@ https://ntrs.nasa.gov/search.jsp?R=19940008653 2020-06-16T21:43:51+00:00Z

NASA-CR-191788

VIEWCACHE: An Incremental Pointer-Base Access Method
for Distributed Databases

PartI: The Universal Index System Design Document

PartII: The Universal Index System Low-Level Design Document
Part III: User’s Guide

PartIV: Reference Manual

Part V: UIMS Test Suite

Steve Kelley
Nick Roussopoulos
Timos Sellis

Advanced Communication Technology Inc.
1209 Goth Lane
Silver Spring, Maryland 20905

Final Report
SBIR Phase II Contract Number NAS5-30628

Prepared for
Goddard Space Flight Center
Greenbelt, Maryland 20771

October 10, 1992

(NASA-CR-191788) VIEWCACHE: AN N94-13126

INCREMENTAL POINTER-BASE ACCESS

METHOD FOR DISTRIBUTED DATABASES.

PART 1: THE UNIVERSAL INDEX SYSTEM Unclas
DESIGN DOCUMENT. PART 2: THE

UNIVERSAL INDEX SYSTEM LOW~-LEVEL

DESIGN DOCUMENT.
REFERENCE MANUAL.

GUIDE.

USER*S G3/82 0186520

PART S: UIMS TEST SUITE(Advanced
Communications Technology) 238 p

Advanced Communications Technology Inc.

Part I: The Universal Index System Design Document

Advanced Communications Technology Inc.

PROJECT SUMMARY

Today, there is a great diversity of computers, operating systems, database management systems, and
communication protocols. As a result of this heterogeneity, computer users are required to leam many dif-
ferent data access methods in order to obtain the information they need. This causes an attitude of ‘‘it’s too
much trouble to leamn all these different systems,’’ which leads to a significant amount of software and data
duplication.

There are several approaches that can be taken to solve the heterogeneity problem: two of which are
standardization and uniformization. Standardization is the concept of choosing one specific system to use, and
expecting or requiring everyone to follow this standard. This, however, does not provide an adequate solution
because it could be extremely costly to change to the standard if a different system was being used. Uniformi-
zation is the concept of creating a layer on top of current systems that provides uniform access to all data,
regardless of the underlying system. This allows the underlying systems to remain unchanged, yet also pro-

vides a single common access method for users to access data.

The Universal Index System (UIS) is a system that uses uniformization to solve the heterogeneity prob-
lem among database management systems. UIS provides an easy-to-use common interface to access all under-
lying data, but also allows different underlying database management systems, storage representations, and

access methods.

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

1. SYSTEM OVERVIEW
1.1. Main UIS Components

UIS is a system that manages and maintains indexes, sets, indexsets, and indexkits. An index is an object
that associates terms with pointers. A simple example of an index is the index of a book. It associates a term
used in the book with the page number(s) on which that term appears. Another example of an index is a sub-

ject index in a library catalog, which associates library books with different subjects.

A set is an object that contains only pointers. Usually sets are created by extracting the pointer field
from an index. Using the example of a book’s index, a set could be created from the index by the definition
“‘all the page numbers that contain the words 'database’, 'data model’, *data definition language’, or 'data
manipulation language’.”’

An indexset is a catalogued collection of indexes and sets. Every index and set must be associated with
exactly one indexset. In addition to the indexes and sets belonging to an indexset, an indexset also contains an
index catalog to maintain all the information for managing indexes, and a set catalog to maintain all the infor-

mation for managing sets.

An indexkit is a logical grouping of an introduction, index, dictionary and thesaurus. The introduction
component of an indexkit is an object which contains a textual description of the index. The dictionary com-
ponent of an indexkit is an object that associates terms given in the index with their definition. It is used to
assist the user in accessing the index. The thesaurus component of an indexkit is an object that associates
terms given in the index with other terms. The thesaurus supports both generalization and specialization of
terms in the index. The thesaurus is also used to assist the user in accessing the index. The introduction, dic-
tionary and thesaurus components are neither managed nor maintained by UIS. Figure 1 shows the relation-

ships among the different objects managed by UIS.

1.2. UIS Capabilities

UIS provides commands that allow the user to create and manipulate indexes, sets, indexsets, and index-

kits.

