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1 Introduction

Vector quantization (VQ) has received much attention and is a powerful and effective

technique for image compression [9]. A motivation for this approach is that the

performance of vector quantizers can approach the distortion-rate bound D(R) as the

vector size becomes sufficiently large [3]. However, the rate at which the performance

of VQ approaches the bound D(R) as a function of increasing vector size is rather slow

[3]. Moreover, both the computation and memory requirements associated with VQ

increase exponentially as the vector size increases. Therefore, relatively small vectors,

typically of size 4 x 4, are usually used in the design of unconstrained exhaustive search

VQ codebooks for image coding.

Reducing the large complexity and memory requirements of VQ has been the fo-

cus of much research. Various imposed structural constraints have been considered,

but such constraints generally lead to reduced performance for a given rate and di-

mension. However, the reduction in complexity obtained is often a good trade for the

moderate loss in quality. Some examples of structured vector quantizers are lattice

VQ [7], hierarchical VQ [27], and tree-searched VQ (TSVQ) [4, 10]. Residual vector

quantization (RVQ) or multistage VQ is one such structured vector quantizer whose

structure reduces both the memory and computation costs, and is able to operate over

a large range of bit rates and vector sizes. The recent interest in RVQ is due largely

to its good complexity/performance tradeoffs, and to the recent advances made in

design methodology, which have resulted in noticeable improvements over previous

design methods [14, 26].

The structural constraints of RVQ result in a performance degradation compared

to an unconstrained VQ with the same bit rate and vector size. This degradation

can be attributed to two factors. First, the RVQ decoder is constrained by a direct-

sum codebook structure where all possible output vectors of the RVQ are formed by



the sum of stage code vectors--this set is called the direct-sum codebook. Second,

the encoder typically employs an efficient sequential stage-wise search procedure for

practical reasons. However, entanglements in the RVQ tree tend to reduce encoding

accuracy when fast searching is performed. This difficulty is obviated by exhaustive

searching or other forms of optimal sequential searching (see [1]) but the price paid

in computational complexity is generally enormous.

Looking beyond this, however, the structure of RVQ has properties that make it

attractive. The multi-stage structure can be exploited to produce variable number-

of-stages RVQ (one form of variable rate RVQ), which was shown in [19, 20] to lead

to improvements in performance over fixed rate RVQ. In addition, the direct-sum

structural constraint usually leads to an RVQ output entropy which is much smaller

than the logarithm of the number of direct-sum code vectors. Experimental evidence

suggests that the decrease in output entropy compensates for the increase in average

distortion which, in turn, leads to a very competitive coding system.

A simple approach to constructing another form of variable rate RVQ is to combine

a fixed rate RVQ with a noiseless coder. However, a better approach is to directly

incorporate entropy coding in the design process. The joint optimization of a VQ

and an entropy coder was shown to lead to a significant improvement in performance

for the conventional VQ case [5, 6]. This motivates the investigation of an RVQ

design algorithm that minimizes the average distortion subject to a constraint on the

output entropy of the RVQ. This paper introduces a new entropy-constrained RVQ

(EC-RVQ) design algorithm that is very effective in designing variable rate RVQ

codebooks. EC-RVQ is shown to be capable of outperforming conventional EC-VQ

in terms of computational complexity, memory requirements and coding quality, and

has the ability to operate over a much wider range of bit rates and vector sizes.

To set the mathematical notation and terminology used throughout this paper,

the next section begins with a brief summary of fixed rate RVQ. To lay the founda-



tion for the discussionof variable rate RVQ and the developmentof the new EC-RVQ

designalgorithm, necessaryconditions for the optimality of fixed rate RVQ and cor-

respondingdesignalgorithmsarealsodiscussedin the sectionaswell. Next, methods

of constructing three forms of variablerate RVQsarediscussedand comparedin Sec-

tion 3. Necessaryconditions for the optimality of variable rate RVQ are presented,

and a discussionof the new EC-RVQ algorithm is consideredin Section4. Section 5

discussesthe performanceof EC-RVQ whenusedin imagecoding applications. The

paper concludeswith somegeneralcommentson improving EC-RVQ performance

that reflect work presently under study.

