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VGD Final Report: Project Overview

Report Overview

Because KMS no longer has on its staff anyone capable of writing a final report for VGD, in

January 1992, Innovation Associates informed NASA/JPL that they would write the final VGD
report for KMS at no cost to NASA or KMS.

This document represents that effort and is the final report for the VGD project, NAS7-1066. It

documents the work done on the project up to the point at which all project work was teminated

due to lack of project funds. Up until the point when contract funds were exhausted, work on the

VGD project was very promising and proceeding well. However, due to circumstances beyond

the control of the Technical Staff on the VGD project, unanticipated Overhead and G&A rate

increases occured at KMS during both 1990 and 1991. These increases, resulted in a) inadequate

contract funding being available to perform the original statement of work, b) unexpecled loss of

staff performing the work, and c) the abrupt layoff of remaining project staff when a DOE-

mandated cost accounting changes in mid 1992 caused Overhead and G&A rate,'; to again

increase thus exhausting remaining contract funds without prior warning.

Starting in January 1991, KMS Industries made good faith efforts fulfill its commitments to its

R&D customers. Specifically, it attempted to shield its R&D contracts from the affects of the

loss of a $16 million DOE ICF contract by requesting that NASA and other government agencies

novate KMS Fusion's R&D contracts to KMS Advanced Products, Inc. and by maintaining

separate overhead and G&A rates for the two companies. The novation requests &agged on

without resolution for six months. At the end of March 1991, KMS suspended work on the VGD

project because if the novation request was not granted, all available funds on the contract were
already exhausted.
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Section A

Project Accomplishments by Quarter

Quarterly Report #1

A general design for the VGD system was provided to the technical contract monitor to clarify
the work that is to be performed under the VGD contract.

Quarterly Report #2

Methods for generating a sinusoidal projection pattern required by the VGD SURPHACE

Camera are described. Techniques are reported for eliminated determental effects due to higher
order harmonic errors in producing the sinusoidal slides.

Quarterly Report #3

A design is provided for a new ranging device, i.e, the SUrface Reconstruction by PHAse-shifted

CosinEs (SURPHACE) Camera, which uses phase-shifted structured lighting to triar_gulate on

the points of the surface of an object. The camera works with a simple light projector and a CCD
camera and records registered range and intensity data.

Quarterly Report #4

Methods for generating a sinusoidal projection pattern required by the VGD SURPHACE

Camera are described. Techniques are reported for eliminated determental effects due to higher
order harmonic errors in producing the sinusoidal slides.

Quarterly Report #5

A more complete design of the VGD system is presented, together with a description of the

calibration routines necessaxy to calibrate the VGD SURPHACE Camera and routines to

manipulate surface data capture by the SURPHACE Camera. Two representations are presented

for storing surface range/texture data, i.e., one in which surface data is stored as a set of pixel

meshes, and the second in which data is stored as a polygon mesh.

1991 Unreported Work

The work on calibrating the camera was successfully completed and work was :;tarted in

developing routines to patch together different views to obtain a complete surface representation.

Because the staff working on these tasks quit with minimal notice, this has not been previously
documented.
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Section B

Project Task Status Review

(15-May-91)

Task 1.1: Implement Stereo Reconstruction using Structured Lighting.

Proposal Objective:

Work Accomplished:

Significant Accomplishments:

Technical Problems:

To develop a simple approach for obtaining

correlated range and texture data.

KMS developed a phase-shift structured lighting

system that uses a special projector with two stereo

cameras to input texture and range data.

KMS has developed good camera calibration routines

and demonstrated feasibility of approach.

KMS had to move from a hand-held light-weight

system to a tripod-held system because the combined

weight of the cameras, the camera mount;, and the

phase shift structured lighting assembly is too large

for a the unit to be steadily held in the hand. When

the project was terminated due to lack of funds, the

system still did not provide the accuracy which was

originally envisioned and range images were still

noisy.
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Task 1.2: Investigate Stereo using Existing Lighting

Proposal Objective:

Work Accomplished:

Technical Problems:

Effects on Project:

To develop a simple approach for obtaining

correlated range and texture data without using

projected lighting.

KMS reviewed existing techniques to see where new

approaches might be possible.

After reviewing existing techniques, KMS

determined that the technical issues involved were

too complicated for us to adequately address this

problem and that there would be inadequ ate hours
available on the contract for us to devote further

effort to seeking a simple approach for correlating

range and texture data without using projected

lighting.

Little. This part of the task was a best effort.

B-2



VGD Final Report: Section B - Project Task Status

Task I1: Implement Software for Viewpoint Determination

Proposal Objective: To develop a approach for determining the transform
between different views.

Work Accomplished: This work falls out from the camera calibration code

developed for surface reconstruction. We still have

to implement a small amount of code to complete the
task.

Significant Accomplishments: The KMS approach allows the camera viewpoints to

be correlated (matched to each other) using existing
surface features.

Technical Problems: None known.
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Task II1.1: Implement Software for Manipulating VGD Database

Proposal Objective:

Work Accomplished:

Technical Problems:

Effects on Project:

To develop an efficiently accessed (i.e, surface

quadtree) representation for surface data.

At the time contract work halted due to lack of funds,

the database had not been implemented. KMS

intended to provide a database that was simpler to

implement than the surface quadtree databaase and

which met the basic technical requirements.

KMS determined that there was inadequate labor

time to implement the database as o_;iginally

designed. Morover, the original database design did

not necessarily provide a good represen:ation for
both surface and texture data.

Little effect, since the database that is to be used will

play a similar role.
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Task 111.2:Inputting Raw Surface Data Into the VGD Database.

Proposal Objective:

Work Accomplished:

Technical Problems:

Significant Accomplishments:

To develop techniques for loading data into the VGD
database.

KMS was able to load both texture and range data.

None.

The KMS approach allows texture/range data to be
loaded.
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Task III.3: Implement Software for Merging Subsurfaces.

Proposal Objective:

Work Accomplished:

Technical Problems:

Effect on Project:

To develop code to merge surface data into one
coherent surface.

Designed, but not implemented.

There may be too little time left on the project to
implement the needed code.

This Task must be finished to provide a working
system.
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Task 111.4:Implement for Converting to IGES

Original Objective: To develop code to convert database data to IGES
format.

Work Accomplished: IGES specifications were obtained. After reviewing
the specifications, KMS determined that '.t was not

technically feasable to represent VGD surface data

in IGES format. While we could create a surface

space frame and from there create line segments

representing surface patches, the result would be an

accurate representation of the data acquired by VGD.

The IGES standard was set up to provide an

interchange format for line segments contained

within 2-D CAD drawings. As such, standard IGES

lacks primiteves for describing the 3-D surface

features and information that VGD acqaires, i.e.

texture, brightness, 3-D coordinates of a surface area

patch. JPL has created extensions to lGES to

address some of the representation restrictions.

However, staff determined that they did not have

adequate time to pursue this approach.

KMS experienced a similar problem in trying to use

IGES as an interchange media for transfi;ring data

from a 3-D solids modeling package on a Applicon

CAD system to another system. Although the

individual line segments of space frame drawings

could be transferred, there was no way to transfer the

information which tied the drawings into a 3-D

shaded model of the object being designed.

Technical Problems: The initial concept of converting the data :nto IGES

was flawed by not understanding the severe

limitations of the standard IGES format. Moreover,

inadequate hours existed to try and address these

limitations by investigating IGES extensions

because of unanticipated 1990 overhead md G&A
rate increases.

Effect on Project: Liale effect.
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Task IV: Design and Implement Operator Interface

Proposal Objective: To design an easy-to-use operator interface for

manipulating surface data.

Work Accomplished: Design complete.

Technical Problems: Because of unanticipated 1990 overhead and G&A

rate increases at KMS, staff determined that there

would not be adequate time for implementing the

user interface which was designed. As a

workaround, the user will interact with the system
using a command line interface.

Effect on Project: While a reduction in operator ease-of-use is not

desirable, the VGD system should be able to meet its

technical objectives.
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Task V: Design and Build Stereo-Camera System

Proposal Objective: To design a hand-held, easy-to-use stereo-camera

system.

Work Accomplished: The camera and structured lighting system was built

and is functioning. Data is being acquired with it.

Technical Problems: The unit tends to run hot because the structured

lighting system uses a projection lamp. This

problem might be overcome by replzcing the
projection lamp with a laser diode. The camera

itself is heavy and somewhat unwieldy. Although

ultra-light weight cameras were obtained, the weight

is greater than anticipated because of the weight of

the camera mounting rail and the weight of the

structured lighting assembly. The weight of the

structured lighting assembly could also be

significantly reduced using a laser diode as the
illumination source.

Significant Accomplishments: KMS developed a working structured lighting
system.
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Task VI: Procure Hardware

Proposal Objective: Obtain hardware for efficient data capture and
manipulation.

Work Accomplished: All hardware obtained.

Technical Problems: The CDA array processor still can not be used when

the VAXstation 3520 is configured to use both

CPUs. If the workstation is configured to use both

CPUs, attempting to access the CDA array processor

will crash the workstation. The problem has been

traced to the driver for the CDA array processor. It

does not support symetric multi-processing

correctly. Repeated attempts were made to get

CDA/Analogic to address this problem, but to date,

CDA has not provided KMS with a driver which

correctly supports the both processors in the
VAXstation 3520.

Effect on Project: Our inability to use the CDA array processor with

the workstation as intended has hindered our ability

to perform this contract. The speed at which we can

manipulate data and test concepts just using the

VAXstation is too slow. Because we have been

unable to get CDA to resolve the problem, the time

we spent tracking down the problem and trying to
resolve it was wasted.
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Section C

Quarterly Report #1: December 1989

C-1: Purpose and Scope of This Report

In conversations with NASA on December 4, 1988, we learned of possible applications of great

interest to NASA to which VGD's technology might be applied. In particular, the three

applications of greatest interest were: (1) autonomous docking between an OMV and a satellite,

(2) ORU replacement by a telerobotic servicer, and (3) assembly and disassembly. These

applications have the common thread that they all will necessarily employ model-ba:;ed object

recognition and tracking. The team at KMS that is working on this contract has much experience
in this area; two of us have written our Ph.D. dissertations in these areas, and the rest of the team

has done extensive research in these areas, as well as other areas of computer vision. In addition,

we have won previous contracts to perform research in recognition and tracking. Therefore, we

are very qualified to develop such a system. However, as originally proposed, the goal of the

Phase II View Generated Database effort, is to develop a model acquisition system. This

system would allow accurate 3-d models of 3-d scenes, or of individual 3-d objects to be

constructed which is not as readily applicable to NASA's immediate needs as it might be.

However, in the event that NASA would consider a modification in the VGD statement of work

which would slightly reorient the project's goals, KMS believes that it would be possible to

redefine the VGD project to make it more readily applicable to NASA's mission. Con:;equently,

part of the purpose of this report is to highlight what changes would be necessary to accomplish

such a reorientation, if NASA determined such a change in project objectives was ia the best
interest of the government.

In order to clarify the changes required for reorientating VGD, we are providing an overview of

KMS's approach to model-based object recognition and tracking followed by a synopsis of VGD

as it was originally proposed in Section C-3. Section C-3 will also discuss how ICMS could

address NASA's applications in object recognition and tracking by slightly modifying the

statement of work while maintaining the existing Phase II budget. Section C-4 provides a

detailed description of KMS's tracking algorithm.

In addition to the primary purpose of this document, there are two secondary purposes. The f'LrSt

is tO apprise you of KMS's software development process. The second is to provide a critical

review of existing work in the areas related to VGD which is a task in the statement of work.

The heart of KMS's software development process is our software quality assurance :guideline,

which is outlined in Section C-5. This guideline insures that the delivered software system is

well documented, easily maintainable, and contains the desired functionality.

Finally, in Section C-6 is a review of critical review of model acquisition systems. However,

since we realize that NASA may have some interest in utilizing VGD's technology in object
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recognition and tracking applications, we have included a critical review of object recognition
methods as well in Section N.

C-2: Overview of KMS's Approach to Model-based Object Recognition
and Tracking

KMS has considerable experience in building systems for model-based object recognition,

transformation determination, and tracking. This section provides an overview of our
approach to these problems.

KMS's approach to model based object recognition consists of three major phases:

(1) Modelling phase: model acquisition and representation,

(2)
Lock-in phase: initial model or model sub-part identification and coarse viewing
transformation estimation, and

(3) Tracking phase: fine viewing transformation estimation and hypothesis validity
checking.

We have referred to phases phases (2) and (3) in "tracking" terminology as this is more

suggestive of the functions they perform. However, each of these phases is largely isomorphic to

a corresponding phase of the object recognition process. In a model-based tracking scenario, the

lock-in phase refers to the problem of initial identification and view transformation estimation.

Thus, in such a scenario, this phase must "lock-in" on which object (or objects) axe present, and

roughly estimate the viewing transformations so that the tracking phase can take over to

accurately determine the viewing transformation, and update, i.e., track it, from frame to frame.

In an object recognition and location scenario, the goal of the lock-in phase, as in the tracking

scenario, is to provide initial hypotheses about the identity, position and orientation of the object

that appear in an image of a scene. Also similarly to the tracking scenario, the position and

orientation of each model hypothesis needs to be determined only roughly, because the function

of the tracking phase is to refine the estimates of the viewing transform. In an object recognition

scenario, the tracking phase would be augmented to perform some additional validity checking
against the imase to screen out possible false alarms.

The remainder of this section describes KMS's approach to these problems.

While phases (2) and (3) differ in some minor respects between a tracking scenario and an object

recognition scenario, phase (1), the modelling phase, are identical in both scenarios. In either

scenario, the modelling phase will be performed off-line, i.e., prior to the recognition phase or

the tracking phase. If it were to be performed on-line, then VGD as it was originally proposed

would be more appropriate. However, in the context of model-based object recognition and

tracking, the modelling phase consists primarily of creating representations of 3-d objects that
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expedite recognition and tracking. Conventional representations used by geometric modelers in

CAD and CAM applications are unsuitable for vision applications. Thus, a critical part of the

design of VGD is to represent the 3-d objects in a manner that expedites the tasks of recognition
and tracking.

VGD will continue to concentrate on the modelling phase of the overall problem of object

recognition, transform determination, and tracking. However, KMS will add a task to the

existing task statement in our original proposal wherein we will investigate using these models in

an existing object tracking and transform determination system. The remaining parts of this

section are devoted to describing the modifications to each task of the original proposal, as well
as describing the new task.

C-3: Reorienting VGD for Object Recognition and Tracking
Applications

Based on conversations with NASA, we believe that model based object recognition, viewing

transformation determination, and object tracking are of considerable interest to NASA.

Therefore, we are offering to redefine VGD in a way that might be more responsive to NASA's

needs. In particular, we could redirected the model aquisition effort away from its original

emphasis on 3-d surface acquisition, detailed surface photometry measurement, world model

maintenance and toward model aquisition and representation for object recognition,
transformation determination, and tracking.

Therefore, Section C-3.2 provides a brief description of our approach to model acquisition and

representation. This representation is much better suited to model-based 3-d object recognition

and tracking than conventional CAD/CAM representations. Finally, Section C-3.3 provides a

task-by-task description of the redirection that we could make (if directed by the contracting

office) in the original six tasks. To further address NASA's needs, we could also add a task to

incorporate the models created by VGD into existing object tracking software developed at
KMS.

C-3.1: Synopsis of VGD as Originally Proposed

VGD provides the capability to accurately represent any real-world object or scene as a computer

model. Such models include both an accurate spatial/geometric representation of surfaces of the

object or scene, as well as any surface detail present on the object. Applications of such models

are numerous, including acquisition and maintenance of world models for tele-autonomous

systems, generation of accurate 3-d geometric/photometric models for various 3-d vision

systems, and graphical models for realistic rendering of 3-d scenes via computer graphics.

The features and the benefits of VGD, as originally proposed, are listed in Table C- 1.
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f

Features of Proposed System

Uses a hand-held stereo pair of solid
state cameras,

Uses a hand-held shuttered projection
system that allows structured lighting to
be projected onto a surface.

Benefits of VGD to NASA

Allows objects of arbitrary size, and
location to be input into a computer
model.

Allows accurate determination of the

surface of an object even when the
surface has little surface detail.

Uses structured lighting but can be
adapted to using existing lighting.

Does not require a special
environment In Imaging the object.

Provides an Innovative stereo matching
algorithm,

Registers different views of an object
using natural and artificially placed
surface markings.

Allows integration of a number of
visual depth cues.

Does not require that the object to be
placed into a special Jig or odented by
a sophisticated positioning device.

Provides a heirarchically organized Allows rapid access to both the
database for combining subsurfaces of geometric and surface detail

an object and for building a world model, description of the object model.
= =

Table C-1: KMS's View-Generated Database will provide a flexible tool for

creating computer models of existing objects.
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C-3.1.1: Perspective on VGD as Originally Proposed

VGD has many applications. A particularly important one is the capability to provide vision

systems, tele-autonomous systems, with accurate geometric and photometric models of everyday

objects -- objects that were not originally designed with CAD tools. State-state-of-the-art object

recognition and tracking techniques require such models in order to recognize and localize

objects. VGD allows such systems to operate on scenes containing any objects, not just the ones

that have been created using a CAD system, thus circumventing the need to laboriously create

such models. Another important application is the creation and maintenance of world models

for tele-autonomous systems. VGD has the capability to create a 3-d model of any scene using

its visual sensor apparatus. Known objects can be identified and their locations determined.

Further, the 3-d position and structure of unknown surfaces can be determined and stored in the

world model for use in obstacle avoidance and path planning.

C-3.1.2: Functionality of VGD as Originally Proposed

VGD's design provides

• a mobile stereo camera/structured light apparatus from which registered stereo and structured

light images can be acquired;

the capability to take multiple snapshots of a scene or object using the camera apparatus, and

usethem toproducea 3-4descriptionofthesceneorobject.Inparticular,

- calibration of the stereo cameras and the structured light system,

- accurate determination of interframe transformations, first with manually placed

features and later with existing features,

- to determine coarse surface geometry using images of projected structured light that is
registered with standard intensity stereo images,

- recover detailed surface geometry and surface albedo of portions of the object

corresponding to each view,

- fuse the surfaces into a single world model or object model:

an easy interface to existing modeling systems since
the 3-<! model is represented both in planar patch format and surface spline format,

models may be stored in f'des adhering to standard 3-4 modelling formats;

a world-modeling database permitting

- easy and efficient creation and maintenance of a world model,

- searching based on geometric attributes such as surface structure and position,

- searching basedon userdefinableattributes;

• an easy to use, Macintosh-like operator interface that allows all facets of the system's

operation to be controlled and monitored in a simple, intuitive manner;
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C-3.2: Modelling 3-d Objects for Recognition and Tracking

proper representation of objects is critical to VGD's success in recognition, location,
and trac_dng; By using models, VGD can compute the edges, and other features, that
should be vislble from a particular viewpoint. The key to achieving ultimate real-time
object recognition and tracking performance Is in accomplishing this task in the most

efficient manner possible. KMS has explored a particularly promising avenue for
acquiring and representing models of objects. This object representation, called the
Basd-Uhllman representation, or BU representation, allows edges and their positions
and orientations, to be computed extremely quickly. Ultimately, the BU representation
should allow implementation of real-time object recognition, transformation
determination, and tracking, ....

i i i i i i i i ii ill llll ii i i i ii i ii i i i i i i i ii i i ii i i i i i i i H

Efficiently predicting the visibility, position, and orientation (i.e., the appearance of the edges) of

edges on a smooth object is very difficult. In contrast, efficiently predicting the appearance of

edges on non-smooth objects, i.e., objects possessing many creases (tangent discontinuities), is

far simpler to accomplish. The reason for this is that rotation of an object with a crease will

produce edges that are simply the projection of the new 3-d location of the crease. On the other

hand, given two views of a smooth object, there will be two distinct sets of points on the object's

surface, one corresponding to each view, that project to edges in each view of the object. Thus,

predicting the appearance of edges in a view of a smooth object is a two step process. First, we

must compute the set of points on the surface of the object that project to edges. This set of 3-d

points on the surface of the object is the called the contour generator. After computing the

contour generator, it must be projected to obtain the actual edge contours. In contrast, predicting

the appearance of edges resulting from creases on a non-smooth object is much simpler. Since

the 3-d positions of the points on the creases are known a priori, all that is necessary is projecting

these crease points to predict the appearance of the edges.

The BU representation allows VGD to quickly predict the appearance of the edges visible from

any viewpoint, even when the object is smooth. The following paragraphs provide an abridged

description of the BU representation, and discuss its merits as an representation for model-base

object recognition, transformation determination, and tracking.

The Basri-Uhllman (BU) Representation of 3-d Objects

The BU representation consists of several submodels, each of which allows accurate prediction

of the appearance of edges over a portion of the viewing sphere. Each submodel, in turn,

consists of a set of 3-d space curves that have the magnitude of the curvature vector associated

with each 3-d point that comprises them. The curvature vector, r, is defined as r = (rx,.ry), where

rx is the radius of curvature of the 3-d surface of the object around the x axis, and, similarly, ry is
radius of curvature around the y axis. It can be shown that the direction of the curvature vector is

perpendicular to the direction of the tangent to the contour [Basri UhUman 1988]. Thus, r can be

computed from its magnitude, which is stored in the representation, and the tangent direction,

which can be computed from the projection of the 3-d space curves that are also part of the

representation. This allows the surface of the object near the contours to be well approximated by
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the circle of curvature about the axis of rotation. This approximation holds well over a large

region of the viewing sphere. This approximation allows the contour generator to be efficiently

computed using the approximation to the surface [Basri Uhllman 1988]. After computing the

contour generator, it is projected to predict the appearance of the edges from the new viewpoint.

In order to build an model of an object using the BU representation, an edge image taken from a

central view and four edge images taken from auxiliary views are required. The auxiliary views

are obtained by positive and negative rotations about the x and y axes from the central view. The

resulting changes in the positions of the points on corresponding edge contours between the

central view and the auxiliary views allow the 3-d position of the contour generator in the central

view, and the curvature vector r to be calculated at each point of the contour generator. As

mentioned previously, information contained in the magnitude of r plus information contained in

the contour generator contains sufficient to information to reconstruct r, and therefore to

construct the approximation to the surface. Taken together, all of the contour generators in the

central view comprise one submodel in the BU representation. This procedure must be repeated
for each region of the viewing sphere that requires its own submodel.

Figure C-1 shows an example of one submodel of the BU representation applied to a

Volkswagon (VW). The top VW view is the edges that are predicted by the submodel from the

submodel's central view. The middle two VW's are the edges detected in images of real VW's

that have been rotated 15 degrees in either direction from the central view of the submodel. The

lower two VW's are the result of superposing the edge images in the middle row with the edges

predicted by the submodel from the new viewpoints. As is evident, the submodel does a good
job of predicting the appearance of the edges.
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Figure C-I: Shown is an example of one submodel of the BU representation

applied to a Volkswagon (VW). The top VW view is the edges that are

predicted by the submodel from the submodel's central view. The

middle two VW's are the edges detected in images of real VW's that

have been rotated 15 degrees in either direction from the central view

of the suhmodel. The lower two VW's are the result of superposing

the edge images in the middle row with the edges predicted by the

submodel from the new viewpoints. As is evident, the submodel does a

good job of predicting the appearance of the edges.
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The BU representationhas several advantages. First, it allows internal edges to be modeled

easily. Second, the method allows models of real objects to be easily built, as well as allowing

easy conversion of objects that have been modeled on a conventional CAD system. Third, if the

edge images used to create the model are taken under realistic lighting conditions, then the edges

will be predicted by the model in a realistic manner. Finally, since the computations involved are

so simple, predicting edges any viewpoint is extremely fast, easily accomplished in real time
with readily available hardware..

C-3.3 Task by Task Description of Modifications to VGD

The changes that we propose to make in the existing tasks of VGD are concentrated in tasks I

and III. The other tasks remain essentially unchanged. In addition, we are adding task VII.
Table 2 summarizes the content of the changes. Sections C-3.3.1 - C-3.3.7 are devoted to

describing the proposed changes in detail.

C-3.3.1 Task h Implement Software to Construct

Basri-Uhllman Submodels

The original thrust of this task was to take stereo images of a scene and use them to determine

the 3-d structure of the scene, as well as the surface detail, such as markings and texture, present

on the surfaces. Such surface models certainly contain enough information to be used by vision

systems for object recognition and tracking, but the representation we originally proposed for

VGD, i.e., a 3-d surface patch representation, is not well suited for these endeavors. Thus we

will change this task to the aquisition and construction of Basri-Uhllman submodels. Section C-

3.2 described how the BU representation is ideally suited to 3-d object recognition and tracking

algorithms that use edges as features. Thus, we expect that the capability to acquire and create
BU models will be very useful to NASA.

Section C-3.2.1 described the steps in creating a BU model. For each BU submodel, a total of at

least five views are required. The set must be decomposable into sets of three views possessing

viewing axes that are both coplanar and coincident at a single point. For this reason, we propose

to modify the stereo/structured lighting sensing apparatus that was originally proposed by

removing the structured lighting apparatus and adding a third camera (see Section C-3.3.5

"Design and Build Tricamera Sensor Apparatus). This will allow sets of three images satisfying

the requirements stated above to be acquired simultaneously. The capability to acquire the three

images simultaneously obviates the need to place the object in a jig or holder, making the system
more versatile.
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Existing Task Description Modified Task Description

Usa stereo cameras and structured
light apparatus to recontruct the 3-d
structure and the surface detail of the
evironment.

2

3

Use features of the scene to register
the views taken with the mobile sensor
apparatus.

Possibly aided by the user, fuse the
subsurfaces resulting from Task I into

single surfaces using the view
registration Information from task II.

4 Implement an intuitive, easy to use,
Macintosh-style operator Interface.

Design and Build the hand-held stereo

camera and structured lighting
apparatus.

6

7

Support, maintain, and document VGD

Did not exist in the odglnel proposal

L
i

The BU representation is comprised
of contours rather than surfaces.
Thus, In this task we will build a

single region representation of the
BU representation from data

acquired from the sensor apparatus
(see changes to Task V).

No changes to this task.

Combine several single view BU
representations, generated In Task I,
into a single multivlew

representation covering all possible
viewpoints.

No changes to this task.

Since acquisition of models in the
BU representation requires three
Images In a line, design and build a

sensor apparatus consisting of three
cameras, one at each end and one

In the middle. No structured light will
be used.

No changes to this task.

Integrate objects in the BU

representation into KMS's existing
model-base, 3-d object tracking
system.

Table C-2: A summary of the proposed changes to the tasks in VGD.
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While the sensor apparatus permits the capturing of three registered images, at least

five are needed to create one BU submodel. To accomplish this, the user will simply

rotate the sensor apparatus and capture three more images for a total of six. The

software implemented in Task II will allow the two trios of images to be registered, i.e.,

the transformations between the two views to be determined. Using the viewpoint

registration information, the curvature information contained in each trio of images can

then be integrated into the standard form of the BU submodel. In essence, recalling the

terminology of Section C-3.2.1, instead of the ideal situation described there where r x

and ry were determined directly due to the special configuration of the central and

auxiliary views, we will obtain r= and r b, where a and b are arbitrary axes in the image

plane. Given knowledge of the precise transformation between the first trio of images

and the second, available from the software developed in Task II, it is a simple matter to

derive rx and ry, and from this the magnitude of the curvature vector.

C-3.3.2 Task Ih Implement Viewpoint Determination Software

This task remains the same as the original task.

C-3.3.3 Task IIh Implement Software to Fuse Multiple Basrl-Uhllman

Submodels into a Single, Complete Model.

The viewpoint registration software developed in Task H allows several BU submodels to be

combined into a single model. If enough correctly positioned submodels are used, then the

appearance of edges from any viewpoint can be predicted.

It is relatively simple to fuse the submodels into a single overall model, given the availability of

viewpoint registration data. The most difficult part of this task will be to determine where the

submodels begin to erroneously predict the appearance of edges so that additional submodels

may be added. Further, since we desire the minimal number of submodels providing a specified

fidelity of prediction, we desire to add submodels to the optimal viewpoints in order to avoid

redundancy. These measures will insure that the model provides accurate predictions over the

entire sphere of views, while remaining efficient with storage.

C-3.3.4 Task IV: Implement Operator Interface

This task remains the same as the original task.

C-3.3.5 Task V: Design and Build Tri-camera Sensor Apparatus

As mentioned in Section C-3.3.1, the original stereo camera, structured lighting sensor apparatus

will be changed to have three cameras. Referring to Figure C-2, two of the cameras will be

located as originally proposed. The third will be located in the center of the apparatus, in the

location of the sturctured light projector. This design will allow models of objects to be acquired
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without the need to put them in a special jig or holder. This feature makes VGD much more
versatile.

Figure C-2: Shown is a drawing of the original design of the sensor apparatus.

There are cameras at either end, and a structured light projector at the

midpoint. The revised design would be the same except that the

structured light projector will be replaced by a third camera.

C-3.3.6 Task Vh Support, Maintain, and Document VGD

This task remains the same as the original task.
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C-3.3.7 Task VII: Integrate BU Models into Existing Model-Based

3-d Object Tracking Software.

KMS has developed a powerful and fast model-based 3-d object tracking system. In this task, KMS will

demonstrate the effectiveness of the BU representation by using such models to track real objects using
our existing tracking software. Further, if NASA can provide us with real objects (or plastic models of

these objects) we will create BU models of these objects, and then demonstrate tracking of these objects
using our tracking software. We expect that the results of these experiments will show that real-time

tracking of 3-d objects is well within the reach of readily available hardware using BU models coupled
with KMS's tracking system.

We have provided a short description of the operation of KMS's tracking system in Section C-Z.
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C-4: Tracking and Precision. Viewing Transform Measurement

During the first video frames of operation the tracking system will locate and lock in on the object or

objects to be tracked. After an object is located, it is tracked, and continues to be tracked, until the object
is lost from the field of view. At the start of each video frame, the tracking algorithm starts with the

current estimate of the object's view parameters, available from the previous frame.

Using this estimate of the view parameters, the tracking algorithm adjusts the model to minimize

differences between selected features of the object boundary and corresponding features of the model
silhouette to obtain an optimum estimate of the object's view parameters.

Figures C-3 - C-7 display the step-by-step procedure used by the tracking algorithm to determine the view
parameters of an object that is being tracked during a single frame of data.

Camera

age

_bo Imago

undary

Figure C-3: The tracking

algorithm consists of four

steps. In the first step, after

a video frame has been

acquired, boundaries of the

objects in the frame are

located using an edge

detection algorithm mapped

onto a high-performance

array processor.
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Figure C-4: In the second

step, features are extracted

from the edge boundaries.

Features consist of pairs of

points on the boundary at

special locations, such as

points of inflection or of high

curvature, which are well

localized and quickly found.

Each feature possesses

attributes that encode the

shape, size, and location of

the local support of the

feature. The image features

are stored in a special

database, designed for fast
retrieval.

Figure C-5: in the third step,
a silhouette is extracted from

the model, where the model

is scaled, positioned and

oriented based on tile

current estimate of the

object's view parameters.

Features are again extracted.
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Figure C-6: In the fourth step,

the differences between the

features of the model silhouette

and those of the object

boundaries are computed.

Steps three and four are

repeated as the view

parameters of the model are

iteratively adjusted to

minimize the differences

between the features of the

model silhouette and of the

object boundaries.

_:i ii i

Figure C-7: When the

differences are minimized, the

view parameters of the model

provide an optimal estimate of

the object's view parameters.

This estimate can be used to

directly calculate the 3-space

position and orientation of the

object.
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Figures C-8 and C-9 demonstrate actual results of the algorithm. In Figures 8a-d the tracking algorithm is

lock in on the view parameters of the Space Shuttle starting from a initial, poor estimate of the view par;

The blue contour shown in 8a corresponds to the model silhouette generated from the initial estimate. Th_

contour (surrounding the Shuttle) corresponds to the boundary of the Shuttle. In Figures C-8(b-d) the al

quickly readjusts the view parameters of the model until the model silhouette corresponds to the object boun,

In Figures C-9(a-d) the tracking algorithm is used to lock in on the view parameters of a partially occlude

Shuttle. Here, due to harsh lighting conditions, the nose cone of the Space Shuttle is missing. The blue cot

9b corresponds to the model silhouette generated from an initial, poor estimate of the view parameters. Tht

contour again corresponds to the boundary of the object. In Figures C-9(c-d) the tracking algorithm
converges to the correct view parameters.
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(al (hi

It) (d)

Flgure C-8: (a) Given a rough InlUal estimate of the view parameters of an object, the tracking
algorithm determines a starting silhouette (blue contour) to be matched to the
object boundary (yellow contour). (b)-(d) The algorithm then quickly locks In on
the true view parameters of the object. Note that In (d), the tracking algorithm
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locates the shuttle boundary so exactly that the blue and orange contours overlap
and are difficult to see except at the shuttle tall.
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{a) (I})

Ic) Idl

Figure C-9: (a) Starting with an Image of a partially occluded object (a), the
tracking algorithm quickly estimates the view parameters of the
object by, (b)-(d), Iteratlvely matching the model silhouette (blue
contour) to the object boundary (orange contour).
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C-5: KMS Software Quality Assurance Procedures

VGD's software development Is proceeding through the project phases outlined In the

KMS Softwmre Quallty Assurance Standards to ensure the development of hlgh-quallty,
well-documented software meeting contractual requirements.

As a step toward insuring the continued quality of KMS software projects, an internal KMS

project resulted in an update to the KMS Software Quality Assurance (QA) procedures. These

procedures provide a formal framework within which high quality and cost-effective software

will be developed at KMS. The KMS Software QA Standards incorporate recognized, industry-
standard QA guidelines as published, for example, by ANSI and IEEE.

KMS felt that it was important to fully implement these updated procedures before proceeding

with detailed development of the View Generated Database. All VGD project activities will be

governed by these procedures. This insures the system which is delivered will adhere to the
detailed "Data Item Descriptions" which axe included in the contract.

The development of VGD is proceeding through the project phases illustrated in Figures 10 and

11. The current phase is the project plan. This will be completed when we have agreed upon the

course that VGD is to take. When the plan is complete, a copy will be included in the next

progress report. Based on the Project Plan outline, the Requirements Definition step is will be

initiated. Throughout the VGD project, KMS will communicate detailed specifications and

design decisions to the NASA via the regular quarterly reports, as indicated in the contract. As

addenda to these reports KMS will include relevant documents produced in satisfaction of our
QA procedures.
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C-6: Review of 3D Model Acquisition Techniques

The modeling of three-dimensional objects using multiple camera views is an active research

area in computer vision and is poorly defined at present. The goals of this research have ranged

from rendering realistic environments for simulation, modeling of the world for intelligent robot

navigation, acquiring three dimensional models for object recognition, to supplying model data

for CAD and biomedical applications. Approaches for automatic model acquisition can be

characterized along two basic data fusion methods 1 ) volume intersection of object silhouettes

projected on the image planes, and 2) fusion of object surface patches reconstructed from

multiple viewpoints. This section describes the various approaches that have been attempted to

achieve these goals, and provide an outline of the respective research efforts classified along
these two lines.

The different research efforts can also be described by the type of input data and the object

representation scheme used in fusing the data. Intensity and range images are the two most

commonly methods for inputting data. Intensity data is typically captured with video cameras,

while range data is collected using either a laser-range camera, structure lighting, or stereopsis.

The sensor used dictates the type of information that can be recovered. Structure lighting yields

sparse but more easily registered range data points than dense range maps. Dense range maps are

constructed slowly with a laser rangefinder that scans an object scan-line by scan-line.

Conversely, intensity data can be instantaneously captured by inexpensive sensors. However,

such images do not yield depth information directly. In addition, techniques such as stereopsis
must be applied to recover range data.

To build up a complete model of an object, the data from different images must be f'LrStregistered

and then combined. Data has generally been registered using a) a fixture to hold an object at

well-defined view angles, b) a fixed array of lights and cameras to capture the image data, or c)

registration points on the surface of an object, where a sufficient number of points are shared

between views to register the views. Multiple views of an object must be combined in order to

capture the shape ofa 3D object. Viewpoints can be constrained to 3 (orthogonal) or 13 positions

to yield an efficient fusion algorithm. Fusion of data can be performed efficiently if the objects

to be modeled are of some specific type, eg. polyhedral and cylindrical objects. Similarly, fusion
can be simplified if object silhouettes can be obtained.

Finally, different representations have been used to model objects and for their reconstruction.

The three basic categories have been volumetric, boundary, and wire frame models. Object

models can be farther organized by decomposing an object into modeling primitives. For

example, volumetric models have been used that have volume elements, i.e. voxels, as their

basic modelling primitives. Surface patches, on the other hand, are used to construct surfaces in

boundary models. Lastly, coarse models can be derived by composing an object from generic

primitives, such as cylinders and ellipsoids. In order to capture accurate surface detail, the VGD

system will employ boundary models of surface patches for the 3D objects to be modeled.
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C-6.1 Volume Intersection

A very popular data structure used for volume intersection are octrees. Octrees are 3D

counterpa_,xs of quadtrees [Sam85], a hierarchical data structure for image regions. An octree is a

true volumetric model representing a 3D object space, defined by a right-handed object

coordinate system, to contain a 2 n x 2 n x 2n array of volume elements called voxels. A voxel, the

3D equivalent of a pixel (picture element), is assumed to contain a homogeneous volume of

material and can be either occupied or vacant. It also defines the resolution of the modeling

system. The usual shape of a voxel is a cube although a rectangular paraUelepiped could be used
in a more general system.