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

INDEXSET

INDEXKITS

indexkit

Introduction Index Dictionary Thesaurus

Figure 1 - Relationships among Indexes, Indexsets, Indexkits and Kitsets.
1.2.1. Index Commands
UIS uses the notion of current objects to simplify the index commands. The user specifies which
instance of an object is to be current i.e. to be **worked on,’” and then subsequent commands are performed on
the current object. The index commands rely on the existence of a current index, current index row, and

current index boolean.

The current index row is set to be the tuple in the current index that was most recently accessed by the naviga-
tion routines (see below for a description of the navigation routines). The current index boolean is a boolean
condition chosen by the user to assist in navigation.

UIS provides a relationally complete set of commands for indexes. In addition to commands that allow
the user to create, insert into, delete from, save and destroy indexes, there are routines that allow the user to
retrieve a previously created index for either modification or read only, return an index (the opposite of

retrieve) and pick an index to be the current index.

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

There are commands to allow the user to navigate both forward and backward through an index, access-
ing a single tuple at a time. UIS provides the user with index booleans and index selects to assist in this navi-
gation. An index boolean is a boolean condition defined by the user to restrict the search to a subset of the
index. For example, the user could define an index boolean, ‘‘camseq = 'LFP1010" to restrict the search on
an index to only those tuples of an IUE index having “LFP1010"’ as camera sequence number. The user can
create index booleans during a user session, but they do not persist beyond the end of that session. UIS pro-
vides commands to create, modify, list (display), pick (make as current), and delete index booleans. There are
also commands to allow the user to reproduce indexes. These include copying and moving an index to an

indexset.

To support interfaces to programming languages, there are commands to allow the user to bind attribute
values to program variables, i.e. embedding UIS commands in an application written in C. There are two
commands for binding to program variables, one for binding a single attribute (column) from an index, and
one that allows for binding a whole row from an index. These comn;ands cannot be used during an interactive

session.

1.2.2. Indexset Commands

UIS provides a few commands to manipulate indexsets. At this point a user can only create and destroy
indexsets. In the future, we plan to add commands such as include copy, subset, intersect, subtract and union,

and commands to copy and move indexsets.

1.2.3. Indexkit Commands

Although not implemented in the current prototype, several commands to manipulate indexkits have
been designed for UIS. In addition to commands that allow a user to create and destroy indexkits, there are
commands to allow the user to reproduce indexkits. These include copy, subset, intersect, subtract and union.
Subsetting an indexkit is defined to be a new indexkit, whose components are the result of subsetting each of
the components in the original indexkit. Intersecting two indexkits is defined to be a new indexkit, whose
components are the result of intersecting corresponding components of the two original indexkits. Similar

definitions hold for union and subtraction.

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

1.2.4. Command Summary

Tables A, B, C, and D provide a summary of the index, set, indexset and indexkit commands, respec-

tively.

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

Table A: Index Commands

Index Management Commands

create index
update index

drop index
move index

insert index
delete index

Index Reproduction Commands

copy index
subtract index

intersect index
union index

subset index

Index Searching Commands

find term in index
build set with list

build set with term
build set with range

Index Browsing Commands

retrieve index pick index save index
return index list indexes

Index Navigation Commands
first in index next in index fetch using index
last in index previous in index
build index boolean list index booleans pick index boolean
modify index boolean drop index boolean

build index select
modify index select

list index selects
drop index select

pick index select

Index Run-Time Environment Commands

bind index column

bind index table

SBIR Phase II-Final Report

Design Document

Advanced Communications Technology Inc.

Table B: Set Commands

Set Management Commands

build empty set drop disk set
delete set update set

Set Reproduction Commands

combine sets restrict sets

Set Browsing Commands

return set list sets drop set

retrieve set pick set build empty memory set

Set Navigation Commands

modify set boolean drop set boolean

first in set next in set fetch using set
last in set previous in set
build set boolean list set booleans pick set boolean

build set select list set selects
modify set select drop set select

pick set select

Set Run-Time Environment Commands

bind set column

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

Table C: Indexset Commands

Indexset Management Commands

create indexset
alter indexset

drop indexset
move indexset

Indexset Reproduction Commands

copy indexset
subtract indexset

intersect indexset subset indexset

union indexset

Indexspace Commands

create indexspace

alter indexspace

Table D: Indexkit Commands

Indexkit Management Commands

create indexkit

update indexkit

drop indexkit
move indexkit

Indexkit Reproduction Commands

copy indexkit
subtract indexkit

intersect indexkit subset indexkit

union indexkit

SBIR Phase II-Final Report

Design Document

Advanced Communications Technology Inc.