2 Fixed Rate RVQ

Residual vector quantization (RVQ) or multistage VQ consists of a cascade of VQ

stages, each operating on the "residual" of the previous stage. A block diagram of a P-

stage RVQ is given in Figure 1 for illustration. A general RVQ consisting of P stages

(with N_ vectors in the ith stage) is capable of uniquely representing N = I-[P=1 N_

vectors with only _P=a Ni code vectors required for storage. Thus, the RVQ achieves

tremendous savings over unconstrained VQ in terms of memory requirements, and

may also achieve similar savings in computations.

To establish the notation and review the key points for optimal fixed rate RVQ,

let _1 be a realization of the random k-dimensional vector X1 described by the prob-

ability density function (pdf) fXa(_a) on _k and assume this to be the input to the

P-stage RVQ shown in Figure 1. For the pth stage VQ with 1 < p < P, let us define

the following symbols:



INPUT X1 X2

Jp Indexes { O, 1, ..., Np-1}

VQP

Np code vectors { yp (jp) ; jp---O, 1, ..., Np-1 }

OUTPUT

Figure 1: A P-stage residual vector quantizer

gp
Jp

Y_(Jp)

Sp(jp)

Vp(j_)

Cp

Qp

the pth stage codebook size (number of codebook vectors)

the pth stage index: {0 < jp < Np - 1}

the pth set of all possible values for jp: i.e. {0, 1,2,... ,Np - 1}

the jpth code vector

the jpth partition cell

the jpth conditional-stage residual cell

the pth stage codebook {yp(jp) : jp e Jp}

the pth stage partition {Sp(jp) : jp E Jp}

the pth stage quantizer mapping

Associated with a P-stage RVQ is an equivalent single-stage direct-sum VQ. The

direct-sum VQ and RVQ are identical in the sense that they produce the same repre-

sentation of the source output and they have the same expected distortion. For the

direct-sum VQ, let us define the following symbols:

N

J

J
y(J)
v(j)
C

P

Q

direct-sum codebook size (N = I'IP=I Ni)

direct-sum P-tuple index set ,/1 × ,/2 × "'" x JR

a P-tuple index in J

jth direct-sum code vector

jth direct-sum partition cell

direct-sum codebook {y(j) : j e J}

direct-sum partition {V(j): j E J}

direct-sum mapping Q(_I) P= Ep=l Qp(xp)
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The direct-sum codebook containsall possibleorderedsums of the stagecode vec-

tors, i.e., C = C1 _B C_ _ ... @ Cp. The direct-sum code vectors are given by

y(J) P= _]p=: yp(jp), where Jv is the pth member of the ordered P-tuple index j.

The direct-sum VQ quantizes the source vector zl and outputs the representation

_1 Q(zl) given by Q(zl) e == = _p=a Qp(zp), where we call zp x_- _,_ Q_(x/) the

pth stage causal residual. The term causal refers to the stages supporting the com-

putation of the residual; i.e., the stage residuals are computed sequentially starting

from the first stage to the pth stage.

To formalize this notion, let the distortion that results from representing the input

zl by the quantized output 6_ be expressed by d(zl,&l). The distortion measure

d(z, y) is assumed to be a non-negative real-valued function that satisfies the following

requirements:

1. For any fixed x E _Rk, d(x, V) is a continuously differentiable function of y E _Rk.

2. d(x, y) is translationally invariant.

3. For any fixed x 6 _k, d(z, y) is a strictly convex function of y, that is, Vyl, Y2 6

_kand_ • (0, 1),d(_,_y_ + (1 - )_)Y2) < )_d(z,y_) + (1 - ,_)d(z,y2).

A P-stage RVQ is said to be optimal if it gives at least a locally minimum value of the

average distortion. There are two necessary conditions for the optimality of fixed rate

RVQ [1, 2]. First, the encoder must map the input vectors according to the following

nearest-neighbor rule:

x_ • V'(j) if and only if d(z_,y(j)) < d(x_,y(k)) for all k • J. (1)

Second, the stage code vectors Yv(Jv) at the pth stage must satisfy [2, 23]

/ d (_p, Y*v(Jp)) frplJ,(_v)d'/p = inf / d(-/p,u)frplj_(_/v)d_/p < oo
_t,LE_ k

(2)



where 3'v = xl - _,e=, Yi(J_) is a realization of the conditional-stage residual random
iCp

vector I'p, and the pdf frpljp(Tv) is related to the source pdf fx,(') according to

x (v(j)) fx, +
frnlj.( 'p)= pr e Vn(jn)) ' (3)

