooling increases the growth rate in the reduced separation bubble, the
stabrilizing effect of conﬁnuous cooling in the attached ﬂqw regions overcomes that destabilizing
effect. Therefore, application of continuous cooling moves the predicted transition location
downstream in a flow over a roughness element as shown in Figure 14(a). Figure 14(a) clearly
shows that by applying sufficient continuous cooling, the predicted transition location in a flow

over a hump moves to the predicted transition location in a flow over a smooth flat plate, as
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in the case with continuous suction. The local destabilization of flow over a roughness c¢lement
within the separation bubble by continuous cooling was demonstrated in the theoretical works of
Al-Maaitah et al.3® and Masad and Nayfeh.3! However, an optimal level of continuous cooling,
beyond which the overall effect of continuous cooling on the flow over a roughness element
becomes destabilizing,3® was not encountered in the present study. The existence of the optimal
level of continuous cooling that was found in reference 30 could possibly result because no
computation was performed at the most dangerous frequencies either with or without continuous
cooling. The downstream movement of the predicted transition location attributed to continuous
cooling is associated with an increase in the corresponding most dangerous frequency (Figure
14(b)).

3.9 Effect of a Heating Strip

The use of a heating strip placed close to the leading edge of a flat plate to stabilize the
air boundary-layer flow is not new in Russian literature. Dovgal et al.>? and Fedorov et al.*’
referenced several theoretical and experimental studies (in Russian) on this method of laminar-
flow control. Although previous studies considered the fixed-frequency condition of a forced
experiment, Dovgal et al.32 showed experimentally that the method also works under natural
transition conditions. In their natural transition experiments, Dovgal et al.>? showed that by
placing a 100-mm heating strip at a temperature of 382 K at the leading edge of a flat plate
million in the adiabatic case to 2.9 million in the presence of the heating strip. The possibility
of using localized surface heating to relaminarize the turbulent flow on a smooth flat plate was

demonstrated in the work of Maestrello and Nagabushana.>*

By placing a heating strip in the air flow close to the leading edge of a smooth flat plate,
the flow that leaves the heating strip encounters a relatively cooler surface, which has the same

stabilizing effect as continuous cooling applied elsewhere. Masad and Nayfeh? conducted a
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theoretical study on the effect of placing a heat-transfer (heating or cooling) strip in the flow
field of an air flat-plate boundary layer on the stability of that flow. This work considered
subsonic flows up to a free-stream Mach number of 0.8. Criteria for the optimal stabilizing
location of a heating or a cooling strip for the fixed-frequency condition of a forced experiment
were also obtained by these investigators.

Masad and Nayfeh? found that by placing a heating strip before branch I of a certain
frequency, the disturbance becomes destabilized in the region of the strip and then stabilized
over a short region. Finally, in a third region, the growth rates decrease in comparison with
disturbance growth rates for adiabatic flow. The optimal stabilizing location of the heating strip
corresponded to the location where the accumulated growth in the first unstable region was barely
compensated for by the accumulated decay in the stable region that followed. This criterion for
the optimal location at a fixed frequency was accurate for different subsonic flow parameters
and different heating-strip parameters.

In reference 29, no critical length of the heating strip was found to exist beyond which the
stabilization (or destabilization) effect of the heating strip became active. However, an increase
in the length of the strip or in the level of heating within the strip while the location of the
heating strip is kept fixed causes the effect of the heating strip to become more pronounced. If
the heating strip is placed at locations that are downstream of branch I of a certain frequency,
then the disturbance that has that frequency becomes destabilized.

In this section, we consider the effect of moving a heating strip on a flat plate with and
without a hump on the predicted transition location for air boundary layers. These conditions
considered here simulate those in a natural transition experiment.

To study the effect of the location of a heating strip on the predicted transition location with
and without a hump, we considered a heating strip with a fixed length of Ar = 0.4 and with a