2. THE DESIGN OF UIS

The development of the UIS prototype was divided into several phases: the requirements phase, the
design phase, the implementation phase and the testing and integration phase. This approach was taken in an

attempt to resolve any conflicts in the proposed system as early as possible.

The requirements document contains a functional description of what the system should do. The purpose
of the design phase is to convert the functional description of what the system should do into an algorithmic

description of how the system should do it.

The design phase primarily concentrated on two tasks. First, we had to determine what information
needed to be available to the system during execution and what information needed to be available from one
execution to the next (persistent information). Second, we needed to translate the functional requirements of
the user commands into design specifications. These two tasks were performed in a stepwise fashion to yield a

cohesive and consistent design.

2.1. System Information

UIS manages and maintains four different types of objects: indexes, sets, indexsets, and indexkits. In
order to do so properly and efficiently, the system needs to have available certain information about each
object. As an example, consider a library: how useful or efficient would a library be if it did not have a cata-
log that listed what books were contained in the library, or where they were located? Probably not very useful,
definitely not very efficient. In the same way that a library catalogs all the objects that it manages, so must

UIS. This section describes which information UIS needs to efficiently manage its objects.

2.1.1. System Catalog — Indexes

In Section 1 we defined conceptually what an index is. To determine what persistent information we
need for indexes, we need to know what an index is structurally. ‘‘Structurally, an index is a table in which
some of the columns are the items indexed and the last column is the pointer. An index is of type k if it has
k-item tuples (columns). The format of an index depends on the internal representation of the index. Exam-

ples of formats are B-trees, R-trees, and heaps.’’

Given this structural definition, we see that some of the information that needs to be stored include the

name of the index, its type, and its format. Other information that is necessary are the attribute or column

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

names, their types, lengths and their location within the tuple (offset). This information is necessary when
checking whether or not a user’s command is valid, and to assist the system in locating and extracting attribute
values. Another piece of information used to assist the system in index manipulation and validation is the
index’s tuple width (the total size of the tuple). In addition, we decided it would be helpful to store whether or
not a given index had an indexKkit associated with it. This would allow us to remain consistent with the index-

kit system information (discussed later).

Because an index can have any number of attributes, we decided it would be easier to have two system
catalogs. The first one contains all the information about the index except for the attribute information. A
second catalog contains the attribute information. This approach was taken to simplify the catalog access rou-
tines (if a single catalog were used, the access routines would have to support variable length entries). Figure

2 describes pictorially the system catalog information for indexes. It contains two example indexes:

Index Catalog
Index Name Index Type | Index Format Indexkit Name Indexkit set Indexspace Name | Tuple Width
FOLLET_EOTN 2 BTREE FOLLET_ECTN FOLLET EARLY_WORKS 44
SUBJECTS 5 RTREE SUBJECT LIB LIBRARY PG_COUNTY 204
Attribute Catalog
Index Name Attribute Name Attr Type Attr Length Attr Offset
Index Format =
FOLLET EOTN TERM STRING
- 40 0 { BTREE, RTREE, HEAP }
FOLLET EOTN PAGE_NUM INT 4 40
Atr Type =
SUBJECTS SUBJECT _TERM STRING
- 40 0 { INT, FLOAT, CHAR, STRING }
SUBJECTS AUTHOR STRING 40 40
SUBJECTS TITLE STRING 100 80
SUBJECTS ISBN_NUMBER STRING 12 180
SUBJECTS LC_NUMBER STRING 12 192

Figure 2 - System Catalog Information for Indexes.

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

FOLLET_EOTN (a book index for Ken Follet’s The Eye Of The Needle and SUBJECTS (a library catalog of sub-

jects which references books).

2.1.2. System Catalog — Indexsets

An indexset has several components (see Figure 3). It contains an index catalog discussed in the previ-
ous section, a set catalog, a transaction log, and then the indexes and sets themselves that belong in the index-
set. The transaction log contains information about updates to the indexes and sets in the indexset. It is used in
transaction management (currently unimplemented). UIS allows the user to explicitly specify all the buffer
management constants needed for the management of indexset components. As a result, the system catalog

information for indexsets must store all this information.

Before explaining the system catalog information for indexsets, we need to clarify what is meant by
databook and indexspace. When defining an indexset, the user creates a logical space in which indexes and
sets will belong at some point in the future. The databook objects are these logical spaces. An indexspace is
the physical storage space on the disk that corresponds to the logical space defined by the databooks. Index-
spaces can contain several databooks, and databooks can span more than one indexspace. Having the user be
able to specify both logical space and physical space allows the user to place indexes physically near each

other or logically near each other.

