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THE THREE-DIMENSIONAL FLOW PAST A RAPIDLY
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ABSTRACT

The high Reynolds number (Re) flow past a rapidly rotating circular cylinder is inves-

tigated. The rotation rate of the cylinder is allowed to vary (slightly) along the axis of the

cylinder, thereby provoking three-dimensional flow disturbances, which are shown to involve

relatively massive (O(Re)) velocity perturbations to the flow away from the cylinder surface.

Additionally, three integral conditions, analogous to the single condition determined in

two dimensions by Batchelor (1), are derived, based on the condition of periodicity in the

azimuthal direction.
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1 Introduction

One of the most important and fundamental theorems of Fluid Mechanics to have been

developed in relatively recent times is the closed streamline theory of BMchelor (1). This

states that in a two-dhnensional flow involving closed streamlines

J curlw, ds = O, (1)

where aa is the vorticity and ds the line element along a streamline. At large Reynolds

numbers, when viscous effects can be neglected, this condition, taken with the inviscid

(Euler) equations of motion, leads to the result that the vorticity is constant within a region
of closed streamlines.

This theorem was generalised by Blennerhassett (2) to the situation whicil, rather than

being one of closed streamlines, involves helical streamlines. Specifically a three-dimensional

flow with three velocity components, all of which are independent of the axial direction; this

implies constant axial pressure gradient. This analysis, in addition to confirming Batchelor's

(1) result, leads to an additional result linking the constant axial pressure gradient and the

viscous terms. This result, taken in conjunction with the inviscid flow equations yields the

result that the axial velocity must be proportional to the streamfunction for the motion in

the plane normal to the axial vector.

Little progress appears to have been made in further extending the ideas of Batchelor

(1) into the three-dimensional regime, in spite of the importance of flows of this type. It is

the aim of this paper to address this issue.

Two-dimensional flows involving closed streamlines involve additional interesting sub-

tleties. Even though the work of Batchelor (1) involves the inclusion of (small) viscous

effects, there is insufficient flow physics in the constant vorticity result to actually determine

its value. This must be determined by recourse to boundary-layer regions located on body

surfaces. Riley (3) presented an example of two-dimensional flow inside an elliptic container,

driven by slippage of the container walls. By Batchelor's (1) theorem the flow in the core of

the container must be that of uniform vorticity, and Riley (3) showed how just one particular

value of the vorticity produced the appropriate behaviour (exponential decay' at the outer

edge) inside the wall boundary layers. These ideas have subsequently been extended by other

authors to other situations (see below), including situations involving two wall layers, see

Duck (4).

One of the classical results of potential-flow theory is that of uniform flow past a circular

cylinder, with superimposed circulation. Physically this circulation may be caused by the

rotation of the cylinder. A number of authors hav6 studied the relationship between the rate

of rotation and this circulation. Glauert (5) considered the large Reynolds number, large

rotation rate problem, whilst Moore (6) considered the finite Reynolds number, large rotation

rate problem. Loc (7) and Ingham (8) have considered fully numerical solutions (finite

Reynolds numbers, finite rotation rates), whilst Nikolayev (9), Negoda and Sychev (10),

Sychev (11), Lam (12) have investigated the large Reynolds number (finite rotation rate)

problem, partly using the ideas of Riley (3). There appears to be a monotonic relationship

between rotation rate and circulation, and the simple model of outer, potential flow together

with a unidirectional boundary layer is only appropriate for rotation rates above some critical



value. As this critical value is approached,a stagnation point forms off the surfaceof the
cylinder wall, but inside tile boundary layer; this is sufficient to disrupt the entire model at
lower valuesof rotation rate.

In this paper weconsidera three-dinlensionalanalogueof the aboveproblem. We take
a mliform, straight circular cylinder, and a uniform flow far from the cylinder directed
perpendicular to the axis of the cylinder, and the cylinder surfaceis rotating with a large
angularvelocity, which isdependenton axial location. Wefurther supposethat the Reynolds
number (as defined in Section2) is large. The restriction on large angular velocity renders
the problemtractable to analytic techniques,whilst pointing the way in which moregeneral
rotation ratesmay be tackled. This analysisis presentedin Section3, and the corresponding
numerical results are in Section 4. In Section 5 we formulate three integral conditions,
analogousto the condition of Batchelor (1) describedabove. In Section 6 we present our
conclusions.