The volume of the array of voxels is called a 3D voxel universe and k is aligned with the object
coordinate system. It is assumed that all objects of interest are within this universe told remain

there during all operations. The space outside the universe is assumed to be void of all objects.

An octree is an 8-ary nee structure generated by a recursive subdivision of the modeling universe

into octants until homogeneous blocks of voxels are reached. If an octant does not consist

entirely of the same type of voxels, then it is further subdivided until homogeneous cubes,

possibly single voxels, are obtained. The root of an octree is at level 0 and the voxels are at level
n.

The generation of octree models of 3D objects consists of three steps. The first step generates

conic octree volumes with the silhouettes of objects projecting from the image plane into the

octree universe. The second step combines a sequence of such conic volumes into a model of the

objects using simple volume intersection. The last step enhances an octree model by labeling

individual objects, adding surface-normal vectors, and mapping intensity textures and other

intrinsic properties on the surfaces of these objects.

After extracting the contour information and constructing the view cones, the volume

intersection step can be done either in 3-space, the octree universe, or in the individual image

planes. Other variations include the permitted number and flexibility of viewpoints during

model construction. Restricting the possible viewpoints decreases the flexibility and resolution

of the construction process but enables one to derive simple and fast algorithms for handling

(simple) common cases. A variety of data structures for encoding an octree have also been

derived for specific performance advantages in processing speed and storage overhead. These

differences and their correspond/ng systems are highlighted below.

C-6.2.1 Review of Volume Intersection Systems

[Pot87] does the volume intersection by back-projecting the octree universe into the image plane.

The silhouette of a perspective projection of a cube into an image plane depends on the relative

position of the center of projection of the image and the coordinates of the six faces of the cube.

The faces partition the 3D space of the cube into 27 half-spaces: 26 outside and 1 inside. The

index number of a partition that contains the center of projection, relative to the current octree

node, is used to f'md, in a lookup table, the number of silhouette vertices and their coordinates.

The coordinates of the cube vertex are projected into an image plane using 12 lookup tables for

C-25



VGD Final Report: SectionC - VGD Quarterly Report #1: December1989

the object-to-image space transformations. The polygonal silhouettes of the objects, defined by

the vertex coordinates, are then approximated by their bounding rectangles encoded as quadtrees.

Each polygon is finally raster-scan converted for volume intersection, ie. the pixels inside the

polygon are determined in scan line order and are individually compared with the contents of the
(binary) image.

This is one of the more flexible octree schemes but the overhead in arbitrary back-prcjection of

the cube and the individual raster-scan conversions is high. Moreover, it requires good camera

calibration and viewpoint registration techniques to compute accurate object-to-image space
transformation for each image.

Instead of performing the costly perspective backprojection, view cones can be projected into the

octree universe and intersected directly in 3-space. [Nob88a,Nobg8b] constructs polyhedral view

cones for each image and projects them into the cube for volume intersection. If a view cone is

not convex, it is defined as the union of partitioning convex cones. The cones are then used to

check and classify the eight subregions of the parent cube as inside, intersecting and outside each

convex cone. Cone unification rules are next used to do the same classification for the eight

subregions with respect to each non-convex cone. Lastly, cone intersection rules are used to

integrate the information on the subregions from the multiple view cones into the common

region. A DF (Depth-First) representation [Kaw80] for linear encoding of the initial eight

subregions is generated and recursively applied during model construction.

This octree building algorithm does not build a complete octree for each cone, but instead builds

only a part of the octree within the common region. It is thus able to process an arbitrarily

selected region in 3D space independent of all other region. The procedure is fast when

restricted to polygonal silhouettes. More complex contours can first be approximated by linear

segments but at the cost of processing a larger number of convex cones and introducing

additional digitization inaccuracies. Accurate viewpoint positions are needed for the projections
into the cube.

The above approaches are flexible but computationally expensive. An alternative is in restricting

the possible viewpoints to yield simple and fast algorithms for handling specific cases.

[Chi86a,Chi86b,Chi89] constructs the volume/surface octree from silhouettes obtained at three

orthogonal views. Each occluding contour, encoded into the "principal" quadtree of the

associated silhouette, is first fitted with a tension-spline [Sch66] to allow better approximations

of the contour nomuds and hence more accurate surface information. With scaled orthographic

projection along the viewing directions, each of the three "principal" quadtree sweeps out an

oblique cylinder into the cube. Since sub-cylinders inside this volume may be identical, its exact

octree can be replaced with a pseudo-octree that contains no identical subtrees. These orthogonal

pseudo-octree are then intersected using simple tree traversal techniques to obtain the resultant

model octree [Jac80].

This approach may be useful for simple objects that are symmetric along its three principle axes.

The major disadvantage, on the other hand, is the inability to guarrantee that all significant
features will be captured by the constructed model.
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[Ahu89] considers a less restrictive case in using silhouette images obtained from any subset of

13 orthographic viewing directions. By restricting to these 3 "face" views, "6 "edge" views and 4

"comer" views, a simple relationship between pixels in the image and the octant labels in the

octree is derived. The detection of intersections between the octree and the objects is thus
replaced by a simple table lookup operation between a pair of views.

This approach provides more accurate information with the higher degree of reconstruction

accurarcy but it still has problems. Discontinuities cannot be modelled, as evidenced by the

approximation of object edges by rectangular steps. The proposed set of 13 viewpoints is not

sufficient to build accurate models. The number of viewing samples needed for building an

accurate model is arbitrarily large. The number of viewpoints necessary for reconstruction to

within a desired accuracy depends on the viewing direction and the target object.

[Car85] proposes a solution for modelling discontinuities with the polytree model. It attempts to

include more surface information with three extra classes of voxel structure: vertex cell, edge cell
and surface cell. The result shows only negligible improvement. A forerunner of the octree is

the "volume-segment" representation proposed by [Mar83]. It borrows scan-line techniques
from computer graphics to construct a 3D object model from the bounding volumes carved out

by the occluding contours. A wire frame with planar polygonal facets is then derived from the

volume segments. This approach is slow, inaccurate and suffers from the usual problems

associated with silhouettes. [Cap87] extends it to handle real images of parts and compares the
constructed models with renderings of the original CAD designs.

Other less attractive volume intersection techniques have been proposed. [Che88] constructs a

3D model from a set of 3-view (orthogonal) type line drawings. Objects are restricted to

polyhedral, cylindrical and composites of the two that are not rotationally symmetric objects.

The object must be decomposable into subparts for individual reconstruction and then merged to

form a Constructive Solid Geometric (CSG) [Man88] representation of the object. [Ide86] has

an even more restricted system that reconstructs models of only polyhedral objects from a set of

3-view type drawings. [Sha86] uses simulated 2.5D sketches containing only depth information

for their model construction but their volumetric representation and algorithms show no

advantages over octrees. Similarly [Jiy86] describes an iterative 3D algebraic reconstruction

technique with results for two synthetic test models under a variety of projections. The technique
is, however, primitive compared to octrees.

C-6.2.2 Disadvantages of Octrees and Volume Intersection

Octrees are an elegant data structure which enables a simple implementation of volume

intersection for model construction. This advantage is, unfortunately, offsetted by numerous
problems.

One difficulty is that octrees can only provide coarse models of 3D objects. Astronomical

storage and processing overhead are required to capture surface details accurately. Furthermore,

the models are unstable and not invariant to rotation and translation. Thus, completely different

octrees have to be constructed for slight changes in voxel resolution or object position.
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A second problem with volume intersection, in general, stems from the dependence on silhouette

information. First, using silhouettes requires reliable contour extraction and smoothing

techniques. Second, silhouettes do not generally capture surface concavities and object self-

occlusion effectively. Third, digitization effects during volume intersection often result in false
boundaries in the final model.

There are possible remedies to some of these problems. For example, fine details can be

generated with surface interpolation over the voxels with more (post)processing. The accuracy
of this process depends, however, on the initial octree approximation. An alternative would be to

use long sequences of frames to refine an octree. This, however, requires that the best views be

selected, a difficult problem for unknown objects. Typically, arbitrary decisions are made on the

trade-off between accuracy and computation, and the trade-off between coarse and fine
resolution.

Not surprisingly, all experimentation with octrees to date has only been done with synthetic data.

C-6.3 Surface Patch Fusion

In general, surfaces can be expressed in an implicit or explicit form [130189]. An explicit form of

a surface is the graph of a function of two variables. Let f : U C R" -._ R. The graph of f is

defined to be the subset of R_" consisting of the points (x,,...,x_,f(x_ .... ,x,)) for (x, .... ,x_) e U,

where U is an open subset of R". The implicit form of a surface in R 3 space is express-_! as a set

function f : R 3 -_ R I 1(x,y,z) = constant, where (x,y,z) are Cartesian coordinates of the surface

points. The explicit form is a special case of the implicit equation and is sometimes referred to

as a Monge patch. Another useful representation of a surface is the parameterized form. A

parameterized n-surface in R _+k(k>0) is a smooth map ¢ : U -_ R _', where U is a connected open

set in R _, such that _ ep is non-singular (has rank n) for each p e U (which is called the regularity

condition). A parameterized n-surface in R _ is simply a regular smooth map from one open set U
in R" onto another.

These surface patches are integrated together in an adjacency graph for the final representation

of a 3D object. An adjacency graph is basically a bidirectional graph with each node

representing a region and the links between nodes the region connectivity relationships. Such a

graph is not, however, restricted to describing surfaces but can directly incorporate information

and relations on edges, vertices (corners) or even generic primitives - all of which are derived

from surface patches. Compared with volume intersection, the approach based on surface

patches yields surface models of higher accuracy and detail in adition to allowing incorporation
of surface reflectance properties during model reconstruction.

The standard model construction process has four major steps. The first step of segmenting the

image into coherent regions can be driven initially by edge detection or region growing

[Ba182,Hor86]. In the former method, the areas bounded by the extracted edge points are

connected and tested for coherence as segmented regions. In the latter method, image pixels are

grouped together on the basis of region coherence using intrinsic surface properties derived from

differential geometry [Bes86]. In the second step, the surface patches derived using a least-
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squares surface fit are either labelled with an unique symbol, or described in terms of parametric

equations. The patches may be recursively combined to form larger entities as long as some

coherence predicate is satisfied. The third step relates the various surface primitzves in an

adjacency graph. Information on the different properties of a surface, such as reflectance and

texture, may also be included at each node. Lastly, integration of multiple views is done via the

transformation of the graph constructed from a new view to the global coordinate system, the

matching of corresponding nodes in the two view graphs, and the modification and/or insertion

of surface primitives to refine the relational object description.

C-6.3.1 Review of Surface Patch Fusion Systems

Few past systems that follow the above general strategy based on surface patches meet with

complete success. Although [Und75] may have proposed the first system that learns models of

objects from multiple views, only results for a synthetic image of a single convex polyhedral

object axe demonstrated. To simplify the learning process, objects are restricted to be planar and

convex and useful viewpoints that are known in advance. [Dan82] constructs a model from four

image views for a single object. Partial results for nine sets of synthetic data are produced by an

incomplete system. [Osh79,Osh83] consider multiple 3D objects in a single range image.

Region growing at multiple, successively more abstract resolutions is used to generate an
incomplete relational model.

[Asa87] segments the input images into spherical, cylindrical, or planar surfaces using shading

analysis. A synthetic image of a single object consisting of cylindrical and planar Lambertian

surface with constant albedo is projected orthographically. [Dou81] uses depth cues _md object

models to construct a representation of outdoor scenes. After coarse segmentation of the input
image, a highly abstract semantic net relating the regions and object models is built for the

environment. [Xie86a,Xie86b] outlines an expert system that constructs a relational model of a

scene using artificial 2.5D sketches. No result/output is shown.

After extracting edges and lines from intensity images taken at different vantage points,

[Sha77,Sha84] constructs an object model by using the concept of vertex cycles to match

junctions and line segments between images. This approach stems from the various early works

of Clowes, Falk, Guzman, Huffman and Waltz [Bar81]. [Yam88] considers only objects

composed of hinges, slides and solids. The modeler learns the number of these features and the

relationships between lines and vertices in image. Results are shown for a pair of compasses,

essentially a 2D object, lying on an uncluttered tabletop. [Bak77] describes a scheme used in

building models of 3D objects through binocular and motion parallax analyses. Curvature

irregularities in the the region boundaries are then correlated to construct the 3D object model.

[Yac75] analyzes images of objects taken from a nearly vertical direction by a "IV camera. After

simple thresholding and contour tracing of the object outline, the object model is constructed as a
list of propeties.

[Vem86,Vem87] scans objects resting on a base plane with a laser. The range image is

segmented into regions that are a collection of surface patches homogeneous in certain intrinsic

surface properties. A straight line on the plane is captured in intensity images. It is used as a
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calibration mark for calculating interframe transfrormations. Simple averaging is then used to

merge two overlapping views. [Lau87] constructs simple and incomplete relational models of

(convex or non-convex) polyhedral objects. Jump boundaries are extracted from a 3D range

image by gradient-based edge detection. The edge points are used to generate occluding and

interior contours which segment the object from the image background and into coherent regions.

The hemispheric histogram, a specialization of the Extended Gaussian Image, is used to extract

surface orientation information in detecting corresponding regions in an image of multiple
objects. Regions, however, can not contain holes and undersampling may occur with increased
obliqueness of a facet.

[Her84a,Her84b,Her86] incrementally constructs a 3D model of complex scenes from multiple

images. Stereo and monocular analyses are performed for image data collected at different

viewpoints. Linear structures representing building boundaries are extracted from the images

and combined with hypothesized new vertices, edges and faces, using task-specific knowledge
on block-shaped objects in an urban scene. The edges and vertices from such analyses are then

used to construct the 3D wire frames. The MOSAIC systems handles very complex scenes but in

order to achieve success, a lot of assumptions and constraints have to be used: task-specific
knowledge on urban scenery, trihedral polyhedra scene primitives, and limited linear 3D scene

features of edges and comers. Due to the task complexity, the matching of junctions in the scene

is slow and the scene interpretation is incomplete. Surface detail is provided as simulation by
registering image regions with object surfaces.

[Ste86,Con86,Con87] constructs 3D models of polyhedra objects. The objects are placed on a

turntable and scanned by a laser stripe. Wire frames are built from connected chains of curvature

and step edges approximated by straight line segments. They are fleshed and adjusted before

obtaining a least-mean planar fit of the surfaces bounded by viewplane cycles (closed set of

edges and vertices). A refined model is produced by intersecting the view polyhedra from

multiple views using a boolean intersection algorithm implemented in the GEO-CALC system

[Bar86]. Surfaces are rendered with a Lambertian scattering model. This system is restricted by

the need of placing the polyhedral objects on a turntable. No surface detail such as texture is
modeled by the wire frame representation.

Instead of just surface patches, [Fer85,Fer88] take the surface patch representation a step further.

A 3D object model from multiple views is derived in terms of volumetric primitives such as

ellipsoids and cylinders. This is done by taking the intrinsic surface feature points, derived on

the basis of surface principle curvatures, and grouping them together to form extremal and

parabolic contours for parsing a surface into patches. 3D surface point correspondences for

multiple views is done by normalized cross-correlation of the feature fields in the surface graphs.

In matching candidate feature neighborhoods between views, the interframe transformations are

recovered to construct a composite surface graph for the object. This composite surface graph,

realized as a set of dynamically intrinsic images (DR), is used in the geometric inference process

to identify the volumetric primitive associated with a patch (or set of patches) and to obtain the

primitive's parameters. Mulitple primitive instantiations for the same subset of image data is

resolved via shape similarity functions. Results are presented for a symmetric synthetic image

and a range image of a statuette. The final models based on inferred volumetric primitives are
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coarseand imprecise. Not only very little surface detail is captured, the modeling accuracy of
the selected set of primitives is not obvious.

[Hu89] recovers 3D surface points for a scene containing multiple objects using structure

lighting with a uniform grid. Either a striped image or a gray-scale image can be taken by
merely switching the lights of the projector and the global coordinate system is fixed on the

worktable. A calibration procedure computes the tranformation matrices M c (worktable-camera)

and Mp (projector-worktable) for computing the position of a surface point. After extracting the

network of light stripes, geometric and topological constraints are used to hypothesize and test

matches for solving the line labelling problem. The geometric and topological constraints are

based on the uniqueness constraint (C_) and the continuity constraint (C2) of [Mar76]. Based on

using these two sets of constraints for disambiguating surface solutions, [Hu89] presented five

algorithms for 2D network extraction, single 3D point solution, single 3D network solution,

network boundary extraction, and scene solutions. This approach is guided by three basic

assumptions. First, objects in the scene are solid, static and opaque. Second, object surfaces are

smooth and are of low order in the sense that the spatial frequency of surface undulation is less

than the stripe frequency. Third, surfaces are much larger than stripe spacing so that a surface
patch is covered by a multistriped network.

[LeM85]'s approach is based on the observation that the type of range data to be collected will

differ with regard to sampling frequencies (in space and time) and resolution of range texture. A

grid of horizontal and vertical lines including several dots is projected onto the scene. The dots

are used as landmarks for initiating the line labelling process and "covers" the entire image. The

camera and projector are separated by a vertical baseline so that range information is apparent in

the distortions and discontinuities of the horizontal lines. The vertical lines are used to guide the

extraction of the horizontal lines and to normalize the albedo variations. Grids can be designed
with pattems of different thickness to be used for a muhi-resolution range sensor. Associated

with the finite thickness of the lines is an inherent "smoothing" of range texture. Higher

frequency of range discontinuities cause the thinner projected lines to break up, whereas the

thicker lines display very little distortion. A simple formula relates this smoothing of range

texture to the thickness of the grid lines. In particular, the finite thickness of the lines imposes a

maximum on the detectable range. After filtering the image with the Laplacian of Gaussian

operator, a shrink and expand procedure is applied to extract the vertical lines. Row and column

accumulators are used to locate the vertical bars and the grid intersections in the image. The

albedos in the orginal gray level image is normalized by computing a local threshold based on a

square neighborhood at each point. Labelling of the intersections is initiated with the location of

the dots and completed by combining and interpolating among the initial labels. Disparity values
are then finally assigned to the extracted and labelled intersections.

[Pot79] uses a pair of images containing a single object for such model construction. The object

is pattern-illuminated by photogrammetric techniques and imaged under perspective projection

inside a calibration fixture. Calibration marks on the fixture are extracted using the Laplacian

operator and the Hough transform [Ba182]. The marks are used in computing the camera

transformation matrix. The grid patterns are extracted in the form of straight lines and cubic

curves using scan-line-to-vector conversion. Points and curves are then matched between images
on the basis of the topology of the projected grid network to generate the 3D model. An inverse

C-31



VGD Final Report: SectionC - VGD Quarterly Report#1: December1989

mapping ts used to reconstruct the matched cycle in 3D space using a least square-error

technique. Nodes adjacent to this initial cycle are reconstructed and iteratively propagated in all

directions using heuristic search methods. This process reaches quiescence when all the nodes

are processed. This approach suffers from several problems. Surfaces are required to be

photographed within a camera calibration fixture. The ten calibration marks have to be visible

among the set of images. The surfaces cannot be transparent, highly reflective or totally black.

Results are presented on the reconstruction of isolated surfaces using just polygonal shape
approximations that contain no surface detail.

[Ver87] describes a method of obtaining 3D replica made of polyurethane foam from an arbitrary

part of the human skin. An integrated system consisting of a photogrammetric stereo restitution

system and a CAD system integrated with a NC 3D milling machine is used in constructing the

replica. The depth values for a stereopicture of the frontal view of a human face is manually

digitized. The surface is then fitted with B-spline functions which are used by the CAD system

for the replica. [Duf88] scans the facial dimensions of a live human subject with a line of light

from a low power laser under 5 seconds. The facial boundary is obtained by thresholding the

range image and fitted with the longest possible line segments. Selected points in the depth map

form vertices for the polygonal model of the face. Polygons are formed in such a way that where

the surface details are complex, the polygons are small and where the surface is featureless, large

polygons are generated. After hidden surface removal, texture mapping using Phong shading
[Rog85] incorporates surface details onto the model facets.

[Sat86a] uses passive stereo techniques to measure the shape of statues on the Easter Islands

from images taken at multiple viewpoints. For the solving the correspondence problem, small

mark seals are stck on the statutes during the day and structured light patterns are projected onto

the statutes during the night. Partial sterreo mathcing is done by dynamic programming and the

epipolar line search. The correspondence search is completed with manual pointing by a human

operator to construct the final range map. Results for images at a single viewpoint are

demonstrated. [Sat87] obtains range data using the Liquid Crystal Range Finder (LCRF) based

on a nematic liquid crystal mask [Sat86b] and Gray coding [Ino84]. The 3D model of an object

on a tumatable is then constructed from a set of such range images taken at multiple view. The

global coordinates is calibrated with respect to the floor (z-plane) and the rotation angle is

calibrated against a reference cube. The wraparound 3D data is derived from horizont;dly sliced
contours. Experimental resutlts is shown for one statuette.

C-6.3.2 Advantages of Surface Patch Fusion

Compared with volume intersection, the surface patch fusion approach yields surface models of

higher accuracy and detail. It allows direct incorporation of surface reflectance properties during

model reconstruction. It minimizes necessary storage and processing overheads. And last, nut
not least, the parametric form for representing surface patches is invariant to motion.

Currently, robust techniques exist for calibrating cameras, calculating interframe transformations,

recovering range information via stereopsis and triangulation, computing and reconstructing 3D

surface solutions, and fusing 3D surface data from multipe views. The best work in this area are
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exemplified by the systems of [Pot79,Hu89,Sat86a] as described above. Although they are

incomplete and experimental in nature, they show considerable promise. Undoubtedly, a
automatic model acquisition system can be realized in the near future.
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Ill

Section D

Quarterly Report #2: March 1990

D-1. Introduction

In light of our clearer understanding of NASA's needs, we will proceed with the development of

VGD as originally proposed. The work that was done this quarter, which was necessarily limited

due to uncertainty with regard to the approach that KMS was to take. However, this uncertainty

has now been resolved, and we understand that the originally proposed approach is most

appropriate. Therefore, KMS will proceed full speed with the development of VGD according to
the original proposal.

Since the last quarterly report, the hardware required for the project has been ordered. In

addition, parts of the initial, tentative software requirements specification (SRS) for VGD has

been completed. We will periodically include parts of the SRS as it becomes more complete for

review by NASA. The remainder of this report includes the part of the SRS that has been

completed for VGD thus far. This section of the SRS is a general description of VGD from the

users' perspective. Shortly, KMS will complete the functional description portion of VGD's

SRS. This section describes the functions that must be implemented in order to achieve the

behavior described in the general description that has been included in this report.
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D-2. VGD SRS: General Description of the VGD System

D-2.1: Perspective on VGD

VGD has many applications. A particularly important one is the capability to provide vision

systems, such as that proposed in STORS, and tele-autonomous systems, with accurate geometric

and photometric models of everyday objects -- objects that were not originally designed with

CAD tools. State-state-of-the-art object recognition and tracking techniques require such models

in order to recognize and localize objects. VGD allows such systems to operate on scenes

containing any objects, not just the ones that have been created using a CAD system, thus
circumventing the need to laboriously create such models.

D-2.2: Functionality of the VGD System

VGD design provides

• A hand-held stereo camera/structured light apparatus from which registered stereo and
structured light images can be acquired;

the capability to take multiple snapshots of a scene or object using the camera apparatus,

and use them to produce a 3-d description of the scene or object. In particular,

- calibration of the stereo cameras and the structured light system,

- accurate determination of interframe transformations, first with manuaLly placed
features and later with existing features,

to determine coarse surface geometry using images of projected structured light
that is registered with standard intensity stereo images,

recover detailed surface geometry and surface albedo of portions of the object
corresponding to each view,

- fuse the surfaces into a single world model or object model;

an easy interface to existing modeling systems since

the 3-d model is represented both in planar patch format and surface spline
format,

models may be stored in fdes adhering to standard 3-d modelling formats;

a world-modeling database permitting

- easy and efficient creation and maintainance of a world model,

- searching based on geometric attributes such as surface structure and position,
searching based on user definable attributes;

• an easy to use, Macintosh-like operator interface that allows all facets of the

system's operation to be controUed and monitored in a simple, intuitive manner;
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D-2.3: Using VGD

The complex operations being performed by VGD can be as visible or invisible as the user

desires. Most operations are accomplished using sequences of menu choices, or mouse clicks

within images or graphical representations displayed on the screen.

There are several phases, or modes of operation in VGD. Some need only be used infrequently,

such as the calibration phase. Others will be used extensively, such as the scene/object
reconstruction phase. In particular, the primary user modes in VGD include

• frame acquisition

• calibration:

stereo camera calibration,

structured light projector calibration;

• frame registration;

• surface reconstruction;

• surface fusion;

• world model/database manipulation;

D-2.3.1: Frame Acquisition

Two types of frames can be acquired: a stereo pair of images, with and without structured

lighting. The frames menu allows these types of frames to be acquired. The frames menu has
four entries:

• existing light stereo: marks this option for the next acquire command;

• structured light stereo: marks this option for the next acquire command;

• frame parameters: sets the default frame parameters, such as the dimensions and

position of the frame within the camera's field of view;

• acquire frame: acquires the frame, using the settings of the previous three selections

(using defaults if not set), and stores them in viewable buffers of the user's
specification.

Since acquiring a frame of structured light stereo uses all of VGD's image acquisition

capabilities, this case will be described trust. Acquiring a frame of structured light requires that

(ideally) two simultaneous, registered stereo pairs be acquired: one with existing light and the

other with existing light plus structured light. The structured light pattern can then be extracted

simply by differencing the images. Since VGD's camera apparatus cannot simultaneously
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acquire two such frames, the effect is obtained by acquiring two images in rapid succession,

1/60th of a second apart and differencing these images. VGD will direct this to occur, and save

the result to a buffer if the structured light stereo option is chosen, followed by the acquire

frame directive. If the existing light stereo option is chosen, then VGD will capture only a

stereo pair with existing light, and save it to a buffer. If both are chosen (default), all of the
above are saved in a viewable buffer.

The frame parameters option allows the user to set what size images will be aquired, as well as
what portion of the camera's field of view will be used.

When both existing light stereo and structured light stereo pairs are captured, then VGD

automaticaUy associates these pairs as being taken from the same viewpoint.

D-2.3.2: Calibration

Calibration appears as a main menu having two entries:

• Stereo: takes an existing light stereo pair of a calibration card, prompts the user for

correspondence between the patterns on the card in each stereo pair, and then generates
a calibrated camera model.

• Structured light: Takes a structured light stereo pair of a flat surface and uses this to

generate a calibrated model of the structured lighting acquisition process.

Choosing stereo allows the user to calibrate VGD's stereo camera apparatus. Calibration of a

stereo camera consists of creating a camera model for each of the two cameras, and a precise
determination of the relative position and orientation of the two cameras.

After choosing stereo from the calibration menu, the user is prompted to acquire a frame of

existing light stereo. The frame must be taken of a calibration card. The calibration card

consists of several ruled lines on a rigid, flat card. The card is placed in both cameras' fields of

view. VGD graphically displays this frame, and directs the user to select as many corresponding

pattern elements as possible (sets of intersecting lines are currendy being used) betw_n the two

images. The user does this simply by clicking on corresponding pattern elements. After the user

notifies VGD that he has made all possible correspondences have been made, VGD creates a
calibrated model of the stereo cameras.

Choosing structured light allows the user to calibrate VGD's structured light projection

apparatus. When this option is chosen, VGD directs the user to take a structured light stereo pair

frame of a flat surface. VGD then directs the user to designate the areas of each image that

consist of the calibration surface. This does not need to be done exactly; simply using the mouse

to circle a valid area in each image is sufficient. VGD uses the valid regions to create a
calibrated model of the structured light projector.

D-2.3.3: View Registration

D-4



VGD Final Report: Section D. Quarterly Report #2: March 1990

In order for VGD to be able to fuse portions of the scene surfaces that it has reconstructed, it

must register the frames taken of the scene. Registration consists of finding a transformation

between the views. Ultimately, VGD will register views automatically, and will only require

user assistance ff problems are encountered. Before reaching this state, VGD will require users
to select corresponding image features from each view.

In the initial version of VGD, manually placed features (in the form of removable, stick-on

marks) will be used. Later, existing features will be used. The user will be presented groups of

existing-light stereo pairs, and be asked to click on corresponding features in each view. VGD

will present its hypothesis about which features correspond, both in the stereo pairs and in the

larger scope of the set of views. Thus, the user interacts mainly to correct VGD's errors, if any.

In order to register a set of views, the user first selects the frames that he wishes to register.

After these frames have been selected, VGD displays them in reduced, icon-like form (64x64) so

that the user can quickly examine a large number of frames at once. The user may arrange the

iconized frames on the screen in any manner he desires. VGD provides a set of zoom/reduce

functions that allow the frames to be enlarged when accuracy is required, and reduced to

conserve space otherwise. The user may then designate correspondences between features in

distinct frames, or between the images in a single frame. VGD will protect the user from

accidentally putting features into correspondence that are not visible from both images of a stereo

pair. VGD allows the user to display groups of designated corresponding features by highlighing
them in color. Further, VGD allows the correspondences to be edited in the case errors were
made.

After the user is satisfied with the accuracy of the correspondences between features, VGD

registers the views by determining the 3-d transformation between the world coordinate system

and the frame coordinate systems. After the 3-d transformations have been computed, VGD

associates the transformation with each frame for possible later use.

D-2.3.4: Surface Reconstruction

Reconstruction of a surface requires that the user has already taken a set of views of a

scene/object and registered the views. It also requires both an existing light stereo pair and a
structured light stereo pair of each view.

Surface reconstruction is initiated by choosing the Reconstruct surface item under the Build

menu. When this item is selected, VGD first asks the user for a set of frames to use as data. For

each frame of the selected set, VGD reconstructs those portions of the 3-d surface structure and

photometry of the scene that can be reliably computed.

D-2.3.5: World model manipulation

Once surfaces have been reconstructed from frames, they become part of a world model

database that allows operations to be performed on the component surfaces. In the absence of

additional information, VGD adds a surface to its currently existing catalog of the surfaces in the
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world model. In many cases, however, VGD is able to determine likely points of segmentation

between objects, and also is able to determine which portions of objects should be fused into a

single, larger surface, which may then be grouped with other surfaces into objects in the world

model. VGD provides editing and viewing capability of surfaces and objects stored in the world

model database, so that if VGD makes any errors, they can be corrected by the user.

D-2.3.5.1 : Surface Fusion

Once a set of surfaces have been reconstructed, they may be fused into a smaller number of other

3-d entities. This is done by choosing the Fuse surfaces option under the Build menu.

D-2.4: Constraints on VGD

VGD is limited by the available processing power as well as the degree of user input that it

requires. VGD achieves its high level of functionality by using advanced, computationally

intensive algorithms, particularly during the surface reconstruction and fusion phases of the

system. This constraint can only be relaxed by running the algorithm on a more powerful

machine. As for the limitations imposed by user assistance, VGD will require less user

assistance as it matures, approaching full automation.
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Section E

Quarterly Report #3: June 1990

E-l. Summary of Progress

The surface reconstruction phase of VGD is progressing rapidly now due to the discovery of a

new approach to surface acquisition which also holds a great deal of promise as a general

purpose range camera. This technique is based on projection of phase-shifted, sinusoidal

structured light pattems onto the scene. As described in Section 2.1 this allows the geometrical

structure of the surfaces in the scene to be separated from photometric properties of the surfaces

in the scene. This permits surfaces to be acquired quickly and easily. The primary engineering
challenges with this approach have been fabrication of accurately sinusoidal transmission

gratings and accurate calibration of the apparatus. However, these problems are on the verge of

being solved. Section 2.1 contains a description of the theory of the new technique, how KMS is

implementing it, and some preliminary surface data acquired using the technique.

Work on surface merging is also well underway. The central problem here is accurate

determination of the viewpoint. We have nearly completed implementation of the software for

accomplishing this. The software for the other aspects of surface merging, such as conversion of

the pixel-based surface format into a format more amenable to manipulation, and such as the

accurate combination of geometric and photometric data from separate surfaces into a single

surface, has been designed. Work is just beginning on the implementation of these phases of the
task.

E-2. Technical Status

E-2.1 Surface Reconstruction

E-2.1.1 Problems with Existing Surface Reconstruction A pproaches

KMS has found previous approaches to the problem of surface reconstruction unsuitable to

VGD. We discuss the reasons for this in the following paragraphs.

Passive sensors, i.e., sensors that use only ambient illumination, employ binocular stereo, t,2

trinocular stereo, 3 epipolar motion stereo 4, or axial motion stereo 5 to derive range maps. These

methods are extremely compute intensive, subject to error, and provide only sparse

measurements of range data that must be interpolated later using even more compute intensive
algodthms. 6

Active sensors, i.e., sensors that produce their own illumination of the scene, include image laser

radar systems, structured lighting approaches, and fresnel diffraction systems. Image laser radar

systems use time of flight, 7.8 amplitude modulation, 9.1° and phase modulation.
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Time of flight sensors determine range by measuring the travel time of light from the system to

the object and back. The problems with this approach they are useful only for objects at large

distances. The time delays for light travel over short distances are difficult to measure. In

methods using amplitude and phase modulation the intensity or phase of laser light is modulated

at a fixed frequency, bounced off the target object, detected by a photodiode, and phase-

compared to the original output signal to determine a relative range. If the modulation frequency

is chosen so that the object falls within one cycle of modulation, absolute depth can be

determined. Problems with these approaches are that they axe too bulky and power hungry for

space-based robotic applications. For example, the lightest system of this type, built by Odetics,

weighs 33 lbs and uses 42 W of power. In addition, many of these systems use complex

scanning mechanisms that can be easily damaged.

Structured lighting approaches project a known pattern onto an object and interpret depth to the

object by triangulating on the pattern. Patterns include points, lines, grids, circles, crosses,

stripes, binary coded patterns, and random texture 11"2°. The problem with many of these

approaches is that they require solving the correspondence problem, i.e., determining which

projected feature, point, line, cross, etc., corresponds to which image feature. Once this problem

is solved, the range measurements, as in passive methods, are only obtained at sparsely

distributed points, except for the the coded binary pattern methods, which provide denser

information. However, the binary coded patter approaches have difficulty separating the pattern

from the surface detail of an object.

Projection moir6 interferometry 21.22 is variation of structured lighting in which a fine grating

pattern is projected onto an object and the pattern is read back through a second grating to

produce moir6 fringes. If the setup is properly aligned, the fringes will correspond to contours

generated by the intersection of imaginary planes parallel to the camera system and the object

under study. Single moir_ images, however, do not uniquely characterize the surface.

An improved approach to molt6 is phase-shifted moir_ 23 in which the moir_ pattem is shifted in

phase by manipulating the projection grating. The result is that the phase of the moir_ pattern is

shifted in phase. Combining a set of phase-shifted patterns allows the underlying range data to

be uniquely determined. Problems with phase-shifted moir_ are that the grating frequencies are

fixed and, therefore, the sensitivity of range measurements is also fixed. In addition, the return

pattern has a underlying grating pattern superimposed on the moir_ pattern which represents a
form of noise that must be filtered.

E-2.1.2 KMS' Solution for VGD

Our investigation into this problem has led KMS to an ingenious solution. The technique uses a

new type of structured lighting wherein phase shifted cosine patterns are projected using high-

quality sinusoidal slides onto the surfaces of the scene and using a CCD camera to image them.

We call this new technique SUrface Reconstruction by PHAse-shifted CosinEs (SURPHACE).

In SURPHACE, projecting a known pattern onto a surface allows the range of the points be

triangulated by measuring the distortion of the pattern caused by the geometric properties of the

surface. Unfortunately, the photometric properties of a surface also affect the amount of light
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that is returned to the camera, and, thereby contribute to the distortion of the projected pattern.

With a single image, it is impossible to separate the affects of geometric and photometric

properties without a great deal of knowledge about the lighting and surface properties.

Using multiple images and a technique borrowed from interferometry, known as phase-shifting,

the distortions in the pattern caused by the geometric properties can be isolated from those

caused by surface photometric properties. Specifically, the slide projects a sinusoidal pattern

with a fixed spatial frequency (%. Referring to Figure E-I, the pattem returned to the camera has

the original carrier, (ao, modulated by a phase function, O(x,y). The phase function ¢(x,y)

measures the distortion of the return pattern due to the geometric properties of the imaged
surface.

OSd_l"

CO@INLmOIOAL PAI'rlPlN

Figure E-I: SURPHACE obtains range by projecting three sinusoidal patterns that have
been phase shifted from each other triangulates on the resulting distorted
phase function to determine the range to the surface.<ps=12

The intensity, IR(x,y), of the pattern returned to the cameras can be modelled as modulated sinusoid:

IR(x,y ) = IA(X,y ) + IB(x,y) * cos(%*x+_x,y)+¢i),

where Ix(x,y ) represents variations in the intensity due to background, or ambient lighting, and ls(x,y )
represents the variation in contrast of the cosine pattern due to the photometric properties of the objects

imaged. The term ¢1 represents a phase shift that will be introduced into the pattern by moving the slide
in the projector.

We may solve for @ as follows. For each pixel at location (x,y) the return intensity can be represented by
the real component of a phasor Ia,

IR = Re(ll) = Re(I A + Is * (cos(_b*x+4_¢i) + j sin((o0*x_¢i)))

(temporarily suppressing the x and y arguments in the notation).
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Thephas_Ia can be schematically represented in the complex plane as,

JY

where I^ represents an unknown offset to the center of a circle in the complex plane, Is regresents an
unknown radius of the circle, and ¢ao*X+4_-¢i represents an unknown offset angle on the circle.