Given these new objects, an indexset is composed of the following components: index catalog, set cata-
log, transaction log, any number of databooks, and any number of indexspaces. For each of these components,
the system needs to have information about the names of each of these components, the initial physical size of
these components, their maximum size, and the rate at which these components can increase (when an inser-
tion needs to be made and there is no space, an increase is requested and as long as the maximum size has not

been reached, the increase is allowed).

Storing all this information creates a complicateci system catalog structure. The databook and index-
space information for indexsets is stored in its own catalog. This is due to the fact that there can be any
number of these objects in an indexset (similar to the attribute information for indexes). Since the directory,
index catalog, set catalog and transaction log components are required for each indexset, and an indexset can
contain at most one of each component, all of this information can be stored in a single catalog along with the

indexset name. In addition, it was decided to have entries in this catalog for the total number of databooks and

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

INDEXSET

. Figure 3 - Physical Structure of an Indexset

SBIR Phase II-Final Report Design Document OR'G’NAL PAGE |
POOR QuaLiTy

Advanced Communications Technology Inc.

indexspaces in the indexset, to assist in retrieval from the other catalogs.

Figure 4 describes pictorially the system catalog information for indexsets. It contains two examples of
indexsets: FOLLET SET (an indexset that contains all the index information about Ken Follet’s books) and
SUBJECT_SET (an indexset that contains all the subject information at a specific library). For example, the
index catalog component for FOLLET_SET says that the index catalog is located in the file FOLLET IDX. Its ini-
tial size is 4096 bytes, and when the system needs more space for the index catalog, space is allocated in

blocks of 1096 bytes. If the size of the index catalog reaches 200000, no more space will be allocated to the

Indexset System Catalog
ISET_name # databook | # indexspace Directory Info Index Catalog Info Set Catalog Info Log Info
Device Device Device Device
Name |FOLLETDIR Nome | FOLULET 10X | Nume | FOLLET SET | Nywy, |FOLLET LOG
N I L . R 5 | ISP
Initsize ;4096 Inlsize © 4096 Initslze . 4096 Iolsize | 4096
FOLLET SET 1 J NN EEEEEE R R AR EEEEE Rt bty R il ekl bowmoooooo-
Incrsize | 1096 Incrsize | 1096 Incraize | 1096 Incrsize | 1096
Mudze)! 200000 |Maxszei 200000 |Mawie! 200000 | Muxsie! 200000
Device | : Device . Device
Name | SUBJECTDIR | Nome :SUBJECTIDX | Nome |SUBJECTSET | Name ISUBJECT_LOG
Initsize ; 4096 Initsize E 4096 Inltsize E 4096 Initstze E 4096
SUBJECT SET 1 PR EEEEEE S thal SIREREEEEEEES Riabts R ahkb [RREEREEEIE
Incraize ! 1096 Incrsize | 1096 Incrsize ! 1096 Incrsize ! 1096
....... R T it cmececdecenceer—maprmceme b c e e e
Maxsize | 200000 | Maxsize ! 200000 | Maxsize I 200000 | Maxsise i 200000
Databook System Catalog
ISET_name Device_name Inltsize Incrsize Maxsize
FOLLET SET EARLY_WORKS 4096 1096 200000
SUBJECT SET COMPUTER_5C 4096 1096 200000
Indexspace System Catalog
ISET_name Device_name Inltsize Incrsize Maxsize
SUBJECT SET |COMPUTER SCSPC| 4096 1096 400000
FOLLET SET |EARLY_WORKSSPC| 4096 1096 200000

Figure 4 - System Catalog Information for Indexsets.

SBIR Phase I1-Final Report

Design Document

Advanced Communications Technology Inc.

index catalog. The Databook System Catalog and the Indexspace System Catalog contain similar informa-

tion about the databooks and indexspaces in the indexset.

2.1.3. System Catalog — Indexkits

As defined an Section 1, an indexkit is a logical grouping of an introduction, index, dictionary and
thesaurus. In order for the system to understand this logical grouping, it needs to keep track of which
instances of each component make up this logical grouping. As a result, the system information needed for
each indexkit is the name of the indexkit, the introduction name and its location (intro_set), the index name
and its location (indexset), the dictionary name and its location (dict_set), and the thesaurus name and its loca-
tion (thes_set) (Remember that the introduction, dictionary and thesaurus components are not managed by

UIS). With this information, the system can efficiently execute all the indexkit commands.