= . ., = E,=, Yi(Ji), Hp(jp) C Jwhere _p(j) (jl,j2,.. ,jv-l,jp+l,.. jP), g(_p(J)) P
i¢p

is the set of all indices j = (kl,k2,...,kv-l,jv, kp+l,...,kP) such that jp E Jp,

and I[Y(j)] is an indicator function for the direct-sum partition cell V(j), that

is, I[Y(j)] = 1 if _1 e Y(j) and I[Y(j)] = 0 otherwise. The yp(jp)'s which sat-

isfy equation (2) are generalized centroids of conditional-stage residual vectors (i.e.,

residual vectors formed from the encodings of all prior and subsequent RVQ stages).

Hence, the second condition will be referred to as the conditional-stage residual cen-

troid condition hereafter. A mathematical derivation of these two conditions is given

in [2, 23].

2.1 The Fixed Rate RVQ Design Algorithm

The fixed rate RVQ design algorithm, introduced in [1], attempts to optimize all stage

codebooks jointly to minimize the reconstruction error over all training data subject

to a constraint on the number of direct-sum code vectors. Assuming that all stage

codebooks are held fixed, optimization of the encoder implies that each training set

vector is mapped to its closest direct-sum code vector using the nearest-neighbor rule

(1). In general, this can be accomplished by exhaustively searching the direct sum

codebook. However, this technique typically carries sufficient computational overhead

to be unattractive. An alternative approach is to sequentially search the RVQ stage

codebooks. This technique results in an increase in speed, but unfortunately leads

to a significant degradation in performance since optimal code vector selection in the

direct-sum codebook is no longer guaranteed. To address this issue, the M-search

technique was explored and was shown to be very efficient when used to search the

6



RVQ tree [1, 18]. Small improvements can be obtained by simply using M-search

when encoding the input using a sequentially-designed RVQ codebook. However,

better results can be obtained by directly incorporating the M-search in the RVQ

design as well as in the encoder [2, 18]. An additional gain can be achieved for the

same complexity by allowing the value of M to be larger in some stages of the RVQ

and smaller in others. This can be done by first defining a desired level for the average

number of M-search computations. Using a large training set, the best value of M

for each stage can be determined empirically such that the total number of M-search

computations is within the pre-specified tolerance.

Given a fixed direct-sum partition, the fixed rate RVQ design method used in

this work is simply an iterative Ganss-Seidel algorithm that jointly optimizes the

stage codebooks by successively operating on each RVQ stage while holding fixed all

other stage codebooks. At each stage optimization step, code vectors are found that

simultaneously satisfy the conditional-stage residual centroid condition (2). Assuming

that the squared error distortion measure is used, each "decoder-only" iteration will

update the stage codebooks such that the average distortion will either be reduced or

left unchanged [24]. Using theorems in [11], it can be shown [24] that if the encoder

yields a Voronoi partition with respect to the direct-sum codebook, then the fixed

rate RVQ design algorithm converges monotonically to a fixed point which satisfies

the necessary conditions (1) and (2) for minimum squared error distortion.

This proven convergence behavior is based on an exhaustive search encoder, which

is not realistic for a practical system in general. For practical applications, a sequen-

tial nearest neighbor or an M-search encoder is used. In these cases, the encoder

optimization step may actually increase the average distortion and monotonic con-

vergence cannot be guaranteed. However, experimental results have shown that the

sequential-search RVQ design algorithm effectively reduces the average distortion with

only occasional deviations from monotonicity. Furthermore, in all our experiments,



the M-search RVQ design algorithm converged monotonically to a local minimum,

even when relatively small values of M (such as 2 or 3) were used.

2.2 Comments on RVQ Performance

An upper bound on the performance of fixed rate RVQ is the performance of exhaustive-

search VQ [26]. For the same bit rate and vector size (i.e., same number of code

vectors), the average distortion introduced by the RVQ can be shown to be generally

larger than that introduced by an unconstrained VQ. For example, let's assume that

a conventional VQ and an RVQ have the same fixed partition of _k. It is shown in

[11] that the average distortion can be minimized if and only if the code vectors are

selected as the centroids of their respective partition cells. Since the code vectors

in the conventional VQ codebook are structuraJly independent, this selection can be

done separately for each partition cell. However, code vectors formed by direct-sums

of stage code vectors are structurally dependent and hence it is unlikely all will be

centroids of their respective direct-sum partition cells. As a matter of fact, these

direct-sum code vectors are not guaranteed to even lie within their respective cells.