Since the center of the circle is confined to the real axis, therefore possessing two degrees of freedom,
two measurements, shifted in phase from each other, suffice to determine the circle. A third

measurement, shifted in phase from the previous two, determines the end point of the phasor on the circle.

Since the circle is specified by I^ and Is, and the location of the point on the circle specifies 0, three

phase shifted measurements are all that is necessary to determine IA, I B and @. In fact, @ can be
determined by

O(x,y)I2_ = tanl(( y- laj(x,y)*sin(0i)), (Z Iaj(x,y)*cos(¢j)))

where Iaj(x,y ) corresponds to the jth phase-shifted image and j takes on values from 0 to 2, where 0j =
2nj/3. This operation can he performed with a table-lookup operation for an extremely efficient
conversion of the phase-shifted images to phase dam.

Because multiples of 2n are lost when the phase is encoded in the cosine functional, ¢(x,y) is extracted as

raw data with phase values within the range 0 to 2n. In this case the raw phase is "unwrapped' from its 0
to 2n range by finding the locations at which artificial jumps, i.e., phase jumps due to the artificial

restriction of the phase to the range 0 to 2n, and adding in an offset function that has the jumps of 2n with
the opposite sign resulting in the desired unwrapped, continuous phase function. In practice, noisy data

can cause phase jumps to be lost or to occur in the wrong locations. This problem can be solved trivially
by measuring the range data with two different spatial frequencies and combining the two sets of data,
which will have different phase jump locations, to unwrap the phase data.

Finally, the range data can be recovered easily from the phase data. For example, for the imaging

configuration shown in Figure E-2,15 the phase function ¢(x,y) is inversely related to the range, Z, from
the camera to the imaged surfaces,

Z = (ac * Xc)/(C_x,y) * p),

where ac and X,: are defined in Figure E-l, and p is the pitch of the grating in centimeters per radian.
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Figure E.2: For a suitable optical configuration

the desired range information has a simple

relationship to the phase function measured by
the SURPHACE camera.

Figure E.3: SURPHACE obtains range by projecting three sinusoidai patterns that have

been phase shifted from each other, such as the low frequency, single-cycle
pattern shown in (a), and triangulates on the resulting distorted phase
function to determine the range to the surface, as shown in (b) where the

range has been measured with respect to a plane that is tilted with respect to
the camera's viewing direction.

E-2.1.3 Design and Fabrication of the SURPHACE Projector

The projector for SURPHACE will consist of a high-intensity light projector with a micrometer-

mounted slide holder that will permit accurate phase shifting. The design for the projector is

nearly complete. Prior to the completion of the projector, KMS has been using a standard slide

projector with reasonable success, although some errors are introduced due to the limited phase-
shift accuracy in the current setup.

We have fabricated the slides by exposing computer-generated images of cosine pattern on an

image recording device. However, due to the nonlinear nature of the transfer function from the

0-255 image pixel value to the slide film's transmission coefficient, the patterns produced in this

way by recording a perfect computer-generated sinusoid are not perfectly sinusoidal, as seen in

the plot of such a slide's transmission coefficient, obtained using a microdensitometer, shown in

Figure E-4. We have overcome this problem by (1) compensating for the nonlinearities in the

transfer function to produce more perfectly sinusoidal slides, and (2) extending the analysis
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above to account for the presence of the higher-order harmonics in the exposed pattern. We

measure the strength of the harmonics by producing the FFT of the microdensitomideter data and

determining the relative strength of the peaks in the magnitude of the FFT.
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Figure E-4: The microdensitometer measurement of' a slide that was exposed with a computer.
generated sinusoid, shown above, exhibits deviations from true a true sinusoid due
to nonlinearities in the recording camera sod the film.

E-2.1.4 Calibration of the SURPHACE Apparatus

The accuracy of the SURPHACE technique depends, in large pan, on how well the apparatus has

been calibrated. Calibration consists of three parts (1) linearization of the camera's transfer

function, (2) modeling of the camera's imaging geometry to enable correction of any non-ideal

behavior, and (3) determination of the geometrical relationship between the camera and the

projected pattern.

Aside from the assumption that the the light pattern being projected is sinusoidal, another

assumption implicit in the SURPHACE approach is that the camera/digitizer is linear with

respect to the incident light intensity. To the degree that these two assumptions hold, the

SURPHACE method can obtain an accurate raw phase map. Recall that the raw phase map is the

pan of the projected s/nusoidal function that implicitly contains the range data and is the result of

separating the effect of the varying range to points in the scene from the effects caused by

fluctuation in the reflectance of the surface and the intensity of the reflected light throughout the
scene.

Linearizing the camera/digitizer transfer function can be accomplished by using calibrated

neutral density filters to measure the response of the camera. KMS uses such measurements to

linearize the response of the camera. Our experience in performing this procedure on several

cameras has shown that CCD cameras are quite nonlinear, especially at low intensity levels, and
must be corrected.
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The camera/digitizerdeviatesfrom idealbehaviorin otherwaysthanbeing nonlinear. KMS will

model these effects and measure them in calibration procedures so that they can be accounted
for. Issues that have been examined include:

• Cameras often low-pass filter video signals to improve viewability but, in the process,
create pixel ghosting effects in the horizontal direction.

• Distortion of pixel locations by imperfect lenses. The most prominent of these effects
is radial lens distortion. 24

Variations in the sampling frequency and the horizontal retrace digitization startup

timing leads to inaccuracies in the horizontal scale factor and the horizontal positioning
of the image.

• Misalignment of the sensor array with the axis of the lens system, resulting in the

middle pixel not being the true center of the optical system.

KMS is adapting a camera calibration method described in the literature 2'* to create a calibrated

model of the camera for VGD. KMS estimates that this approach wiU lead to an improvement in

the accuracy in the SURPHACE approach by at least an order of magnitude.

Thus far, we have examined issues relating to the calibration of the camera and projector

individually. The final calibration is to determine their geometrical relationship as a whole.

Determining geometrical relationship amounts between the camera and the projected light pattern

amounts to determining the transformation from the camera's coordinate frame to the projector's

coordinate frame. This problem can be solved if the transformation between the camera and a

plane in the scene is known. Knowledge of this transformation permits us to use a phase map of
this known plane to determine the position of the projector) _

The position and orientation of the plane is determined by taking images of a known pattem of

lines ruled on a plane and performing a least squares fit between the pairs of 3-d points that

define the pattern and the 3-d plane that passes through the focal point of the camera and the
imaged lines.

E-2.1.5 Surface Data Validity Assessment

While we have found that the vast majority of the data produced by the SURPHACE technique is

valid, some of it of it may be poor or invalid. There are three sources of invalid data: (1)

surfaces in the scene that the camera sees that are not illuminated by any light source; (2) very

black regions that absorb so much light that there is not enough variation in the illumination

between phase shifts to accurately determine the raw phase; and (3) specular regions that are so

bright that the camera is saturated and, therefore, do not vary according to the model discussed in
theory, yielding poor range data.

The three sources of invalid data listed in the previous paragraph axe all characterized by very

small variations in the pixel values between phase shifts: case one will have no variation, cases
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two and three will have little variation. Therefore, one method for detecting this invalid data is

to simply eliminate pixels that do not have sufficient variation among phase shifts. We believe

that this simple approach will identify 95% or more of the invalid pixels.

E-2.1.6 Optimizing the Yield of Valid Data

While there is nothing we can do to improve the yield of valid range points from regions that

have no illumination, we have the means to improve the yield of valid data from low reflectance

regions and specular regions. Increasing the dynamic range of the camera by taking images at

more than one f-stop is one way to accomplish this. As can be seen in Figure E-3, where the

intensity and SURPHACE range images of a specular coffee cup are shown, the SURPHACE

approach is not affected either by markings or specular points so long as the camera is not

saturated and has the sensitivity to detect variations in the phase. Therefore, KMS is

investigating taking phase-shifted images at more than one f-stop and merging the valid range
pixels. This will maximize the yield of valid low-reflectance pixels, obtained when the camera's

stop is set the most open, and maximize the yield of valid specular pixels, obtained when the
camera's stop is the least open.

E-2.2 Viewpoint Determination

One View of an object does not provide sufficient information to produce a complete model of all

surfaces of an objects. Thus, the object's surface must be captured from several different views,

and the data taken at each view must be merged. To properly merge the data, data at different

views must be registered. Research in this area includes the work of Potmesi126, Dane 27, and

Henderson. 28'29 In Potmesil's work, surfaces were registered by "sliding" overlapping portions

of the surfaces onto top of one another and determining an optimal fit. This approach, however,

does not work well since surfaces can match at many different positions. With Dane and

Henderson's approaches the relation between views must be explicitly defined. To provide

maximum flexibility, VGD allows surface data obtained from any viewpoint to be assimilated
into the overall surface model.

Permitting surface data acquired from any view requu, es that the relative transformation between

the viewpoints be determined precisely. We accomplish this by using landmark features, i.e.,

features that can be easily identified in the surface data from several viewpoints. We are currently

investigating ways to automatically select and detect the landmarks. Currently, landmarks are
hand-selected.

We describe the location of such landmark features by position vectors that obtained from the

surface data provided by the SURPHACE sensor. If the position of a landmark feature i in

viewpoint one was represented by the vector Pi, and the position of a corresponding feature in a

second viewpoint was represented by vector ri, then the two positions would be related by a

rotation, R, and translation, t. These are the quantities that must be determined h_ order to

determine specify the geometrical relationship between viewpoints. Mathematically, the
relationship is
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ri=RPi+t.

Now, if differencesare taken between points Pi and pj and the corresponding points ri and rj to
produce difference vectors, Plj and rip then,

rij = R Pij.

By representing the rotation operator as a quaternion, a simple solution can be obtained for

determining the rotation between the viewpoints. Specifically in a quatemion representation, the
above relation could be written as,

rij = qR'Plj'qR*, subject to qR*qR* = 1,

where "." indicates quatemion multiplication, and where the quatemion, qR, and its conjugate,
qR*, contains four variables that specify the axis and angle of rotation.

When more than three points, Pl, are used, the problem is overspecified and can be solved with
least squares methods,

min qR t B qa, subject to qRtqs = 1,

where qR now represents a 4xl matrix of quatemion coefficients and B is a 4x4 matrix with

terms involving the difference vectors, Plj and rij. This problem is an eigenvalue problem and its

solution is the smallest eigenvalue of the matrix B, normalized to 1. Once the quaternion

rotation, qR, is found the rotation matrix R can be determined from qR" In addition, once R is
determined, then t can be found by backsubstitution.

E-2.3 Surface Merging

As described above, in VGD the surfaces of an object captured from a number of views. The

views are selected so that the surfaces, reconstructed from the SURPHACE camera data, overlap.

Because the surfaces are registered, the geometric relationship between surfaces can be

established, thus allowing the surfaces to be correctly positioned with respect to one another.

The geometric surface data captured by the SURPHACE camera is in the form of a range image.
While the range image provides the distance of the captured image from the SURPHACE

camera, it is not an efficient format for storing a geometric representation of an object. To

provide a representation the range data will be approximated by a polyhedral surface. For

example, Boissannat and Faugeras 3° have developed an algorithm for the polyhedral
approximation of a surface from range data.

The photometric surface data captured by the SURPHACE camera is in the form of an intensity

image. Because the intensity image represents a projection of the surface detail of the object

onto the SURPHACE camera image plane, to obtain the true surface detail, the intensity image
must be backprojected onto the object surface. Several issues must be addressed in
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backprojecting. Since the surface is approximated by a polyhedral surface, then backprojecting

is simply a problem of determining how to map the intensity data onto the facets of the

polyhedral surface.

The simplest solution is to project a polygon facet of the surface into the intensity image to

determine the polygonal area that corresponds to projected facet and to warp the intensity data

with the projected polygon (using a standard image warping algorithm) so that it maps onto the

surface facet. One problem with this approach are that a surface facet may have a high angle of

tilt with respect to the intensity image plane, and, therefore, the backprojected data will be rather

poorly mapped onto the surface. Since the surface will be recorded from multiple views, this

problem can be reduced by backprojected surface data from a view which has the snlallest tilt

angle with respect to the facet to be mapped. Another solution would be to used data from a

number of views and to determine the most consistent surface detail, given the data from all
views.

If the surfaces axe approximated by polyhedral surfaces, a combined surface can be constructed

by merging the polyhedral surfaces. However, problems with this approach are (1) the

overlapping areas of two surfaces will not necessarily be approximated by the same polyhedral

approximation, and (2) surfaces that overlap may not have the same surface detail.

One solution to these problems would be to determine an optimum "seam" at which to merge the

polyhedral surfaces and trimming the excess surface data beyond the seam. This may require

creating new surface facets along the seam and remapping the surface detail onto these new
facets.

E-2.4 3-d Object Tracking Using Surface Data

KMS has developed an innovative object recognition algorithm that is based on a newly

discovered approach to object pose determination. 31 One of the unique aspects of the KMS

recognition algorithm, called Recognition by herative Spring Energy Reduction (RISER), is that

it applies to range imagery and intensity imagery equally well. To provide a demonstration of

the practical application of the range data produced by VGD's the SURPHACE camera, as well

as the 3-d models produced by VGD, KMS will test RISER on VGD range images and 3-d
models.

In the RISER algorithms, 3-d model data representing objects that may appear in a scene, is

matched to the range image of the scene. Efficiently matching models of objects to range data is

equivalent to efficiently recognizing and tracking objects. Although range images, unlike

intensity images, directly provides the geometry of the scene, the problem of identifyh_g objects

is nevertheless quite difficult.

Specifically, a number of problems must be solved. For example, the algorithm must be able

• To work with noisy, incomplete sensory data; parts of objects axe often occluded,

distorted, or out of the field of view.
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To identify object descriptors that are both selective, i.e., they are not too conunon

among the objects to be recognized, and significant, i.e., the probability that they
appear at random in the scene is small.

To handle translation, rotation and scaling of the object to be tracked or identified.

To efficiendy compare surfaces of models with the surfaces of range data, without an
early commitment to a match.

To form matches based on a consensus of a large amount of data rather than relying

on cues provided by a few, likely error-prone, features.

To robustly converge to the correct match between model and range data.

During the development of its object recognition algorithms, it has relied on many insights

gained from developing algorithms for 2-D and 3-D object recognition systems.33, 31 In

particular, the following techniques that were developed for the STORS 32 algorithm, which

recognizes 3-D objects in 2-D images, are equally valid for identifying objects in range data.

To work with incomplete data, the algorithm must use local data. In the STORS algorithm

the comours of an object were represented as a collection of overlapping segments, which

formed local neighbors of data. With this representation, large sections of the contours

could be missing or distorted without affecting the operation of the algorithm. Analogously,

in the RISER algorithm, both the model and range data are represented as a collection of

overlapping surface patches. We desire to keep the patches as small as possible to lower the

probability of the patch being occluded.

To construct unique descriptors, the algorithm uses widely spaced sets of spatially local

patches. Because each patch's data is def'med over a small neighborhood, the patches has

similar attributes, especially on smooth objects. In the RISER algorithm, descriptors consist

of pairs of surface patches. The patches in descriptor are chosen from different regions of

the surface contour and are not necessarily spatially close or overlapping. Descriptors of this

type have a number of geometrical attributes, such as the angles between the normals at the

center of each patch, the principle curvatures at each patch, etc., that allow them to be
differentiated from each other.

The descriptors must be made invariant to translation, rotation, and, if absolute range data is

not available, to scale. We may accomplish this if by choosing the attributes of the

descriptors properly. In the RISER algorithm the attributes of a descriptor are chosen relative

to a local coordinate frame defined by the two surface patches. This makes the descriptors

invariant to translation and rotation. We can make the descriptors invariant to scale by

fixing the ratio of the radius, r, that defines the local surface patch neighborhood, to the

distance between patches, d. If absolute range data, such as that provided by VGD's

SURPHACE camera is available, the descriptors do not need to be scale invariant.

To efficiently match surfaces and yet avoid early "lock in" on a possibly erroneous match,

the algorithm uses an approach of gradual commitment. As in the STORS algorithm the
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descriptors of the model are, at ftrst, compared to all of the descriptors of the range data. To

speed up this initial comparison, the descriptors of the range data is stored (as in the STORS

algorithm) in a kd-tree, 34 indexed by the attributes of the descriptor. If n is the number of

range descriptors, retrieving all descriptors having a fixed range of attributes is O(log n). If

m model descriptors are compared to the n range image descriptors, the total complexity of

comparison is O(m 10g n). This is far more efficient than correspondence approaches35, 36

which have high order polynomial or even factorial order runtime complexity.

To obtain a consensus of the data, the RISER sets up a set of pseudo forces between similar

model and range descriptors. In effect, this is like connecting a 6-dimensional spring (3

translational dimensions and 3 rotational dimensions) between the descriptors, with a spring

constant proportional to the descriptor's similarity. The spring attempts to pull
corresponding the model and range descriptors into alignment.

After pseudo springs have been connected to between the model and image descriptors, the

algorithm minimizes the sum of weighted pseudo spring potential energies. This is

equivalent to allowing the spring forces to reposition the model to lower the total potential

energy. To obtain a robust convergence to a correct solution, i.e., a correct match between

the model and range data, the RISER employs the robust statistical approach of reweighting

the spring constants. This is equivalent to checking the pseudo springs after at the pseudo

energy has been minimized and cutting or weakening those springs that are overstretched.

Robust statistics is a discipline that has found considerable use in eliminating the effect of

bad data in performing a fit of a parametric model to data. For example, in estimating the

pose of an object, an residual error metric e on the parameters of the object's model is

minimized. This metric is the sum of the norm p(-) of the errors between the poses of the

different descriptors. The poses of the descriptors is defined by a six-dimensional vector rl =

( q, p ), where q is the quatemion vector that describes the orientation of a primitive and p is

a spatial vector that describes the 3-space position of a descriptor. If the norm p(.) is, for

example, the L 2 norm, then the error measure would be proportional to the square of

differences of the six-dimensional rI vector of the model and range descriptors. An altemate
L l norm would measure the absolute value in the differences in the FI vectors.

While the L2 norm often obtains a better fit, problems with this type of norm are that when

the error is very large for a given data point (i.e., a statistical "outlier"), the L2 norm of the

residual makes a hugh contribution to the sum e, which in turn has a large effect on the view

parameter estimate that the comparable effect using, for example, the L l norm. A measure

of the influence of outliers is the _ function, which in one-dimension is defined by Vr(x) -

dp(x)/dx. (The ¢ functions for the 1-dimensional L 1 and L2 norms are shown in Figure E-5

(a) and (b).) As can be seen, the L 1 fit is "less sensitive" to to data sets contaminated with

statistical outliers than the L2 fit because the "influence" of these outliers as measured by
is constant rather than linearly increasing.
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Figure E-S:

(a) (b) (c)

Above, (a) show1 the _ function of the L= metric, (b) shows the _ function of the
L x metric, and (c) shows a redescending _ function with maximum points at m
and -m, and cutoff c.

It can be even more desirable to utilize so-called redescending _-functions, 37 such as the one in

shown in Figure E-5 (c). Empirical studies show that the detailed shape of the v-function is not

very important. The most critical features are the maximum ¢ points, which measures gross

error sensitivity, and the cutoff value, c, known as the f'mite rejection point.

The RISER object recognition and tracking algorithm uses a redescending ¢r function to measure

the degree of match between the model surface and the range surface. After the pseudo-energy is

minimized at each iteration, the cutoff value is adjusted to a smaller value, and, essentially cut

the contributions from matching descriptors that correspond to statistical outliers. This, as

mentioned, is equivalent to cutting overstretched pseudo springs that tie the descriptors together.

In this way, although a consensus is used initially in determining a fit of the model to range data,
the final fit will be least affected by bad data.
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Section F

Quarterly Report #4: October 1990
F-1. Summary of Progress

VGD has progressed in two important directions since the last report. The first is in overcoming
of the major engineering obstacles in the path of developing of the SURPHACE camera, the full

view, dense field range sensor described in the previous report. The second is the development

of the user interface software. Much was accomplished in spite of the fact that relatively little
effort was expended during the quarter.

We reported previously that the SURPHACE camera is based on a new method for rapidly
acquiring surface data by projecting and phase-shifting sinusoidally varying intensity patterns.

The patterns are produced by simply phase-shifting a slide with a sinusoidally varying
transmission coefficient in a projector, as shown in Figure F- I. 1. The existing theory for this

technique relies on the pattem being close to perfectly sinusoidal. This, in ram, requires that the
spatial variation of the transmission coefficient of the slides be accurately sinusoidal.

As of the last report, we had fabricated slides that had roughly 20% harmonic distortion.

Harmonic distortion of this magnitude introduces a periodic error into the range images that is

unacceptably high. We reported previously that coping with this problem was the primary
engineering challenge we faced in the development of the SURPHACE camera. We also

reported that we would attack the problem using a two-pronged strategy. First, we would

continue to try to improve the quality of the slides. Second, we would attempt to extend the

analysis to allow the use of non-sinusoidal periodic functions. KMS is glad to report that we
have succeeded on both fronts. We describe the details of this work in Section F-2.1.

In addition to work on the range sensor, we have completed the software that will form the

foundation of VGD's user interface. This is important because the calibration subsystem, the

viewpoint determination subsystem, and the surface merging subsystem all require varying
degrees of operator input. Implementing the basic operator interface was necessary in order to

proceed with the implementation of other aspects of VGD. We describe this in greater detail in
Section F-2.2.

Little effort was expended on VGD's other subsystems, i.e., the calibration subsystem, the
viewpoint determination subsystem, and the surface merging subsystem. There were two reasons

for this. First, the key personnel were heavily involved in several proposal writing efforts that
greatly reduced the time they could spend on tasks related to VGD. Second, the user interface

fell on the critical path of the development of these systems. Therefore, we postponed work on

these tasks until the user interface was complete enough to permit work to proceed. We wish to

stress that, considering the relatively small number of hours spent on VGD, much was

accomplished. Moreover, we expect that work will continue at a normal pace for the remainder
of the project.
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Figure F-I.I:
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SURPHACE obtains range by projecting three sinusoidal patterns that have
been phase shifted from each other triangulates on the resulting distorted
phase function to determine the range to the surface.

F-2. Technical Status

F-2.1 The SURPHACE Camera

We previously identified the goals of improving quality of the sinusoidal gratings on slides and

extending the phase-shift analysis to non-sinusoidal functions as the key challenges on the way
to developing the SURPHACE Camera. Solving either of these problems will make the
SURPHACE camera a viable sensor for VGD. We have succeeded in both endeavors. While

either of these techniques would suffice for the purposes of VGD, we expect that using them in

combination will permit us to use the SURPHACE camera for high precision metrology and
inpection tasks as well.

F-2.1.1 Fabrication of Accurately Slnusoidal Transmission Gratings.

The presence of harmonic distortion in the spatial tranmission function of a slide results in a

correspondingly distorted projected light pattern. The measurements of the scene with the

projected panem, in the form of a set of phase-shifted images, are then also distorted. In turn,

this leads to distortion of the raw phase function and the range map itself. For degrees of
harmonic distortion less than about 20%, the resulting distortion of the raw phase function is

roughly proportional to degree of harmonic distortion in the intensity of the projected pattern.

The corresponding distortion induced in the range map is dependent on the geometry of the
imaged surfaces and the imaging apparatus. However, under conditions of interest, the induced
errors can equal the level of harmonic distortion.

In order to produce useful range maps using the current technique, the harmonic distorlion of the

transmission grating should be kept below 5%, and, if possible, smaller still. Figure F-2.1 shows

a scan of the transmissivity of the best grating we were able to produce as of the last quarterly
"report. Figure F-2.2 shows a plot of the absolute magnitude of the discrete Fourier transform of

this data. If we estimate the Fourier coefficient by measuring the area under the peak down to a

F-2



VGD Final Report: Section F - Quarterly Report #4: October 1990

point that is half as large as the peak, then Figure F-2.2 indicates that the grating of Figure F-2.1
has distortion that is dominated by the second harmonic, and that the magnitude of the distortion
is approximately 18%.

Figure F-2.1:

Figure F-2.2:
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The spatial variation of the transmission coeffient of the best, i.e., least

harmonically distorted, slide that we had produced as of the last quarterly
report. The transmission coeffiecient times 100 is plotted on the vertical axis
versus distance on the horizontal axis. The entire scan covers roughly 3 cm.
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Plotted is the magnitude of the discrete Fourier transform of the data plotted
in Figure F-2.1. Measuring the area under the peaks of the fundamental and
the second harmonic provides an estimate of the second harmonic distortion.
Tnisslidecontains18% secondharmonicdistortion.
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Figure F-2.3 and F-2.4 are plots of the measured transmission coefficients of a low frequency
grating and a high frequency grating. These are our best gratings to date. Figure F-2.5 shows the

magnitude of the discrete Fourier transform of the data plotted in Figure F-2.4. From Figure F-
2.5 we can see that the second harmonic is nearly completely absent, and third harmonic

distortion, using the same estimation procedure as above, is 1.5%, which should be acceptable
for the purposes of VGD.

F-2.1.2 Computing the Raw Phase from Non-Sinusoidal functions

The other approach to solving the problem of nonsinusoidal transmissivity is to extend the phase-

shift analysis to the case of nonsinusoidal periodic functions. In the original phase-shift analysis,

the intensity function is modelled as a biased pure sinusoid with phase distortion arising only
from the geometry of the surfaces of the scene, i.e.,

l(x,y)= l,.,(x,y)+ ls(x,y)cos(%x+C(x.y)+¢_).

2OO

_ ............

0 200 400 600 ,_LJ_,

Figure F-2.3: This is a plot of the transmissivity of a good low frequency grating. The
interpre_fioe of the plot b analogous to Figure F-2.1.

I_.JL,
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Figure F-2.4:
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This is a plot of the mmsmissivity of a good high frequency grating.
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Figure F-2.5: This is a plot of the absolute magnitude of the discrete Fourier Transform of
the muumissivity in Figure F-2.4. This plot makes evident the high quality of
thegrating.Specifically,thesecondharmonic isnegligiblewhilethereisonly
1.5% thbdharmonic distortion.

where IA(x,y) represents variations in the intensity due to background, or ambient lighting, and

Ie(x,y) represents the variation in contrast of the cosine pattern due to the photometric properties
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of the objects imaged. The term 01 represents a phase shift that will be introduced into the pattern

by moving the slide in the projector. In this case, by judicious use of various trigonometric

identities, we can show that the raw phase function, _(x,y), can be recovered through the simple
formula

• (x,y) = tanl((2In/2. I0 - In)/(In- I0)), (1)

where the index on I indicates the angle of the phase shift in degrees. For speed, the inverse
tangent can be stored in lookup table.

If the grating is periodic, but not necessarily sinusoidal, the intensity function must be modelled
by

(2)

where the a i are the Fourier coefficients of the function, and n is the number of terms being kept
in the Fourier expansion of the function. We are assuming that the Fourier coefficents are

known, since we can directly measure the transmissivity of the grating and perform Fourier
analysis to obtain the coefficients. If we let

Q(x,y) = (2Int. z - Io - ln)/(l" - Io) (31)

and insert Eq. (2) into Eq. (3), we obtain the modelled intensity quotient

where flO(x,y)) is
Q(x,y) =._O(x,y)), (4)

(5)

However, we can measure Q directly from the phase-shifted images by using Eq. (3). Denote the
measured value for Q as Qm. Then, Eq. 4 can be written as

f'l(Q m) = ¢_(x,y). (611
It is not possible to obtain an analytic formula forf -l However, we can use Newton's

method to solve for _l_(xj) as follows. We know that in the case where there is only one term in

the expansion in Eq. (2), f.1 reduces to the inverse tangent function. Using this as a starting

point, we can iteratively run Newton's method, gradually increasing the magnitude of the
coefficients of the harmonics in the expansion until they attain their measured values. If the

coefficients are increased slowly enough, the solution will always be the physically meaningful

one. In this way, we can compute a table of values forf t. This needs to be done only once for

each grating. The table can then be used over and over to quickly obtain the raw phase O(x,y)
from the measured value of Q using that grating.

Figure F-2.6 shows a one-dimensional synthetic intensity pattern. This pattern has harmonic

distortion of 20%. To within isolated discontinuities of 27r, the phase of this pattern should be

perfectly linear. Figure F-2.7 shows the phase computed using the technique we have just
described. Indeed, the raw phase plot in the figure is perfectly linear save for isolated jumps of
2ft.
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Raw phase of the intensity prof'fle computed using the technique described in
the text for extracting the phase of a nonsinusoidal function. As expected, the
phase of the pattern is linear except for jumps of 21r.

As we mentioned previously, either perfecting the slides or extending the analysis would have
cleared the way for us to use the SURPHACE camera in VGD. Since, in fact, we have succeeded
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in both endeavors, extremely accurate measurements should be possible with the SURPHACE

technique by correcting for the small harmonic distortion present in even the best grating pattern.

F-2.2 User Interface Library

Many of the functions of VGD require the user to react to data that the system has gathered. For

example, to calibrate the cameras, the user will take an image of a calibration card and the system
will ask him to point to specific lines on the card. Similarly, the viewpoint determination
subsystem requires user input, as does the surface merging subsystem. However, each of the

subsystems has different requirements. Therefore, a general library of user interface routines for

creating windows, displaying images, graphics and text, etc. has been developed in this quarter.
The routines are built around the X windows standard, and are therefore very portable.
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Section G

Quarterly Report #5: October-December 1990

At the end of 1990, several large scale computer reconfigurations were forced on KMS and

apparently the original word processing sources and graphics used in this quarterly report could

not be found in computer readable format. Consequently, this quarterly report has been

incorporated without editing into the final report on the pages that foUow this one.
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1. Overview of the VGD Project

The primary goal of the VGD project is to develop a system that can capture computer

models of real-world objects as 3-D textured-mapped surfaces. The VGD system will achieve

this goal by (1) providing a range camera that can input registered range and texture data, (2)

developing software modules that can merge the camera data into one coherent surface, and (3)

developing software data structures and modules for efficiently displaying surface data.

One of JPL's major objectives in supporting the VGD system is to develop computer

models that can be used in tracking 3-D objects. To address this objective, the models, provided

by the VGD system, will be stored in a format that will allow the models to be quickly

manipulated. This would allow, for example, a VGD model to be used in a closed loop estimator

that, in rum, could be used to track the motion of a 3-D object in real-time [Gottschalk et al..
1989].

To build up models of objects, the VGD system will:

a) Capture registered range and texture surface data from a sufficient number of views to

cover the entire surface of an object.

b) Determine the trmmformations between the views at which surface data is captured.

c) Merge the surface data into one coherent surface that is stored in a format that allows

the data to be quickly manipulated.

Work performed during the last quarter has been directed toward developing the

SURPHACE sensor (i.e., a SUrface Reconstruction by PHAse.shifted Cosine sensor), described

in the last quarterly. The SURPHACE sensor consists of (l) a structured lighting unit, that

projects a sequence of cosine patterns of different phases onto the surface of an object of interest,

and (2) two CCD caneras, that input and digitize the cosine peterm. Changing the phase of the

cosine pattern by a number of known phase steps allows the range and surface albedo, i.e..

texture, of a surface to be isolated from the background lighting and captured at each pixel.

Moreover, using cosine patterns of different spatial frequencies (See Section 2.2) allows the

SURPHACE semor to extract the absolute range of surface points.

In addition, in order to merge surface data, work: has also performed in determining ways of

registering surface data taken from different views. In the current approach, surface marlangs

that apposz within two views will be used to cross register views (see Section 3). Registering can

be further refined by nm_ surfaces so that. in areas where the surfaces overlap, the range

and texture of surfaces is optimally matched (see Section 5.6).

To provide meaningful range data, the projector and CCD camera used in the SURPHACE

sensor must be inter-calibrated (See Section 4) Work. therefore, has been performed in

developing a calibration model for cameras, for projector/camera subsystems, and for the
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camera/camera sub_,_em. Careful analysis has also been performed, for example, in lineanzmg
the response of the CCD cameras for the individual pixel and across each scardine, to remove

sampling artifacts, and to accurately determine the relative geometries of the projector and the
ca,meras.

Effort has also been spent on determining methods for efficiently manipulating and

displaying registered range and surface data. To simplify this task, the VGD system will use a

model of a surface that consists of a set of pixel meshes [Williams, 1990] where each mesh. in

turn, is made up of an array of range/texture pixels, that represent data captured from a particular

view (see Section 5). With this data structure, surface data is kept at pixel resolution (as opposed
to being stored in a polygon facet and then resampled when it is rendered in a scene, as is

generally done). Using the pixel mesh representation, surfaces will be manipulated using
standard warping operations to rotate (in-viewplane rotations), translate, and scale a surface.

Tilting of a surface will be perform using a special scan-line _g algond,an (See Section 5. l).

To provide an integrated surface, the pixel meshes will be patched together along adjoining

boundaries, and each pixel mesh will contain kooks that allow patched data from diHerent views

to be combined and displayed as one surface.

Finally, we described how the surface models input by the VGD system can potentially be
used for tracking 3-D objects (see Section 6).

The following sectionswiLl describe the work that has been performed in more detail.

2. Capturing Registered Range and Texture Data.

2.1 Background

In review, the VGD System will use a phase-shift structured lighting system, i.e., the

SURPHACE sensor, that acquires registered range and intensity data. ConcepmaJly, the

SURPHACE sensor projects • plume pattern onto a surface and inputs the phase pattern via CCD

cameras. Because the phase pattern, is relatively unaffected by the surface properties of the

object, and because a one-to-one correspondence can be found between the projected phase and

the input phase, the system can triangulate surface points for each phase value (see Figure l).

2.2 Capturing Phase and Albedo Data

In practice, the phase function, @_(x,y) = 0s0"x. projected by the SURPHACE sensor ts

encoded in a set of intensity pauerrm Ip_= 10*cos(oJ0.x + $i ) with a fixed spatial frequency, coo
and a phase offset ¢i" A.qer projecting this set of patterns, the sensor measures the distortion of

@p caused by the surface in the form of a phase function, @C(x,y) returned to the camera. The

sensor images the phase function @c(X,y) encoded as a set of intensity patterns,
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Ici(X,y)= Ib(x,y)+ Ia(x,y)*coS(@c(X,y)+ OiL ([)

where Ia(x,y ) is the contrast of the pattern due to the photometric properties of the objects

imaged, i.e., the albedo of the surface, and Ib(X,y ) represents variations m the intensity due to
background, i.e., ambient lighting or shadows.

Projector

I

Stereo cameras

Cosine slide

The SURPliCE semor obtaim range by project/aS a plume pattern onto the surface

of an object, by inputting the phase via a camera, and by setting up correspondences
between theprojectedptme and the inputphue.

The phase function Oc(x,y ) is decoded from the intensity patterns (and, thus, isolated from the

contrast la(x,y ) and background illumination Ib(X,y ) terms) by setting the phase-shifts 4)1 to integer
fractions of 2_ (e.g., 0j = 2xJi/n, j=O to n-I tad n > 3), and by using an inverse Fourier sine8 transform.
Spec/ficany, ec(X,y) can beobeaem from.

@c(X'Y)J2_" tan'l(fzIcj(x,Y)*Sm(Oj)),(Zlcj(x,y)Scoi(*j))) (2)

Decoding @c(x,y) can be performed efficiently with table.lookup. (Vij, ure 2 shows an example of the
phaseotxain_fnaaasimple_)
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With a single cycle cosine pattern, the phase function @ s and the imaged phase function @cs would

appear approximately as shown m Figure 3a. Because @pS _d @cs can be inverted with respect to x lie..

the functions xp s = O=ps/cu0 and xcS are single valued ftinctions of @) a correspondence can be trivially

found between me Xp_ and Xcs for each phase value 0.

Unfortunately, a single cycle pattern, in general, will not provide an accurate measurement of the

range. This is because CCD cameras are typically capable of quantizing only 256 grays levels.

Therefore, neighboring surface points of a slowing varying single cycle pattern may appear to have the

same phase value, making it impossible to determine an exact correspondence between Xps and xcS for a
particular value of @cs.

Flgure 2: The above shows some preliminary results in obtaining phase data for a simple

object, i.e., a coffee cup, using the SURPHACE sensor.

By using a multiple cycle projection pattern, however, (See Figure 3a) the SURPHACE

camera can project phases over a much greater range, allowing a more accurate correspondence

between the projected and imaged offset Xp m and xcm. Unfortunately, for multiple cycle
panems, the phase function @cm imaged by the camera may no longer be directly invertible.

This is because @cm, recovered modulo 2_, wraps around to 0 every 2n offset. This makes the

inverse function xcm(@,y) multiple valued (See Figure 3b), and, as a consequence, makes the

problem of seeing up co_ces between Xpm(@,y) and Xcm(@,y) more difficult.

In ad_tion, because the phase jumps that occur in @cm can be due to either wrap-around m

the phase or can be due to physical surface jumps, there is no simple way to unwrapping the true

@cm, with the multiple cycle pattern alone.

.t



VGD October-December Quarterly Report

@

3_2
I

4_

2E

X

(a)

" , /

.J " ./ I
f _' / |

/ ; '2_
t" X

._¢

Yn , _

...°.'°

..°°*

k,

I

6_

4_

2x,

0 '

I

f

/

/

/

!

/

/

/

/

/

/

X

q_

(b) (c)

Figure 3: (a) For a smile cycle pattern, the projected and imaged phase functions. @p and @c.
are single valued and thus invenible. (b) With of a multiple cycle pattern, that can

provide greater range accuracy, @c is no longer invenible. By using Oc s of a single
cycle pattern u a gu/de, the multiple cycle phase function can be (c) unwrapped and
made inve_/ble.