heating level of T\, /T,q = 1.3 within the heating strip and 1.0 (adiabatic conditions) elsewhere.
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The predicted transition location was calculated with the heating strip at a location close to the
leading edge; the heating strip was then moved downstream and the predicted transition location
was recalculated, and so on. Variations of the predicted transition Reynolds number, with the
Reynolds number based on the center of the heating strip in the presence and absence of a hump,
are shown in Figure 15(a). The horizontal centerlines indicate the predicted transition Reynolds
numbers in the absence of a heating strip for a smooth flat plate (the upper centerline) and a flow
over a hump with h = 0.002 (the lower centerline). The figure clearly shows that a heating strip
placed in the adverse pressure gradient region created by a hump enhances separation. Placing
a heating strip at locations close to the leading edge has a stabilizing effect in comparison with
the case of a fully adiabatic plate (the centerlines in Figure 15(a)). If the heating strip is moved
downstream of a certain location on the plate, the flow is destabilized. Note in Figure 15(a) that
when the heating strip is placed at certain downstream locations, two values for the predicted
transition Reynolds number correspond to the same location of the heating strip. The large
value of the predicted transition Reynolds number corresponds to low frequencies; the low value
corresponds to high frequencies (Figure 15(b)). The two domains of frequencies are separated
by a third domain of frequencies where the N-factor does not reach a value of 9. Therefore, in
a situation where initial disturbances with frequencies within the whole domain of frequencies
exist, the predicted transition Reynolds number is expected to follow the lower branch in Figure
15(a). If the ininal disturbances have only relatively low frequencies, the transition location is
expected to follow the upper branch. Note that by moving the heating strip further downstream

both branches meet and the predicted transition location becomes unique.
3.10 Relation Between Transition Location and Most Dangerous Frequency
We have studied the effects of the height, length, shape, and location of the hump; the unit

Reynolds number; the free-stream Mach number; continuous suction; a suction strip; continuous

cooling; and a heating strip on the predicted transition location. We have seen a consistent
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increase in the most dangerous frequency when the predicted transition location moves upstream.
In Figure 16, we plotted the variation of the predicted transition location with the most dangerous
frequency for all the data points generated in the previous sections, as well as other data points
computed for subsonic flow over a smooth flat plate with different boundary conditions. Figure
16 clearly shows a strong correlation between the predicted transition Reynolds number (with the
¢ method) and the most dangerous frequency. The value of the predicted transition Reynolds

number increases as the value of the most dangerous frequency decreases.
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4. CONCLUSIONS

The effect of a surface hump on the transition location in a subsonic flow is analyzed with the
use of the linear quasi-parallel stability theory coupled with the ¢V transition criterion. The mean
flow, which might separate and reattach, is computed by solving the interacting boundary-layer
equations. The effects of the height, length, location, and shape of the hump; the free-stream unit
Reynolds number; the free-stream Mach number; the levels of continuous suction and cooling;
and the effects of the locations of a suction and a heating strip on the predicted transition location
are evaluated. Results with the N-factor criterion are compared with the experimental correlation

of Fage.!* Based on this study, the following conclusions are reached:

1. As the hump height increases from the zero value (no hump), the predicted transition
location moves continuously upstream. Furthermore, when the hump height is close to the value

that causes the flow to separate, the predicted transition location moves considerably upstream.

3. When the hump height reaches a certain large value that exceeds the value that causes the
flow to separate, a further increase in the hump’s height has virtually no effect on the upstream
movement of the predicted transition location. An increase in the hump’s height only enhances

the length of the separation region at this stage.

3. The effect of the hump’s length is opposite that of the effect of the hump’s height. An
increase in the hump’s length moves the predicted transition location downstream. A decrease

in the length of the hump enhances separation.

4. At low and high values of the free-stream Reynolds number Re based on the distance
from the leading edge to the center of the hump L, the effect of the hump on the predicted
transition location diminishes. The effect continues when Re is varied by changing either the

free-stream unit Reynolds . number or the distance L*. An increase in Re enhances separation.
5. Results of the N-factor criterion agree well with the experimental correlation of Fage.
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However, the N-factor criterion is more generally applicable and more powerful because it is
not restricted to a certain range of free-stream or transition Reynolds numbers and it accounts

for compressibility, roughness location and shape, wall suction, and heat transfer.

6. An increase in the Mach number of a subsonic flow over a hump enhances separation,
which partially offsets the stabilizing effect of compressibility in the attached flow region. How-
ever, the overall effect of compressibility is stabilizing. At large hump heights, compressibility

has virtually no effect on the movement of the predicted transition location.

7. The effect of making the hump fuller and eliminating the rounding at the leading and
trailing edges of the hump (while the length remains fixed) on the upstream movement of the
predicted transition location is moderate at small to medium hump heights. At large heights of
the hump (which cause separation), the effect of varying the shape (contour) of the hump on

the predicted transition location is negligible.

8. Continuous suction has an overall stabilizing effect on the flow over a hump of small to
moderate height and moves the predicted transition location downstream. At large hump heights,
suction has no influence on the predicted transition location unless the suction level reaches a
threshold value beyond which the predicted transition location for the flow over the hump moves

sharply to the predicted transition location of a flow over a smooth flat plate.