Therefore, the average distortion of RVQ is higher than that of conventional VQ.

However, by using large vector sizes and multi-path searching, the RVQ perfor-

mance is shown to exceed that of conventional VQ with only a fraction of the compu-

tation and memory requirements [18]. Moreover, the direct-sum codebook constraint

usually leads to an output entropy H that is smaller than that of unconstrained VQ.

This can be easily demonstrated using the fact that the joint entropy of a collection

of sources (or random variables) is less than or equal to the sum of the entropies of

the individual sources [8]. That is, given P random variables X1,... ,Xp,

P

H(X1,...,Xp) _ _-_H(Xp).
pml

Given the set of P-tuple indices J, one can uniquely index all the code vectors in

an unconstrained VQ codebook (which has the same number of code vectors as the



direct-sum RVQ codebook) by the mapping 7 : J1 x ... x Jp _ J, where

p p-I

"Y(J_,...,JP) = Y_Jp I] IJk[
p=l k=O

where IJ01= 1 and IJkl is the size of the set Jk. Since the jl,... ,jP are independent

(they are chosen arbitrarily), the output entropy of the unconstrained VQ is

P

H(J) = _ H(Jp),
p----1

where H(Jp) is the entropy of Jp. One can also use the same indexing scheme to

index the direct-sum codebook, except that now jp denotes the index for the pth

stage of the RVQ. As noted earlier, the RVQ stages are related by the direct-sum

structure, and jx,...,jp are not independent. Thus, HRvQ(J) = H(Jx,...,Jp) <

P
_,p=x H(Jp) = HVQ(J). Notice that this result can also be obtained by using the fact

that the entropy of the collection of the random variables Jx, Jz,..., JP is equal to

the sum of the conditional entropies, i.e.,

P

H(J1,J2,...,Jp) = __, H(JplJp-x,. . .,Jx).
p=l

The previous results suggest that the direct-sum codebook constraints can gen-

erally be expected to lead to both an increased average distortion and a decreased

output entropy. This implies that for a given average bit rate, variable rate RVQ

could conceivably have the potential to be competitive with variable rate VQ.

3 Variable Rate RVQ

For a given vector size k, variable rate VQ implementations are those that, if prop-

erly designed, can operate at bit rates close to the ones given by the kth order rate-

distortion curve Rk(D) of the input. There are several ways in which a variable rate

RVQ can be constructed. As reported in [19], a variable rate implementation can be



achieved by exploiting the inherent multi-stage structure of RVQ. Since each stage

contributes independently to the total bit rate, variable rate coding can be achieved

easily by truncating the number of RVQ stages used for a given source vector. For

each input vector, the encoding terminates once the distortion falls below a prescribed

threshold. Clearly, the encoder and the decoder must both have knowledge of the

number of stages (bit rate) used to encode a given vector. Sending such a rate to

the decoder is usually done by sending side information, which can be very costly.

However, when relatively large vector sizes (such as 8 x 8 or 16 × 16) are used, side

information requires only a small fraction of the total bit rate [19]. This variable rate

technique has two advantages: 1) Incorporating such a technique into the RVQ design

algorithm leads to reduced encoding complexity because fewer distortion calculations

are needed to encode vectors with low variances, and the centroid computation re-

quires fewer additions; and 2) variable rate RVQ of this type tends to allow for a

better match to the statistics of images. A large number of bits can be used to en-

code edge vectors while a small number can be used to encode low variance vectors

tagl
Another approach to variable rate RVQ is to entropy code the RVQ output indices.

In this case, a fixed rate RVQ is combined with a variable rate lossless coder (such

as a Huffman coder). This can be done by considering the RVQ direct-sum code

vectors to be symbols in an extended source alphabet and constructing a variable

length lossless code for them. The complicated interdependencies among the stages

of an RVQ often results in a direct-sum codebook where the code vectors have a

very nonuniform probability distribution. Therefore, the output entropy of RVQ is

usually much smaller than the logarithm of the number of direct-sum code vectors.