To solve d_ problem, we take advantage of the invenibility of the single cycle frequency

pattern by using the single cycle panem, @cs, as a guide to unwrapping the multiple cycle pattern

@cm (See Figure 3c), i.e., determining where to insert 27r offsets. This technique, however.

requires that two sets of phase-shifted patterns be projected and imaged, but allows accurate

range data to be captured.

To provide this capability, the current VGD system will use a set of calibrated cosine slides

of two different spatial frequencies. These slides wtll be mechanicafiy translated to provide
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phase-oh/fredcosinepatternsandwill be interchangedto provide both single and multiple cycle

patterns. Ideally, a spatia/light modulator would be used to provide the phase-shifted single and
multiple cycle patterns.

2.3 Triangulating to Obtain Range Data

After a correspondence has been established between points of equal phase, @. the range to a

surface point corresponding to phase @ can be determined using a accurate model of the

projector/camera subsystem. For example, to model the projector/camera subsystem, we can use

a pinhole camera model for both the camera and the projector (see Figure 4).

In the model we assume that the camera and projector have a coordinate frame with an

origins at their respective focal points, and the two frames are related by an offset d and rotation

R. For simplicity, we also assume that the projector and camera y coordinate axis are parallel,

although this is not a requirement for the system to be calibrated. Since the pattern output by the

SURPHACE projector does not vary in the y direction, the problem becomes a 2-D problem,
where d can be treated as a two dimensional vector and R as a two dimensional rotation about the

y axis with rotation angle 0, i.e.

Rxx = cos(0) Rxz : -sin(0)

Rzx ---sin(0) Rzz = cos(0).

Given the above projector/camera geometry and given the x location of points in the

projector and camera frame corresponding to phase @, i.e., xp(@,y) and Xc(@,y) respectively, the
distance to a point can be found as follows.

Assume that the imaging geometry is as shown in Figure 4. To simplify notation, let the

ratios Xc/f c and xv/fl_ be denoted simply by x c and x v, respectively. If the rotation R and
translation d betwebn frames ate calibrated (see Section ,f.2) then the distance of the surface point

from the projector's focal point, zp, and from the camera's focal point, zc. must obey the relation

R(Xc*'c.%) + (dx,¢z)= (xp'zp, zp).

Multiplyingthe individua/terms inR, thisrelationcan be solved forzc toyield

zc=(dx-xp*dz)/((l+xp'xc)'sin(O)+(xp-xc)*cos(0)), 3)

where 0 is the rotation about the y axis of the camera coordinate frame with respect to the

projector frame.

After zc is found, the 3-D location of the surface point imaged at location Xc(@) can be
determined from

Ps _ (Xc'Zc" Yc'Zc • Zc)"

6
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Objec\point

Zp Xp

Projcctor

Re

Xc

d

Flpre 4: Given Umt the projector and camera y axis are aUped and given ,hit the rotation R

and translation d between local coord/nam frames is known, then triangulation of a

surface point with correspond phase in the projector and camera frames is

su'ai_fforward.

Furthermore, if the projector and camera coordinme systems have the same oriemazion and

only a x offset of d then, the equmon for zc can be simplified to

zC(O,y)-- d/(Xp(@,y)-Xc(@,y)), (4)

where the denominator xp.x c represents a normalized disparity term. The disparity term is
similar to one that appears in the standard stereo camera equation, except thai is this case the

offsets Xp amt x¢ are nonnaimd by their focal len_.

From this equation, it becomes obvious that once the diHemoce between the x offset in the

projector and x oHset in the camera coordinate systems are known for a particular projected

phase value @, then the distance to the surface point imaged with phase value @, can be easily
calculamd.
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Once the phase @c(X,y) and z(@,y) are found a relative surface albedo can be determined

from Ia(x,y), if it is assume that the projected illumination fails off as the inverse of the distance

to the surface point and returning from the surface point.

2.4 Range Sensitivity

Determining the range sensitivity of the SURPHACE sensor requires an analysis of how x c

an_n¢_ affect zc. For example, from Equation (4), a differential in zc is related to differentials in
xc Xp by,

=  c)*Zc/d (5)

where the percentage change in zc due to dx c or dxp increases linearly with zc and inversely with
the offset distance d.

As described in Section 2.2, projecting a low frequency spatial pattern will not allow

sensitive range measurements to be made. The solution to this is to project a high frequency

cosine pattern onto the surface. However, the spatial frequency of the pattern, as viewed by the

camera, is bounded by the sampling fzequency of the camera. For example, assume that there are

N pixels per scanline and that the camera model has a angle of view 2a (see Figure 4) where

-tan(a)SXcStan(a), then an upper lunit on the spatial frequency that would be resolvable by the

camera, would be N/(2*fc*tan(a) ). This means that the sensitivity of dz c is limited by,

dzc/Z c _ 2tan(a)*Zc/(N*d). (6)

In other words the range sensitivity of the SURPHACE sensor depends on the spatial

resolution of the camera for any given view angle, and on the distance between the projector and

camera. As an example, for an object at 1 meter, with a view angle of 45-, and a 512x512

camera, the distance from the camera to the projector would need to be approximately 16 cm to

obtJm a measurement of the range to within 1%.

2.5 Potential Errors

Becanm the cosine pattern used to generate the phase-shift structured lighting has been

produced optically, the errors in _dXndee minimal within the slide. On the other hand, since the
cosine pattem is projected from , errors in dZc/Z for any depth are linear in translational

positioningerrors, dXp, in the slide

Even worse, there are cases in which phase data and hence the range data will be completely

invalid, i.e., (1) surfaces in the scene that are input by the CCD camera but that are not

illuminated by the projector, (2) regions that absorb all of the projected light so that there is not
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enough variation in the illumination between phase shifts to accurately detemune the raw phase.

and (3) specular regions that are so bright that the camera is saturated and. therefore, do not vary,

according to the model discussed in theory, yielding poor range data.

The three sources of invalid data are fortunately all characterized by very small variations in

the pixel values between phase shifts: case one will have no variation, cases two and t_ee will

have little variation. This makes it possible to mask out invalid data by simply eliminating

pixels that do not have sufficient variation among phase shifts.

3. Registering Surface Data

One view of an object does not provide sufficiem information to produce a complete model

of all surfaces of an objects. Thus, the object's surface must be captured from several different

views, and the data taken at each view must be merged. To properly merge the data, data at

different views must be registered.

Permitting surface data acquired from any view requires that the relative transformation

between the viewpoints be determined precisely. We accomplish this by using landmark

features, i.e., features that can be easily identified in the surface data from several viewpoints.

We are investigating ways to select and detect the surface landmarks. Currently, landmarks are
hand-selected.

We describe the location of such landmark features by position vectors obtained from the

surface data using the camera/camera, or stereo camera subsystem of the SURPHACE sensor. Lf

the position of a landmark feature i in viewpoint one was represented by the vector Pi' and the

position of a corresponding feature in a second viewpoint was represented by vector r i, then the

two positions would be related by a rotation, R, and translation, t. These are the quantities that

must be determined in order to determine specify the geometrical relationship between

viewpoints. Mathematically, the relationship is

ri = R Pi + t.

Now, if differences are taken between points Pi and pj and the corresponding points ri and rj to

produce difference vectors, Pij and rij, then,

rij= RPij.

By representing the rotation operator as a quatemion, a simple solution can be obtained for

determining the rotation between the viewpoints. Specifically in a quatemion representation, the

above relation could be written as,

rij = qR.PijKIR , subject to qR'qR = I,
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where "." indicates quatemion multiplication, and where the quatemion, qR' and its conjugate,

qR* comains four variables that specify the axis and angle of rotation.

Surface markings

rj

n pi

Camera at position 2

t

/

Flgure St 3-D mmma'tmmmtt of tlm landmark features will allow vectors. Pi and ri to be made
from ditfm'tmt views. These vectors are related by the same transformation. (R.t).
that can be used to transform the surface dam into one frame.

When more than three points, Pi, are used. the problem is overspecified and can be solved

with least squanm methods,

rnm qR t B qR, subject to qRtqR ,- 1,

where qR now represents a 4xl mmm of quatemion coefficients and B is a 4x4 matrix with

tetrrm involving the differenc¢ vectors, Pii and rij. This problem is an eigmvalue problem and its
solution is the smallest eigenvalue of the matr_ 8. normalized to. 1. Once the quaternion

10
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rotation, qR' is found the rotation matrix R can be determined from qR" In addition, once R is
determined, then t can be found by back substitution.

Another approach to registering surfaces without surface landmarks is use a device such as

the 3-Space Tracker [Raab et al., 1979] to determine the 3-D pose of the SURPHACE sensor wt/l

it is accluL'ing data. The 3-Space Tracker uses a of three orthogonal magnetic coils mounted at a

fixed location to transmit magnetic pulses through space and a set of three orthogonal pickup

coils to receive the pulses and provide data that can be used to determine the absolute pose of an

object with respect to the transmitter location. Although the VGD budget does not permit the use

of a system of th_ type, it would be ideal for registered camera locations with surface markings.

Finally, fine-tuning of the registration between surfaces may be accompfished by correlating

the surface data between views, and by positioning two surfaces, that are to be merge, to

maximize the correlation between the range and intensity of the areas of surface overlap. If

registration using sm'face markings proves to be too crude to accurately register surfaces, we will

explore this technique (see Section 5.6).

4. Calibrating the SURPHACE Sensor

As described earlier, the SURPHACE sensor consists of a high intensity projector and two

CCD cameras. The cameras are used individually with the projector to obtain surface data, and

used in stereo to input the 3-D location of registration mark/np. This tint capability is used to

input surfaces and the latter capability is used in register surface dam in order to merge surfaces

into one coherent surface (see Section 5).

In any case, the problem of calibrating the SURPHACE sensor consist of three separate

calibration problems, i.e., (1) calibrating a single camera, (2) calibrating a projector/camera
subsystem, and (3) calibrating the camera/camera subsystem.

4.1 Calibrating a Single Camera

Calibrating a camera consists of linearizing the camera/dighizer transfer function and of

modeling tim cmm_ra's imaSing geometry to enable correction of any non-ideal behavior.

4.1.1 Modeling the Camera

Linearizing the camera/digitizer transfer function was accomplished in two ways. First,

there exism a gamma correction pmentiometer on the CCD cameras that allows the camera signal

to be partially linearized. Second, we found that pixels across a scanline, although having a

linear behavior individually, had an uneven response. The response to the same light values was

less at the beginning and end of the scardine than m the middle. Although the SURPHACE

II
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I

camera ordy needs a linear response at each pixel to determine range, it requires uniformity in
response over the pixels if surface albedo is to be properly measured. This problem will be

solved by calibrating the response across a scardine and using table lookup to correct a response.

In modeling a single camera, a number of problems were examined and solved, include
removing:

Distortionof pixel locationsby imperfect lenses.The most prominent of theseeffects
isdue to radiallensdistortion.

Variations in the sampling frequency and the horizontal retrace digitization startup
timing that lead to inaccuracies in the horizontal scale factor and the horizontal

positioning of the image.

Misalignment of the sensor array with the axis of the lens system, resulting in the

middle pixel not being the true center of the optical system.

To solve these problems a camera calibration scheme, described in the literature [Tsai,

1987], was adapted to create models of the CCD cameras used in the SURFACE Camera. The

basic geometry of the camera model is shown in Figure 6. Imaging can as described in Tsai

[1987] be viewed as required four steps:

P

(_ 7, s)
x..

Fijure 6: The geometry of a singlecamera can be describedreasonablyaccuratelyby a

relativelyfew setof parameters,Radiallensdistortionintroducesome error,n,o

image memuremenu.

12
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1) A rigid body transformation from (xw.Yw.Zw) to (x.y.z)

(x.Y.Z) T = R(xw.Yw.Zw) T + T

2) A perspective projection with pro-hole camera geomer_,-y

Xu =/x/z

Yu = fy/z

3) A radial lens distortion with second-order polynomial approximation

with

x-Xd-
Y Yd Yu (l+#cr2)-l

r2 = Xu2+Yu2

4) A digitization of real image coordinate (X,Y), to computer image (frame buffer) coordinate

 xf,zf)

with

Xf = dx'X+Cx

Yf = dy X+Cy

where

dx' -- sxdx

(Xw,Yw,Zw):

(x,yjO:

(X,Y):

(Xd,Yd):

(Xf, Yf):

S X"

/:

3-D coordinates of point P in 3-D world coordinate system

3-D coordinates of point P in 3-D camera coordinate system

cooniinmes of the image coordinate system

2-D image coordinates of P

digitized 2-D image (flame buffer) coordinates of (X. Y)

ideal undistorted 2-D image coordinates of P

image frame center

distm)ce between adjacent sensor elements m x and Y direction, respectively

distance between frame buffer pixels in X and Y direction, respectively

horizontal scale factor

focal length

13
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_: radial lens distortion factor

dx and dy are available from the camera and frame grabber specifications, as are Nc_ and No= for

an imtiaf rough estimate of s x. We can assume zero distortion (_:--0) and unit focal'_engm (_= t )
at the beginning of the calibration procedure.

These parameters can be divided into two classes: intrinsic parameters and extrinsic

parameters. Lnmnsic parameters describe the imaging process within the camera, while exn'msic

parameters describe the cameras relationship of the camera to the world coordinate system.

Thus, R and T in the equations of the rigid body transformation at'e extrinsic parameters, while

the remaining parameters, specifically I, r, (Cx,¢y), and xx, are inu'insic parameters.

4.1.2 Determining the Camera Parameters

Calibration of the video camera consists of determining the intrinsic parameters. However.

since the transformation relative to any external calibration pattern must be determined, the

extrinsic parameters must be determined as well. However, the effort spent on determining the
extrinsic parameters is not wasted since we can use this information to calibrate the

proJector/camera and camera/camera transformations by determining the transformation between

each of the SURPHACE subsystems' coordinate frames with respect to the same calibration

scene. For example, determining the inter-camera transformation is all that is necessary to
complete the calibration of the stereo apparatus.

The VGD algorithm for monocular video camera calibration rests on the following

principle: given a 3-D calibration panem consisting of line segments, if the camera is perfectly

calibrated, the inverse image of a point on one of the lines comprising the calibration panem in

the computer's image frame buffer coordinate system (the (Xd,Yd) plane), which is a ray
emanating from the camera's optical center in the 3-D world coordinate frame, will intersect

perfectly the corresponding line in the 3-D calibration panem.

In reality, the parameters, inu'insic and extrinsic, will be only approximately known. Thus.

the ray will not intersect the calibration pattern line. However, the better the camera model

parameters are, the smaller the distance of closest approach between the ray and the line in the 3-

D calibration pattern will be. This is shown graphically in Figure 7. If many points and several

lines are used, the parameters resulting in the best calibration can be found by minimizing the

sum of the distances between the rays and their corresponding 3-D lines in the calibration
panem.

Viewed from a mathematical perspective, the calibration process amounts to a nonlinear

optimization. For this reason the robust unconstrained optimization procedure will be used to

perform the opmnization.

14
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In using optimization, we needed to solve the key problem of avoiding optimization tram

caused by singularities in the parametenzation of the rotation R. A singularity is a point in the
rotation parameter space where many parameter values map into the same rotation. When the

optimization procedure nears a singularity, it may search out in a direction that has no effect on

the rotation because of the singular values of the parameters. However, once this occurs, the

optimization procedure will not change the values of the other parameters because, ff it does, the

rotation is likely to change rapidly, increasing the error metric, effectively trapping the
optimization in the singularity.

3-d

Calibration

Card

Errors

Vu

Y

Sensed

Image
Curve

Datapoints

Z

Lines c Sight

0

Flpre 7: The camera model can be readily calibrated by using a straight line calibration
pattern and by adjusting the camera model parameters until the d/stance between

rays emanating from the focal point of the camera and the straight lines is
miaEmi_..4

This problem was solved by parameterizing the rotation matrix using unit quaternions.

Specifically, a quatemion representation has no singularities or the type described above, ordy

the usual d/pole symmetry that is unavoidable in any rotation parameterization (and which does

not cause problems for the optimization procedure).

To schieve the best pos_ble camera calibration, we must determine the location of the lines

in the image of the c_li_on card tO the highest possible accuracy. Concepmslly, as descnbecl

previously, the location of the points in the u'nage that correspond to a particular line in the

calibration card will be extended into 3-D space by a ray from the optical center of the camera

15
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through the image point. Calibration will be effected by adjusting the camera parameters untd

the nearest approach of the ray and the 3-D lines forming the calibration card is minimized for a

large number of such image points. Thus, it is critical that the location of the points that make up

"lines" in the computer's frame buffer image (the "lines" are actually slightly curved do to the

radial lens distortion) be determined with the highest possible accuracy.

The calibration algorithm allows the user to select a number of lines in the image by

clicking the mouse at pairs of points near the image lines. The algorithm then searches

perpendicular to the line the user provided, looking for image lines. When found, the location of

the intersection points axe determined to sub-pixel accuracy. This is accomplished as follows.

First, the image is resampled along the search line, using bilinear interpolation, to yield a l-

d signal of length n, where n may be user specified. We model the cross section of an image

curve by a Gaussian pulse of width o'. The pulse is detected and accurately located using Bole

and Cox's [ 1987] method. First optimal detection and localization masks are produced. The

masks are correlated with the signal derived from the image to yield a detection signal and a

localization signal. The points in the localization signal where a zero crossing occurs and the

detection signal exceeds a detection threshold forms a detected point. Linear interpolation of the

pixels on either side of the zero crossing yields the location of the pulse to sub-pixel accuracy.

Although Bole and Cox's algorithm uses hard thresholds, we have modified it to use a form

of adaptive thresholding, thus permitting a wide variation in the contrast of the imaged lines
without changing the user defined threshold value.

4.2 Calibrating the Projector/Camera Subsystem

In calibrating the project/camera subsystem, the primary problems are in insuring that the

projector is outputting an accurate cosine pattern, and that the geometrical relationship between

the projector and camera are accurately determined.

As described above the projector subsystem of the SURPHACE sensor consists of a high-

intensity light projector with a micrometer-mounted slide holder that permits accurate phase

shifting. A number of problems were encountered in manufacturing slides with accurate low

spatial frequency cosinusoidal patterns, but this problem wM solved when a vendor [Sine

Patterns, 1990] was located who manufactures custom cosinusoidal slides of high accuracy.

The problem of modeling the wojector is similar to that of modeling a single camera. To

model the projector/camera subsystem, we will use a pinhole model for both the camera and the

projector described in Section 2.3 (see Figure 8).

16



VGD October-December Quarterly Report

Zp

Projector

n*xo

Projected pattern
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d

Filplrt 8: Assuming an ideal pinhole camera and projector system and assuming that the y

axis of the projector and camera local coordinate systems are aJigned, calibration of

the projector/camera subsystem of the SURPHACE camera becomes simply the
problem of detm'mining the 2-D rotation R and the translation d betwee_ coordinate
frlm_.

To calibrate the projector/camera system, we can place a screen at a distance z.p from the
projector. If a pattem with equally spaced points, with x spacing x O, has been project_l onto the

screen, then the spacing on the screen will be Xo*Zt_]f_. Assume that one of these points ts

imaged at xcn in the camera. To simplify notation, let _/Ff.p and xcn/f c be denoted as x 0 and xcn

respectively. A ray from the focal point of the camera through the point xcn can be described m
the projector film, by,

R(xcn*zc, zc) + (dx, d=) (7,

where z c is the distance from the focal point to a point along the line. Let zcn denote the

parameter that must be selected so that the position along the line corresponds to positron

nx0"Zp, on the screen, i.e.,
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R(xcn*Zc n, zcn) + (_, d z) = (n*xo*z p, Zp) __ t

If this equation is used for two points at x offsets in the projector frame of n*xo'z p and _n-
I )'x0"z _ respectively, and if the resultant two equations are subtracted, the following relation is
obtained,

R(xcn*zcn xcn'l*zc n'l, zcn" "Zcn'l) = (x0*Zp,0). t9)

This relationship represents three unknowns, the rotation angle 0, and the parameters zn and

zn- 1, not enough information to solve for 0. However, if this step is repeated for two points at

offsets n*x0*z p and (n+ 1 )*x0*z p, one obtains the equation,

R(xcn+l*zc n+l - xcn*zc n, zcn+l - zcn) = (x0*z p, 0). (10)

To set of equations in (9) and (10) can be solved for the angle of rotation, 0. After O is found the

vector d can be found from the previous relation involving d.

By using even more points, the system of equations become overspecified, and can be

solved using least squares optimization for a more accurate f'mal result.

Once the projector/camera system is calibrated, the surface points can be triangulated as

described in Section 2.3 to obtain surface range.

4.3 Calibrating the Camera/Camera Subsystem

The purpose of calibrating the camera/camera subsystem is to provide a stereo camera

system to be used in registering views of a surface. The system will input surface markings and

determine the distance to the markings with/n each view and use this data to roughly find the 3-D

transformations between views (see Section 3).

Even though the cameras may be calibrated with respect to the projector, they will not

necessarily be calibrated with respect to each other. This is because the y axis in the camera and

projector system were aligned and the projector output a pattern independent of the y axis.

Therefore the two camenm may be out of calibration in the y direction.

Using stereo to input distances requires sening up correspondences betwee_ features in one

image with feanu'es in a second image. This can be done quite easily if the features in one view

are along the same scanline in the second view. This is called the epipolar conarraint. To insure

the the cameras in the VGD system satisfy the epipolar constraint, a calibration pattern of

intersection lines will be projected by the projection system onto a screen perpendicular to the z

axis of projector (using a similar geometry to that show in Figure g). The location of the lines

can be identified accurately using the algorithm described above, and, therefore, the location of

the intersections of the lines can also be accurately described. By aligning the cameras so that
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intersection points fall on the same scanlines within both cameras, and by knowing the
calibration between the camera and projector, we will be able to easily determine the relative
distance and mration between camera frames.

5. Merging Surface Data into One Complete Surface.

As described above, the VGD SURPHACE camera will be used to capture the texture (ie,
detail) and range of the surface of an object for a set of digitized views. This data will be used to

reconstruct partial surfaces of the objects. Since maddngs on the surface of an object will be

used to establish the relationship between these surfaces by establishing the coordinate

transformations between the views from which the surface data is captured, the final step in

reconstructing a 3-D model of an object will be to use the relationships between surfaces to

merge the partial surfaces into one coherent surface.

Some of the problems associated with merging surfaces are that,

Errors in the view coordinate transformations will result in poor surface merging, with

the result that surface texture will have discontinuities due to an incorrect overlap of the
surfaces during merging.

* The surface data is captured as image data and must be converted to some form of

graphical data structure for rendering.

• A technique must be devised from joining surfaces. This technique must not leave

"gaps" in the merged surface.

To solve these problems we wig investigate (1) approximate surfaces by a pizel mesh, (2)

globally optimize the surface fit between surfaces of different views using a surface matching

strategy that uses both range and texture data to adjust the view coordinate transformations, and
(3) connect pixel meshes between views to obtain a coherent surface.

In the following we wig present a discussion of each of these steps.

5.1 Converting Surface Data to a Pixel Mesh

In order to match surfaces from different views, the surface data must be mapped into a

common frame and sampled on a common sampling grid. For example, the range data that _s

captured by the SURPHACE sensor will be sampled along rays that emmu=_ horn the focal point

of the CCD camera and that intersect the surface at some point. To perform a comparison

between surface data in two different views, surface data must be mapped between frames and

sampled at the same sample points.
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One possibility would be to approximate surface data by a polygon mesh [Foley and Van
Dam, 1982], to map the texture data into the polygon facets, and to manipulate the surface data

by manipulating the polygons. Then when two surfaces are compared, for example, during

surface merging, the polygons and the texture data stored in the polygon facets would be

resampled to obtain range and texture data at a set of sampling points.

A simpler approach, to be used in VGD. will be to sample the surface data in after it is

orthogona.lly projected and to use standard image warping operations to manipulate the surface

data. We will refer to this form of data as a pixel mesh in which conceptually each pixel of the

resampled surface corresponds to a vertex of a faceted surface (see Figure 9). When surfaces are

manipulated, surface data will be remapped, using image warping operations. For example, the

orthogonally sampled surface data in view 2 is mapped into view frame I through a set of simple

2-D scale, rotation, and translational warping operations, as weLl as a new 3-D tilt operation.

Range

Texture values

Surface facet

x y

Pixels

Flllure 9: Each pixel in the pixel mesh is connected to its nearest neighbors to form a set of

surface facets. Both the range and texture are stored at the pixei locations.
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5.2 Manipulating the Pixel Mesh

To define our terminology, a 2-D rotation will consist of a rotation about the orthogonal

view direction of the pixel mesh. A tilt, on the other hand, will consist of a rotation about an axxs

perpendicular to the orthogonal view axis (i.e., in the x-y plane in Figure 10).

Range

Texture values
Range

Facets

Pixels Y Y

x
x

Figure 10: Rotations about axis perpendicular to the view.axis will be handled by a special tilt

operation in which the data is tilted along a scanline. In tilting, facets between
sample points are tilted and then scan converted into new range values at lhe

original sample point locations, using a scan-line z-buffer.

2-D scaling, rotating, and translating a 2-D image can be performed efficiendy on a pixel

mesh using standard image warping operations [Catmull and Smith, 1980]. The only

complication is in tilting a pixel mesh. This is because a pixel has a range value, and, therefore.

when the surface is tilted, the pixels must manipulated to reflect the rotation. For example, a

pixel mesh may fold over on itself, i.e., have locations that are multiply defined, due to the fact

that pixel points having different range values now occupy the same x and y location. However.

this type of operation can be handled using a scan-line z-buffer algorithm.

To perform tilting operations we will use a scan-line z-buffer algorithm, i.e., tilting of a

pixel mesh range/texture image about an arbitrary axis will be done by f'_st rotating the image

about the z-axis (i.e., the axis perpendicular to the image plane) so that the tilt axis is aligned

with the y-axis. The data is then tilted via a scanlme algorithm and then rotated so that the tth
axis is its original direction.
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When tilting about the y axis, each pea" of sequential pixels in the pixel mesh can be treated

as a linear line segment in a horizontal slice of a surface. To tilt a surface, each line segment m a

scan-line is rotated about the y-axis and resampled at the points of the pixel grid. The values of

the texture and range at the sample points can linearly interpolated from the texture and range
values of the tilted line segment.

As in a standard z-buffer algorithm, if during the linear interpolation and sampling, the

range value at a sample point has a value smaller than the value previously stored at the sample

location, then the value will be assigned the current range and texture value. If, however, the

range previously stored at the location is larger than the current value, the range and texture
stored at the location is unchanged.

After each scanline of the image is tilted using this approach, the image is then rotated back

to its previous orientation. This approach, thus, is simple and yet provides a general mechanism

for tilting a range/texture image.

5.3 Comparing Pixel Meshes

Once a pixel mesh has been mapped from view 2 to view 1, it can be compared to the p/xel

mesh within view I. Both the texture and range data will be compared using a texture and range

metric respectively. Evidence of a match between two patches will depend on a weighted sum of

the values returned by the texture and range metric. After the initial tilting operation,

comparison of surface data is completely performed in 2-D.

5.4 Globally Optimizing the Surface Fit

Although views will be registered as described in Section 3, realistically, the

transformations between views obtain using the describe approach will contain some errors. As

a consequence, when the surfaces from different views are combined, discontinuities in the

surface texture and range will appear in the combined surface along the boundary at which the

surf_es are m_g_l.

To minimize this problem, we will investigate the use of a global optimization approach m

which, starting with the transformations obtained during registration, surfaces will be optimally

fit together to minimize a global fit criterion. Fitting will be done by attaching spring-like forces

between similar surfaces (see Figure 11), and by allowing the attachedpseudo-spnng$ to set'tie to

a stable state. This approach will allow the transformations between view frames to be globally

adjusted until the combined surface data has minimum discontinuity.

Specifically, using the in/hal view parameters established, surface data from different views

will be matched in pau's. Consider the two view frames shown in Figure I la. The approximate
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overlap of the surfaces I and 2 can be found by mapping the region of valid data in view 2 into

region of valid data in view l (see Figure l Ib) using the transformation established durin_ the

registration step. 6-D pseudo-spring forces (with energy based on differences in coordinates and

orientation) will be attached between similar regions within the two views. This technique will

be repeated for all of the views that have overlapping coverage. Finally, the view parameters

between views, i.e., the 3-D translations and rotations between views, will be adjusted until the
sum of the total spring energy is mhlin_ed.

Surface - View 1 Surface texture and range features

Surface - View 2

Fisure ll: Surfaces will be compared and a set of pseudo-springs will be set up between (he

surfaces, where the springs will be attached between areas of similarity.

Using a robust statistics approach, springs that are overstretched will be cut and the energy

of the remaining springs will be minimized. The technique of clipping overstretched springs is a

method of removing outliers or false surface matches from the optimization process. Clipping of

spring forces will be repeated until the surfaces are well matched globally, i.e., when there are no
highly stretched pseudo-springs.

5.5 Segmenting the Surface into Best Estimate Regions

After a optimum set of transformations between views has been determined, an imtial view

will selected. For example, assume that view I is selected. ALl views that that share surface data

with view I will then be mapped into view I. Views that overlap view I, but provide data

outside view I will be marked in the view I image. When mapping surfaces from other views

into view I some data will be lost due to foldover ¢Le. self-occlusion). The location surrounding
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the pixels at which this occurs, that is. the border of the foldover will be marked. This marked

area represents the locations at which data must be patched in from other views to complete the

surface data capture in view 1.

It is also possible to determine for each pixel of the range/texture images in view I, whether

or not data from another view might better represent the texture and/or range value at the pixel

For example, the normals of the surface (defined by the range data) can be used to determine the

view that has the least oblique angle to a surface for a region of pixels. If this option ts

implemented, the region within view I that is better estimated by a different view will be masked

out and surface data from the other view will used to patch the surface at this location.

After the surface from a particular view has been segmented into best estimate regions, it

consists of a set of surface patches that are best described by a particular view. For example, in
Figure 12, a region of the surface in view I (shown crosshatched) may be best described by

surface data from view 2. This region is masked out in view I with the idea that data for the

region will be supplied from view 2. In the special case, when surface data is visible in view 2,

but is invisible to view 1, the visible data must be connected from view 2 into view 1 (See

Figure 12).

Surface - View 1

Pixel Mesh

Masked region

Surface patch - View 2

Fillure 12: Pixel meshes will mask out areas that were badly captured or not visible from a

particular view. They will also contain hooks into data from a different view.

To connect the pixel mesh in view I with other pixel meshes taken from alternate view. the

boundal'y points of the pixel meshes of the alternate views will be mapped into view 1, and each

pixel along the mapped boundary will be tied to the closest pixel point in view 1, thereby
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connecting the external meshes with the mesh in view 1.

views until, the entire surface is connected.
This process will be repeated for all

Using this technique will allow the surfaces of an object to be recorded from arbitrary

angles and to be interconnected to form one coherent surface. The technique, because it is done

is piecemeal fashion, does not restrict the objects to any particular imaging geometry.

5.6 Assigning a Polygon Mesh to Surface

An alternative to a pixel mesh approximation of a surface would be to approximate the

range data of the surface by a polygon faceted surface using as few polygons as possible. This

can be done quite simply using one of several (non-optimal) algorithms [Faugeras et al. 1986,

Schmitt et al. 1985]. Schmitt for example approximates essential a 2-D range image by a

interactively generated triangular mesh. Once the polygon mesh is established, the texture

associated with the pixels that belong to the surface approximated by a polygon facet would be

mapped into the plane defined by the facet.

The advantage of this approach is that it would less storage to represent the surface of the

object, and it would require less computation to manipulate a surface. A disadvantage is that the

texture mapped into a facet is artificially dis'toned to fit onto the planar facets of the model and,

thus may not model the texture of an object accurately. Another disadvantage is that surface

texture of each facet must be separately warped to move with the facet. This would require

either resampling the texture (as performed on Silicon Graphics Power Series workstation using

MIP maps) or warping the surface texture for each individual polygon facet using a 2-D image

warping operation.

For simplicity, the pixel-mesh approach will be implemented irus't.

6. Model for JPL to be Used in Tracking

In talking with the technical monitor, we found that one of goals of the VGD project should

be determining a method of building models of objects that can be used in a vision database to

locate and track objects. Therefore, one of the approaches that we have recommended in past

reports for track/rig objects requires a 3-D model of an object that can be continuously rotated.

translated and scaled to provide the range and texture similar to that of the object being tracked

This model would be used in a closed-loop estimator, in the model would be continuously

compared to an object to obtain an optimum match. The view parameter at the optimum match

would then be used to estimate the view parameters of the object.

Two possible models are possible for this approach: one is an object-centered model and the

second is a image-centered model. An object-centered model is a more common representation
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inwhich an objectisdefined with respectto a coordinateoriginfixed inthe object,forexample.

a 3-D polygon-mesh representation.The image-centeredmodel isdescribedbelow,

6.1 Image-centered Model

In an image-centered model the distance to the model and its appearance are completely

def'med by a set of overlapping range/texture images. For example, Basri and Ullman [1988]

have proposed a simple version of an image-based model (the B-U model), in which edge images

are extracted for number of widely separated views of an object. As an object is tracked a system

can switch to the nearest view to obtain an image of how the object should appear. The image at

a particular view can be rotated, translated, and scaled within the image plane to maintain

tracking. In order to reduce the number of views needed to track an object, data can be

interpolated between views. In the B-U approach, for example, the local surface curvature at

each edge point is extracted with the x, y, and z location of the point. Using this information,

Basri and Ullman were able to accurately interpolate the appearance of edge pixels for views in

between widely space sampled views.

One problem with the B-U approach, however, is that it does not deal well with the self-

occlusion that occurs when an object is rotated. Edge data, initially, hidden behind a surface of

the object in a sampled view, should suddenly appear as it becomes unoccluded. Data that is

visible should disappear as it becomes self-occluded. The B-U algorithm fails to model this

effect. As a result, a sigmficant amount of edge data is not used in the B-U model. In addition,

the B-U model does not model surface texture or range--data that could greatly improve object

tracking.

An approach that models self-occlusion and carries texture and range dam is the pixel-mesh

model with warping described in Section 5,2. We will refer to this as a pixel-warp tracking

model. In this approach, an estimate would be initially made for the view parameters of an

object that is being cracked. This estimate would be used to select the sample view with the

closest set of view parameters. Rotations about the z-axis, translations, scaling and tilt on the

range/texture will be performed directly on range/texture images to cause the images to track a

the range/texture of the real object.

The regions within the _u'face that ate best estimated by other views will be patched into

the image. More precisely, the patched regions will f'LrStbe transformed into the currem view

and then transformed to matched the current view parameters (in fact, one combined

transformation incorpormon the transformation into the current frame and the transformation to

the correct view would be applied to the p=el region) The texture and range of this surface can

then be compared to those of the real object and view parameters will be adjusted to minimize

the diHerences between these memuren_nts.

An image-centered model of the type proposed has the advantages thaz the model captures

the surface texture and range that would imaged by the sensors used in tracking. No unneeded

;5



VGD October-December (_a_erly Report

data is carried along. In addition, the surface texture provided by this model accurately portrays
the actual texture of the object model.

6.2 Object-centered Model

An alternate approach will be to provide an object-centered frame model, as described in

Section 5.9. Then when the surface is rotated, translated, or scaled during object tracking, only
vertices of the mesh will need to be transformed to model the changing range data. However, the

surface texture within each triangular facet will need to be warped to match the transformation of
the model.

In the initial VGD system we will initially produce an image-based model of the object.

since it is a simpler model to work with and easy for us to manipulate, given the hardware
supplied by the VGD system.

7. Summary

In summa.,',/, current work on the VGD system has been to,

- Develop a sensor (i.e., the SURPHACE sensor) that can input registered range and

texture data, using a phase-shift structured lighting,

Calibrate the sensor to provide accurate measurements of the range data,

Developing algorithms to approximately register surfaces, using surface markings,

Determine a pixel mesh format to be used in storing the intermediate range/texture

images, and allowing the data to be manipulated in ref'med the registration between
surfaces.

Define a model of a 3-D object which consists of pixel meshes patched together to form
one coherent surface.
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Section H

1991 VGD Progress Report

During 1991, KMS failed to submit any progress reports. Just as the sixth progr,.'ss report

became due, development work on the project was suspended by KMS until it could be

determined whether or not the contract would be novated. At that point, KMS notified NASA of

the reason for suspending work. Following the suspension, The only authorized activities that

continued past March 1991 were the preparation of "cost to completes" and preparation for a
VGD project review.

Prior to project suspension, however, the project was on the verge of success. Dr. Gott_,chalk had

demonstrated that the SURPHACE camera could be used to acquire surface pro, files and

developed the code necessary calibrate the CCD cameras in the SURPHACE Camera. This step

is needed to remove radial lens distortion and to convert the x and y pixel locavions into

meaningful coordinates with respect to a camera model. We have also work out the details of

how surface data can be manipulated in the VGD system. All hardware, with the exception of

the array processor in multi-cpu mode was working and independant software module., had been

developed which met the basic VGD project objectives.

Although Dr. Gottschalk had just been able to demonstrate that the camera worked, the results

were not as accurate as he wanted. As a consequence, some time was spent in perfecth_g camera

calibration techniques. At the point that work on the project was suspended, improved camera

calibration techniques had been developed and Dr. Gottschalk was ready to start using the
SURPHACE camera to acquire surface proirdes.

Once this was done, the next main task was to acquire images from different angles and to merge

these images together to generate a complete 3-D surface profile of the object being viewed. The

last work done by Dr. Gottschalk was to develop prototype code for acquiring an6 merging

images. This code was not tested prior to Dr. Gottschalk's departure.