2 Formulation

We take a straight circular cylinder of radius a, together with polar coordinates (at, 0, az),

with 7" measured radially, 0 azimuthally in an anti-clockwise direction and z axially. The

surface of the cylinder is rotating with angular velocity a_ + 7 cos Az, where w, 3' and A are

constants. Referred to tile coordinate system described above, we suppose that far from the

cylinder the fluid velocity takes the form U_(cos 0,- sin 0, 0). The flow Reynolds number is

defined by

Re- _Ycca , (2)
z/

where i/ is the kinematic viscosity of the fluid (assumed constant). In this paper we are

primarily interested in the regime Re >> i.

Two further non-dimensional parameters may be defined, namely

a = U2 ' (3)

and
3'a

e = U-2_' (4)

describing the rate of rotation and degree of three-dimensionality introduced into the prob-

lem.

To make further progress in this paper, we assume that ]el << 1 and further that ]f_] >> 1

(but that e = o(f_ -_ )). Thus we focus our attention on small amounts of three-dimensionality

and high rotation rates.

We write the velocity vector as U_u, and the pressure as pU_p, where p is the density

of the fluid (assumed constant). We then develop the solution in powers of e, namely

u = Uo + eft + O(_), (5)

p = po + _ + o(_). (6)

For r -- 1 = O(1), when Re >> 1 we assume the basic flow takes the form

( (1) (,) )u0= cos0 1-7-:7 ,-sin0 1+77 -b--,. 0 , (7)

this being merely the potential flow solution. There also exists a boundary layer wherein

r - 1 = O(Re-1/'2). The problem for u0 in the boundary layer has been studied in the past

by a number of authors, as noted in the previous section, however as fl _ oc,

Uo --* (0, f_, 0) -k- O(1) (s)

for 7"- 1 = O(Re-1/'_).

The full problem for fi is

V.fi=0,

1 ._
15. Vu0 + u0 • Vfl = -V/5 + --V fi,

Re

(9)

(10)



with the following boundary conditions

fi = (O, cosAz, O) o,1 r = 1,

fi _ Oas,'---+oo.

In the following section we consider the solution of (10) as _ and Re _ oo.

(II)

(12)

i
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3 The limits Re _ _, fi _

Since the perturbation velocity fi is triggered by an O(1) amount (see (ll)) it is tempting

to speculate that this in turn will lead to general perturbation quantities away from the

cylinder of O(1). However this is certainly not the case. It turns out that the only plausible

solution for 7" = O(1), i.e. the only asymptotic development that leads to self-consistency

involves magnitudes very much larger than O(1).

Considering first the solution for r- 1 = O(1), then on account of the linearity of the

system (9), (10), we may write

= (v(r,O)cosAz,u(r,O)cosAz, w(r,O)sinAz), (13)
= p(,',O)cos_'.. (14)

We also have (see (7)) that as Re --+ co,

uo -_ (Vo,,flU00+ U0,,0), (15)

where

Uoo = l/r,

(l)Vo, 1 - 7-:7 cos O,

(:)Uoa -- - 1+_ sin0. (16)

The only meaningful series development of the perturbation velocities turns out to be

v = fl Revo(r) +... + Rev,(r,O) +...,
u = aeu,(r,O)+...+ u,(r)+...,
w = fl Re_o(_) +... + Re_,(,',0) +...,
p = _ Repo(r,O) +... + tip,(r) +.... (17)

These expansions prove to be the key to the solution of our problem, although a priori, it

is difficult to justify these expansions, and so a posteriori verification is therefore necessary.

In Section 5, some prima facie, justification for this form of solution development is given.