9. The application of suction through a strip has an overall stabilizing effect on the flow
over the hump. The optimal stabilizing location of a suction strip is downstream of the center
of the hump. As the hump height increases, the optimal stabilizing location for a suction strip

moves upstream.

10. Continuous suction, suction through a strip, and continuous cooling delay the occurrence
of separation to larger hump heights or reduce the size of the separation bubble when the flow

separates.
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11. Although continuous cooling might increase the growth rates of the disturbances within
the reduced separation bubble, its overall effect is stabilizing and moves the predicted transition
location downstream.

12. By placing a heating strip close to the leading edge of a flat plate with or without a
hump, the occurrence of natural transition can be delayed to downstream locations. The optimal
stabilizing location for a heating strip is close to the leading edge of the flat plate.

13. If a heating strip is placed at a downstream location, the predicted transition location
moves considerably upstream. Placement of a heating strip in the adverse pressure gradient
region shortly downstream of the center of the hump enhances separation.

14. As the predicted transition location in a flow over a smooth flat plate or a flat plate with
a hump moves upstream because of any of the effects discussed in this work, the associated

most dangerous frequency increases.
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(Not to scale)

Figure 1. A hump on a flat plate.
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Figure 2.  Variation of pressure coefficient with streamwise location for separating
incompressible flow with and without a hump at A = 0.2 and Re = 108.

38



0.08 1
0.04|

0.00f

-0.04
05

Figure 3.  Variation of growth rates with streamwise location for flows shown in Figure 2
and at most dangerous frequency (in presence of hump) F' = 64 x 1075,
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Figure 4. (a) Variation of predicted transition Reynolds number with hump height for
incompressible flow at Re = 0.8 x 10% and A = 0.2 . (b) Corresponding
variation of frequencies.
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(a) Variation of predicted transition Reynolds number with hump length for
incompressible flow at Re = 10% and k = 0.002 . (b) Corresponding variation of

frequencies.

Figure 3.
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Figure 6.  (a) Variation of predicted transition Reynolds number with free-stream Reynolds
number for incompressible flow over hump and for two hump heights at A = 0.2
(b) Corresponding variation of frequencies.
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Figure 7.  (a) Variation of predicted transition Reynolds number with free-stream Reynolds
number for incompressible flow over hump and for two hump heights. (b)
Corresponding variation of frequencies.

43



2.4
&

100 . (Rey)

=

2.8

2.OF
1.6-
1.2F
0.8—

T

— Exp. correlation
ce e9 method

.10
80

70
60

30

50
40

1 l 1 1 i H 1 1 i 1 1 ]

Figure 8.

flow over

20

0.1 0.2 0.3 0.4 0.5
205 0 RS
(a)
6
Lo
~ ® ...‘.’
.l
i 0o‘i’(gogb"@oocz;Q °
- 0.2
205,04 RDS)
(b)

(a) Variation of predicted and experimentally correlated transition Reynolds
number with shape free-stream Reynolds number parameter for incompressible

hump. (b) Corresponding variation of frequencies.
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Figure 9. (a) Variation of predicted transition Reynolds number with free-stream Mach
number for flow over hump at A = 0.2, Re =105, T., =300° K, and Pr=0.72
for several heights. (b) Corresponding variation of frequencies.
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Figure 10. Shapes (contours) of two humps with same height and length.
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Figure 11. (a) Variation of predicted transition Reynol
for two hump shapes. (b)

incompressible flow at A = 0.2, Re = 106
Corresponding variation of frequencies.
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Figure 12. (a) Variation of predicted transition Reynolds number with uniform suction level
for incompressible flow over hump at at A = 0.2, KHe = 108 for several heights.

(b) Corresponding variation of frequencies.
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Figure 13. (a) Variation of predicted transition Reynolds number with location of center of
suction strip of length Az = 0.4 for incompressible flow over hump at
= 0.2, Re =105, v, = —2 x 10~* within strip for several heights. (b)
Corresponding variation of frequencies.
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Figure 14. (a) Variation of predicted transition Reynolds number with continuous cooling
level for incompressible air flow over hump at A = 0.2, Re = 108, T, = 300
°K, Pr=0.72 for several heights. (b) Corresponding variation of frequencies.
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Figure 15. (a) Variation of predicted transition Reynolds number with location of center of
heating strip of length Az = 0.4 for incompressible flow over hump at
A =02, Re=10% Ty,/T,q = 1.3 within strip, To=300 °K, Pr=0.72 for
several heights. (b) Corresponding variation of frequencies.
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Figure 16. Variation of predi'crteid transition Reynolds number with corresponding most
dangerous frequency in subsonic flow with or without hump and for different
velocity and thermal boundary conditions.
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