Experimental results, reported in [20], show that the output entropy of the direct-sum

codebook is much smaller than that of the unconstrained VQ codebook (for the same

number of code vectors). Thus the RVQ/entropy coder combination can lead to a

10



substantially lower average bit rate while maintaining the same performance level of

a fixed rate RVQ.

A superior approach to the variable rate RVQ implementation described above

is one in which all code vectors and codewords are optimized with respect to each

other. Therefore, the natural design problem for entropy-based RVQ is to find a

direct-sum codebook whose vectors minimize the average reconstruction error over

all training set data subject to a constraint on the output entropy of the RVQ. In

the next section, necessary conditions for the optimality of variable rate RVQ are

presented, an entropy constrained RVQ (EC-RVQ) design algorithm which satisfies

these conditions is introduced, and the performance of this algorithm is demonstrated

and discussed.

4 Entropy-Constrained RVQ

The high level structure of the EC-RVQ is illustrated in Figure 2. It consists of a P-

stage RVQ where the stage codewords are input to a mapping operator. The mapping

operator transforms the direct-sum index j = (jl, j2,..., jP) codeword into a variable

length codeword c(j) that is then used as the representation of the compressed data.

The mapping operator can be an entropy coder or a collection of stage entropy coders.

The idea underlying the entropy mapping operation is that j's that occur very often

are represented with short codewords and j's that occur infrequently are represented

with longer codewords such that the average bit rate is reduced.

4.1 Necessary Conditions for Optimal Variable Rate RVQ

For the direct-sum VQ, let 3" be the set of variable length indices {c(j),j e J}. The

direct-sum VQ, Q : _k _ C, quantizes the source vector zl and outputs Q(zl), and

may be realized by a composition of a variable length encoder mapping _: : _k __. 3"

11



TO CHANNEL

J = { 1, 2, ..., JP_

c(J)

iP ]P

PUT

MAPPING OPERATOR

X2

Jp indexes {0, 1, ..., Np-1}

Np code vectors { yp (jp) ; jp---0, 1, ..., Np-1 }

Figure 2: The EC-RVQ Structure

where

E(zl) = c(j) if and only if zl e V(j),

and a variable length decoder mapping Z) : J _-} C where

v(c(j)) =

The variable length encoder can be further decomposed into two mappings, £ = LoE,

where E : _k H J and L : J H J, and o denotes composition. Similarly, one can

decompose the variable length decoder into two mappings, 2) = D o L -1, where

L -1 : 3" _-* J, and D : J _-* C. Note that the mapping L is an invertible mapping

with inverse L -1.

Let zl be a realization of the random k-dimensional vector X1 described by the

probability density function (pdf) fxl(z_) on _k. Also, let the distortion that re-

sults from representing zl with zl be expressed by d(zl, &l). The distortion measure

12



d(z, y) is assumed to be a non-negative real valued function that satisfies the re-

quirements (1)-(3) in Section 2. A variable rate P-stage RVQ (with an average rate

< R) is said to be optimal for fxl(') if it gives a locally or globally minimum value

of the average distortion. The design problem can be stated as follows: Choose the

codebook C, partition P and mapping L that minimize the Lagrangian

J_(E,L,D) = E {d(Zl,hh) + A [L(j)[} (4)

where A is the Lagrange multiplier and [L(j)I denotes the length of L(j).

There are three necessary conditions for the optimality of variable rate RVQ [23].

First, the encoder must map the input vectors according to the following nearest-

neighbor encoding rule:

zl • Y"(j) iff d(z_,y(j))+A IL(j)I _< d(Zl,y(k))+A IL(k)I for allk • J. (5)

Second, the mapping L must be one that minimizes the expected codeword length,

R = Eje J [L(j)I pr(j), where pr(j) = pr(z_ • V(j)). Setting the codeword length

IL(J)I to

IL'(j)I = - log2 pr(j) = - log 2 pr(ja,j2,... ,jP) (6)

results in an average rate which is equal to the output entropy of the direct sum RVQ.

Third, the stage code vectors yp(jp) at the pth stage must satisfy the conditional-

stage residual centroid condition (2). A complete derivation of these conditions is

involved and may be found in [23].