Consider now the leading order terms in (17) that are independent of 0. It turns out,

perhaps surprisingly, that the flow is not governed by the inviscid Euler equations, but

rather is predominantly viscous in nature. Taking O(f_) terms in the radial momentum

equation yields the following equation

2u.2 dp, 1 Vo
r 2 - dr + Vo_ -1- -Vo_r - A'av° - --'r2 (18)

The O(Re -1) terms in the azimuthal momentum equation yield

1 It 2
u2_ + -u2_ - A2u.a - 0, (19)

7" r 2



whilst the O(f_) terms ill the axial momentum equation yield

1
worT+ -wor - A2u,o= -Ap,. (20)

r

Tile continuity equation, to leading order, may be written

1
Vor + -Vo + AWo = 0. (21)

r

With this system there is no difficulty ill imposing the full and correct boundary condi-

tions; we therefore have

v0(r= 1) = wo(r=l) =0,

u2(r = 1) = 1, (22)

with

"UO,//_0_ ?22 ----l, 0 aS ?" ---+ (X).

The solution for u_ can be written in terms of Bessel functions, namely

(23)

?22 --
I_,(At)
K,(A) ' (24)

whilst it is possible to eliminate w0 and p,, from (18), (20), (21) to yield

.... (3 )Vo + - _ + 2A 2 "
r ?Jo _ _)o

+ Vo +
?. 2A2 3 ) 272.2A2 (25)A4 "{" _..2 7"4 Vo -- r2 ,

to which tile following additional (alternative) boundary condition is appropriate

!

Vo(r = 1) = 0. (26)

Once u2 is determined, it is quite straightforward (although a numerical task) to deter-

mine Vo(r), WOO'); numerical results will be presented in the following section. It is worth

noting that v0, u_ and w0, as described above, also represent an exact solution of the lin-

earised Navier Stokes eqiiations ((9), (10)) in the absence of the uniform flow.

We now turn to consider the leading order terms in (17) that are dependent upon both

r and 0 and which are, indeed, determined primarily through inviscid equations. Again, the

linear nature of (9), (10) greatly simplifies the solution technique, this time allowing ,as to
write

v, = vl(,') sin 0,

u, = _z,(r) cos 0,

wl = ¥1(r) sin0,

p0 = P0(r) cos 0. (27)

6



We may also write

Vm = Vo, cosO,

Um = Uoa sin O, (28)

with

V--o, = (l-l),
r 2

- 1)Uo, = -(I+-- (29)
7.2 •

Taking terms O(_ Re) in the radial,azimuthal and axial momentunl equations respec-

tively,leads to

dvo dVol v, 2_l dPo (30)
Vol _ + Vo d-"-7- + ,.2 7.2 = - d,---7'

dUo, 1 Um 1

vo dr ,"2_' + --VOr = -Pot (31)

-- dwo 1

V0,--_7r + ,:3-w,= Apo , (32)

whilst continuity leads to
1 d _l

-- + A_, = O. (33)7"dr (rv') - r

On this system we may impose decay of all components of the solution as r --+ oo, whilst on

7"= 1, we may have only

_,(r = 1) = 0. (34)

The no-slip constraints on ul and wl are therefore violated, but these may be rectified by

the inclusion of a thin boundary layer of thickness O(fl-_ Re-½) on 7" = 1.

Specifically, we write

Y = (r- 1)f_½Re½= O(1), (35)
u, = fil(Y)ei° + C.c., (36)
zu1 = iUl(r)e iO-_C.C., (:17)

all d SO

i_t, = fi,yv - iPo(1), (38)

i_?, = ,_',Yr + A_o(1), (39)

giving

fi, = -P0(1)[1- e-('+/)Y/v"7], (40)

zb, = -iA]_0(l ) [I - e-('+i)YIv"7]. (41)

We see therefore, that on the r- 1 = 0(1) scale, intriguingly both viscous and inviscid

effects are important simultaneously, an(l to a large degree, indet)endently. In tile following

section we consi(ter a number of numerical results arising from the results of this section,

and go on to consider the limits A + oo and A _ O.



4 Results and large/small A behaviour

The system (22), (25), (30)-(:34) was solved using a conventional fourth order Runge-Kutta

method. Results are shown in figure 1 for p0(r= 1) ( .... ), p_(r= 1) (solidus), u2_(r=

1)( ..... ), where the dependence of these quantities with A is shown.