Although from a technical standpoint, the project looked like it might succeed, the apparent lack

of funding to complete the contract caused first one investigator (Arnold Chiu 4/29) and then the

other (Dr. Gottschalk 7/10) to terminate their employment with KMS. When Arnold Chiu left,

there was no time to transfer his information to Dr. Gottschalk. When Dr. Gottschalk left, he

attempted to brief Dr. Jerry Turney on the status of the project. Unfortunately, Dr. Tumey was

activly working on another project, and all direct charge VGD work was suspended so there was

no time available for him to document the work done by either Dr. Gottschalk or Ar_lold Chiu

and when Dr. Turney was terminated in September 1991, no remaining staff in _echnical

Programs had any detailed technical knowledge of any of the work which had been done on the
contract.

In the following sections, the work done by Dr. Turney and Dr. Gottschalk in calibrating the

VGD sensor is presented. These sections were to be part of the six quarterly report which was

never submitted. The text which follows is presented "as is" because the written inputs from

Dr. Tumey and Dr. Gottschalk for this report were never completed.
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Camera Calibration

0.0 Abstract

{This section was not completed before Dr. Turney was terminated}

1.0 Background

{This section was not completed before Dr. Turney was terminated}

Stereo Color CCD Cameras

Graphics Workstation

Surface Patches

Unification

Figure. 1 The VGD Camera System in Operation.

The VGD camera was proposed to be a hand-held system for capturing arbitrary objects from

multiple viewpoints. During the course of the project, the larger than anticipated weight of the

system requires the VGD camera to be tripod mounted.

{MOREEEEEEEEEEE ........ }

The following are Dr. Tumey's notes, written to himself,

which he intended to use in completing this section.

Provide background on VGD. Why do we need

calibration? How does it fit in?

The camera calibration problem can be summarized as follows, similarly to Fischler & Bolles'

description of the location determination problem [FiB 81]:

Given a set of "landmarks" ("control points"), whose locations are

known in some world coordinate frame, determine the intrinsic and

extrinsic parameters that transform each world point into an image

point in the image coordinate frame.
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{MOREEEEEEEEEEE ........ }

The following axe Dr. Tumey's notes, written to himself,

which he intended to use in completing this section.

Lots of people tackled this problem. List of major pitfalls. Just illustrative examples of each
past methods.

In order to simplfy the camera calibration problem, previous researchers often ma,'ces use of

various simplifications [Abidi & Chandra90] [Tsai87] [Faugauras & Toscani87] [Grosky &

Tamburino90] [Fischler & Bolles81] [Ganapathy84] [Liu, Huang & FaugarasgO] [Strat84]

[Gremban, Thorpe & Kanade88], [Puget & Skordas9Oa-b] [Strat84]. There are a number of
simplifications that generally lead to inaccuracies and imprecision in the final solution. First, R

is linearized without maintaining its orthonormality. Second, no camera model 'intrinsic

parameters) is used. Third, intrinsic and extrinsic parameters are decoupled in their recovery.

Fourth, special geomertic considerations are used in linearizing the equations, or providing

restricted analytical closed-form solutions. Fifth, linear iterative methods are useg after the

problem is linearized with respect to incremental changes in the parameters. Sixth, R and T are
decoupled and recovered independently.

[Chang & Liang89]'s approach considers time-varying camera parameters but it is based on

[Tsai87]'s formulation. ([Kumar89] provides a similar critical examination.)

Decentering effect of the optical axis can be factored into R, but this would violate the
orthonormality (?) of R. Fortunately, it has minimal effect.

Our algorithm does not make these assumptions. We do not need to be hand-guided [Faig75].

We maintain all constraints. We use non-linear optimization. It provides for simple single plane
calibration, using coplanar sample points.

1.1 Overview

The following axe Dr. Tumey's notes, written to himself,

which he intended to use in completing this section.Lots
of people tackled this problem.

Bearing in mind the above pitfalls...

Overall VGD approach (algorithm).

MOREEEEEEEEEEE ........

This memo is divided into four major sections. Section 1.1 describes the VGD system

requirements imposed on the VGD camera system in order to provide accurate 3D metrology of

arbitrary objects. Section 1.2 outlines the general camera calibration problem and the

mathematical formulation we have adopted. Section 1.3 summaries the pitfalls of previous

approaches, the lessons on which we build the basis of our approach. Section 1.4 describes the
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three new methods that we have implemented (is implementing?). Preliminary result with

synthetic data are included (?). Section 1.5 discusses the related problem of viewpoint

determination necessary for correlating the data from multiple arbitrary views. Section 1.6

provides a list of the cited references.

1.2 KMS Solution

MOREEEEEEEEEEE ........

The following are Dr. Tumey's notes, written to himself,

which he intended to use in completing this section.Lots

of people tackled this problem.

Describe VGD setup with lines and user-assisted correspondence�line fitting�edge detection. The

overall strategy for camera calibration is to non-linearly optimize all the extrinsic arm intrinsic

parameters of each individual camera.

Calibrate camera_l, calibrate camera_2, calibrate stereo baseline, calibrate projector (PHASOR

Cam), related to viewpoints determination later; fhst two are monocular camera calibration (does

not have to be coplanar data points)

Once the cameras (and projection grating) are calibrated as such, stereopsis is used to ,:letermine

the base line of the VGD camera system. (Note cameras must be linearized as well. Other

details such as distance between optical and camera center.)

The steps are 1) set up camera and calibration card (describe card); 2) image card aJld extract

lines with user assistance in def'ming 2 points per line; 3) fit line to endpoints and sara, pie "line"

perpendicular to fit (better than edge detection [Carmy8?] and then line fitting -- less fi_-ting error

to consider); 4) do non-linear optimization as described below to retrieve all extlinsic and

intrinsic parameters simultaneously.

1.3 Calibration Model

Our calibration model consists of the intrinsic parameters, extrinsic parameters, camera model,

optimization scheme...

MOREEEEEEEEEEE ........

1.3.1 Intrinsic Parameters

A set of physical intrinsic parameters form our sensor (camera) model. They are the focal length

f, image frame center (C_, C,), horizontal scale factor s,, and radial lens distortion factor to. This

simplified model of an imaging system is based on the pin-hole camera model with focal length

3', while including effects from sensor sampling and lens distortion. A description of the lens

optics according to thick-lens laws instead is given in [Sha89].
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Both the image frame center and the horizontal scale factor axe side-effects of the imperfection in

a camera system's hardware timing for scanning and digitization. The horizontal scale factor s,
is actually equal to

where

f_: pixel clock frequency of the camera

y_ sampling frequency of the A/D-converter.

However, recovery of these frequencies [LET88] is impractical for most applications.
estimate for s, is

A rough

s.

where

N,,: number of sensor elements in X (scan-line) direction

N_,: number of pixels in a sampled scan-line

But [LET88] reported at least 4% difference between the above two methods. In our unified

technique, we treat s, as just another optimization parameter and recover it more accurazely.

As for lens distortion, [Bro65] showed that the radial and decentering distortion of wcrld points

(x, y) into image points (x', y') can be corrected by using the equations

x' = x + x.(K,r _ + K2r' + K3r_ + ...) + [P,(r: + 2r2) + 2P_.,y.][l + P,r: + ...]

y' = y + y,(Kp: + K/'_ + K,r • + ...) + [2P,x,y, + Pz(r _ + 2x.,:)][1 + P3r _ + ...]

where

x.= x-x,

Y.=y-y,

re= [(x- + (y-
y,, x,: coordinates of principal point
K,: coefficients of radial distortion

P,: coefficients of decentering distortion

[Bro71] pointed out that radial lens distortion is the predominant effect, and that the :angential
and asymmetric components of decentering can be ignored. Thus, lens distortion can be

approximated as a simple second-order effect in terms of r. [Tsa87] parameterized 1his as the

radial alignment constraint (RAC) involving only one coefficient pc.

1.3.2 Extrinsic Parameters

The extrinsic parameters define the location determination problem, ie. determining the

transformation of each point from the world coordinate frame to the image frame given known
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intrinsic parameters. They are the six orientation parameters between the optical origin and the

world origin. The rotation parameters can be represented in various ways, inclading: an

orthonormal rotation matrix R of nine elements, three Euler angles (0, ¢, _'), or a quartemion q.
The translation parameters are represented as a vector T.

We elected to use the quartemion representation q for rotations. It is easier to enforce the unit

magnitude of vector q than the orthonormality of matrix R. Moreover, the rotation sirgularities

are located far apart at the dipoles of quarternion space, rather than being hunched together in

Euler angle space clusters. A quarternion defines the direction co and the magnitude 0 of a
desired rotation.

q = cos(O�2) + sin(O/2)to

This formula is used to construct the corresponding quartemion for an Euler angles triplet, where

can be the inidividual unit vectors at the world origin or the optical center, q is _ complex

number with three imaginary parts, composed of a unit vector to and the reals a, 0, V, 6

q = a + 0¢a, + yea,+ 6¢0,

Its conjugate q" is

and its magnitude is

Iql=a:+fl 2+ y_+ 6:

The usual properties of real and complex numbers are preserved with quartemions except for

commutativity of multiplication [Hot87]. Suppose we let

n: = n_ = n: = --I

rl_y--n, , nyr/,-r/, , r//'_,= r/y

n_n.----n, , n,ny --- ---n. , r/_.=--ny

Then if

P = Po + PP, + Pp, + PP,

q = qo + qP, + qpy + qP,

r = ro + r_, + ryny + rp,

we get the quartemion vector product

rq = (roqo- r,q,- ryq,- r,q,)+ n.(roq,+ r,qo+ ryq,- r,q,)

+ n,(roq,- r,q,+ r,qo + r,q,)+ n,(roq,+ r.q,- r,q,+ r,qo)

We note that
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rq ,J qr

The quartemion for a 3D point (p,, p_, p,) is constructed as

p = 0 + p,n, + pyny + p,n,

where (n,, n,, n,) are the unit vectors along the xyz axes, respectively. The application of a
rotation q to point p is then

Note that -q gives the same rotation

p' = qpq"

qpq" = -qp--q.

Moreover, the common rotation matrix R that takes p into p'

(p ',py', p ')r = R (p.,p,, z)r

can be expressed in terms of unit quartemion q

qo2 + q/ - q: - q/

R = 2(q,q, + qoq,)

2( q,q, - qoq,)

2(q,q, - qoq,)

qo: - q/ + q/ - q/

2(q,q_ + qoq,)

2(q,q, + qoq,)

2(qyq, - qoq,)

q/- q/- q_ + q/

[Hor87] proposed two constructions of the unit quartemion for an infinitesimal rotation 6o.

[PEW83] derived formulae for the magnitude, dot, cross, and scalar and vector triple products in

quartemion space, that is, by considering only the imagainary parts of quartemions.

1.4 Camera Model

The basic geometry of the camera model is shown in Fig. 2. The imaging process is sabdivided
into four steps [Tsa87]:

1) Rigid body transformation from (x.,, y.,, z.,) to (x, y, z)

(x y z) r = R(x. y. z.)r + T

2) Perspective projection with pin-hole camera geometry

X.=lx/z

Y.=.fy/z

3) Radial lens distortion with second-order polynomial approximation
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x - X_ - X. ( 1 + xr')-,
Y = Y_ - Y, ( 1 + _r')-,

with

4) Digitization of real image coordinate (X, Y) to computer image (frame buffer)

coordinate (Xp Yr)

with

dz' "- sxdx

where

(x., y.,, z.): 3D coordinates of point P in 3D world corrdinate system

(x, y, z): 3D coordinates of point P in 3D camera corrdinate system

(X, Y): image coordinate system

(X, Y) or (X,,, Y,,): distorted 2D image coordinates of P

(Xp Y/): digitized 2D image (frame buffer) coordinates of (X, Y)

(X., Y.): ideal undistorted 2D image coordinates of P

(Cx, Cy): image frame center

(d., d,): distance between adjacent sensor elements in X and Y direction, respecti,,ely

(d.', d,): distance between frame buffer pixels in X and Y direction, respectively

sx: horizontal scale factor

f: focal length

pc: radial lens distortion factor

dx and d r are available from the camera and frame grabber specifications, as are No. and N_ for an

initial rough estimate of s.. We can assume zero distortion (x = 0) and unit focal length (f = 1)

at the beginning of the calibration procedure.

H-8



VGD Final Report: Section H. Quarterly Report #6:1991 VGD Progress Report

z,,

Ow

x.

Figure 2. Pin-Hole Camera Geometry with Radial Lens Distortion

1.4.1 Monocular Camera Calibration

In order to account for the lens distortion, we need a relationship between the ideal ant distorted

image planes. According to the radial alignment constraint,

_/_=_/L- _/_-x./L=o

Using the radial distortion equations in our camera model and expressing Y. in terms ,)f X_, this
becomes

rX, O + r/ / Xl) X.2- x. + x, = 0

We can solve this equation with the quadratic formula

x = (-4, ± 4(b_- 4ac)) / 2a

Moreover, using L'Hopital's Rule on the quadratic solutions, as lim pc-., 0, we have X, -- X, and

Y. = Y_ for the negative roots only. Thus, the projection of a distorted point (X_, Y,) onto the ideal

plane (X., I".) is given by the equations

X. = X,,[{ 1 - 4(1 - 4r(X2 + YI))} / 2K(X2 + YI)]

Y. = Y,,[{ I - 4(1 -4r(Xl + YI))} / 2_c(Xl + YI)]

and (X_, Y_) is recovered from (Xp Yf) using the digitization equations in our camera model
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x, = (x,- c,) / sA,
r,=O',-c,)/a,

For the correct intrinsic and extrinsic parameters, a 3D line l in the camera coordinate system

should lie on the projection plane M formed by its line image L in the ideal image plmle (X., Y.)

(Fig. 3a). In other words, the perpendicular distance I N I between I and M should be zero, where

N is the surface normal of M. Each projection ray Q passes through an ideal image point (X., Y.)
at focal length f. So we have

• Q=sU

where U is the unit vector along the direction (X., Y., f)r. The unit normal is constructed as

N, = U, x U,.,

Q) I_ I

, i

pltra, M

Y.

°.-BnqL

0

Figure 3. Projection Plane Constraint.

[LHF90] proposed to solve the location determination problem by minimizing the dot product
between d, the direction vector of l, and N (Fig. 4a) using the constraint

N.d-O

However, the pararnterization of I along its direction d generates a free-floating 3D vector that is

not anchored at the optical center of the camera coordinate system. This is undesirable since the

objective function can be minimized by merely bringing l to be parallel to M. In this case, both

vectors N and d would be perpendicular but the perpendicular distance would be non-zero.

N.d=O [., INI=0

Thus, l may not lie on M but floats above or below it instead.
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On the other hand, [Kum89] used a ray vector P going through the optical center to each 3D data

point p (Fig. 4b). Since P can only be perpendicular to N when it lies on the plane M, we have

N'P=O - INl=O

where

P=Rp,.+T

so that the constraint is then

E- _, {N,.((Rp,_ +T)/I Rp_ + TI) },

where each image line L, generates its corresponding normal N,. The denominator is used to

scale down the skewing effects of points that are farther away from the optical center, points that

erroneously tend to contribute heavily to the rotation in proportion to their larger distances from
the optical center.

lh_ t d

..... ..........i iii 
Y, :i!:ii_!iiiiiiiiii_i!i!::ii_i::i_iii:i!i!_ii:i!iii!ii.... y,

o f ug.,-Lx o xllnaL

Figure 4. (a) Constraint used by [LHF90] (left) (b) Constraint used by [Kumiq9] (right)

In our case for camera calibration, we do not initially know the intrinsic parameters. Therefore, 1

would probably be a curve instead of a line in the ideal image plane and M would inizially be a

projection surface instead of a plane in 3D space. With radial distortion, the projection rays Q,

facet the projection surface M into multiple approximating planes Mr (Fig. 5). The extrinsic

parameters basically control the rays P, and shift them around in 3D space as the searck proceeds

in the multidimensional parameter space. The intrinsic parameters can be considered as warping

the shape of M and shifting the projection rays Q, and the facet normals N, As we ge- closer to

recovering the camera model, this warped projection plane M flattens out correctly.
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Since the projection surface M is faceted by the rays Q,, we can recover the intrinsic parameters

independently using the surface normals N, of the facets M,. When M is flattened out. the

normals N, would all be parallel, irrespective of the extrinsic parameters, since they are all

anchored at the optical center. The cross product of two vectors is a measure of their parallelism

Ixt xx= I= I x, I Ix_ I sinO

Each normal N, is constructed from pairs of rays (U,, U,.,). With the associativit:, of cross

products in mind, the projection facets constraint (PFC) for the intrinsic correction is constructed
as

e,,_ -- Y_,(, s, x N,., I },

To avoid the ill-conditioning introduced by the square root function used in computing the

magnitude, we eliminate it by implementing the following equivalent objective function instead

i. i+2. y i. i+2. •

where

u,.,., = N, x N,., = (u,.,.,., , u,.,.,., , u,,.,..)

Q!

/ # Q_z

_.,,.M_, .::!::i:91i!..... 3 Q.

,L.__...I__X,
I

¢m'_, L

it X

Figure 5. Distortion Correction using the Projection Facets Constraint.

Alternately, both intrinsic and extrinsic parameters can be recovered simultaneously. A plane

PPO can be fitted to the 3D data points and the optical center (Fig. 6a). Since both :riangular

planes PPO and M meets at the optical center, their respective normals PPN and N would be

parallel only when PPO lies on M. Using the cross product measure of parallelism and

incorporating the intrinsic correction (E,,,c), the Plane-Plane (PP) constraint is construct_l as
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Ep,'- _.,, { IN, xN,., I+IN, xPPN, I 1'

where

PPN, = P, x P,._ / I P, x P,., I

Similarly to E,,e, we implemented Ep, in terms of the sum of the squared magnitude components.

For the PP and PFC constraints, we must make sure that the 3D data points p., and p.,., are

spaced sufficiently apart. Otherwise, when they are far from the camera with large z x alues, the

vectors P, and P,., may effectively be parallel and the cross product value for their surface normal
would be ill-conditioned.

Instead of considering the facets M, we can use the projection rays Q,. Q, can only be

perpendicular to PPN when it lies on the plane PPO (Fig. 6b). Using the dot product measure of
perpendicularity, the Plane-Vector constraint (PV) is constructed as

= Z, {PPN,. U, i

In the most general case, we deal directly with the individual 3D and image data points. The

Vector-Vector (W) constraint is constructed using the perpendicular distance bet,_een I and

each Q, (Fig. 6c). The line l is parameterized between points P, and P, along its direc:ion d and
its endpoint Pl.

l=rd+P t

The direction of I is

d = Pz/IP_I-P,/IP, I

We also know

Q=sU

Using vector analysis, the perpendicular distance between ! and Q is

INl=[-Pld U ]/Idx U I

However, we do not merely want to minimize the distance between arbitrary points on both line,

but the distance between the endpoints of IV,, that is, p._ and Q,. Thus, we need to minimize r and

s in order to get the correct minima for INf.

Correct above to talk about scaling for skewing effects of farther away points.

vl is ambiguous and can be any vector for t-parameterization p = vl + t v2 (ie. r or s)

MOREEEEEEEEEEE ........
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_-,,_ ....!!iiiiiiiii_N

v, ..:_::::iiii[i!}iiiilFiiiiiiiiiiiiiiiiiiiii::_Jii7:_.... s =, M

oYI_ I/_ L t x

Figure 6.

Y

I
0

(a) PP Constraint (top-left)
(bottom)

I, _L

L x

(b) PV Constraint (top-right), (c) VV Constraint

In optimizing both the intrinsic and extrinsic parameters simultaneously, it is conceivable that the

objective function can be satisfied by a feasible configuration of projection plane warping and

ray vectors transformation; but not if sufficient 3D data points are provided with a calibration

card such as the one shown in Fig. 6. The card has multiple sets of non-parallel intersecting lines

so as to properly constrain all the degrees of optimization freedom. Moreover, it eliminates the

position ambiguity of an image line I on the projection plane M.
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XXXX
XXXX
XXXX
XXXX

Figure 7. Calibration Pattern

The rotation matrix R is expressed as a function of quarternion q. In order to maintain the

orthonormality of R, the constraint that q must be an unit vector can be expressed as

Iql-l=0

[Hor88] proposed two forms of unit quartemion to iteratively ensure that q is an unit vector when

constructing R. However, R "will still tend to depart somewhat from orthonormality due to

numerical inaccuracies ... if many iterations are required." This is due to the incremental effects

on R when adjusting the rotation through applying

R'-'= Q-R.

To circumvent these problems, we use the standard Levenberg-Marquardt method for non-linear

optimization [PFT88][FIe87]. Each estimate R o is independently evaluated and the unit

quartemion constraint can be added in as an extra term in our objective function. One lmssibility

is to add the constraint in as a Lagrange-multiplier (eg. [Hor88]). To minimize p(x), subject to

the constraints u(x) = 0, this method reduces the problem to finding a stationary p¢int of the
function

p(x, ,_)"= p(x) + _,u(x)

However, this stationary point is neither a minimum or a maximum, so the typical mirdmization

techniques will not work well [DAB74].

MOREEEEEEEEEEE ........

The following are Dr. Tumey's notes, written to himself,

which he intended to use in completing this section.Lots

of people tackled this problem.

how to express unit length as a vector constraint?

Instead, we enforce the constraint with a penalty function .... or barrier function
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p(x, _ )"= p(x) + k-, u'(x) u(x)

We iterate over k until q is close to an unit vector.

0 <= k(i) <= 1 for k(i+l) -- k(i) + 0.1; or k=10,100,1000 ....

1.4.2 Stereo Camera Calibration

The stereo camera calibration problem is very similar to the monocular case. We can use the

same non-linear optimization idea to recover the relative orientation [Hor88] belween the

cameras. Alternately, since we have recovered the extrinsic parameters for each c_era, then

with some user assistance in matching corresponding landmarks in the two image frame;s, we can
simply modify the R's and T's from monocular calibration as our solution.

1.4.3 Projection Camera Calibration

(see section by PGG2) - {This section was never written }

1.4.4 Viewpoint Registration

There are two approaches to viewpoint registration. First, we can use a tracking device such as

the Polhemus 3DSPACE Tracker to monitior the position of the VGD camera system at the

multiple viewpoints. Second, as in the stereo case, a geometric solution can be generated after

some assistance by the user in solving the correspondence problem between the image frames.

1.5 Experimental Results

The following are Dr. Tumey's notes, written to himself,

which he intended to use in completing this section.Lots

of people tackled this problem.
show results

compare synthetic data with real data/

Provide analysis?

Minimum number of lines consideration. Contrast [Kumar89] and [Horn87:book] arguments.

[Tsai87] has ad hoc number of 60 sample points. Statistical considerations? Error analysis.

Measurement analysis. Derive parameters from one card, and project expected lires onto a

different card. No sub-pixel accuracy. In sythetic case, different set of data. Cali,'_rate to a

card. Different R and T, and try to recover that again. Show simulation error analysis,
accuracy, and precision. Comparison with others?
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Section I

Detailed VGD Project Plans

On the following pages, the detailed flow of the work performed on the VGD project is
schematically represented in MACproject format. Since the contract task numbers I - VI

incorporate multiple elements of the task boxes shown in the activity breakdown, following the

activity breakdown drawings are included drawings showing how the project tasks map onto the
VGD sub-task matrix.
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Section J

February 1991 Progress Review Viewgraphs

The following pages contain the viewgraphs which were presented at KMS's February showing

that a functional VGD system could be delivered to NASA given the hours remaining iJ:

a) the contract was novated to KMS Advanced Products, Inc. and

b) the projected 1991 rates did not increase further.

However, he did emphasize that certain convenience features which KMS wanted to incorporate

in the system would have to be omitted because KMS's 1991 projected rates (assuming novation

occured) indicated that there were too few hours remaining on the project.

The primary feature in which KMS would be forced to deliver less functionality than we would

like to was in the area of the user interface for VGD. Given the remaining budget, only a

command line interface could be provided. However, all proposed functionality would be
provided.

It should also be noted that as available hours decreased, the number of hour available for

documenting the system had decreased.

At the end of the January review, Dr. Gottschalk and Arnold Chiu continued to work on various
VGD tasks.

J-1



0
lm

1

.___ E
__ 0

n-__

0

!

!



0
0
0

0
0

0
0
0

0
0
t_

sJnoH

m

m

m

m

m

m

t_
I--

C:
0



0

0
I

0

0

4,d

0

0

0

G)
/



VGD Final Report: Section K. May 1991 Project Review Viewgraphs

Section K

May 1991 Project Review Viewgraphs

From January through March Dr. Gottschalk and Arnold Chiu worked feverously to try and

accomplish the required tasks within the available labor budget. However at the end of March,

KMS had suspended all work on the VGD contract because it was determined that contract funds

were overspent ff the contract was not novated from KMS Fusion to KMS Advanced Products.

The reason for this is that in order to try and shield the R&D contracts from the huge labor

overhead rates associated with closing down the DOE contract (in excess of several thousand

percent), the R&D staff working on the VGD project had been transferred from KMS Fusion,

Inc. to KMS Advanced Products, Inc. As a consequence, if the contract stayed in KMS Fusion,
Inc. an additional intercompany G&A cross charge would have to be applied.

Shortly thereafter the suspension of work on VGD, Arnold Chiu ten, ninated his employment with
KMS on one day's notice. There was no time to transfer his work to Dr. Gottschalk.

In May, KMS held a project status review for VGD. The following pages contain the

viewgraphs presented by Dr. Gottschalk at that status review. Please note that the project

activity charts he presented show that by mid-May nearly all project tasks have been completed

with the notible exceptions of integrating the software components into the f'mal system and of

documenting what had been done. At this point, Dr. Gottschalk was the only person
knowledgeable as to the status of the project and what needed to be done.
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Section L
Delivered VGD Hardware

The hardware delivered with VGD includes:

2

Color VAXstation 3520 with 16 mbytes of memory, keyboard, mouse,
manuals, cables, etc.

Assorted cables and power cords

Expansion cabinet with cables.

Analogic/CDA Array Processor

SURPHACE camera assembly including

2 miniature cameras and power supplies

1 illumination system
1 illumination slides

Data translation digitizer boards
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Section M
Delivered VGD Software

The software developed on the VGD contract is on the directory DKA0:[VGD] on the VGD

system. To access this software, the system manager for the system should log into t le system

account (SYSTEM) with the password VGDSYS. The system password should then be changed

as required by site security policy.

The system is delivered with the following software licenses and distribution media.

VAX/VMS Operating System V5.4-2 License

(VMS V5.4-2 VMSU2054, LATU2054 on TK50)

DVNETEND License for a VAXstation 3540

PHIGS Runtime License for a VAXstation 3540

VAXcluster License for a VAXstation 3540

DW-Motiv License for a VAXstation 3540

CDA Array processor software and library

(MicroMSP Driver and Libraries V3.1 on TK50)

(MicroMSP manual supplied)

Data Translation digitizer software driver

(SP00231 VI.02 DT-IRIS tape on TK50)

(Manual supplied)

The VGD software is on directory DKA0:[VGD]. Please note that the filc;s on the

[.MAC_FILES] directory structure are in Pacer_Link directory structure format _,hich we

believe to be compatible with the format used by either PacerShare, Alisa/Macintosh S/W, or

DEC's Pathworks.

The f'des contained on this directory structure include:

Directory DKA0 : [VGD]

CHIU.DIR;I GOTTSCHALK.DIR;1 MAC FILES.DIR;I

Total of 3 files.

Directory DKA0:[VGD.CHIU]

CALIB.DIR;I HEAD.DIR;I TEAPOT.DIR;1

Total of 3 files.

Directory DKA0: [VGD.CHIU.CALIB]

CALIB.C;31

CALIB.OBJ;39

DNLSI.DOC;I

DUM.LIS;12

CALIB.C;30

CALIB1.C;2

DNLS1.FOR;2

MACH.FOR;I

CALIB.EXE;39

CLINK.COM;I

DNLSI.OBJ;I

MACH.OBJ;1

CALIB.JOU;I

CMAKE.COM;2

DUM.LIS;13

TESTDNLSl.=;11
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TESTDNLS1.OBJ;I XE RROR. C; 2 XERROR.OBJ;1

Total of 19 files.

Directory DKA0: [VGD.CHIU.HEAD]

DSP.C;5 DSP.EXE;2 DSP.OBJ;3

PIC.DAT;I README.;I

MESH.DAT;I

Total of 6 files.

Directory DKA0: [VGD.CHIU.TEAPOT]

BLEND .C; 1 BLEND_VECTOR. C; 1

COMPUTE_VIEW. OBJ; 1 CURVE . C; 1

DISPLAY_CURVE. OBJ; 1

DISPLAY_PATCH . C; 1 DISPLAY_PATCH. OBJ; 1 DUM.LIS; 1

INIT.C; 2 INIT.C; 1 INIT.OBJ; 1

MAKEFILE ._ ; 2 PATCH .C; 1 PATCH .DAT; 2

ROTATE_3 .C; 1 ROTATE_3 .OBJ; 1 SIM STER. H; 1

SIM_STEREO. C ; 1 SIM_STEREO .EXE; 2 SIM STEREO. H; 1

SIM_STEREO_GLOB. H; 1 SIM STEREO PROTO.H; 1

S_ERROR. C; 1 S_ERROR. OBJ; 1 TEAPOT. DAT; 1

TRANSLATE 3.C;I TRANSLATE 3.OBJ;I TRANS 3.C;I

VERTEX.DAT;I VIEW.C;1 -- VP TRANS.C;I
q

VP_TRANSFORM. OBJ; 1

BLEND_VECTOR .OBJ; 1 COMPUTE_VI EW. C ; 1

DISPLAY CURVE . C ; 1

GLOBAL.H;1

MAKEFILE.MM8;3

PATCH.DAT;I

SIM STEREO.C;2

SIM_STEREO.OBJ;2

SURFACE.DAr;I

TEAPOT.EXE;I

VERTEX.DAT;2

VP_TRANSFOSM.C;1

Total of 44 files.

Directory DKA0:[VGD.GOTTSCHALK]

ACQUIRE.DIR;1

PHASE.DIR;I

RANGEDATA.DIR;I

SINESLIDE.DIR;I

CALIBRATION.DIR;I

QIFIGS.DIR;1

KAWPHASE.DIR;I

SLIDEDATA.DIR;I

DT.DIR;I LINES.DIR;I

QUICKIES.DIR;I QUICKRANGE.DIR;I

REPORT_GRAPHICS.DIR;I

Total of 13 files.

Directory DKA0:[VGD.GOTTSCHALK.ACQUIRE]

ACQD I S P LAY IMAGE . C ; 4 AC

ACQDOACQUIRECO_4WAND .OBJ; 1 2

ACQDOACQUI RECOMMAND .OBJ; 1 1

ACQDOCENTERCOHMAND .OBJ; 4

ACQDONUMBERTOAVERAGECOMMAND .C; 8

ACQDONUMBERTOAVERAGECO_24AND .OBJ; 2

ACQDOSAVECOMMAND .OBJ; 6

ACQDOSETFRAMEGRABBERCOF_MAND . C; 3

ACQDOS ETFRAMEGRABBERCOMMAND . OB

ACQDOSWCCOM_LKND .OBJ; 3

ACQDOSWCCOMMAND . OBJ; 2

ACQDOSWSCC_24AND .OBJ; 3

ACQDOSWSCO_4AND .OBJ; 2

ACQE RROR . OB J ; 1

ACQHANDLECOF24AND . OBJ; 3

QD OAC QU I RE COMMAND . C ; 2 4

ACQDOCENTERCO_aMA/_D.C;3

ACQDOCENTERCO_I_%/_D.OBJ;3

ACQDONUMBERTOAVERAGECOMMAND.OB3;3

ACQDOSAVECO_4AND.C;17

ACQDOSAVECOF_4AND.OBJ;5

ACQDOSETFRAMEGRABBERCO_4AND.OBJ;5

J; 4 ACQDOSWCCOMMAND. C; 8

ACQDOSWSCOMMAND . C ; 8

ACQERROR .C ; 2 ACQERROR .OSJ; 2

ACQ HAND LE COMMAND . C ; 9
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ACQHANDLECO_MAND.OBJ;2 ACQUIRE.C;22 ACQUIRE.EXZ;3

ACQUIRE.EXE;2 ACQUIRE.OBJ;5 ACQUIRE.OBJ;4 ACQUIRE.OPr;11

ACQUIRE_PROTOS.H;18 ACQUIRE_PROTOS.H;17 ACQUPDATEPADSIZE.C;10

ACQUPDATEPADSIZE.OBJ;3 ACQUPDATEPADSIZE.OBJ;2

DO.COM;5 MAKEFILE.;55 TAPE.TIFF;I

Total of 42 files.

Directory DKA0:[VGD.GOTTSCHALK.CALIBRATION]

GEO.DIR;I PHOTO.DIR;1

Total of 2 files.

Directory DKA0:[VGD.GOTTSCHALK.CALIBRATION.GEO]

GEO.EXE;ll

LSE_ERROR.LOG;I

GEO.H;47 GEO.OPT;13 GEOTEST.DIS;I

Total of 5 files.

Directory DKA0:[VGD.GOTTSCHALK.CALIBRATION.GEO.GEOTEST]

ALL.FREE;2 ALL.FREE;I C0.CARD;2 CAL0.CAM;I

CALl.CAM;3 CALI.CAM;2 CALl.CAM;1 F0.FREE;11

HEXAGON.CARD;1 HEXAGON.TIFF;I I0.CAM;21 I0.CAM;20

I0.CAM;19 I0.CAM;18 I0.CAM;17 LINES.TIFF;1

LINESA.TIFF;I LINESC.TIFF;1 LS0.LSP;8 M0.CAM;82

M0.CAM;81 M0.CAM;80 M0.CAM;79 M0.CAM;78

M0.CAM;77 M0.CAM;76 M0.CAM;75 M0.CAM;74

M0.CAM;73 M0.CAM;72 M0.CAM;71 O0.OPR;26

ORIENT.FREE;I ROT.FREE;2 ROT.FREE;1 S0.CAM;9

SYNTH.CAM;13 TR.FREE;I

Total of 38 files.

Directory DKA0:[VGD.GOTTSCHALK.CALIBRATION.PHOTO]

B0.TIFF;1 BORDER.TIFF;I C0.TIFF;I D0.TIFF;1

E0.TIFF;I F0.TIFF;I H0.TIFF;1 I0.TIFF;I

J0.TIFF;I K0.TIFF;I L0.TIFF;1 M0.TIFF;1

Total of 12 files.

Directory DKA0:[VGD.GOTTSCHALK.DT]

DT.H;16

DTGRABIMAGE.OBJ;7

DTLIVEVIDEO.OBJ;2

DTERRORDETECT.C;I

DTINITIALIZE.C;28

MAKEFILE.;7

DTERRORDETECT.OBJ;I DTGRABIMAGZ.C;34

DTINITIALIZE.OBJ;I DTLIVEVIDED.C;6

Total of I0 files.

Directory DKA0:[VGD.GOTTSCHALK.LINES]

LINES.C;50 LINES.C;49 LINES.EXE;2 LINES.OBJ;29
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LINES.OPT;31 MAKEFILE.;23

Total of 6 files.

Directory DKA0:[VGD.GOTTSCHALK.PHASE]

P0.PHPARAMS;40 PH.H;22 PH.OPT;11

Total of 3 files.

Directory DKA0:[VGD.GOTTSCHALK.QIFIGS]

AMB I G ELL I P S E

SPHERE W VECTORS.PSP;3
q --

STORS PROP II 2.DRW;I

STORS PROP II 4.DRW;I

STORS PROP II 6.DRW;I

. D RW ; 1 BLOCK_W_VECTORS . r S P : 2

STORS PROP II 3.DRW;I

STORS_PROP II 5.DRW;I

VOLKSWAGON.PS;I

Total of 9 files.

Directory DKA0:[VGD.GOTTSCHALK.QUICKIES]

CREATE_AND_WRITE IMAGE . FOR; 28 CREATE_AND_WRITE_IMAGE .OBJ; 1

IMAGE_PROTO . H; 8 MAKEFILE . ; 5 READ IMAGEFILE . C ; 4

READIMAGEFILE. OBJ; 1

SUBIMG .C; 11 SUBIM_. DIA; 4 SUBIMG . EXE ; 8 SUBIMG .JNL; 1

SUBIMG .OBJ; 2 WRITEIMAGEFILE .C; 21 WRITEIMAGEFILE .OBJ; 1

Total of 13 files.

Directory DKA0:[VGD.GOTTSCHALK.QUICKRANGE]

CAL.CAM;I CAL.PROJ;II

QR.EXE;27 QR.H;10

QRREADPROJECTORPARAMETERS.C;II

QRREADSHORTIMAGE.C;5

QRWRITEDELTAGRAPH.C;2

QRWRITESWIVELPOLYMESH.C;23

TMP.C;1

MAKEFILE.;8 QR.C;46

QR.OBJ;27 QR.OPT;6

QRREADPROJECTORPARAMETERS.OBJ;I1

QRREADSHORTIMAGE.OBJ;6

QRWRITEDELTAGRAPH.OBJ;5

QRWRITESWIVELPOLYMESH.OBJ;21

Total of 17 files.

Directory DKA0:[VGD.GOTTSCHALK.RANGEDATA]

R0.DIR;I RI.DIR;I

Total of 2 files.