The probability pr(jx,j2,... ,jR) of a path in the RVQ can also be written as the

product of conditional probabilities, i.e.

pr(jl,j2,...,jP) = pr(jp[jp-1,... ,ja) pr(je-aljP-2,.-. ,ix) ... pr(j2ljl) pr(jl)

Therefore,

IL'(j)I = - log2pr(jpIjp-_,..., jl) -- log2pr(jp-11jR-2,..., J_)

--... -- log2pr(j21jl) -- log2pr(j_)

13



and
P

H'( . . ., Jp) = ][7,H(414- , . . .,
p=l

4.2 The EC-RVQ Design Algorithm

The EC-RVQ design algorithm is an iterative descent algorithm similar to the one

used for the design of EC-VQ codebooks. Each iteration consists of applying the

transformation

(E(t + 1),L(t + 1),D(t + 1))= T(E(t),L(t),D(t))

where

E(t + i) = argm_n(E,L(t),D(t))

L(t + 1) = arg m_n(E(t + I),L,D(t))

D(t + I) = arg m_n(E(t + l),L(t+ I),D)

(optimum partitions)

(optimum codeword lengths)

(optimum code vectors)

Following the lines of argument of [5], one can show [24] that every limit point of

the sequence (E(t), L(t), D(t)), t = 0, 1,..., generated by the transformation T min-

imizes the Lagrangian J_(E,L,D) (as given by (4)). Therefore, the EC-RVQ design

algorithm is guaranteed to converge to a local minimum.

To find the entire convex hull of the operational rate-distortion curve, the min-

imization of J_(E,L,D) is repeated for various ,Vs. Starting with ,_ = 0 (which

corresponds to the RVQ codebook designed by the fixed rate RVQ design algorithm),

the EC-RVQ design algorithm uses a pre-determined sequence of ,Vs [5] to design

variable rate EC-RVQ codebooks. A summary of the algorithm is given in Figure 3.

As in the design of fixed rate RVQ codebooks, multipath searching is used in

the encoder optimization step of the EC-RVQ design algorithm to closely satisfy the

encoding rule given by (5). The M-search algorithm is found to be very efficient in

substantially reducing the encoding complexity of EC-RVQ for only a small loss in

14



INITIALIZATIONS

I=0 Js (0) = INF

E = SMALL POSITIVE NUMBER

I : ITERATION NUMBER

J$ : LAGRANGIAN

ENCODE

I=1+1

r

I COMPUTE Js(1)
( Js (I+1) - Js (I)) I Js (I)

LESS THAN E

YES

I STOP

NO

TABLES

STAGE

STAGE

UPDATE

OF CONDITIONAL

ENTROPY CODES

AND

CODE VECTORS

Figure 3: The EC-RVQ design algorithm
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performance. Also, the Ganss-Seidel algorithm is used to find optimal stage code vec-

tors (i.e., stage code vectors that simultaneously satisfy the conditional-stage residual

centroid condition (2)).

Unique to EC-RVQ is optimization of the lengths of the codewords which rep-

resent direct-sum partition cells or code vectors. Allowing the use of non-integer

codeword lengths, the self-information of a P-tuple index (or random variable) j =

(jl,j2,... ,jP), given by (6), is essentially the optimal length of the variable length

codeword associated with that index j. Equation (7) shows that such an optimal

length is also the sum of P stage conditional self-information components. Because

of the dependencies that usually exist between the stages of the RVQ, observations of

past encoding decisions provides some partial information about the pth stage index

jp. While the estimation problem is difficult, one can still find a good estimate of the

lengths of variable-length stage codewords by using a sufficiently large training set.