We may make some further analytic progress by considering the limits of large and small

)_. Taking first A + oo, then by (24)

u_ ---+e -?, (42)

where

I_ = A(r- 1) = O(1), (43)

u2_b.,--+-A. (44)

The above implies the perturbation to the flow is confined to within a thin r- 1 = O(A -1)

boundary layer (although we must impose the restriction that A = o(_½ Re}) in order that

this layer remains outside the Y = O(1) layer discussed in the previous section). After some

algebra, it is possible to show that

1 ?_-e + o(_-3), (45)
Vo - 4A2

e-?w0

)PO -- /_3 _,4 .+ L?3 5_,'2 5_..+ 0(/__4). (48)

Comparison of (47) evaluated on 17_"= 0 with the corresponding numerical results of figure 1

shows good agreement as A increases. Unfortunately it is not possible to compare P0(r = 1)

wit},poop = 0) without further substantial algebra since Po(Y = O)= 0(_-4).
The alternative limit of A --+ 0 is slightly more complicated, because two key radial

lengthscales emerge. For r = O(1), we have that (24) reduces to

1
u2 "-' -, (49)

?,

which interestingly is the azimuthal velocity component corresponding to a line vortex, i.e.

effectively tile two-dimensional result. There is also a large radial scale, R = Ar = O(1). (We

do have tile restriction that A = o(Ft) in order that over the lengthscales under consideration,

Uoo remains dominant over Uo, in (16)).

For r= O(1), the solution develops in the form

,,o= _ [log:_o(,,) + o(_)], (50)

8



with the leadingorder generalsolution taking tile form

D
v0 = At+ Brlogr + Cr s + --. (51)

r

For R = O(1), we must consider tim first two leading terms in the solution development,

namely

vo= [log + + O((log (52)

The complete analytic solution for _30(R) and _3_(R) does not appear possible, however it

suffices to consider the limit R _ 0, for which

Do (53)
9o(R) ": AoR + BoRlog R + CoR 3 + ---_,

whilst 9_(R) (which is forced directly by the u_ term on the right-hand-side of (25)) takes

the form

Boundedness constraints demand

.._ AIR+ B1RlogR+C1R _

D1 1 R(log R) _.
+ R 4

(54)

C=Do=D! =0, (55)

whilst matching of (49) as r ---+c_ with (51) as R --+ 0 requires

1
B0 = -

4'

1
B -

4

Further iinposing the two boundary conditions on r = 1 yields

1 1 1
_30= _r - 7r log r -

8---_"q

(56)

(57)

(58)

This then leads to

1

w0- _)_log)_logr+O()_), (59)

Pa = -1/r2- (6O)

Fortunately it is possible to determine the leading-order term of pl without substantial

algebra (and additional numerical effort), even though pl is an order lower in log ._ than may

first be expected; equation (4.19) yields the result that pa(r = l) _ -1 as A _ 0, a result

that agrees with our numerical results. However it is not possible to determine _0(r = l)

without further substantial algebra and numerical effort•

In the following section we go on to consider results for more general classes of two-

dimensional flows involving closed streamlines, which are perturbed in some three-dimensional

manner.



5 The periodicity requirement and the associated in-

tegral conditions

The result of Batchelor (1) may be viewed as arising from a condition of periodicity within

the region of closed streamlines of tile various physical flow quantities. It is needed because

tile Euler equations are, thenlselves, not sufficient to enforce periodicity; an alternative

viewpoint is that the Euler equations are unable to capture the mean flow physics, i.e. the

flow corresponding to zero wavenumber, a result that is little surprising. This point is equally

important in the three-dinlensional context, and is now investigated.

We may write (9), (10) in the form

uoA&+fiAwo = V//7/+ Re-IVA&, (61)

where/t is the O(e) total lead, i.e.

/2/=fi+Uo" fi, (62)

and we have written the vorticity vector

ao = a00 + e_ + O(e2). (63)

Following Batchelor (1) and Blennerhassett (2) tile work of this section is most efficiently

carried out in terms of a coordinate system based on the two-dimensional , undisturbed

streamfunction, specifically in terms of (_/_,_, z). Here _ represents the streamfunction of

the undisturbed (u0) flow, and _ is orthogonal to _/_and z; z remains the axial coordinate.

If the undisturbed flow u0 is irrotational, then _ may be taken to be the standard velocity
k

The infinitesimal lille element is (a_ h,d{, dz]. Here h2 is the _ coordinatepotential
\ qo /

metric, which in the case of an irrotational u0 is merely 1/qo, and qo = {u0[.