Directory DKA0:[VGD.GOTTSCHALK.KANGEDATA.R0]

A.CAM;I A.IMG;I A.PROJ;I A.TRUE;I

AVIEW.TIFF;1 A 000.TIFF;1 A_090.TIFF;1 A 180.TIFF;1

Total of 8 files.
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Directory DKA0:[VGD.GOTTSCHALK.KANGEDATA.RI]

A.TIFF;I COH_000.TIFF;I

COL_000.TIFF;1 COL 090.TIFF;1

CIH 090.TIFF;1 CIH 180.TIFF;1

CIL 180.TIFF;1 CAL.CAM;1

COKEOH 090.TIFF;1 COKEOH_180.TIFF;1

COKEOL 180.TIFF;1 P0.PHPARAMS;41

COH_090.TIFF;1 C0H 180.TIFF;1

COL_180.TIFF;1 CIH 000.TIFF;I

CIL 000.TIFF;1 CIL 090.TIFF;1

CAL.PROJ;16 COKEOH 000.TIFF;1

COKEOL 000.TIFF;1 COKEOL 090.TIFF;1

Total of 22 files.

Directory DKA0:[VGD.GOTTSCHALK.RAWPHASE]

MAKEFILE.;17 PS000.PSDAT;1

PSIMAGES TO RAWPHASE.C;1

RAWPHASE_$COMPUTE_PHASE.OBJ;14

SYNTH_RAWPHASE.DIR;1

PS090.PSDAT;1 PS180.PSDA?;I

RAWPHASE $COMPUTE PHASE.C;20

RAWPHASE SPROTOS.H;2

TESTRAWPHASE.DIR;I

Total of 10 files.

Directory DKA0:[VGD.GOTTSCHALK.RAWPHASE.SYNTH_KAWPHASE]

I.SYNTHDAT;9 MAKEFILE.;53

SYNTH RAWPHASE $MAIN.EXE;2

SYNTH RAWPHASE $PROTOS.H;I

SYNTH_RAWPHASE_$READ_INPUT_DATA.OBJ;2

SYNTH_RAWPHASE_$WRITE_DATA.OBJ;6

SYNTH_RAWPHASE_$MAIN.C;8

SYNTHRAWPHASE_$MAIN.OBJ;2

SYNTH RAWPHASE SREAD INPUT DAT_.C;7

SYNTH KAWPHASE SWRITE DATA.C;11

Total of 10 files.

Directory DKA0:[VGD.GOTTSCHALK.RAWPHASE.TESTRAWPHASE]

B000. PSDAT; 1 B090.PSDAT; 1 BI80.PSDAT; 1 FC. FCDAT; 3

IDL.PS; 6 IDL.PS; 5 IDL.PS; 4 MAKEFILE . ;

PS000. PSDAT; 2 PS090. PSDAT; 2 PS180.PSDAT; 2 R.RDAT; 2

TESTRAWPHASE . EXE; 25 TESTRAWPHASE_$COMPUTE_PHASE .,)Bj; 11

TESTRAWPHASE_$MAIN .OBJ; 7

TESTRAWPHASE_$PROTOS .H; 4 TESTRAWPHASE_$READ_DATA .OBJ; 1

TESTRAWPHASE_$READ_FCOEFFS .OBJ; 1 TESTRAWPHASE_$WRITE_PHASE_DATA .OBJ; 1

Total of 19 files.

Directory DKA0:[VGD.GOTTSCHALK.REPORT_GKAPHICS]

REALVIEW CONFIG.DRW;3

VGD SURPH.DRW;4 VGD SURPH.DRW;3

REALVIEW CONFIG.DRW;2

VGD_SURPH.DRW;2 VGD SURPH.DRW;I

Total of 6 files.

Directory DKA0:[VGD.GOTTSCHALK.SINESLIDE]

KAMP.DIR;I

TRAPIXRAMP.MI4S;3

TRAPIXINIT.C;2

TRAPIXSINE.C;30

TKAPIXINIT.MMS;3

TRAPIXSINE.MMS;7

TRAPIXRAMP.C;13

Total of 7 files.
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I

Directory DKA0:[VGD.GOTTSCHALK.SINESLIDE.RAMP]

MAKEFILE.;6 RAMP.C;9 RAMP.EXE;2

Total of 4 files.

RAMP.OBJ;7

Directory DKA0:[VGD.GOTTSCHALK.SLIDEDATA]

MATRIX.DIR;I SINEPATTERNS.DIR;I

Total of 2 files.

Directory DKA0:[VGD.GOTTSCHALK.SLIDEDATA.MATRIX]

C13_100_60_I.HDR;1

C13 100 60 3.HDR;1

C13 50 60 2.HDR;1

C3_100 60 1.HDR;1

C3_100 60_3.H DR;1

C3 50 60 2.HDR;I

C7 100 60 1.HDR;1

C7 50 60 1.HDR;1

C7 50 60 3.HDR;1

IDL.PS;2

C13_100 60 1.IMG;1

C13_100 60 3.IMG;1

C13 50 60 2.IMG;1

C3_100 60 1.IMG;1

C3_100 60 3.IMG;1

C3 50 60 2.IMG;1

C7_100 60_I.IMG;1

C7 50 60 1.IMG;1

C7 50 60 3.IMG;1

IDL.PS;I

CI3_I00_60_2.HDR;I

C13 50 60 I.HDR;I

C13 50 60 3.HDR;I

C3 I00 60 2.HDR;I

C3 50 60 1.HDR;1

C3 50 60 3.HDR;1

C7 100 60 2.HDR;1

C7 50 60 2.HDR;1

CS.DAT;1

SINGLELINE.FRM;I

C13 100 60 2.IMG;1

C13 50 60 I.IMG;I

C13 50 60 3.IMG;1

C3_100 60_2.IMG;1

C3 50 60 1.IMG;1

C3 50 60 3.IMG;1

C7 100 60 2.IMG;1

C7 50 60 2.IMG;1

IDL.PS;3

Total of 39 files.

Directory DKA0:[VGD.GOTTSCHALK.SLIDEDATA.SINEPATTERNS]

HIGH0001.HDR;3

LOW0001.IMG;3

SPHIGH.FRM;I

HIGH0001.IMG;3

MED0001.HDR;3

SPLOW.FRM;I

IDL.PS;10

MED0001.IMG;3

SPMED.FRM;1

LOW0001 .HDR; 3

SP. FRM; 1

Total of ii files.

Directory DKA0:[VGD.MAC_FILES]

ACQUIRESURFACES .; 1 ACQUIRESURFACES .LOG; 1 AFP_RESOURZE .DIR; 1

CAMERACALIBRATION. ; 1 CAMERACALIBRATION. LOG; 1

FABRICATECALIBRATE . ; 1 SURFACEME RGE . ; 1
SURVEYLITERATURE . ;1

VGD .; 1 VGD .1 ;1 VGD .2 ; 1 VGD. LOG; 1

VGDHARDDATES . ; 1 VGDPLAN . ; 1 VGDPROJI:CT . ; 1
VIEWPOINTDETERMINATION. ; 1

Total of 16 files.

Directory DKA0:[VGD.MAC_FILES.AFP_RESOURCE]

ACQUIRESURFACES.;I ACQUIRESURFACES.LOG;1 AFP_INFOFILE.DIR;1

CAMERACALIBRATION.;I CAMERACALIBRATION.LOG;I

FABRICATECALIBRATE.;I FILEBACK.AFP;I FILEINFO.AFP;1

SURFACEMERGE.;I SURVEYLITERATURE.;1 VGD.;1 VGD.1;1

VGD.2;I VGD.LOG;1 VGDHARDDATES.;I VGDPLAN.;I
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VGDPROJECT.;1 VIEWPOINTDETERMINATION.;I

Total of 18 files.

Directory DKA0:[VGD.MAC_FILES.AFP_RESOURCE.AFP INFOFILE]

ACQU I RE SURFACE S ; 1 ACQU I RE SURFACES . i OG ;
CAMERACALIBRATION. ; 1

CAMERACALIBKATION . LOG; 1 FABRICATECALIBRATE . ; 1

SURFACEMERGE . ; 1 SURVEYLITERATURE . ; 1 VGD . ; 1 VGD . 1 ; 1

VGD . 2 ; 1 VGD . LOG; 1 VGDHARDDATES . ; 1 VGDPLAN . ; 1

VGDPROJECT . ; 1 VIEWPOINTDETERMINATION. ; 1

Total of 15 files.

Grand total of 33 directories, 438 files.
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Appendix A
Literature Review

The literature survey originally included in the first quarterly report is included on the following
pages for completeness.



Appendix A

Review of 3-d Object Recognition Techniques

Work on 3-d object recognition was launched by the seminal work of Roberts

[Rob64]. Earlier work on object recognition dealt primarily with the recognition

of 2-d patterns in images. Unfortunately, 2-d object recognition problem is

fundamentally different from that of 3--d object recognition, consequently many

approaches that work well for 2-d cannot be extended to 3-d. Roberts' work

addressed many of the key issues involved with 3-d recognition and, for a first

attempt, was remarkably complete, h.wiU be enlightening to examine Roberts'

work in some detail later in this review. For now, we note that his method uses

a combination of viewpoint-invariant qualitative topological relations between

features and quantitative, viewpoint-dependent interfeature relations to select

possible models and determine their spatial pose relative to the viewer. It was

recognized that one of the weaknesses of Roberts' algorithm was the low-level

feature extraction and grouping modules. Reasoning that the state-of-the-art

in the low-level aspects of vision would eventually catch up, studies of the

higher-level aspects of the recognition process were undertaken in simplified

artificial domains. Such domains, often referred to as blocks world domains

[Guz69, Huf71, Wa172, Tur74, Kan78] are usually restrictive about the types of

objects that are allowed. A common example is polyhedra.

In synthetic, blocks world-like domains, features and their relationships are

assumed to be known precisely, circumventing the difficulties that Roberts en-

countered with his low-level modules. Thus freed from the difficulties of noisy

and error-prone low-level data, researchers in blocks world-like domains found

that topological constraints, which are more viewpoint invariant than most other

image relationships,can be used to perform many ima_ analysistasks,includ-

ing objectrecognition.Unfortunately,the state-of-the-artinthe low levelaspects

of visionhas never achieved the low errorratesthatwould allow thesemethods

to be used with realdata.

While part of Robert's work was carriedto unfruitfulends, the restof

Robert's work containsmany of the essentialcomponents of a contemporary



3-d object recognition algorithm. It is interesting to speculate what the current

state-of-the-art might be had the lead provided by Robert's been foUowed more
fully.

1 Classification of Object Recognition Methods

As there arc so many approaches to recognition, it is difficult to find any single
taxonomy that fits all of them well. Perhaps the broadest distinction between

methods is based on the relationship beween the sensed data and the object

models. Later in this section, how this relationship influences the design of an
object recognition algorithm will be discussed.

Recognition systems may also be characterized by the nature of their com-

monly held attributes. In particular, in this section, systems will be compared

based on the nature of their features, their object models, and, most importandy,
their matching methods.

1.1 The Relationship Between Object Models and Sensed Data

Object recognition algorithms are most obviously divided into two general cat-

egories based on the relationship of the sensed data to the models in the recog-

nition system's vocabulary. One class consists of matched dimension domain

(MDD) algorithms 1. Such algorithms assume that the scene geometry can be

sensed so that geometrical relations in the scene are isomorphic to geometric

relations in the models. MDD algorithms include methods for recognizing 2-d

objects from intensity images as well as methods for reconizing 3-d objects from

range images. In both cases, the geometry of the sensed scene can be directly

compared to the geometry of the models in the system's vocabulary. The other

class of methods, which we will call general domain (GD) methods, consist of

systems that assume that the sensors do not give explicit geometric information

about the geometry of the scene. This class includes intensity-based 3-d object
recognition.

Most object recognition methods in the literature am of the MDD variety.

This is probably due to the fact that solving MDD recognition is simpler than

solving GD recognition. In a matched dimension domain, relative geometrical

tThis terminology was introduced in [Hut88].

2



relationshipsexistingbetweenpartsof the models are preserved in the sensed

data, to within noise and visibility constraints, regardless of the viewpoint and

pose of the object in the scene. By contrast, accomplishing recognition in general

domains is more difficult since the geometry of the scene is not directly available

from the image, and must be deduced indirectly.

MDD methods fall into two categories: those that are extensible to general

domain recognition and those that are not. Our focus is on the solution of the

object recognition from intensity images, which is a case of a general domain

problem. Thus, we will concentrate on those methods that contribute to un-

derstanding or solving such problems. We will briefly examine the techniques

that are not extensible to the general domain, primarily to gain understanding of
what makes them inextensible.

1.2 Anatomy of Machine Recognition

Object recognition algorithms may be classified according to the particular nature

of their commonly held attributes. In particular, recognition algorithms can be

compared by the nature of their:

• models: how objects are represented to facilitate recognition.

• features: how the sensor data is transformed and grouped into represen-

tations that facilitate recognition.

• matching: how the space of scene instances is searched for explanations
of the sensor data.

We will be most concerned with comparing recognition algorithms on the basis of

matching, since this is one of the primary issues in the design of a 3-d recognition

algorithm. However, the features and models that algorithms use often strongly

influences the matching strategy. Therefore, issues associated with modeling

and feature selection relevent to matching will be discussed where appropriate.

2 Previous Work in Object Recognition

Much of the remainder of this review examines and classifies previous work:

on object recognition. In many cases, classification is not obvious since many



object recognition methods combine elements of multiple matching strategies.

In addition, there are far too many algorithms in the literature to discuss each

of them in full detail here. In order to do a broad survey yet benefit from

the insights resulting from detailed inspection of previous work, we will: first

define several archetypical matching methods, then discuss one or two examples

of each archetype in detail, and, lasdy, briefly discuss other, similar, methods.

Approaches that have elements of more than one archetype will be discussed
where they fit best.

GD object recognition algorithms (i.e., not MDD algorithms) must march

the space of scene instances. MDD recognition methods, on the other hand,

exploiting the isomorphism between the sensor data and the models, need not

search this space. Instead, they may search the space of image=feature to model=

feature correspondences, looking for consistent sets of features among the model-

features and the image-features. GD recognition approaches usually employ one

of the following six archetypical matching paradigms:

• transformation clustering

• hypothesize and verify

• predict-observe-backproject

• backprojection

• global feature-based

• optimization-based

MDD approaches are a more varied lot. Many of them fall into the above

catgories, but many do not. Those that do will be mentioned in the appropriate

section. Those that do not will be collected under the heading "Miscellaneous".

2.1 Transformation Clustering and Hough Methods

The viewpoint consistency constraint implies that all the visible features on a

rigid object must be consistent with projection from a single viewpoint. Clus-

tering methods were among the first to employ the constraint, athough Lowe
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[Low87b] is responsiblefor its recentappelation.The way that clustering meth-

ods use this constraint is by computing the object's feasible viewing transfor-

mations and then attempting to locate any clusters in viewing parameter space

among the feasible transformations. Feasible transformations are typically com-

puted by forming a set of correspondences between enough image-features and

3-d model-features to yield solution for a unique (or almost unique) set of view-

ing parameters that consistently projects the 3-d features onto the corresponding

image features. Thus, most clustering methods employ object-attached features.

Once the feasible sets of viewing parameters have been calculated, objects are

recognized by locating clusters of feasible viewing parameters. In such systems,

clusters are powerful evidence for the existence of an object in a scene since a

cluster indicates transformation that maps many 3-d model features near to im-

age features. The probability of such an event occurring accidentally, especially
for large clusters, is small.

Once possible clusters have been identified, recognition is usually based on

the properties of the clusters. Typically, the largest or largest few clusters an=

accepted, or the cluster size is required to be larger than some threshold cluster
size.

In a clustering system, computation of feasible sets of viewing parameters

is usually the least difficult part of the algorithm. Many possible solutions

exist, differing in such details as the number of correspondences necessary to

determine the viewing parameters, the number of degrees of freedom allowed

in the transformation, and the nature of the features. For example, in the case

of weak perspective, where them am six degrees of freedom, [Hut88] gives

a solution using three pairs of simple points, whereas a single pair of more

complex features called vertex pairs suffices [TM87].

The most problematic aspect of recognition using clustering is the location of

significant clusters of feasible sets of viewing parameters in a high-dimensional

parameter space. Often, the statistical properties of the distribution of the feasible

viewing parameters is difficult or impossible to determine, precluding the use

of well-understood probabilistic methods. In such cases, various non-probalistic

techniques are used. These include variations of the k-means method, projection

onto lower dimensional subspaccs, and the Hough transform.

The k-means method is a simple iterative strategy for finding clusters in an

n-dimensional vector space. The assumption is made a priori that there are

exactly k clusters, which is a weakness. The n-d input vectors are divided into

k groups, and prototypical values for each of the k classes is computed, often
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thecentroid of the vectorsin the class. The vectors arc then rcdisuibuted to

the class whose prototype is nearest, according to some distance metric. This

process is iterated until changes in the prototypes are no longer significant.

One of the problems with this approach is that a distance metric must be

defined in the parameter space, which often consists of mixtures of rotational

and translationalparameters. Additionally,proximity in the parameter space

may or may not imply similarityin projectedshape.

Another method for findingclustersin high dimensional spaces operatesby

projectingthe feasiblepointsonto lower dimensional subspaces,and searching

for clustersthere.This isadvantageous since findingclustersin lower dimen-

sionalspaces iseasierthan findingthem in higherdimensional ones. However,

the clustersin lower dimensional spacescould resultfrom the accidentalcoinci-

dence of pointsalong thedimensions of theprojection,and thereforethe validity
of such clustersshould be verified.

The finalgeneric clusteringtechnique that we willdiscuss is the Hou&h

transform.The idea ofthe Hough transformisto quantizethe parameter space

intouniform bucketsand count the number of feasibleparameter vectorsineach

bucket. Each bucket willtend tocontainsimilarviewing transformations.Buck-

cts with largeoccupancies willcorrespond to clusters,which, in turn,indicate

likelyinstancesof an objectin the image.

There are a number of problems with Hough based methods. This isevidcm

from the analysisin [Hutg8]. When the number of "good" featuresis large

compared to the number of "bad" features,i.e.,featuresnot resultingfrom an

instanceof an object in the image, then Hough methods work well. This is

because the peaks in the arrayof bins iseasilylocate,d: they are not submerged

in a ocean of bad transformations.Unfortunately,in complex images, most

of the featuresdo not correspond to instancesof the objectsbeing sought. In

thiscase, the probabilityof largefalsepeaks in the bin army is large,and it

becomes difficultto distinguishthem from truepeaks. One way to combat this

problem is to reduce the number of featuresby making them more complex.

Since the featuresam more complex, thereare fewer of them, helping toreduce

thenumber of falsepeaks. Unfortunately,italsoreduces the number of feantres

on the model thatcan conu"ibuteto a truepeak in the bin array. In addition,

since complex featurestend to be less spatiallylocalized,the chance thata

featuremay be occluded isincreased.Further,thesizeof the bin arraybecomes

astronomicalwhen the dimension of the parameter space ismore than four or

so. In such cases,projectionto lower dimensions becomes a necessity,which
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Spine

Figure I: A vertex pair feature. AB is the spine, with A as the base vertex and

B as the auxiliary vertex.

further aggravates the problem of random peaks.

Thompson and Mundy [TM87] provide a good example of using Hough

clustering to recognize 3-d polygonal objects in intensity images. Features con-

sist of "vertex-pairs", shown in Fig. I, which come in 2-d and 3-d varieties. The

2-d variety is confined to a plane. Both kinds consist of a "spine" which joins

two vertex points. One of the vertices is defined to be a "base vertex" which has

two other edges incident on it, in addition to the spine. The other "vertex" is the

point at the other end of the spine. In 3-d, the vertices consist of the vertices of

a 3-d polygonal model. The 3-d vertices project to 2-d vertices, and, as shown

in Fig. I, the 2-d vertex pair is characterized by the angles al and a2 between

the spine and the edges incident on the base vertex, as well as the spine vector.

How such vertex pairs arc segmented from the image is not discussed.

For a given 3-d vertex pair, them is a unique weak perspective transformation

that projects the 3-d vertex pair to a given 2-d vertex pair. Thompson and Mundy

compute this projective transformation using the quaternion technique of [FH$3]

which allows an algebraic solution. However, to speed the computation of the

transformation, the computation is split into in-plane translations and rotations,

and out-of-plane rotations. For each 3-d vertex pair in the model polyhedron,

the authors compute a table of the out-of-plane rotation parameters versus [he

values of the angles in an observed 2-d vertex pair, al and a2. There is no



entry if the 3-d vertex pair is not visible. The set of tables for all possible 3-d

vertex pairs comprises the model of each object. Thus, when a 2-d vertex pair is

detected in the image, possible out-of-plane rotation pararnet_rs can be quick.ly

computed. The remaining in-plane rotation, translation, and scale parame_rs

can be easily determined by aligning the spines and verdces of the 2-d and

projected 3-d vertex pairs.

The clustering used by [TM87] is Hough-based" with the 6-d transform

parameter space being decomposed into a 2-d space of out.-of-pla_e rotations,

a 1-d space of in-plane rotations, and finally, a 3-d scale/manslation parameter

space. Each correspondence between a 2-d vertex pair and a 3-d model-derived

vertex pair yields a set of transformation parameters. Entries are first made

in the 2-d out-of-plane rotation bin array, with bins representing two degree

increments in c_1 and c_2. The bin array is scanned for peaks indicating clusters,

and these peaks are re-histograrnmed in a 1-d array for the in-plane rotation.

Clusters detected in this 1-.d table are further clustered in the 3-d space of

translation/scale. This final clustering is done using a variation of the k-means

method described above. A cluster in the final histogram with more than three

assignments is considered a correct match.

Results were good, although the tests were done on images where the ob-

ject(s) to be recognized possessed the vast majority of the features. As mentioned

earlier, this type of image is the type the clustering algorithms perform best on.

Thompson and Mundy also describe a nearly identical approach to recogni-

tion in range images [CMST88]. The Hough-based matching scheme is identical,

and most of the novelty resides in segmenting vertex pairs from range images.

Strangely, the authors continue to use 2-d vertex pairs even though the range

data provides true 3-d features thai could be compared directly with the model

features rather than though their projections.

Hough-based recognition methods are further beset by problems not men-

tioned so far. In particular, choosing the bin size is difficult. Making the bins

large reduces storage requirements. Additionally, and more importantly, the

chance that the cluster resides wholly in one bin is enhanced, improving the

chances of detectingthe cluster.On the other hand, since the bins arc larger,

the chance of largerandom peaks is largeras well,making detectionof tnl¢

clustersmore difficult.Also, sincethe parameters of the bin arc typicallyused

to estimate the pose of the object,a largebin sizereduces the accuracy of the

estimate of the pose of the object. Making the bin sizesmaller improves the

accuracy of the estimateof the pose but reduces the likelihoodthatthe cluster



will fall into a single bin, making detection more difficult. Clearly, if there

were no errors in the calculation of the feasible transformations, a very small

bin sizewould be preferableas allthe pointsin the trueclusterwould fallin a

singlebin while the chance of largerandom peaks would be vanishinglysmall,

simplifyingdetection,and improving the estimateof the pose. However, since

them isalways errorin the transformationparameters,them isan optimal bin

sizethatdepends on the statisticsof the error and the transformationsthatdo

not belong to the truecluster.

Often, the optimal clustersizefor detectionis too large for precisepose

estimation. In order to overcome thisproblem, [SDH84, SHD84] discuss an

iteratively subdivided Hough procedure for finding clusters of feasible transfor-

mations in a 5-d parameter space. Detection is done at a large bin size that is

good for detection and then the detected clusters am mbinned into smaller an

smaller bins until the cluster begins to fragment into multiple bins, providing

better pose estimation.

In a similar vein, [LHD88] describes a recognition method that locates clus-

ters in a full 6-d parameter space. Peatums are 2-d and 3-<1 triangles. The

vertices of the 2-d triangles are generated by intersections of linear contours

in the image and the vertices of the 3-d triangles consist of the vertices of the

polyhedral model. Corresponding the points of a 2-d and a 3-d triangle leads to

a nearly unique solution for a feasible transformation. The feasible transforma-

tions are clustered in a 3-d bin array that uses only the translational parameters,

as they can be computed very quickly. Peaks are located by examining a 3 x 3

neighborhood and suppressing nearby peaks that are likely to be fragmentations

of true peaks. Then, peaks in a histogram of translational paramcmrs am de-

tected. Finally, rotation parameters of the transformations am computed and

checked for consistency. Visibility of the model triangle pairs can be deter-

mined from the rotation parameters, and these constraints are also applied to

filter transformations. A further heuristic is applied to determine which of the 3

possible image-triangle to model-triangle vertex correspondences is most likely

to be correct. Final acceptance of a cluster is based on how closely the projec-

tion of the consistent features in the cluster match with actual image features.

Once a cluster has been accepted, a final fit of the model triangles to their cor-

responding image triangles is done using a least squares measure, yielding good

accuracy for the estimate of the pose of the object.

Stockman and Estcva [SE85] describe a similar transformation clustering

technique. In this case the transformations are constrained, and result in a 3-
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d parameter space. Correspondences am formed b¢twecn pairsof 2-d feature

pointsand 3-d model points,which, in the 3-d transformationspace,allow the

pose to bc determined uniquely. Feasible transformationsam computed for

allpossible pairingsof image and model features;unlike [TM87, CMST88]

visibilityconstraintsam not applied. Clusters am then detected among the

feasibletransformations.Although not explicitlystated,itappears thata variant

of k-means isused to findclusters.Another method, describedin [FHK+82], is

very similar.

A seriesof papersand reportsby Lamdan, Wolfson, and Schwartz [LSW88b,

LW88b, LSW88a, LW88a] describean interestingclusteringbased algorithmfor

recognizing 3-d objectsfrom intensityimages. An earlierpaper [KSSS86] de-

scribesa similarapproach for 2-d objects.At the heartof these methods isa

representationscheme thatthe authorscall"geometric hashing". A key com-

ponent of the "geometric hashing" approach isthe existenceof a representation

of the featuresthatisinvariantto the'2-dtransformationsthatthe featuresun-

dergo as the object'spose changed in 3-d space. For cxampl©, object-attached

featureson flat,rigidobjectsimaged under weak perspectiveundergo a a_ne

transformationsas the viewing parameters arc varied.Ifprimitive features,such

as corner points,am describedsolelyby theirpositionin the image plane (not

by additionaldescriptorssuch as orientation,curvature,etc.),then a setof three

such pointsdefinesa basisset thatforms a coordinatesystem in which allthe

remaining fcaturepointscan b¢ dcscribexLAs shown in Fig.2, affinetransfor-

mation of the pointsdoes not affecttheircoordinatesin the basis-setcoordinate

system. Of course,thisisonly trueifthe same basissetisused. Similarrepre-

sentationscan bc definedforobject-attachedfeatureson rigid3-d objectsunder

weak pcrspcctiveas well;four pointsarc rexluiredin thiscase.

Given existenceof such invariantrepresentationsof featurepointsin terms

of a multipointbasis-set,the "geometric hashing" approach simply represents

every featur_pointin terms of every possible basis-setand storeseach point's

coordinatesin terms of each possiblebasis-setin a hash tabledata structure.

The "hashing" is done by mpms, nting each coordinate by a binary number

and truncatingthe low order bits,leading to a discrctizationof the coordinate

space intohypcrcubes,and then using tlm resultingbinary stringas a key into

a hash table.The buckets in the hash tablearc,therefore,representationsof

various hypcrcubcs in the feature space. The hash table is loaded with aU

possiblerepresentationsof allpossiblefeaturesfor each model in the system's

vocabulary. Itispossiblethata hypcrcubc may containmore than one feature,
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(a) (b)

Figure 2: Demonstration of invariance of Lamdan et al's feature representation

to affine transformations. Above, (b) is the result of applying an affin¢ wansfor-

marion to (a). In both (a) and (b), the feature points a, b, and c form a "basis"

coordinate system that has the property that the coordinates are invariam to affme

transformations. The other feature points, such as point d, can be represented

in terms of these invariant coordinau)s. For example, the coordinates of d are

(2,1) in both (a) and (b) in spite of the affine transformation between them.
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especially if the size of the hypercubes is large.

Recognition proceeds by picking a possible basis (three points) in the image

and computing the coordinates of all the other feature points in the image in

terms of it. Each hypercube that contains an image feature is retrieved. Records,

consisting of imodel, basis/, pairs, are constructed. For each such record in the

hypercube, increment a vote counter for that record. If any particular imodel,

basis/, record scores a large number of votes, then it a matching candidate.

The correspondence between the image basis and the model basis provides
a unique solution to the transformation parameters. Thus, while the transforma-

tions are not explicitly represented in this method, they are implicitly coded in
the representation. The "voting procedure" is thus voting for a discrete set of

possible transformations that are induced by the choice of the image basis points.

For this reason the method should be considered to be a _'ansformafion clus-

tering approach. The candidate matches and the associated transformations are

then rer,'ofitted using least squares and employing any additional, close matching
points in the image. Finally, a verification is done between the boundaries of

the model and the edge contours in the image.

The method of "geometric hashing" suffers from a few difficulties. First,

use of the term "hashing" is somewhat misleading because it implies constant

time access of the records. Since only the hypercubes themselves are indexed

in the hash table, strictly speaking, the access time is linear in the average
occupancy of the hypercubes. The only way to reduce this is to make the

quantization finer. However, this makes it more likely that a noisy feature will

not hash to the correct hypercube, similar to the problems faced by Hough-
based methods. Under poorer conditions than the high-contrast' bacldit scenes
reported, the method may break down. Further, extension of this method to true

3-d objects requires that the voting occur at all hypercubes intersected by a line

in the feature space, which appears to be an inefficient operation. Finally, the

combinatorics of this algorithm are unfavorable since voting must be done for
every possible basis set in the image.

There are numerous examples of clustering approaches used to recognize
2-<Iobjectsfrom intensityimages[MF75, BalSl,Seg83,BS85, KK85, TMVS5,

Hwa87, Get88,SKB82], a matcheddimensionalitydomain. With one exception

[Hwa87], thesemethods employ Hough-based clusteringexclusively.In 2-d

methods,thetransformspaceisatmost 4-d,consistingof translation,rotation

aboutthenormaltotheimageplane,and 2-dtranslationwithintheimage plane.

In [MF75, Bal81]thepioneeringwork on applyingtheHough transformtothe
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recognition of arbitrary 2-d shapes is described. In common with Hough-based

approaches in the 3-d recognition domain, some of these methods attempt to

overcome the problem of a high-dimensional parameter space by decomposing

the transform bin array into lower dimensional bin arrays [BS85, Seg83]. The

approach described in [TMV85] determines weights for each transformation

based on a rigorously defined saliency measure of the features used to compute

the transformation. This greatly reduces the number of random peaks in the bin

array, though extending the notion of saliency to 3-.d appears to be somewhat

difficult. Another method [Ger88] "links" transform space and the feam_r_ space
by performing, essentially, a verification of the clusters detected in transform

space by matching predicted features in the image to filter false clusters from
true ones.

2.2 The Hypothesize and Verify Paradigm

As we have seen, methods that recognize by clustering attempt to form hypothe-

ses that have considerable global support. Such methods need many features to

"vote" before a "consensus" is reached, and, with few exceptions, the clustering

is the sole means of accumulating evidence for particular hypotheses. The hy-

pothesize and verify paradigm (HVP), on the other hand, is less democratic. In

the HVP, only features that can explain the image data in the locality of them-

selves are allowed to become valid hypotheses. Then, they may win overall by

explaining a more global portion of the image data.

Typically, the first step in the hypothesize and verify paradigm is to con-

struct a sparse representation of the image in terms of features. Ideally, such

features are highly selective, i.e., model generated features are chosen so that the

likelihood of them having the same attributes as an incorrectly matching image

feature is very small. Unfortunately, there are practical limits to how selective

features can be, as highly unique features tend to be more global in nature, in

addition to often being too sparse. Given a reasonable choice of image features,

one is chosen by some means, and the set of possible scene instances that could

explain its existence, to within measurement error and noise, is computed. Typ-
ically, this set is represented by a number of individual scene instances that are

treated as separate, competing hypotheses. This process is called the generation

phase. Next, the existing hypothesis are verified. As mentioned in the preceding

paragraph, each hypothesis provided by the generation phase is usually a single

scene instance. This scene instance is then used make predictions that can be
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usedto perform a detailedcheck against the image. Based on how well the

predictions match the observations, a decision is made as to whether the hy-

pothesis is strong enough to be considered a valid recognition result. Typically,

the representations of the predictions and the representations of the observations

used in the comparison are more complete than the representations used during

the generation phase of the HVP. That is, the representations contain more of

the information that is contained in the model instance or the image.

The exhaustive approach to recognition would be to consider every model

instance, to within an error resolution volume, as a hypothesis and to verify

all of them, passing those that scored high enough in the verification. This

is computationally untenable. The hypothesize and verify paradigm overcomes

this by considering only those model instances that have at least a small bit of

evidence in their favor;, usually one, two or a few features that match image

features. This filtering vastly improves the efficiency of the search.

In the hypothesize and verify algorithms come in a spectrum of varieties.

Aside from differences in the types of features and representations that they use,

these algorithms differ in two other respects:

1. how much effort is expended to generate a strong hypothesis, and

2. how features and hypotheses are ranked for further processing.

With respect to item 1, some algorithms have opted to expend the minimal

effort generating hypotheses, typically creating many weak hypotheses that are

then rejected, while the few strong hypotheses are passed. This approach insures

that the correct hypotheses will be very likely to be among the set generated.

This approach is robust, but tends to be slow since verification is usually rather

expensive in comparison to generation. The other extreme, is to generate hy-

potheses that are rather strong, and, therefore, likely to be correct. Since the

generation algorithm in this approach is discriminatory, it may not allow the

correct hypothesis to pass on the basis of the limited information that is has

available to it, thus missing a correct interpretation. Also, if taken to extreme,

the effort spent generating a strong hypothesis may outweigh the cost of verify-

ing it. Thus, this extreme tends to be less robust, and often just as slow as the

other extreme. The optimum tradeoff falls somewhere between the two. [K.186]

describes a 2-d algorithm where the tradeoff is adjusted to minimize the overall

time spent generating and verifying hypotheses under certain assumptions about
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theway thehypothesesaregenerated. Unfortunately, such analysis cannot easily
be extended to the 3-d domain.

With respect to item 2, the queue of features waiting to be processed can

be ranked according to the likelihood that a given feature will generate a strong

hypothesis. If the ranking heuristic is good, this will reduce the time it takes

to locate objects in the scene. Similarly, hypotheses that have been generated

but not yet verified can be ranked in the queue for verification, also reduc-

ing recognition time. Most HVP algorithms rank features in some manner.

For example, a number of systems use model-independent feature grouping

[Low87a, Chi89, Hut88, Jac8'T] to rank the featm'cs. It is less common for sys-

tems to rank the generated hypotheses before verifying them; usually they a.re

verified immediately upon being generated. An example of a 2-d object recogni-

tion system that does rank hypotheses is described in [BC82]. In that system, as

mentioned previously, considerable effort is spent to generate strong hypotheses.

In that system, hypotheses are graphs of whose nodes arc possible image-feature

to model-feature pairings, and arcs represent mutually consistent pairings, and

whose nodes are fully connected. These hypotheses are then ranked for verifica-

tion by the size of the graph, which simply measures the number of features that

have been matched. Chien and Aggarwal's system for recognizing 3-d objects

[Chi89] also ranks the generated hypotheses. In their work, transformations

are computed for each hypothesis from hypothesized correspondences between

quadruples of image features and model features. The transformation is solved

simply as a system of linear equations. In particular, orthogonality of the rota-

tion matrix is not enforced. If the hypothesized correspondence is correct, then

the computed transformation should have an orthonormal rotation matrix. The

rotation matrix is not likely to be orthonormal ff the correspondence is incorrect.

To rank the hypotheses, Chien and Aggarwal examine the transformation associ-

ated with each hypothesis to determine how close its rotation matrix is to being

orthonormal. The hypotheses with transformationscontainingrotation matrices

that arc nearly orthonormal will be processed first, and grossly non-orthonormal
cases will be eliminated.

2.2.1 3-d Intensity-Based Hypothesize and Verify Methods

An excellentexample ofthe HVP istheORA (ObjectRecognitionby Alignment)

system described in [HU88, Hut88]. This system also typifieshow object-

attached featuresmay be used to drasticallysimplify the computation of the
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hypothetical viewing transformation under the HVP.

The essence of the ORA system is very simple. First, image features, con-

sisting of triplets of points, are put into correspondence with model feann'es,

consisting of triplets of 3-d model points. For each correspondence, the ORA

system "aligns" the model so that the projection of the triplet of model points

comprising the model feature exactly corresponds to the triplet of points in the

image feature. Of course, for each pairing of image and model features, there

are three resulting possible permutations of image points and model points, and

therefore three possible alignments. ORA uses the weak perspecdve imaging

model, and therefore three image-point to model-point correspondences are suf-

ficient to determine the viewing transformation to within a reflection across the

image plane. Note that ORA's approach to solving for the transformation is an

improvement over that in [Chi89] since the orthonormality of the rotation matrix

is maintained. Thus, ORA does not consider any invalid transformations. After

alignment, the hypotheses are verifie& If a hypothesis is accepted, the image
features that have been matched to it are removed from further consideration.