It is evident that the aggregate number of tables of conditional-stage entropy codes

can become extremdy large as the number of stages increases, and consequently the

storage requirements for the entropy tables may very well offset the memory sav-

ings obtained by using RVQ, especially when the bit rate and/or the vector size is

large. For example, consider the design of EC-RVQ codebooks where each direct-sum

codebook contains 10 stages with 4 code vectors/stage. Surprisingly, more than 4

million (4 + 42 +... + 4TM) scalar memory locations are needed to store the tables of

conditional-stage entropy codes (for each direct-sum codebook). However, the num-

ber of tables can be made very small by limiting the number of previous stages upon

which the conditioning is based. This can be accomplished by making a Markov-

like assumption and using conditional probabilities which depend only on the last

rn (rn < p- 1) stages. In other words, the direct-sum codeword length IL(j)I is

approximated by
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[L(j)I = - log2 pr(jPljP-1,... ,jP-m) - log2 pr(jp-1lJP-2,...,jP-m)

-... - log2 pr(j2lj_) - log2 pr(j_) (7)

Obviously, since H(JplJp-1,...,J1) < H(JplJ_,-_,...,Jp-m) for each p = 1,2,...,P

and m < p-1, it is easy to show that H_ (J) P= _.,p=_ H(JplJp-_,...,Jp-m) >__ H(J).

When m is small, the memory requirements to store these tables are relatively small,

but (of course) the performance of the associated EC-RVQ is also not as good as that

of the (P- 1)th order (m = P- 1) EC-RVQ.

It is of particular interest to find the performance gain as a function of m, which

will help us assess how large a value of m is needed such that satisfactory performance

is obtained. Such performance gain (as a function of m) can be estimated empirically.

Figure 4 shows that the performance gain obtained when m is increased, ascends

rapidly to the optimal and often saturates for very small values of m. Using small

values for m has the advantage that the memory requirements can be substantially

reduced.

5 Performance of EC-RVQ

In this section, experimental results are used to compare the performance and com-

plexity of EC-RVQ with those of EC-VQ over a wide range of bit rates and vector

sizes. The training set consists of six (512 x 512, 8-bit) monochrome images taken

from the USC database. Shifts and rotations are used to generate additional training

vectors, leading to more than 200,000 4 x 4 vectors and more than 500,000 8 x 8

vectors. The image Lena, shown in Figure 5, is used for testing, and was not included

in the training set. In all experiments, the objective performance measure used is the

peak signal-to-quantization noise ratio (PSNR) defined by

]E_=l(x(s, j)- _(i,j)) 2
PSNR =-101og10 _N1 N •

(N)2(255)2
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Figure 4: The rate-distortion performance of EC-RVQ (with 4 stages and 16 4 x 4
vectors/stage) for the test image Lena at increasing values of m.

where N x N is the size of the image (assumed to be squared) and x(i,j) and $(i,j)

represent the original and coded values (respectively) of the pixel at the ith row and

the jth column of the image.

EC-RVQ systems based on 4 x 4 vectors were investigated first where the EC-

RVQ design algorithm with M = 4 and m = 1 was used to design a sequence of

variable rate RVQ codebooks. Each codebook contained 4 stage codebooks of size 16,

leading to a peak encoding rate of 1.0 bit per pixel (bpp). Likewise, the conventional

EC-VQ algorithm was used to design a sequence of codebooks of size 2_2 = 4096.

Although a moderate peak bit rate (i.e., 0.75 bpp) was used in the design of EC-VQ

codebooks, the design process required well over two months of CPU time on a Sun

4 Sparc station. Figure 6 compares the distortion versus rate performance on Lena,

while Figure 7 compares the encoding complexity and the memory requirements for

the EC-VQ and EC-RVQ. Table 1 shows PSNR comparisons of EC-RVQ and EC-VQ
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Figure 5: The original image Lena at 8 bits/per pixel
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Figure 6: The rate-distortion performance of EC-RVQ (top) and EC-VQ (bottom)

for the test image Lena. The vector size is 4 × 4.

for four images (taken from the USC database) all at an output bit rate of 0.40

bits/per pixel. EC-RVQ clearly outperforms EC-VQ in PSNR performance, encoding

complexity and memory requirements. An important factor influencing the gain of

EC-RVQ over EC-VQ is the very large number of direct-sum code vectors that EC-

RVQ makes available, even while maintaining a low average encoding rate. The

EC-VQ has a very limited codebook size (due to storage and search constraints), and

the size constraint is not inactive as the theory requires.