Referred to the (_b, (, z) coordinate system, the velocity vector may be written

u = (_ cosA:, qo+ ¢. cos_z, ¢_sin Az)+ o(d), (64)

and the pressure as

P = Po + ePl cos Az + O(e2). (65)

Referred to the (_b, st, z) coordinate system, we may write the vorticity terms as follows

¢0 o = (0,0,.oo)

= (0,0,-_. 2 (h.aqo)) (66)

¢72 -_- ((.0 1 Sill /_Z, ta2 2 Sill AZ, ¢O 3 COS AZ)

sin Az + Auha),sinAz(-Av-qow_,),

h_ (__)- _ " (67)

i0



We may then write the three componentsof (61) in the following form

uo) 0
+

qo_

-- rod o

w4

h2

h2 qo h20s ¢

1o_ Re-'IOn3 Ah2_.,
qo0,b+ h2q--7t 0e -
l&, 1 0

+ ( "_

h.2 04 --_'2-_ t q°u '

(68)

0_3]+ Re-i AWl - q0-0--f-] (69)

A_ Re-' [_ 0 (_,)]- + (h_) - (70)qo --gJ a77 "

Tile continuity equation, in terms of these variables is

&/_(h2v)+-_ + qo -0. (71)

If we integrate each of (68)-(71) around a complete circuit in { (lying entirely within a region

of closed streamlines), then periodicity of the flow demands

uh.a h.2 0_
uh.2¢ - qo¢

qo qo 0¢

=0, (72)

_{,_,o+ Re-'[_,- o_zlqo-_] } h.2d_ = O, (73)

}-7o + h.2 (h.aw.2) h.ad_ = 0. (74)

These results are quite general, and indeed exact within the framework of the linearised

Navier Stokes equations (9), (10). If we now direct our attention on the problem considered

earlier in this paper, then u0 is irrotational, and so in line with our comments regarding

above, we can write

f q7 2qov,u+ 07+ Re-'t oe qoj

d_ O,
J L qo O# J

/ {_ + Re-' _(h_,o_)} a_= 0.

Note that the result of Batchelor (1) is retrieved from (76) by allowing A --+ 0.

(76)

(77)

ii



At this stagewecall partly confirm the solution developmentof Section3. Equation (77)
abovestrongly suggeststhat ca2 = O (Re), which in turn suggests that v and/or w must

also be O(Re). This is partly confirmed by" (75). Indeed, it can be shown that our solutions

given in Section 3 do satisfy the above conditions, which clearly illustrate the importance of

viscosity oi1 the 7"- 1 = O(1) scale.

12



6 Conclusions

In this paper we }lave considered the effects of three-dimensionality introduced into tile

problem of a rapidly rotating circular cylinder in a unifornl flow. Tile effects include a

substantial (O(Re)) response in the three velocity components, in the bulk of the fluid. This
C "effect is confirmed by the analysis of Se t_on 5 in which three integral conditions were derived

(analogous to tile solitary integral condition in Batchelor's (1) two-dimensi0nal work). All

the indications are that this massive response with three-dimensionality will be a generic

feature of similar flows. It is likely that the results of this paper have repercussions for

important practical applications, perhaps the most important of which being that of high

lift aerofoils.

This paper has deliberately focused on the large rotation rate problem (i.e. _ -+ ec).

However the extremely important regime of f_ = O(1) remains to be studied. This regime

involves a number of additional questions, perhaps the key aspect being the nature of the

solution as the closed streamline region of the base (two-dimensional) flow is exited. It could

well be that soine form of mild discontinuity exists, for which a thin shear layer would be

required. This whole problem would be a non-trivial numerical undertaking, but it is to be

expected that the O(Re) velocity scales will persist. Equally we have implicitly assumed

here that f_ ¢ O(Re¼), n positive integer, although if this condition is relaxed, it seems

likely that the solution will be modified, but in a relatively minor manner.

Tile e = O(1) problem, at this stage, would appear to be a formidable task, quite possibly

involving a solution of the full Navier Stokes equations. Finally, although our study has

concentrated on sinusoidal disturbances, in the axial direction, it is of course straightforward

to extend our ideas to non-periodic axial disturbances using standard transform techniques.
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