ORA employs curvature-based segmentation of image curves. ORA's cre-

ators argue strongly for the use of inflection points, or _s of curvature, and

line segments as features. They give two reasons for this: first, inflections and

line segments are preserved when a space curve is projected, and second, they

argue that there is no psychological evidence for high-curvature points over in-

flection points, citing Lowe's cat [Low85] as a counterexample to Attneave's

[Att54]. Oddly, they go ahead and use high-curvature points anyway. All of the

features, are assumed to be object-attached, otherwise the procedure of assum-

ing 3-d to 2-d correspondences and calculating the alignment transform breaks

down. As a result of the use of object-attached features, ORA's vocabulary con-

sists of planar or polyhedral objects. The image features are ranked according

to how likely they are to be part of the same object in the scene. The heuristics
used are:

1. Points are likely to belong to the same object if they appear on the same

edge contour, or if they belong to two contours that are likely to have

come from the same object.

2. Two contours are likely to be from the same object if their endpoints arc

in close proximity.

3. Two contours are likely to be from the same object if the relative intensity
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on either side of eachcontour is comparable and the contours form a

compact geometric shape.

Verification in eRA is a two stage hierarchy: the initial stage is cheap

computationally but eliminates many false matches, while the second stage is

slower but more accurate. The initial stage operates by checking the endpoints

of curve segments in the projection of the model with segment endpoints in the

image. Endpoints are either inflection points, high-curvattm_ points, or endpoints

of linear segments. Both the position of the points and the direction of the

tangents through them are required to be within an error tolerance before an

endpoint can be said to match. If more than half of the endpoints visible in the

model match with endpoints in the image, then the hypothesis is passed through

the initial stage of verification. The detailed verification procedure compares all

of the visible contour segments with nearby image segments. If enough of the

predicted boundary is near to an image boundary, the hypothesis is passed.

The eRA system is typical of 3-d HVP methods in that it employs an

analytic formula to yield the transformation that maps some minimal number

of 3-d model points onto 2-d image points. For any such method to work, the

features must be object-attached. Some work has been done to extend eRA to

smooth 3-d objects [BU88, SU88]. However, it is unlikely that the alignment

method, in its present form, can be extended to recognize smooth 3-d objects.

Lowe's SCERPO system, described in [Low87b, Low87a, Low85], is also

a HVP approach. It differs from eRA, which came later, in several respects.

First, SCERPO is only able to recognize polyhedral objects since object-attached

line segments constitute its feature set. Lowe's work is based heavily on the

idea of "perceptual grouping" which is essentially the ability of a vision system

to group features based on a model-independent measure of their "perceptual

significance". Perceptual significance is really the same as non-accidentalness,

i.e., the likelihood that a configuration of features observed is not the result of a

visual accident. By making several assumptions about the stochastic properties

of the distribution of detected line segments in the image, Lowe is able to come

up with an analytic heuristic measuring the perceptual significance of several

types of relations between line segments: proximity, parallelism, and colincarity.

These significance measures work on pairs of line segments. Significant pairs are

further grouped into significant clusters by noting the pairs that share segments.

The "perceptual grouping" process in SCERPO can be carried out equally

well on the 3-d model segments as on the 2-d image segments. Hypothesis
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generation then proceeds by simply matching 3-d groupings to 2.<1 groupings

with the same number of segments, with the groupings with the most seg-

ments being processed first since they arc the most "significant", although such

groupings will lead to a large number of possible permutations in the correspon-
dences of image line segments to model line segments. Image groupings with
the same number of segments as model groupings are matched, and the view-

ing transformation is determined using the correspondences of the individual

line segments (three or mon_ uniquely determines the =ansformation), yielding

initial hypotheses. The initial hypotheses arc then verified. SCERI:K) verifies

hypotheses by first using the initial hypothesis to find all image Line segments

that match sufficiently well to line segments predicted by the model. These

image-segment to model-segment pairings arc then used to find a least-squares

fit between the projected model-segments and the image-segments using a multi-

dimensional Newton-Raphson algorithm. Note that this differs greatly from the

tracking method of VGD due to the fact that explicit correspondences are made

between single pairings of 3-d model line segments and 2-d image line segments.

VGD's tracking method maintains a fuzzy degn_ of correspondence betw_n

all possible pairings. In addition, the features in VGD's tracking method arc not

object-attached. Recently, the fitting technique used by SCERPO has been ex-

tended to handle parameterized models [GL87]. FinaLly, af'..m" the least squares

fit, the predicted model-segments arc again matched to image-segments, and if

mor_ than ten matching pairs result, the hypothesis is accepted.

The recent work of Chien and Aggarwal [CA87, Chi89] follows the HVP.

Similarly to both the ORA and SCERPO systems described above, Chien and

Aggarwal's system detects features in the image (sets of four consecutive "corner-

like" features from the edge contours) and forms hypothetical correspondences

between these quadruples of image points and quadruples of 3-<1 model points.

This allows the transformation parameters to be solved. As mentioned earlier,

Chien and Aggarwal do not enforce the orthonormality of the rotation matrix por-

tion of the transformation, in contrast to ORA, and therefore many inconsistent

hypotheses are generated. These are weeded out by applying the orthonormality
constraints.

Chien and Aggarwal's algorithm employs 2-d feature points and 3--(1model

featur_ points. The 2<1 feature points arc simply high--curvature points. The 3-<1

points are chosen by the finding 2-d high.-curvature points in three orthogonal

"principle views" of the object, and then determining the intersections along the

lines of sight from the different views to yield 3-d feature points. Since the
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3-d high-curvaturepoints areassumedto project to 2-d high-curvaturepoints,
thesefeaturesareobject-attached.The featuresare rankedby theheuristicthat
postulatespoints with highercurvaturesas more likely to be reliably detected
thanthosewith smallercurvatures.After hypotheseswith valid transformations
arefound, theyare thenverified. Verificationis a directcomparisonof contour
shapeusing a polar representationof the contourwith the contourcentroid as
the origin. This measure does not work for occluded objects. A method for

doing verification for occluded objects is discussed, but no results are given.

It appears that parts of the hypothesis generation algorithm require knowledge

of figure-ground segmentation as well, rendering this algorithm very weak for

practical scenes. In its favor, the verification method could easily be fixed, using

a method such as the one in ORA, or the one used by VGD.

All of the methods described above owe a large debt to the seminal work

of Roberts [Rob64], which also followed the HVP. Like SCERPO, Roberts'

system used perceptual groupings. In-Roberts' system, the groupings consisted

of polygons about vertex points in the image. These image polygons were

topologically matched to polygons derived from the model. This is also similar

to SCERPO's topological matching of perceptual groupings, though SCERPO's

implementation is more robust. Following the topological matching, Roberts'

system computed hypothetical transformations in a manner similar to the systems

described above, though the particulars are most similar to Chien and Aggarwal's

system. Roberts's method does not enforce orthogonality of the rotation portion

of the transformation, forcing him to patch it up in an ad hoc manner. The result

of computing the transformation is a set of hypotheses, which are then verified.

Verification consists of computing the mean-square error in the projected model

points that were members of the original topological match and the corresponding

image points.

Other HVP approaches to recognition of 3<1 objects from intensity images

tend to be very similar to the systems described above, though they may be less

complete. For example, the method described in [Whi88] goes through some

representational gymnastics in a feature space called "vertex space" to come up

with features, called "key features", also known as triangles, that are matched to

image features. After matching, a viewpoint hypothesis is generated. As usual,

the model is then projected, verification is done by seeing if enough predicted

vertices match observed vertices. Similarly, [PD87] describes a hypothesize and

test algorithm that uses a representation called an "asp", consisting of the defor-

mations that the triangles in the polyhedral model undergo as the viewpoint is
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continuouslychanged.Featuresin the image,whicharepolygons,arccompared

with the features in the "asp" to see if there arc any matches. If there are, a

viewpoint hypothesis results. The "asp" is really a form of multiview model.

In fact, the features used are object-attached, and therefore, a multiview model

is superfluous since viewpoint hypotheses can be computed directly. Details of

the verification method arc not provided, nor are any results.

A set of two papers by Hansen and Henderson [HI-I87, HH88] describes a

HVP approach called "recognition by strategy trees". The method works with

polyhedral objects, and represents them as "strategy trees". A strategy tree con-

sists of a model at its "root". A set of "level one features", and a "corroborating

evidence subtree" constitute the body of the tree. The level one features arc

the "strongest set of view-independent features chosen for their ability to per-

mit rapid identification of an object and its pose". Given an image feature, the

matching method finds the model's "level one features" that have similar at-

tributes. These features arc used to find the pose of the model, presumably in a

manner similar to the ocher methods described above, or by using visibility con-

straints. For each such "level one match", a "corroborating evidence subtree" is

evaluated. Essentially, this is a verification procedure. Details arc sketchy, but

the verification seems to check predicted features against observed features and

then perform a fit, as in SCERPO. Following that, a detailed boundary check,

as in [BC82], is done. The most interesting aspect of this approach is the free-

dom to tailor the features used in the generation and test modules to optimize
performance for each object.

The method of Sato et al [STT$7] is interesting because it uses a connec-

tionist network both to filter competing hypotheses and to fit the model to the

data. Features are based on line segments. Hypotheses arc initially generated

by pairing "'L" junctions detected in the image data with "L" junctions in the

model, and using the hypothetical correspondences to solve for initial viewing

parameters. Verification consists of finding "clusters" of compatible hypothe-

ses in the graph of compatibility relations. Each image feature will generate

many possible hypotheses seeking to explain it. A "compatibility" measure is

defined, and a Hopfield network [I-IT85] is used to simultaneously adjust the

compatibility between hypotheses, yielding clusters of compatible hypotheses.

Note that the clusters exist in the graph of compatibility relations, not in viewing

parameter space. Each cluster indicates a recognized object. The information

in the hypothesese comprising the cluster arc then used to refine the estimate of

the viewing parameters.
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Fisher [Fis83] describesa HVP methodthat is uniquein that it employs
region based features in contrast to the edge-based features used by most other

intensity image recognition systems. However, estimating the pose of a model

from region data is difficult. Fisher's technique is to correlate the cross sections

of model surfaces to segmented image regions, ultimately solved by optimizing

a weighted distance measure between the projected model surface and the im-

age region. Hypotheses arc represented in a frame-like manner, with slots for

transformation parameters, observed surfaces, and instantiated subassemblies.

After generation, many of the surface slots and subassembly slots have not been

filled. A phase of attempting to fill the slots is entered, implemented by a

rule-based system. The initial phase, described earlier in the paragraph, can be

called to instantiate subassemblies as necessary. Once all slots are filled, the

complete hypothesis is verified. Verification consists of reestimating transfor-

mation parameters, checking if projected model surfaces substantially cover the

image regions assigned to them, and finally, checking if the predicted boundary

matches well against the observed boundary.

The primary weaknesses in Fisber's algorithm include the method for es-

timating the initial viewing parameters using correspondences between model

surfaces and image regions, and the requirement that the segmentation of the

image be very good. Hand segmented images were used in to obtain the results

shown in the paper. Strengths of the algorithm include its use of hierarchical

models and hierarchical matching. This helps to improve the efficiency and
robustness of the algorithm.

2.2.2 MDD Hypothesize and Verify Methods

Many 2-d recognition systems have been reported that use the HVP. Some

of these methods exploit the symmetry that exists between the model domain

and the image domain, with the result that they are difficult or impossible to

extend to the 3-d case. A example of such a method is the well-known "local-

feature-focus method" (LFF method) [BC82]. This method was designed on

the premise that verification is very expensive, so generating good hypotheses

(i.e., ones likely to be correct) is important. Hypothesis generation is done via

a graph search in a graph where the nodes represent possible image-feature to

model-feature pairings, and ares between nodes represent compatible pairings.

Features are circles and corners. Roughly speaking, consistency is determined

by the absence of competition for the same features, as well as agreement of
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relative posesbetweenimagefeaturesand model features as represented by the

pair of nodes in the graph. The graph is the searched for the largest sets of

mutually consistent pairings of image features and model features. In order

to improve the effiency of the NP graph search, nodes which contain hand-

selected "focus features" are used to focus the search for maximally connected

subgraphs. The largest such set is used to determine the viewing transform,

a rotation and translation, by aligning corresponding features. This hypothesis

is passed to the verification module, which directly compares the transformed

model boundaries to the image boundaries using probes that are perpendicular

to the model boundary. Dark-to-light transitions are positive evidence, light-

to-dark and all-light transitions are negative evidence, and all dark transitions

are neutral. This scheme assumes that the relative brightness of objects and

background is known a priori.

A method that is similar in many respects to the LFF method called "3DPO"

is described by Bolles et al in [BHH83, BH86] 3DPO attempts to recognize

3<1 objects in range images. 3DPO's hypothesis generation apparatus is very

similar to that of the LFF method described in the preceding paragraph. The

features differ, being based on range discontinuities. They include circular arcs

and linear segments, along with information about the surfaces on either side of

them. As in LFF, the modeling system allows the user to label certain features

as being particularly selective, as in the "focus features" of LFF. The viewing

parameters are computed by successively constraining the possible transforma-

tion parameters as each image feana'e is matched to a model feature. In this

regard, the hypothesis generation portion of 3DPO is an instance of the predict-

observe-backproject recognition paradigm discussed in the following section.

Verification consists of a comparison between the predicted range image that the

model would produce with the actual data.

Rearick et al [RFC88] describe a method based on a connectionist network

(as distinct from a neural net) that, they argue, is fundmentaUy different from

any "model-based" method. The method is region based, and classifies regions

into three types: hons (Japanese for long, thin objects like pencils) , cusps,

and loops. The regions are detected using a modified medial axis transform

[Hea86] and classified according to the topology of the skeleton and the width

of the region about the skeleton. Relationships between the regions are used to

recognize objects. Each object has a customized network that "filters" out sets

of regions whose relations are not sufficiently similar to corresponding model

relations. In fact, the network is really doing nothing more than a clique-finding
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proceduresimilar to that hypothesis generation portion of the LFF method, one

of the methods that Rearick et al say they are so different from. There is no

explicit verification procedure.

Pan of VGD is based on work described in [GTM89, GTM87]. The method

is for recognizing 2-d objects, but the hypothesis generation portion of it has been

incorporated into VGD with few modifications. The features, called "CPN's",

are vectors that efficiently encode the shape of edge boundaries in the neigh-

borhood of high-curvature points. Using training images, models of objects are

constructed that consist of both the spar_ CPN representation and a complem

z, V, and slope-angle (8) versus an:length representation. The models are stored

in a special vector-associative memory, implemented with a k-d tree [Ben75]

indexed by the five descriptive parameters of the CPN's. The associative mem-

ory allows a model containing a feature that matches an image feature to within

a user-specifiable tolerance to be retrieved in O(IogN) time, where N is the

total number of model CPN's stored in the memory. To the author's knowledge,

this is the most efficient hypothesis generation method in the literature most of

which are linear at best. Hypotheses are generated by querying the associative

memory for models possessing features that are similar to the image feature,

and then aligning the model feature with the image feature. These hypotheses

are then verified in a hierarchical fashion. First the percentage of CPN feana'es

predicted are compared to those detected to reject many possible hypotheses.

Then a detailed boundary check similar to, but more general than, the one used

by the LFF method is performed.

The GROPER system [Iac87] uses a hash table to implement an associative

memory, for hypothesis generation. The indexing is done on quantized versions

of five parameters that describe the geometric relationship between two pairs of

line segments. This approach has the usual problems associated with quantizing

the parameter space (see the discussion of clustering based methods, and in par-

ticular, [LSW88b, LW88b, LSW88a, LW88a] above). Verification consists of

checking how many detected line segments are close to predicted line segments.

GROPER is not unique because of its generate and test modules, but rather in

how it uses model-independent grouping to reduce the number of hypotheses

that are generated. Edge grouping is done on the basis of relative proximity

and orientation similarity. The number of hypotheses generated was reduced by

nearly a factor of 400 by the inclusion of the grouping module. An improve-

ment in accuracy was also noted, primarily because the verification module in

GROPER is weak, and the relatively powerful grouping module assisted the
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verification module.

Perkins [Per77, Per78] represents both the image boundaries and the model

boundary in terms of "concurves", sequences of line segments and circular arcs.
Concurve sequences am matched in a correlational manner. If a model has a

subsequence of concurves that matches a subsequence of an image concurve,
then a transformation is determined, and a hypothesis is created. The transfor-

marion is determined by aligning the matching concurves in tangent-slope-angle
versus arclength space, and the hypothesis is checked in a manner similar to

the LFF method, differing only in that the presence of an edge pixel with the

proper direction is positive evidence, and there is no negative evidence. This is

superior to the LFF verification technique as it requires no a priori assumptions

about the illumination and reflectance of objects relative to the background.

Methods that rely on correlation of the portions of the model boundary
with the image boundary for matching or pose determination, as in Perkins

method above, cannot easily be extended to the general 3-.d recognition. This is

because the shape of the model boundary may change drastically with viewpoint,

requiring that a correlation be performed for many points viewing parameter

space. Since correlarion is often time consuming, performing a correlation for

a large number of viewpoints would be very slow. In effect, the boundary

representation is too complete to allow efficient hypothesis generation.

Another method that uses correllation to generate hypotheses is described

by Knoll and .lain in [KJ86, KJ87]. In this example, portions of the model

boundary are correlated in Cartesian space. If the segments match well enough,
the translation and rotation necessary to align the features are determined, and a

hypothesis is created. Verification is nearly identical to that in the LFF method.

What is unique about this algorithm is that the features are chosen to minimize

the total recognition rime under the assumption that the model features and the

image boundary is searched in a linear fashion. Other correlational approaches
to 2-d recognition are described in [Fre77, DKZ79, YMAS0, BBR83].

Ettinger [Ett88] extends the work of Knoll and .rain in the direction of im-

proving recognition time. He describes how employing a sub-part hierarchy can

markedly improve recognition rime complexity. The features employed by his
system are those of the "curvature primal sketch" [AB86]. The features are con-

rained in a scale hierarchy where the coarsest level of features is used to generate

the initial hypotheses about the subparts of an object. Subpart hypotheses that
have enough support in the form of more matching features at finer resolutions

of the scale hierarchy can generate full object hypotheses. These, in turn, can
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direct the search for other subparts. The full object hypotheses are hierarchically
verified through the subparts.

The method described in [TFF88] is a HVP method that has be,on designed

with parallel implementation on the Connection Machine [I-Ii187] in mind. Fea-

tures are line segments and comers (comers are line segments whose endpoints

axe near to their intersection). Since the transformation space is 3-d, each image-
corner to model-corner correspondences allow a model transformation to be

computed, and a hypothesis to be generated. Since all hypotheses arc generated

in parallel, an initial level of verification is performed by clustering the hypothe-

ses in the model transform parametm" space. Clusters indicate hypotheses with a

large de_ee of mutual support. A multiscale Hough-like method is used to do

the clustering. From the clusters, an aggregate transformation is determined, and

a refined hypothesis is generated. Verification consists of comparing transformed

model line segments with image segments.

2.3 Predict-Observe-Backproject Paradigm

As its name implies algorithms based on the predict-observe-back-project paradigm,

or POBP, has three basic steps that are iterated. First, predictions are magic about

what may be observed in the imag_. The predictions are based on the models

and the current state of the algorithm. Typically, the type, attributes, and pose

of features are predicted. Next, the image is examined for observed data that

match closely with the predictions. Assuming such a match is found, the impli-

cations of these matches are "backprojected" into the space of scene instances,

resulting in one of two outcomes: either the scope of feasible scene instances

is narrowed by the additional constraints induced by the match with the cur_nt

set of feasible scene instances, or, the induced constraints result in an incon=

sistent solution. When an inconsistent solution is generated, POPB algorithms

typically backtrack, to a previously visited feasible solution, i.e., one containing

a non-empty set of scene instances. This loop is iterated, usually resulting in
the tree-structured search that is the hallmark of the POBP.

2.3.1 Backprojection

The heart of the POBP is backprojection, the propagation of constraints induced

by a match between a predicted feature and an observed feature. Strictly speak-

ing, any algorithm that uses a match between model features and ima_ features

25



to calculatea viewpointis doing a form of back'projection, though not neces-

sarily in its fullest sense. Therefore, all transformation clustering approaches

and many HVP methods employ a limited form of backprojection. However,

backprojection in its full sense requi_s a probability distribution on the space

of scene instances. For example, suppose that an image feature has be_n as-

signed to match a predicted model feature. Assume that these features consist

of triplets of primitive feaa.u'e points. Further, for simplicity, assume that the

features can be considered to _ object-attached. Therefore, the fe,at'm'cs each

possess six attributes, specifically, the z and y coordinates of each of the thw_

primitive feature points comprising each compound feature. Thus, under weak

perspective, a particular correspondence between the image feature and the ob-

ject feature will yield a unique solution, up to reflection though the image plane,

for the pose of the model that causes the predicted features to coincide with

the observed image features. That is, if the observed feature's attributes are

known with full certainty, then a point in the observed feature's attribute space

maps to two points in the scene instance space, as shown in Fig. ??(a). In

reality, however, a feature's attributes arc never known with certainty due to

noise and various other distortions. Rather, there is a probability distribution

on the feature attributes. Through the mapping from feature attribute space to

scene instance space, a probability distribution on the space of scene instances

is induced. Denote this probability distribution as P(s[r - f'), where s is a

scene instance (which may be the null instance), r is the image feature, and r"

is the predicted model feature, and = indicates that r matches r". Figure ??(b)

illustrates the probabilistic definition of back'projection. This definition can b¢

carried further to the case of n matching image and model features. In this case,
the distribution is

(i)

Explicitly calculating these conditional probability distributions has never

been attempted owing both to the inherent intractability of the problem as well as

to the fact that the distribution is dependent both on the details of the model and

types of features used. What is typically done is to divide scene instance space

into regions R. and -77. such that P(s E -,TC[_,, = _,,) < _, and work with

these regions rather than the probability distributions themselves. Figure ??(c)

shows an example of such regions. FoLlowing C.ass [Cas88a, Cas88b], in the

following paragraph, we will refer to a region R. as a match region because all
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Figure 3: An illustration of noiseless backprojection. The vector of measured

attributes of a projected model feature is f. In this example weak perspective is

assumed, and, as explained in the text, features consist of triples of 2-d image

points and 3-d model points. In this case, perfect, noiseless measurements are

assumed. Thus, measured values for f imply that the model can have two

possible poses. Therefore, f baclcprojects to two points s_ and s2 in scene

instance space, as shown schematically.
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Figure 4: An illustration of back-projection in the presence of measurement error.

As in the case of Fig. 3 above, the vector of measured attributes of a projected

model feature is f. In this case, the measurement is not assumed to be l_rfect,

i.e., there is a probability distribution on f. Back3a'ojection of this distribution

then induces a probability distribution on the space of scene instances.
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Figure 5: An illustration of a common approximation to full backixojcction. The

situation is as in Figs. 3 and 4. Typically, full back projection, as illustrated

in Fig. 4, is replaced by a simple approximation, as shown above. Region

R/, containing most of the probability density of f, baclq:n'ojects to region R+,

which, in turn, contains most of the induced probability density. Most methods

that perform backprojection work with such regions, or further approximations
to them.
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scene instances s E T_ project f" to within a neighborhood of r defined such

that the undistorted value of f' falls in the neighborhood with probability 1 - e.

Backprojection alone is the basis of only one recognition algorithm that

we know of [Cas88a, Cas88b]. This algorithm bears a superficial similarity to

the transformation clustering based methods discussed previously, but actually

differs in important respects. The work addresses 2-d recognition: rigid image-

plane rotations and translations of models are allowed. The viewing parameter

space for this method is therefore three dimensional. However, the idea is

general, and could be easily extended to recognition of 3-.d objects from 2-d

images using appropriately chosen object-attached features.

Features in this algorithm consist of evenly spaced points on an image or

model boundary, along with the orientation at each point. Due to the isomor-

phism between the image domain and the model domain, the representation of

model and image boundaries and their derived features are identical.

For each correspondence between" an image feature and a model feature, a

match region is defined; i.e., regions where the projection of an of a model fea-

ture will result in a predicted feature whose attributes are within a neighborhood

of an observed feature. The size of the neighborhood models the amount of

distortion caused by the imaging process. In [Cas88a, Cas88b], match regions

are simply cylinders in the 3-.d viewing parameter space. The dimensions of

the cylinder are chosen so that the transformed feature Ues within a neighbor-

hood of the undistorted image feature with high probability. Consider, for every

pairing of an image feature with a model feature for a particular model, the

intersections of all of the match regions. Let every non-null intersection of two

or more match regions be called an "intersection volume". Each intersection

volume constitutes a hypothesis that the model appears at a transformation con-

tained within the intersection volume with probability 1 - e. Clearly, the best

such volumes are likely to be those that are the result of the intersection of a

large number of match regions, as such intersections volumes are comprised of

the transformations that place a large number of features near to the true image

feature with high probability. For each model, the intersection volumes that am

comprised of the intersection of greater than a certain number of match regions

are the hypotheses considered to be valid recognition results.

This algorithm is simple, elegant, and highly parallelizable, as was demon-

strated by its implementation on a Thinking Machines Corp CM-1 Connection

Machine [I-Iil87]. Match regions were represented by a uniformly sampled grid
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of points inside each region so that the intersections could be accomplished ef-

ficiently in parallel. A more refined version of the method, also described in

[Cas88a], uses approximations to the conditional probability distributions dis-
cussed previously to give even more accurate results.

2.3.2 The Predict Observe and Backproject Paradigm

Having examined backprojection, the heart of the POBP, in some detail, we can

now complete describing the POBP.

Prediction can also be viewed as forward projection. Given a probability

distribution on the error in an observed feann'¢, backprojection induces a prob--

ability distribution on the set of scene instances. In contrast, in the case of

prediction, or forward projection, the probability distribution on the set of scene

instances induces a distribution on the attributes of a feature. This probability

distribution can be used to match observations during the observe step of the

cycle. That is, it allows us to assess the probability that a predicted feature fails

within a neighborhood of an observed feature in feature-attribute space. If the

probability is large, then the POBP may assign the predicted feature to match the

observed feature. The implications of this match are then found by baclq)roject-

ing the measurement error distribution of the observed feature by re,computing

the conditional probability given in (1). Algorithms employing the POBP typi-
cally maintain a measure of the current goodness of the solution. One measure

is the volume, in scene instance space, for a given model, that contains a sizable

portion of the conditional probability distribution. If the volume of such a region

goes to zero, the solution can be considered inconsistent, and backtracking is

usually prescribed. If, on the other hand, a small region containing much of the

conditional probability exists, it is likely to be correct. Thus, the POBP usually

takes the form of a tree search, with each node representing an additional hy-

pothesized match between a predicted feature and an observed feature. If the

measure of the goodness of the solution increases above a threshold, then an
object is recognized.

As mentioned previously, backprojecting the implications of a featta_ match

is difficult for the case of 2-d data and 3-d objects. This may explain why

there are few reported methods for using the POBP to recognize 3-d objects

in 2-d im_lges. In matched dimensionality domains, by contrast, full-fledged

backprojection can be approximated in such a way that it becomes trivial. Thus,

there are a larger number of tree structured methods in matched dimension
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domains that fall into the category of POBP than in general domains. However,

the backproiection portions of these algorithms are somewhat atrophied. These
will be mentioned in later paragraphs.

Perhaps the two best examples of algorithms that employs the POBP for

recognizing 3-d objects in 2-d intensity images are the methods of Goad [Goa83]

and ACRONYM [BGB79, BroS1, Bro83, CCL84]. We feel that Goad's approach
is better overall. In particular, Goad's method is actually has been shown to

recognize 3-d objects whereas ACRONYM has never been shown to work on

true 3-d scenes. Further, ACRONYM, while it has much to contribute, has

serious flaws that would prevent it from ever becoming a practical system. The

problems with Goad's approach are of a more subtle nature, problems that VGD

has been designed to overcome. Therefore, we will describe Goad's system as
the archetype of the POBP.

The features used by Goad's approach are line segments. 2-d line segments

are assumed to be the result of the projection of one of the edges of one of the
polyhedral models. Thus, the method uses object-attached features.

Models consist of a list of the 3-.<tedge segments comprising a polyhedron.

Each 3-d model segment has an associated list of facets on a partition of the

viewing sphere from which it is visible, called a "visibility locus". The viewing

sphere is partitioned into 218 view regions. The locii a_ represented as bit

strings that denote the union of some of the 218 view regions. Each visibility

locus for each model is precomputed since the locus does not change during
recognition.

At anv time during the course of a solution, Goad's system maintains a

current "locus of visibility", denoted L, which is the current set of viewpoints that

could account for the visibility of the currently matched image and model line

segments. The locus L is Goad's approximation to the conditional probability
density described above.

At the start of the algorithm, all possible model edges are considered can-

didates to match any model edge. Once the initial match is made, the visibility
locus L is initialized to the visibility locus of the model feature (the first back-

projection). Prediction is accomplished in two steps. First, an unassigned model
edge whose visibility locus has a non-null intersection with L is selected. The

second part consists of two cases: (1) assume the edge is visible; and (2) assume

that the edge is actually invisible. At first glance, this may seem to be contra-

dictory since, if 15 intersects the visibility locus of the currently selected model

edge, then it should be visible. Actually, this is not so, since the true viewpoint
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of the model may lic inside a portion of L that lies outside of the intersection

of L with the visibility locus of the edge. This situation is iUuslrated in Fig. 6.

In the case where the edge is assumed to be visible, L is updated to be the

intersection of itself with the visibility locus of the currently selected segment.

The position and orientation of the projection of the model edge relative to the

projection of the initially matched model edge is then computed as the view-

point ranges over the current visibility locus. The range of relative locations

and orientations, plus the known location of the first edge (since it has already

been matched), and some account for measurement error, provides bounds on

the location and orientation of image edges that could match the projection of

the model edge. If, after attempting to extend the match further, the algorithm

finds that the current match is inconsistent with the assumption that the current

model segment is visible then the algorithm assumes that the current segment

must be invisible after all. It then restores L to its state before the visibility

assumption was made, and then updates L to be the intersection of itseff with the

complement of the visibility locus of the currently selected segment. If this in-

tersection is empty, the algorithm backtracks to a previous choice point. If there

is an intersection, the algorithm chooses a new model segment and continues
with a new prediction as in the visible case.

Observation is simply the process of checking the list of detected image

segments for those whose position and orientation fall into the bounds predicted

for the model edge we want to match. If any such image features exist, extend

the hypothesis to include one of them as a match.

Backprojection refines the visibility locus of the current hypothesis, L, by

restricting it to a smaller locus, say L', that is consistent with the measured pose

of the image feature that was matched to the currently selected model feature.

This is done by computing the pose of the current model feature at all points in

L and retaining those that result in the projection of the model feature having

the same relative pose to the initially matched edge as measured from the image
segment.

A hypothesis is accepted if its "reliability" is greater than threshold, and

backtracking occurs if L becomes null or if the "plausibility" of the match falls

below another threshold. "Reliability" is similar to "perceptual significance" as

defined by Lowe [Low87a], and is thus synonymous with "non-accidentalness".

Details on the calculation of the reliability measure arc not given. However, it

appears to be done in a manner very similar to Lowe's method. "Plausibility" is

a measure of the likelihood that the edge detector would have missed the edges
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Figure 6: L is the visibility locus of the current solution, and E is the visi-

bility locus of the model segment currently under consideration as a possible

addition to the hypothesis. The dot in L denotes the correct viewpoint, under

the assumption that the hypothesis so far is correct. Although E has a non-nuU

intersectionwith L (thedark gray region),the edge isactuallynot visiblesince

E does not contain the trueviewpoint.
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that were predicted to be visible in the current hypothesis. However, poor edge

detection is not the only way that edges that arc visible can fail to be detected;

occlusion is another possibility. The algorithm does not take this into account,

and thus is restricted to recognizing largely visible objects.

Since the relationships between the features arc all relative angular relation-

ships, the values of the viewing parameters not described by L, which include

image-plane translation, rotation, and scaling, can be determined by examining

any pair of edges. No fitting is done to improve the final estimate of the viewing
parameters.

ACRONYM [BGB79, Bro81, Bro83, CCL84], an ambitious system that has

been cited often in machine vision literature, also follows the POBP. The system

is complex, and its description will be heavily abridged in this discussion. Ob-

jects are modeled via an "object graph" which consists of two subgraphs. The

first is a subpart graph whose nodes arc assemblies, and whose arcs arc directed

from complex to simple assemblies. The other subgraph, called the "restriction

graph", allows generic classes to be represented by placing bounds on the di-

mensions, number, and relative poses of subassemblies. These two subgraphs

are actually trees. The leaves of the trees are modeling primitives called "gen-

eralized cylinders". Generalized cylinders (GO's) arc specified by a "spine" and

a "sweeping rule". A GC is created by sweeping a cross-section, specified by

the sweeping rule, along the spine of the GC. In the general case, the cross-

section may change arbitrarily along the length of the spine, while remaining

perpendicular to it. Thus, GC's are very flexible modeling elements. However,

ACRONYM actually uses a small subclass of all possible GC's. ACRONYM

allows GC's that have rectangular, hexagonal or circular cross-sections. Spines

may be linear or circular, GC's with linear spines are allowed to have their di-

mensions linearly varied along the leng',.h of the spine, while those with circular

spines must have constant cross-sections.

Perspective projection of ACRONYM's restricted class of GC's results in 2-

d ellipses, trapezoids, and hexagons. The features that ACRONYM uses reflects

this: ellipses and "ribbons" constitute ACRONYM's feature set. A ribbon is

the 2-d analog of a a generalized cylinder. Ribbons are restricted to have linear

spines and sweeping rules, implying that they am actually trat_zoids. The

trapezoids and ellipses am found by applying an edge detector then a linker

followed by a line finder [NBS0]. Ribbons and ellipses arc detected from the

line segment data, and become the nodes of the "observation graph". Arcs of the

observation graph are relationships between features. Only connectivity between
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ribbonswas implemented.The matchingin ACRONYM is basedentirely on
this ellipse-ribbonlevelof description.

Matching follows the POBP.At first, thereare few, if any, constraintson
theposesof theobjectsand their component subassemblies. Thus, the possible

poses and shape attributes of the ellipses and trapoz.oids that could result from

the projection of any of the object graphs vary widely, allowing many possible

matches between predicted features and observed features. Later in the interpre-

tation process, the constraints on the poses of the objects and their subassemblies

reduce the variance in the attributes of the predicted features, reducing the num-

ber of observed features that are likely to match, as in Goad's method above.

Predictions are placed in a "prediction graph" whose nodes consist of features

and bounds on their attributes, or, recursively, other prediction graphs. Arcs

describe relationships between the features, such as relative spine orientation
and connectedness.

Observation consists of querying" the observation graph for any features

that match primitives in the prediction graph and that are consistent with any

observed-fe_ture to predicted-feature matches already in effect.

If an observed feature is assigned to match a predic_d feature, then the at-

tributes of the predicted feature (which may be quite loosely specified) are set

equal to the observed feature. The implications of this match are bac_rojected

in the form of tighter constraints on the pose of the objects and their subassem-

blies, reducing the possible ranges of the viewing parameters and the model

parameters. The manner in which this is done is at the heart of ACRONYM,

and, in this author's estimation, is one of the primary reasons that ACRONYM

never worked on true 3-d images. All transformations are represented symboli-

cally by products of primitive transformations, which, in turn, are parameterized

by variovs angles and displacements. The forward projection and backl:)rojec-

tion mappings are, therefore, described by very complex, coupled sets of sym-

bolic trigonometric equations. A symbolic algebra manipulation system was

employed to propagate the effects of fixing a set of feature attributes back into

the object gr, lph. The same system was used to propagate the new bounds on the

attributes of the predicted features that result from the tightening of the back-

projected constraints. The problem is that solving such systems of equations

exactly is intractable, so the system was forced to make liberal approximations.

The approximations could be so bad that the resulting upper and lower bounds

are useless in constraining the search.

While a gTeat deal of effort was put into ACRONYM to handle general 3-.d
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scenes, none of the results published have ever shown ACRONYM is able to

recognize general 3-d objects. Most results show interpretation of aerial scenes

from a fixed viewpoint, a problem that could bc solved much morn simply.

Extensions were shown for a set of switch parts [CCL84], however, only stable

poses were allowed. These situations reduce to 2-d recognition. Further, the use

of a restricted set of GC's hurt the system, as well as staying at or above the

level of ribbons and ellipsed in the level of data abstraction, preventing lower

level information from strengthening or weakening interpretations.

Another POBP method for recognizing 3-d objects in 2-<1 intensity data is

described in [BAM86]. Features in this method arc comers and line segments.

Large "blobs", or regions enclosed by these features, arc also found. The search

is tree-structured through the space of possible modal-feature to observed feature

pairings. Backprojection consists of using either a least-squares method or a

method based on the ratios of the areas of blobs to find the transformation that

.best maps the model features onto the observed features. No effort is made to

approximate the conditional probability density; a single point in transformation

space is found, with the implicit assumption that some neighborhood of this

point is also valid. The tree search is guided by an admissible heuristic that

encodes information about the geometric mismatch bctwe.cn predicted features

and observed features, as well as noise in the feature detection process. Results

arc given for images of wholly visible fighter planes.

There :_re two probable reasons for the relative scarcity of methods that use

the POBP to recognize 3-d objects in 2-d intensity images. One is that perform-

ing backprojection is very difficult in all but the most simplified cases, even

when object-attached features arc employed. The second is that, empirically, it

appears that reliable recognition of 3-d objects in 2-d intensity images requires

that, at some level, the prediction be very complete. In contrast, most POBP-

based methods employ a sparse feature-based representation of the predictions

of the objects. They do this primarily to cut the combinatoric complexity, al-

though the complexity of performing a tree search in an inhomogeneous featm'c

space is also likely to be a factor. The incremental verification scheme of VGD

is directed toward handling this problem, while retaining robust performance.
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2.3.3 Marched Dimension Domains and the Predict Observe Backproject
Paradigm

POBP-based methods that operate in matched dimension domains are more plen-

tiful than methods that operate in general domains. This is partly because back-

projection becomes simpler, amounting to nothing more than alignment of model

features with observed image features to within measurement errors. In addition,

less complete representations of 2-d predictions can be used and still result in a

a robust approach, allowing a tree search in a homogeneous feature space to be
used.