Figure S illustrates the system catalog information for indexkits. It contains two example indexkits (they
correspond to the two index examples of Figure 2: FOLLET_EOTN (an indexkit corresponding to the index, hav-
ing the same name), and SUBJECT_LIB (an indexkit corresponding to the subject index of a library catalog).

Indexkits are not implemented in the current prototype.

2.2. Run-Time Information

In addition to persistent information about each object in the system, during execution, there is a need to
track additional information about the state of objects currently being manipulated or accessed by the system.
Tracking such information is essential to maintaining a consistent system. This information will be particu-

larly crucial in a multi-user environment, when it is possible for different users to try to update the same data

Indexkit System Catalog

Indexkit Intro Intro Index Index Dictk 4 Dicté y Thesaurus Thesaurus
Name Name Set Name Set Name Set Name Set
FOLLET FOLLET _ FOLLET _ FOLLET FOLLET FOLLET_ NOVEL_ FOLLET_ NOVEL_
EOTN EOTN_INTRO INTROS EOTN BOOKS DICTIONARY DICTS THESAURUS THES
SUBJECTS_ LIBRARY SUBJECT_ LIBRARY LIBRARY LIBRARY
SUBJECT LiB INTRO INTROS SUBJECTS LIBRARY DICTIONARY DICTS THESAURUS THES

SBIR Phase II-Final Report

Figure 5 - System Catalog Information for Indexkits.

Design Document

Advanced Communications Technology Inc.

at exactly the same time. If the system were keeping no information about objects currently in the system,
then it would have no way of preventing different users from updating the same data at the same time; there
would be no way to guarantee a consistent system. This section describes what information UIS needs during

execution to maintain consistency of the objects.

2.2.1. Run-Time Information — Indexes

As described in Section 1, the index routines support the notion of a current index. What this means in
terms of execution, is that a user can have any number of indexes retrieved at a time (i.e. open and accessible),
of which at most one may be the current index. We adopted the notion of using a tag (unique identifier) to
identify indexes that have been retrieved to allow us to quickly access the indexes. As a result, anytime an
index is retrieved, an index tag is assigned to it. For each index that is retrieved by the system, the tag must be

readily available in order to manipulate the index. This run-time variable is designated by Index Tag.

A pointer into the index file must also be readily available to the system if the index is to be accessed at
all. Clearly, if the index weren't going to be accessed at all, there would be little reason for the user to retrieve
it. Therefore, a file descriptor for each index must also be kept as run-time information while the system is

being used. This run-time variable is designated by F_ptr.

An index can be retrieved for either modification or read only. There are two pieces of run-time infor-
mation that need to be kept related to the retrieval mode of indexes. The first is the actual retrieval mode. The
system needs to know whether an index has been retrieved for modification or read only in order to prevent the
user from trying to modify an index that was retrieved for read only. This is especially crucial in a mult-iuser
environment, when more than one user may want to access the same index. This run-time variable is desig-
nated by Mode. Secondly, the system needs to keep track of whether the index has actually been modified (in
the case of retrieval for modification). This information is used in the *‘save index”’ command. An index that
has been retrieved for modification, but not actually modified does not need to be saved even if the user issues
the save index command. Having this information available permits the system to detect these occurrences
and not waste its time saving an index that has not actually changed. This run-time variable is designated by
Dirty. Dirty is set to TRUE if the index has been modified, but not saved. Dirty is set to FALSE if the index

has not been modified since the last time it was saved.

SBIR Phase I1-Final Report Design Document

Advanced Communications Technology Inc.

Finally, the system needs to know which indexes that are currently in the system have been created, but
not saved. The reason for this is as follows. We cannot guarantee that a newly created index will be small
enough to be completely contained in main memory. Therefore, when the user creates a new index, all per-
sistent information is entered into the system catalog and the index files are created. The system needs to be
able to distinguish these ‘‘created but not saved’’ indexes from those that either have been recently created but
saved, or those that were retrieved. This distinction is necessary because if the user quits the system without
saving these indexes, the system needs to know that they are to be deleted. This run-time variable is desig-
nated by Saved. Saved is set to TRUE if the index was retrieved during this user session (i.e. created sometime
in the past) or if the index was created during this user session and has already been saved. Saved is set 10

FALSE if the index was created during this user session but has not yet been saved.