In the second set of experiments, 4 x 4 vectors were used in the design of variable

rate EC-RVQ codebooks with M = 4 and m = 2. The EC-RVQ codebooks contained

7 stage codebooks each with 16 code vectors, leading to a peak encoding rate of 1.75

bpp. Figure 8 show the PSNR performance for the EC-RVQ (at two different peak

bit rates) for the test image Lena. As expected, EC-RVQ performance improves with

increased peak bit rate, in spite of maintaining the same average output bit rate. It
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Figure 7: The encoding complexity (top figure) and memory requirements (bottom

figure) of EC-VQ (top) and EC-RVQ (bottom) for the test image Lena.
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EC-VQ, peak=0.75 bpp EC-RVQ, peak=l.00 bpp

Lena 30.97 31.27

Boat 29.63 30.21

Peppers 31.03 31.32

Tiffany 30.08 30.29

Table 1: PSNR of EC-RVQ and EC-VQ for four images taken from the USC database.

The bit rate is 0.40 bpp. The vector size is 4 x 4.

34
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0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64
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Figure 8: The rate-distortion performance of EC-RVQ for the test image Lena at two

different peak bit rates (1.75 bpp for top, 1.00 bpp for bottom). The vector size is

4x4.
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is noteworthy that EC-VQ based on high peak bit rates is not practical in general

because of the large memory and complexity associated with the encoding and design

procedures.

In the last set of experiments, 8 × 8 vector sizes were used in the design of EC-

RVQ with M - 4 and m - 2 and with 7 stages codebooks of size 16. The maximum

bit rate is then 0.4375 bpp- Figure 9 shows the coded image Lena at an average

encoding rate of 0.1505 bpp. The PSNR is about 30 dB, and the subjective quality

is rather good for a compression ratio of about 50 : 1. Practical EC-VQ systems

are limited to relatively small vector sizes (typically 4 x 4) due to the exorbitant

encoding and memory demands needed to implement such quantizers. While the EC-

RVQ coding results (for 8 x 8 vectors) at such low bit rates cannot be compared with

those of EC-VQ, they appear to be almost as good as those of more complex hybrid

Subband/EC-RVQ/entropy coders reported in [21, 22].

6 Closing Remarks

The entropy-constrained RVQ introduced in this paper has many attractive features

for data compression. In particular, the performance quality is among the best avail-

able to date. There also appear to be several areas where improvement can be made.

One in particular is the entropy coding employed in the design algorithm. Equation

(6) assumes the use of codewords that have non-integer lengths, and results in an

average rate which is exactly equal to the output entropy of the EC-RVQ codebook.

One can also employ (during the EC-RVQ design) an entropy coding algorithm of

the entropy code that would follow the EC-RVQ. When employing a Huffman coding

algorithm, both alternatives produced overall EC-VQ systems with nearly identical

performance [5]. However, this may not be true in the case of EC-RVQ because the

tables of conditional probabilities are usually very small (e.g. 4, 8,16), and the av-

erage lengths of the corresponding entropy codes may not be as close to the output
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Figure 9: The imageLena codedat 0.1505bpp. The vector sizeis 8 × 8. The PSNR
is 30.05dB.
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entropy. Therefore, incorporating a Huffman encoder into the EC-RVQ design algo-

rithm may lead to a significant increase in performance when that entropy coder is

used to encode the RVQ stage indices. Another important issue that relates to the

entropy coding problem is the fact that, since the conditional probability distributions

of the latter stages are usually very skewed, other entropy coding techniques (such as

arithmetic coding) may perform better than Huffman-based techniques. Experiments

where both a Huffman encoder and an arithmetic encoder are separately incorporated

into the EC-RVQ design algorithm are presently being investigated.

Another possible area for improvement is in the entropy coding structure. The

present design algorithm is based on static entropy codes. However, with both the size

and the number of the tables being relatively small, the possibility of adaptive entropy

coding exists. This is another variation of the system presently being investigated.

Finally, we point out that EC-RVQ has some potential advantages in terms of

channel insensitivity characteristics. Fixed rate RVQ tends to be less sensitive to

channel errors than conventional VQ. A bit error could be disastrous for a conven-

tional VQ, but is usually less serious when an RVQ is used. This nice property of

RVQ seems to be lost when an EC-RVQ is used because a bit error in one of the

stage codewords will very likely propagate through the subsequent stages, and will

prevent the RVQ decoder from correctly decoding the variable length codewords of

the remaining stages. However, the EC-RVQ variable length codewords become less

sensitive to channel errors if we were to protect those variable length codewords of

the first few stages.
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