There are several well-known examples of such approaches. One of these

is the method described in the following papers by Grimson and Lozano.-Perez

[Gri88a, GLP84, GLP85, GLP87]. This method is applied both to recognition

of 3-d objects from sparse range data, as well as recognition of 2-d objects

in 2-d intensity images. The approach for recognizing 3-d objects in range

data 3-d approach is described; the 2-d case recognition case is completely

analogous. Both models and images are represented in terms of their features,

planar patches. The method searches an "interpretation tree" (IT), whose nodes

consist of all possible strings of observed-feature to model-feature pairings. The

length of the strings corresponds to the depth of the node in the tree. Observed

features may also be paired with a "null face", indicating that the feature is

spurious with respect to the current model. The pairings are first "filtered" by

clustering the model-feature to image-feature pairs in a subspace of the full

6-d viewing parameter space using a Hough approach. Branches of the IT

that have pairings that belong to the same cluster are regarded as more likely

to represent valid interpretations. Early versions of the method [GLP84] used

decoupled geometric constraints between pairs of observed features and model

features to prune the IT, i.e., a branch is pruned if the latest set of two pairs of

model features and observed features do not have the same relative geometric

relationship, to within measurement error. Thus, the search never explicitly

worked in viewing parameter space, and so there was no backprojection step.

More recently, however, the authors used full coupled constraints that consist of

determining the viewing parameters based on the features matched so far. This

constitutes a simple form of backl:n'ojection, to prune the IT. If backprojection

indicates that there is no set of viewing parameters that can map the model

faces onto the observed patches to within measurement tolerances, then the

branch is pruned. The search of the IT proceeds in depth-first fashion until the
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interpretationbecomesvalid, or is pruned.An interpretationis consideredvalid
if it explainsa largeenoughportionof theareaof therangeimage.

This methodhasbeenextendedto work with curvedobjectsin 2-d [Gri89,
Gri88c] and pararneterized2-dobjects[Gri88b]. There are a number of MDD

methods that are very similar to the one described above. They include [Gre86,

KK87, FH83, AFF84, AFFT85, AF86, MC88, PILSI.,88].

An interesting algorithm is described by Van Hove in [Hov87]. This method

is very similar to the early version of Grimson and Lozano.-Perez's algorithm

wherein the branches of the tree search were pruned using pairwise geometric

relations between features. The novel part of Van Hove's approach is that this

idea is used for 3-d recognition from 2-d intensity images. This is suprising

because such geometric relations are highly dependent on the viewpoint, and

may take on a wide range of values over the viewing sphere. Such wide ranges

on values of the attributes of the geometric relations reduce their pruning pow_.

Grimson and Lozano-Perez's method'needed only to account for measurement

error, which it typically much smaller in magnitude than the variations due to

changes in viewpoint. Since Van Hove's method is very similar to Grimson's

method, and since it performs no backprojection during its tree search phase, it

is discussed here rather than earlier in this section.

Van Hove's method employs pairs of linear edge fragments as features. The

key to the method is a preprocessing step where each model is rotated to all

possible views in a densely populated sampling of the viewing sphere. The range

over which each feature's attributes vary is recorded and stored as part of the

model. The space of image-feature to model-feature pairings is searched, as in

Grimson _lnd Loazano-Perez, without the use of Hough clustering as a heuristic.

At each node, a model feature is allowed to match an image feature only if the

image feature's attributes are within the allowable precomputed bounds of the

model feature's attributes. If not, the branch is pruned.

Were the tree search the only means of finding valid interpretations, it is

likely that Van Hove's method would not work well. As it is, the tree search

is used only to generate good hypotheses for testing, somewhat in the spirit of

Bolles and Cain [BC82]. During the hypothesis test, the features matched by the

tree search algorithm are used to compute an estimate of the viewing pazameters

of the model. These, in turn, are used to generate a more complete prediction

of the appe:_rance of the model, which is then compared to the image to decide

which hypotheses represent valid interpretations.
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2.4 Global Feature Methods

A global feature is a feature whose attributes are calculated based on the en-

tire region that an object occupies in an image. Typically, global features are

shape descriptors, i.e., their attributes encode the shape of the region that the

object occupies. Usually they are constructed to be invariant to image-plane

translations, rotations, and scalings. Thus, ideally, their attributes change only

when the shape of the object changes. Under weak perspective, the usual imag-

ing assumption for such methods, this can happen only when the viewpoint

changes.

By their nature, methods that rely on global features assume that an object

has been accurately segmented from the background, leaving only the problem

of identification. In certain domains, this is a reasonable assumption. In most

domains, however, such segmentation is very difficult. Because of this, global

feature methods are of little practical value. However, in their favor, unlike all

other methods that have been examined so far, these methods do not employ the

object-attached feature assumption. This follows because the region over which

a global feature is calculated is the silhouette of the object, and, as shown earlier,

any feature depending on the shape of the silhouette cannot be object-anached.

Since global features are not object-attached, analytic methods for deter-

mining the viewing parameters of the model given the values of the feature's

attributes do not exist. Therefore, the mapping from feature attributes to view-

points must be precomputed and stored in a form of multiview model. Indeed,

it is a trademark of global feature methods that they employ some type of mul-
tiview model.

There are many types of global features. Some common examples are area,

perimeter, compactness (ratio of area to perimeter squared), Fourier descriptors

[PF77, Gra72] and Wigner distributions [J'W84], and moment invariants [Hu62,

Tea80, AMP84, TC88].

Matching in global feature methods is usually very simple; most of the effort

goes into co,reputing the features. The preprocessing stage creates a multiview

feature representation for each model by calculating the feature vector for each

model for a large number of views, usually approximately uniformly spaced

over the viewing sphere. Most methods do this by graphically rendering the

silhouette of 3-d CAD models of the objects, although some have simply taken

images of a physical model over the viewing sphere [DBM77]. At recognition

time, an image is processed by segmenting the object region and calculating the
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featurevectorfrom it. Then,thefeaturevectorsstored in the multiview models

are compared to the image feature vector using some distance measure on the

feature space. The model and view with the most similar global feature vector

to the image feature vector is taken to be the correct identification of the object.
Typically, no further verification is done.

A good example of a global feature method is that described by Dudani et

al in [DBM77]. The features used by this method are moment invariants. There

are several flavors of moments and invariants. Dudani et al use the standard

central moments and the invariants found by Hu [Hu62] using the theory of
algebraic invariants. A moment is defined as:

"V,, = zPYqp(z, y) dz dy, p, q = 0, 1, 2, , (2)'._O -'3.0 "'"

where p(z, _/) is an image function. In the method at hand, if S is the set of

silhouette points in the image, then p'--- 1 if (z, y) 6 S, and p = 0 otherwise.
The central moments are defined by

tLIL
;t_ = (x-_)_'(!l-Y)qP(z'Y)d=dy, P,q=0,1,2,.. (3)

where

= rnlo/moo,_ -- tool�moo.

Central moments are invariant to translations of the silhouette. Using the theory

of algebraic invariants, it is possible to combine the central moments so that

they are invariant to image plane rotation and scaling as well. For example, the
invariants c_f order two, i.e., p + q -- 2, are:

/.=o2+/_2o,

(/_o -/_o2) 2 + 4/_1.

Dudani et al used the seven lowest order invariants. Higher order invariants

have been shown to be sensitive to noise [Wie83, AMP84, AMP85, TC88].

The feature vector was fourteen elements long: seven of the invariants were

computed with S as the entire silhouette region ( while the other seven were

computed using S as only the points on the silhouette boundary.

A multiview model was constructed by taking images of the models to be

recognized at 5 ° increments of the Euler angles parameterizing the viewing
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directions, and, for each view, calculating and storing the resulting fourteen
element feature vector.

Recognition consisted of taking the binary silhouette, calculating its 14 mo-

ment invariants, and searching the multiview models for the feature vectors that

are most similar using the distance-weighted k-nearest neighbor rule [Dud76].

The viewing direction that yielded the most similar feature is reported as the sys-

tem's recognition result. This system does not actually make a decision about

whether the object is present or not, and so arguably, does not perform true
recognition.

Other global, moment-based methods include those described in [RT89,

TR87, BFg6, ReeSl, RPTS5]. There are a number of methods based on nor-

malized Fourier descriptors as well [WMS0, wwg0, WMFSI, Kuh84, SD71].

2.5 Optimization-Based Methods

Optimization based approaches are superficially similar to VGD's tracking mod-

ule. These methods usually generate some kind of global disparity measure

based on the shape-disparity between curves or regions in the image and the

rendering of curves or silhouettes derived from a 3..d model. The disparity

measure is a function of the viewing parameters. Since the viewing parameters
form a contint)ous space, and the disparity measures are themselves made to be

smooth flmctions of the viewing parameters, continuous optimization procedures

may then be used to search the space of scene instances for the minimum of

the disparity measure. If the disparity resulting from applying the optimization

procedure is small enough, an object is recognized.

While the approach is, in principle, sound, there are a number of difficulties

that plague these methods. The most serious is the problem of local minima.

Any continuous optimization procedure uses local knowledge of the similarity

function to drive its search. Unfortunately, local information yields no informa-

tion enabling a local minimum to be distinguished from the global minimum,

thus there is no way for an optimization procedure to distinguish a local mimima

from a global mimima. Therefore, these methods often become trapped in local

minima of the disparity measure.

Another problem is the disparity function itself. The nature of the disparity

measure impacts the number and severity of the local minima, as well as whether

the method can find partial instances of objects. The problem of local mimima

is often dealt with by starting the optimization at many different points in scene-
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instancespace,choosingthe bestresult,and hoping that the best result is the

global minimum. This is both time-consuming and unreliable. Recognition of

partial objects is not possible with the reported methods.

While optimization-based methods have difficulties, they have the advantage
that any features, not just object-attached features, can be used. If their other

problems cot_ld be solved, they would be able recognize wider classes of objects

than other methods. The tracking approach of VGD goes much of the way

toward solving these problems, opening the door to this goal.

A recent optimization-based method possessing some parallels with VGD is

described in by Stark et al [SEB88]. Models in this method are polyhedra and

an associated aspect graph. As mentioned previously, an aspect graph is a set

of topologic;_l equivalence classes over the sphere of viewing directions. In this

case, the edges of the polyhedral models are rendered under perspective, with

hidden lines removed, and the resulting views am grouped by the equivalence

of the topology of the resulting set of 2.-cl line segments. Each such equivalence

class is called a "cell". Associated with each cell is a set of viewing parameters

that generate a "prototype" instance of the object. The essence of the method is

to use these prototype model instances as starting points for optimization. The

authors argt_e that the aspect graph provides a partition of viewing parameter

space that will be likely to have separate local minima. Thus, the optimization

is started from every prototype model instance, and it is constrained to remain in

the cell during the optimization. The best result is then selected as the recognized
object.

The idca of attempting to systematicallyisolatelocal minima is a good

one, and is somewhat similarto the approach of VGD. However, VGD uses

a featureindexed associativememory to retrieveonly those views that have

matching featuresratherthan attempting to startfrom every possible stored

view, or aspcct,as thismethod does.

While there are some parallelsto VGD the optimization portion of the

algorithm is rather different. The system processes an image to extract a line

drawing of the image, and, treating it as a graph with vertices as nodes and

segments as arcs, selects a unique subset of the set of all possible circuits in the

graph. These circuits are the "elementry" circuits of the graph, and correspond

to the faces of the imaged polyhedron. Next, a Fourier descriptor representation

of each such elementry circuit is computed. The figure of merit for the match is

computed by projecting the model using the current set of viewing parameters

(as obtained from the optimization algorithm), and Fourier descriptor features
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arc computed as for the image features. The algorithm examines all possible

pairs of image circuit Fourier descriptor features with those derived from the

model to determine the "best" match. Using this match, a "figure of merit" is

reported (not described in the paper) that is used as the cost function. The cost

function is optimized using the method of damped least squares.

Note that this method requires the entire object to be visible. In addition, the

method works only for simple polyhedra, as complex polyhedra have intractably
large aspect graphs.

There are a number of earlier examples of optimization-based methods. The

method described in [WS82] uses the Lcvenbcrg-Marquardt method to optimize

the squared distance between the Fourier descriptor representations of the image

edge contottrs and the projection of a space curve. The approach described in

[HW75] uses _adient descent to optimize a matching metric consisting of the

sum of distances between corresponding points on the image edge contours and

the silhouette outline. The system described in [MGA88] is interesting because it

describes connectionist matching network, and, further, includes both a subpart

hierarchy for models and a class hierarchy, expressed in the form of isa and

ina links in the model network. Possible instantiarions of model entities are

connected to all possible matching model parts and subparts by matching nodes.

The strength of the matching nodes am adusted to maximize the consistency

of the match. The consistency of a match is computed using "consistency

rectangles" which, essentially, describe the similarity of binary relations in the

image to bindery relations in the model.

Local minima are reported to be problematic in all of the methods described

above, resulting in limited success. In all cases, continuous optimization methods

were used. Discrete optimization methods, such as simulated annealing [Rut89]

and dynamic progTamming [ATWS$] could be used, but they arc more inefficient

than continuous methods. A better solution is to use additional information to

provide good guesses as to the location of the global minima. This idea is at the

heart of VGD, and opens the way to the recognition of occluded objects using

general, not just object-attached features.
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Appendix B

Review of 3D Model Acquisition Techniques

The modeLing of three-dimensional objects using multiple camera views is an active

research area in computer vision and is poorly defined at present. The goals of this research

have ranged from rendering realistic environments for simulation, modeling of the world for

intelligent robot navigation, acquiring three dimensional models for object recognition, to

supplying model data for CAD and biomedical applications. Approaches for automatic model

acquisition can be characterized along two basic data fusion methods 1) volume intersection of

object silhouettes projected on the image planes, and 2) fusion of object surface patches

reconstructed from multiple viewpoints. This appendix describe the various approaches that

have been attempted to achieve these goals, and provide an outline of the respective research
efforts classified along these two lines.

The different research efforts can also be described by the type of input data and the

object representation scheme used in fusing the clara. Intensity and range images are the two

most commonly methods for inputting dam. Intensity data is typically capture d with video

cameras, while range data is collected using either a laser-range camera, structure lighting, or

stereopsis. The sensor used dictates the type of information that can be recovered. Structure

lighting yields sparse but more easily registered range data points than dense range maps.

Dense range maps are constructed slowly with a laser rangef'mder that scans an object scan-line

by scan-line. Conversely, intensity data can be instantaneously captured by inexpensive

sensors. However, such images do not yield depth information directly. In addition, techniques
such as stereopsis must be applied to recover range data.

To build up a complete model of an object, the data from differem images must be first

registered and then combined. Data has generally been registered using a) a fixture to hold an

objectatwell-definedview angles,b) a fixedarrayoflighzsand cameras to capturethe image

data,or c)registrationpointson the surfaceof an object,where a sufficientnumber ofpomzs are

sharedbetween views to registertheviews. Multipleviews of an object must be combined in

ordertocapturethe shape of a 3D object.Viewpoinzs can be consu'ainedto 3 (orthogonal)or 13

positionstoyieldan efficienzfusionalgorithm.Fusion of data can be performed efficientlyif

the objectstobe modeled are of some specifictype,eg.polyhedral and cylindricalobjects.
Similarly, fusion can be simplifiedifobject silhouettescan be obtained.

Finally, different representations have been used to model objects and for their

reconstruction. The three basic categories have been volumetric, boundary, and wire frame



models.Object models can be further organized by decomposing an object into modeling

primitives. For example, volumetric models have been used that have volume elements, i.e.

voxels, as their basic modelling primitives. Surface patches, on the other hand, are used to

construct surfaces in boundary models. Lastly, coarse models can be derived by composing an
object fi'om generic primitives, such as cylinders and ellipsoids. In order to capture accurate

surface detail, the VGD system will employ boundary models of surface patches for the 3D
objects to be modeled.

1 Volume Intersection

A very popular data structure used for volume intersection are octrees. Octrees are 3D

counterparts of quadtrees [Sam85], a hierarchical data structure for image regions. An octree is

a true volumetric model representing a 3D object space, defined by a fight-handed object

coordinate system, to contain a 2n x 2 n x 2 n array of volume elements catled voxels. A voxel,

the 3D equivalent of a pixel (picture element), is assumed to contain a homogeneous volume of

material and can be either occupied or vacant. It also defines the resolution of the modeling

system. The usual shape of a voxel is a cube although a rectangular parallelepiped could be
used in a more general system.

The volun_ of the array of voxels is caLLed a 3D voxel universe and it is aligned with the

object coordinate system. It is assumed that all objects of interest are within this universe and

remain there during all operations. The space outside the universe is assumed to be void of all

objects. An octree is an 8-ary tree structure generated by a recursive subdivision of the

modeling universe into octants until homogeneous blocks of voxels are reached. If an octant

does not consist entirely of the same type of voxels, then it is further subdivided until

homogeneous cubes, possibly single voxels, are obtained. The root of an octree is at level 0 and
the voxels are at level n.
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of the construction process but enables one to derive simple and fast algorithms for handling
(simple) common cases. A variety of data structures for encoding an octree have also been

derived for specific performance advantages in processing speed and storage overhead. These
differences and their corresponding systems are highlighted below.

1.1 Review of Volume Intersection Systems

[Pot87] does the volume intersection by back-projecting the octree universe into the

image plane. The silhouette of a perspective projection of a cube into an image plane depends

on the relative position of the center of projection of the image and the coordinates of the six

faces of the cube. The faces partition the 3D space of the cube into 27 haft-spaces: 26 outside

and 1 inside. The index number of a partition that contains the center of projection, relative to

the current octree node, is used to f'md, in a lookup table, the number of silhouette vertices and

their coordinates. The coordinates of the cube vertex are projected into an image plane using 12

lookup tables for the object-to-image space transformations. The polygonal silhouettes of the

objects, defined by the vertex coordinates, are then approximated by their bounding rectangles

encoded as quadtrees. Each polygon is finaLly raster-scan converted for volume intersection, ie.

the pixels inside the polygon are determined in scan line order and are individually compared
with the contents of the (binary) image.

This is one of the more flexible octree schemes but the overhead in arbitrary back-

projection of the cube and the individual raster-scan conversions is high. Moreover, it requires

good camera calibration and viewpoint registration techniques to compute accurate object-to-
image space transformation for each image.

Instead of performing the costly perspective backprojection, view cones can be projected
into the octree universe and intersected directly in 3-space. {'Nob88a,Nob88b] constructs

polyhedral view cones for each image and projects them into the cube for volume intersection.

If a view cone is not convex, it is defined as the union of partitioning convex cones. The cones

are then used to check and classify the eight subregions of the parent cube as inside, intersecting
and outside each convex cone. Cone unification rules are next used to do the same

classification for the eight subregions with respect to each non-convex cone. Lastly, cone

intersection rules are used to integrate the information on the subregions from the multiple view

cones into the common region. A DF (Depth-First) representation [Kaw80] for linear encoding
of the imtial eight subregions is generated and recursively applied during model construction.

This octree building algorithm does not build a complete octree for each cone, but instead

builds only a part of the octree within the common region. It is thus able to process an

arbitrarily selected region in 3D space independent of all other region. The procedure is fast

3



when restricted to polygonal silhouettes. More complex contours can fh-st be approximated by

linear segments but at the cost of processing a larger number of convex cones and introducing
additional digitization inaccuracies. Accurate viewpoint positions are needed for the
projections into the cube.

The above approaches are flexible but computationally expensive. An alternative is in

restricting the possible viewpoints to yield simple and fast algorithms for handling specific

cases. [Chi86a,Chi86b,ChiS9] constructs the volume/surface octree from silhouettes obtained

at three orOtogonal views. Each occluding contour, encoded into the "principal" quadtree of the

associated silhouette, is first fitted with a tension-spline [5ch66] to allow better approximations

of the contour normals and hence more accurate surface information. With scaled orthographic

projection along the viewing directions, each of the three "principal" quadtree sweeps out an

oblique cylinder into the cube. Since sub-cylinders inside this volume may be identical, its

exact octree can be replaced with a pseudo-octree that contains no identical subtrees. These

orthogonal pseudo-octree are then intersected using simple tree traversal techniques to obtain
the resultant model octree [Jac80].

This approach may be useful for simple objects that are symmetric along its three

principle axes. The major disadvantage, on the other hand, is the inability to guarrantee that all
significant features will be captured by the constructed model.

[Ahu89] considers a less restrictive case in using silhouette images obtained from any

subset of 13 orthographic viewing directions. By restricting to these 3 "face" views, "6 "edge"

views and 4 "comer" views, a simple relationship between pixels in the image and the octant

labels in the octree is derived. The detection of intersections between the octree and the objects
is thus replaced by a simple table lookup operation between a pair of views.

This approach provides more accurate information with the higher degree of

reconstruction accurarcy but it stir has problems. Discontinuities cannot be modelled, as

evidenced by the approximation of object edges by rectangudar steps. The proposed set of 13

viewpoints is not sufficiem to build accurate models. The number of viewing samples needed

for building an accurate model is arbitrarily large. The number of viewpoints necessary for

reconstruction to within a desired accuracy depends on the viewing direction and the target
object.

[Car85] proposes a solution for modeUing discontinuities with the polytree model. It

attempts to include more surface information with three extra classes of voxel structure: vertex

cell, edge cell and surface cell. The result shows only negligible improvement. A forerunner of

the octree is the "volume-segment" representation proposed by [Mar83]. It borrows scan-line

techniques from computer graphics to construct a 3D object model from the bounding volumes
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carved out by the occluding contours. A wire frame with planar polygonal facets is then

derived from the volume segments. This approach is slow, inaccurate and suffers from the

usual problems associated with silhouettes. [Cap87] extends it to handle real images of parts

and compares the constructed models with renderings of the original CAD designs.

Other less attractive volume intersection techniques have been proposed.

[Che88] constructs a 3D model from a set of 3-view (orthogonai) type line drawings. Objects

are restricted to polyhedral, cylindrical and composites of the two that are not rotationally

symmetric objects. The object must be decomposable into subparts for individual

reconstruction and then merged to form a Constructive Solid Geometric (CSG) [Man88]

representation of the object. [IdeS6] has an even more restricted system that reconstructs

models of only polyhedral objects from a set of 3-view type drawings. [Sha86] uses simulated

2.5D sketches containing only depth information for their model construction but their

volumetric representation and algorithins show no advantages over octrees. Similarly [$iy86]

describes an iterative 3D algebraic reconstruction technique with results for two synthetic test

models under a variety of projections. The technique is, however, primitive compared to
octreeso

1.2 Disadvantages of Octrees and Volume Intersection

Octrees are an elegant data structure which enables a simple implementation of volume

intersection for model construction. This advantage is, unfommately, offsetted by numerous
problems.

One difficulty is that octrees can only provide coarse models of 3D objects.

Astronomical storage and processing overhead are required to capture surface details accurately.

Furthermore, the models are unstable and not invariant to rotation and translation. Thus,

completely different octrees have to be constructed for slight changes in voxel resolution or
object position.

A second problem with volume intersection, in general, stems from the dependence on
silhouette information. First, using silhouettes requires reliable contour extraction and

smoothing techniques. Second, silhouettes do not generally capture surface concavities and

object self-occlusion effectively. Third, digitization effects during volume intersection often
result in false boundaries in the final model.

There are possible reined/as to some of these problems. For example, f'me details can be

generated with surface interpolation over the voxels with more (post)processing. The accuracy

of this process depends, however, on the initial octree approximation. An alternative would be
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to uselong sequences of flames to refine an octree. This, however, requires that the best views

be selected, a difficult problem for unknown objects. Typically, arbitrary decisions are made on

the trade-off between accuracy and computation, and the trade-off between coarse and f'meresolution.

Not surprisingly, all experimentation with octrees to date has only been done with
synthetic data.

2 Surface Patch Fusion

In general, surfaces can be expressed in an implicit or explicit form [Bo189]. An explicit

form of a surface is the graph of a function of two variables. Let f : U c R a .. R. The graph of

y is defined to be the subset of R _t consisting of the points (xl,...,xn,j(xt .... ,xn)) for (x t..... x_)

e U, where U is an open subset of R a. The implicit form of a surface in R 3 space is expressed

as a set function f : R 3 ., R I f(x,y,z) = constant, where (x,y,z) are Cartesian coordinates of the

surface points. The explicit form is a special case of the implicit equation and is sometimes

referred to as a Monge patch. Another useful representation of a surface is the parameterized

form. A parameterized n-surface in Rn+k (k>0) is a smooth map ¢ : U., R n+k, where U is a

connected open set in R", such that 8 ¢p is non-singular (has rank n) for each p e U (which is

called the regularity condition). A parameterized n-surface in R n is simply a regular smooth
map from one open set U in R n onto another.

These surface patches are integrated together in an adjacency graph for the final

representation of a 3D object. An adjacency graph is basically a bidirectional graph with each

node representing a region and the Links between nodes the region connectivity relationships.

Such a graph is not, however, restricted to describing surfaces but can directly incorporate

information and relations on edges, vertices (comers) or even generic primitives -all of which

are derived from surface patches. Compared with volume intersection, the approach based on

surface patches yields surface models of higher accuracy and detail in adition to allowing
incorporation of surface reflectance properties during model reconstruction.

The standard model construction process has four major steps. The first step of

segmenting the image into coherent regions can be driven initially by edge detection or region

growing [Ba182,Hor86]. In the former method, the areas bounded by the extracted edge points

are connected and tested for coherence as segmented regions. In the latter method, image pixels

are grouped together on the basis of region coherence using intrinsic surface properties derived

from differential geometry [Bes86]. In the second step, the surface patches derived using a

least-squares surface fit are either laheHed with an unique symbol, or described in terms of

parametric equations. The patches may be recursively combined to form larger entities as long
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assomecoherence predicate is satisfied. The third step relates the various surface primitives in

an adjacency graph. Information on the different properties of a surface, such as reflectance and

texture, may also be included at each node. Lastly, integration of multiple views is done via the

transformation of the graph constructed from a new view to the global coordinate system, the

matching of corresponding nodes in the two view graphs, and the modification and/or insertion
of surface primitives to refine the relational object description.

2.1 Review of Surface Patch Fusion Systems

Few past systems that follow the above general strategy based on surface patches meet

with complete success. Although [Und75] may have proposed the fLrst system that learns

models of objects from multiple views, only results for a synthetic image of a single convex

polyhedral object are demonstrated. To simplify the learning process, objects are restricted to

be planar and convex and useful viewpoints that are known in advance. [Dan82] constructs a

model from four image views for a single object. Partial results for nine sets of synthetic data

are produced by an incomplete system. [Osh79,Osh83] consider multiple 3D objects in a single
range image. Region growing at multiple, successively more abstract resolutions is used to
generate an incomplete relational model.

[Asa87] segments the input images into spherical, cylindrical, or planar surfaces using

shading analysis. A synthetic image of a single object consisting of cylindrical and planar

Lambertian surface with constant albedo is projected orthographically. [Dou81] uses depth
cues and object models to construct a representation of outdoor scenes. After coarse

segmentation of the input image, a highly abstract semantic net relating the regions and object

models is built for the environment. [Xie86a,Xie86b] outlines an expert system that constructs

a relational model of a scene using artificial 2.5D sketches. No result/output is shown.

After extracting edges and lines from intensity images taken at different vantage points,
[Sha77,Sha84] constructs an object model by using the concept of vertex cycles to match

junctions and line segments between images. This approach stems from the various early works

of Clowes, Falk, Guzrnan, Huffinan and Waltz [BarSl]. [Yam88] considers only objects

composed of hinges, slides and solids. The modeler learns the number of these features and the

relationships between lines and vertices in image. Results are shown for a pair of compasses,

essentially a 2D object, lying on an uncluttered tabletop. [Bak77] describes a scheme used in

building models of 3D objects through binocular and motion parallax analyses. Curvature

irregularities in the the region boundaries are then correlated to construct the 3D object model.

[Yac75] analyzes images of objects taken from a nearly vertical direction by a TV camera.

After simple thresholding and contour tracing of the object outline, the object model is
constructed as a list of propeties.
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[Vem86,Vem87] scans objects resting on a base plane with a laser. The range image is

segmented into regions that are a collection of surface patches homogeneous in certain intrinsic

surface properties. A straight line on the plane is captured in intensity images. It is used as a

calibration mark for calculating interframe transfrormations. Simple averaging is then used to

merge two overlapping views. [Lau87] constructs simple and incomplete relational models of

(convex or non-c0nvex) polyhedral objects. Jump boundaries are extracted from a 3D range

image by gradient-based edge detection. The edge points are used to generate occluding and

interior contours which segment the object from the image background and into coherent

regions. The hemispheric histogram, a specialization of the Extended Gaussian Image, is used

to extract surface orientation information in detecting corresponding regions in an image of

multiple objects. Regions, however, can not contain holes and undersampling may occur with
increased obliqueness of a facet.

[Her84a, Her84b,Her86] incrementaUy constructs a 3D model of complex scenes from

multiple images. Stereo and monocular analyses are performed for image data collected at

different viewpoints. Linear structures representing building boundaries are extracted from the

images and combined with hypothesized new vertices, edges and faces, using task-specific

knowledge on block-shaped objects in an urban scene. The edges and vertices from such

analyses are then used to construct the 3D wire frames. The MOSAIC systems handles very

complex scenes but in order to achieve success, a lot of assumptions and constraints have to be

used: task-specific knowledge on urban scenery, trihedrai polyhedra scene primitives, and

limited linear 3D scene features of edges and comers. Due to the task complexity, the matching

of junctions in the scene is slow and the scene interpretation is incomplete. Surface detail is

provided as simulation by registering image regions with object surfaces.

[Ste86,Con86,Con87] constructs 3D models of polyhedra objects. The objects are placed

on a turntable and scanned by a laser stripe. Wire frames are built from connected chains of

curvature and step edges approximated by straight line segments. They are fleshed and adjusted

before obtaining a least-mean planar fit of the surfaces bounded by viewplane cycles (closed set

of edges and vertices). A refined model b produced by intersecting the view polyhedra from

multiple views using a boolean intersection algorithm implemented in the GEO-CALC system

[Bar86]. Surfaces are rendered with a Lambertian scattering model. This system is restricted

by the need of placing the polyhedrai objects on a turntable. No surface detail such as texnu-e is

modeled by the wire flame representation.

Instead of just surface patches, [Fer85,Fer88] take the surface patch representation a step

further. A 3D object model from multiple views is derived in terms of volumetric primitives

such as ellipsoids and cylinders. This is done by taking the intrinsic surface feature points,

derived on the basis of surface principle curvatures, and grouping them together to form



extremalandparabolic contours for parsing a surface into patches. 3D surface point

correspondences for multiple views is done by normalized cross-correlation of the feature fields

in the surface graphs. In matching candidate feature neighborhoods between views, the

interframe transformations are recovered to construct a composite surface graph for the object.

This composite surface graph, realized as a set of dynamically intrinsic images (DII), is used in

the geometric inference process to identify the volumetric primitive associated with a patch (or

set of patches) and to obtain the primitive's parameters. Mulitple primitive instantiations for

the same subset of image data is resolved via shape similarity functions. Results are presented

for a symmetric synthetic image and a range image of a statuette. The final models based on

inferred volumetric primitives are coarse and imprecise. Not only very little surface detail is

captured, the modeling accuracy of the selected set of primitives is not obvious.

[Hu89] recovers 3D surface points for a scene containing multiple objects using structure

lighting with a uniform grid. Either a striped image or a gray-scale image can be taken by

merely switching the lights of the projector and the global coordinate system is f'Lxed on the

work'table. A calibration procedure computes the tranformation matrices M c (work'table-

camera) and Mp (projector-worktable) for computing the position of a surface point. After

extracting the network of light stripes, geomeuic and topological constraints are used to

hypothesize and test matches for solving the line labelling problem. The geometric and

topological constraints are based on the uniqueness constraint (Cl) and the continuity consuxint

(C 2) of [Mar76]. Based on using these two sets of constraints for disambiguating surface

solutions, [Hu89] presented five algorithms for 2D network exwaction, single 3D point solution,

single 3D network solution, network boundary extraction, and scene solutions. This approach is

guided by three basic assumptions. First, objects in the scene ave solid, static and opaque.

Second, object surfaces are smooth and are of low order in the sense that the spatial frequency

of surface undulation is less than the stripe frequency. Third, surfaces are much larger than
stripe spacing so that a surface patch is covered by a multistriped network.

[LeM85]'s approach is based on the observation that the type of range data to be collected

will differ with regard to sampling frequencies (in space and time) and resolution of range

texture. A grid of horizontal and vertical lines including several dots is projected omo the

scene. The dots are used as landmarks for initiating the line labelling process and "covers" the

entire image. The camera and projector ate separated by a vertical baseline so that range

information is apparent in the distortions and discontinuities of the horizontal lines. The

vertical lines are used to guide the extraction of the horizontal tines and to normalize the albedo

variations. Grids can be designed with patterns of different thickness to be used for a multi-

resolution range sensor. Associated with the finite thickness of the lines is an inherent

"smoothing" of range texture. Higher frequency of range discontinuities cause the thinner

projected lines to break up, whereas the thicker lines display very little distortion. A simple

formula relates this smoothing of range texture to the thickness of the grid lines. In particular,
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thef'mite _fickness of the lines imposes a maximum on the detectable range. After filtering the

image with the Laplacian of Gaussian operator, a shrink and expand procedure is applied to

extract the vertical lines. Row and column accumulators are used to locate the vertical bars and

the grid intersections in the image. The albedos in the orginal gray level image is normalized

by computing a local threshold based on a square neighborhood at each point. Labelling of the

intersections is initiated with the location of the dots and completed by combining and

interpolating among the initial labels. Disparity values are then f'mally assigned to the extractedand labelled intersections.

[Pot79] uses a pair of images containing a single object for such model construction. The

object is pattern-illuminated by photogrammetric techniques and imaged under perspective

projection inside a calibration fixture. Calibration marks on the fixture are extracted using the

Laplacian operator and the Hough transform ['Ba182]. The marks are used in computing the

camera transformation matrix. The grid patterns are extracted in the form of straight lines and

cubic curves using scan-line-to-vector conversion. Points and curves are then matched between

images on the basis of the topology of the projected grid network to generate the 3D model. An

inverse mapping is used to reconstruct the matched cycle in 3D space using a least square-error

technique. Nodes adjacent to this initial cycle are reconstructed and iteratively propagated in all

directions using heuristic search methods. This process reaches quiescence when all the nodes

are procesm_ This approach suffers from several problems. Surfaces are required to be

photographed within a camera calibration fixture. The ten calibration marks have to be visible

among the set of images. The surfaces cannot be transparent, highly reflective or totally black.

Results are presented on the reconstruction of isolated surfaces using just polygonal shape
approximations that contain no surface detail.

[Ver87] describes a method of obtaining 3D replica made of polyurethane foam from an

arbitrary pan of the human skin. An integrated system consisting of a photogrammetric stereo

restitution system and a CAD system integrated with a NC 3D milling machine is used in

constructing the replica. The depth values for a stereopicture of the frontal view of a human

face is manually digitized. The surface is then fitted with B-spline functions which are used by

the CAD system for the replica. [Duf88] scans the facial dimensions of a live human subject

with a line of light from a low power laser under 5 seconds. The facial boundary is obtained by

thresholding the range image and fitted with the longest possible line segments. Selected points

in the depth map form vettice_ for the polygonal model of the face. Polygons are formed in

such a way that where the surface details are complex, the polygons are small and where the

surface is feamrelem, large polygons are generated. After hidden surface removal, texture

mapping using Phong shading [Rog85] incorporates surface details onto the model facets.

[Sat86a] uses passive stereo techniques to measure the shape of statues on the Easter

Islands from images taken at multiple viewpoints. For the solving the correspondence problem,
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smallmark seals are stck on the statutes during the day and structured light patterns are

projected onto the statutes during the night. Partial sterreo mathcing is done by dynamic

programming and the epipolar line search. The correspondence search is completed with

manual pointing by a human operator to construct the final range map. Results for images at a

single viewpoint are demonstrated. [Sat87] obtains range data using the Liquid Crystal Range

Finder (LCRF) based on a nematic liquid crystal mask [Sat86b] and Gray coding [Ino84]. The

3D model of an object on a mmatable is then constructed from a set of such range images taken

at multiple view. The global coordinates is calibrated with respect to the floor (z-plane) and the

rotation angle is calibrated against a reference cube. The wraparound 3D data is derived from

horizontally sliced contours. Experimental resutlts is shown for one statuette.

2.2 Advantages of Surface Patch Fusion

Compared with volume intersection, the surface patch fusion approach yields surface

models of higher accuracy and detail. It aUows direct incorporation of surface reflectance

properties during model reconstruction. It minimizes necessary storage and processing

overheads. And last, nut not least, the parametric form for representing surface patches is
invariant to motion.

Currently, robust techniques exist for calibrating cameras, calculating interframe

transformations, recovering range information via stereopsis and triangulation, computing and

reconstructing 3D surface solutions, and fusing 3D surface data from multipe views. The best

work in this area are exemplified by the systems of [Pot79,Hu89,Sat86a] as described above.

Although they are incomplete and experimental in nature, they show considerable promise.

Undoubtedly, a automatic model acquisition system can be realized in the near future.
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