The remaining run-time information that needs to be available is the information found in the system
catalog. Therefore, a pointer to the system catalog information is also needed at run-time. This run-time vari-
able is designated by SC_info. Figure 6 shows the information that UIS needs to manage and manipulate

indexes correctly.

2.2.2. Run-Time Information — Indexsets

As defined in Section 2, an indexset is a catalogued group of indexes and sets. Therefore, when an index
or set is 10 be retrieved from an indexset, its system catalog information is found in the catalog components of
the indexset (refer to Figure 1). At execution time, the system needs to maintain file descriptors to the catalog

components of the indexset in order to be able to retrieve indexes and sets. These run-time variables are desig-

Index Tag Saved? Mode Dirty? SC_info F_ptr
il FALSE MODIFY TRUE e 3
2 TRUE READ_ONLY FALSE hid 4

Figure 6 - Run-Time Catalog Information for Indexes.

SBIR Phase II-Final Report

Design Document

Advanced Communications Technology Inc.

nated by Fd_I cat, Fd_I_attr_cat, and Fd_S_cat. They correspond to the index catalog, the index attribute

catalog and the set catalog components of the indexset, respectively.

If multiple indexes or sets are retrieved from a single indexset, we need to be very careful in making sure
that only one set of catalog file descriptors are used for that indexset. If every retrieved index and set has its
own file descriptor information for the indexsets catalog, then it would be very easy for the system to
encounter read/write conflicts in the indexsets catalog components. Therefore, we need to have a way to main-
tain a single copy of the indexset information, and still know exactly how many indexes and sets from that
indexset are currently retrieved. This suggests a need for run-time variables to count the number of retrieved
indexes and sets for each indexset. This has two advantages. First, it prevents having multiple file descriptors
to the indexset catalog components and prevents read/write conflicts. Second, it allows us to have the indexset
retrieved for as small an amount of time as necessary. By keeping track of how many indexes and sets are
currently retrieved, the system is able to return the indexset as soon as those numbers are zero. The run-time
variables that designate these counts are I_count for indexes, and S_count for sets.

The remaining run-time information that needs to be available is the information found in the system
catalog. Therefore, pointers to the system catalog information are also needed at run-time. These run-time
variables are designated by SC_info, Databook, and Indexspace, which point to the different system catalog
entries for the indexset. Figure 7 shows the information that UIS needs to manage and manipulate indexsets

correctly.

2.2.3. Run-Time Information — Indexkits

There is no run-time information needed for indexkits. Because an indexkit is nothing more than a col-

lection of system catalog information, all commands involving indexkits update only this system catalog

Fd_l_cat Fd_I_attr_cat I_count Fd_S_cat S_count SC_info Databook Ind
3 4 2 5 0 had ”
6 7 1 8 1 e L

Figure 7 - Run-Time Catalog Information for Indexsets.

SBIR Phase II-Final Report Design Document

Advanced Communications Technology Inc.

information. As a result, the catalog is only accessed at the exact moment a request is made. There is no

notion of retrieving an indexkit, and at some later time making some modification to it.

SBIR Phase I1-Final Report Design Document

Advanced Communications Technology Inc.

Part II: The Universal Index System Low-Level Design Document

SBIR Phase II-Final Report Low-Level Design Document

Advanced Communications Technology Inc.

DESCRIPTION

User commands were designed at the same time as the system and run-time information was determined.
The designs for indexes and sets were done first, since they are the fundamental objects managed by UIS.
After those designs were almost complete, the indexkit and indexset commands were designed. This allowed
us to isolate the differences between the objects at an early stage, and also allowed us to use our complete
understanding of the index and set routines when trying to create an integrated design of the indexkit and

indexset routines.

A template was used while creating the designs to facilitate a complete design. Each design contains the
following sections: System Requirements, System Architecture, System Data Structures, System Data Flow,
System Control Flow, Design Rationale, Test Plan and Issues. The System Requirements section describes
the functionality of the command. It is taken from the requirements document. The System Architecture sec-
tion presents an algorithm in pseudo-code describing what the system needs to do to execute the command.
The System Data Structures section lists the input and output arguments needed to execute the command. Any
error messages that are returned are also included in this section. The System Data Flow section provides a
description of how the data flows among the different parts of the algorithm. The System Control Flow section

provides a description of how execution control flows among the different parts of the algorithm.

The Design Rationale section gives a detailed explanation of the algorithm, and if necessary justifies
why certain things are done, or why certain things need to be performed in a specific order. The Test Plan sec-
tion suggests what type of tests should be run to properly and completely test the command and suggests some
robustness tests. The Issues section discusses any side-effects of the routine, any hardware or software
requirements for the execution of the routine, and provides explanations for any unclear information presented
in the previous sections. The Issues section is also used to present unanswered questions about the design or

the interaction of this routine with others.

The low-level design of the index, indexset and indexkit commands follows.

SBIR Phase II-Final Report Low-Level Design Document

Routine Name: Create Index (I_create())

Routine Number: 3.1.2.2

1. System Requirements
Create index allows the user to create an index object. The user
must specify the type of the index, the storage format, and the
attributes and their type that make up the index. Formats include
btrees, rirees, ascii, virtual, etc. The type is expressed in the
form (m,n) where m is the multiplicity of the item tuples, and nis
the number of item tuples in the table.
2. System Architecture
parse
validate
create_index_files
allocate_WA
assign_tag
RTIC_insert
SIC_insert
3. System Data Structures
1. Input
index_name string < the name for the index to create >
indexspace string < indexspace to place index created >
Optional:
indexset string < indexset to place index created >
TYPE < dimension of index >
format string < storage format: btree, riree ... >
table array of ATTR_DESC
< (attr_name,attr_type,attr_len) pairs
for each attribute that makes up the
index >
2. Output
tag TAG < tag of index created, NULL if error >
4. System Data Flow
parse --> validate
validate --> create_index_files
allocate_ WA
assign_tag
RTIC_insert
SIC_insert

create_index_files --> RTIC_insert

SIC_insert
assign_tag --> RTIC _insert

SIC_insert
System Control Flow

I_create <-- parse
validate
assign_tag
create_index_files
RTIC_insert
SIC_insert

Design Rationale

This routine will create an empty index. First it will check that the
index to create does not already exists. It will also check that the
type and format arguments are valid. It will also check that the
types of the attributes are valid atribute types. If none of these
checks produces an error, then the index will be created, and a
catalog entry will be created for it. A logical tag will be assigned
to the newly created index. The catalog value for I_saved will be
FALSE (meaning that this index has not been saved since creation time),
index_mode will be 'm' (for modify), and for dirty will be 'true’,
so that the index will be saved as empty if no insertions are
performed.

Test Plan

Test all supported formats, all supported types, creation of
pre-existing index, insufficient arguments, and, of course, successful
creation of an index. Also test invalid formats to make sure error

is caught.

Issues

Routine Name: Drop Index (1_drop())

Routine Number: 3.1.8.1

1.

System Requirements

The 'drop index' command allows the user to delete (or destroy) an
index.

System Architecture

parse

validate

remove_files

SIKC_update(indexkit information update)
SIC_delete

System Data Structures

1. Input

index_name string < name of the index to delete >
indexset_name string < name of the indexset containing index >
2. Output

IME_OK success

IME_FAILURE general error

IME_DNE index to drop does not exist

IME_BAD_MODE index not retrieved for modification

System Data Flow

parse --> validate

validate --> remove_files
SIKC_update
SIC_delete

System Control Flow

1_drop <-- parse
validate
remove_files
SIKC_update
SIC_delete

Design Rationale

This routine will delete an index from an indexset. First, it will
check that the index to drop actually exists. If it does, then it
will be deleted, and the catalogs will be updated. If the index has
an indexkit associated with it, an indexkit call will be made to

update the indexkit catalog entry.
Test Plan
Test all error codes.

Issues

Routine Name: Insert Index (I_Insert())
Routine Number: 3.1.3.1.2

1. System Requirements

The 'insert into index' command allows one 10 modify an index by
inserting a new row.

2. System Architecture

parse
validate

I_retrieve

for each tuple in the list
IC_insert(attr_name attr_value pairs)

I_save

3. System Data Structures

1. Input
index_name string < name of Index to be updated >
indexset_name string < indexset name of Index to be updated >
attr_vals array of < (attribute name, value) pairs for index entry

ATTR_PAIR to be inserted >

2. Output
IME_OK L_insert successful
IME_FAILURE general failure
IME_NONUNIQUE non-unique indexset/name combination
IME_BAD_VALUE bad pointer/attribute value
IME_DNE index DNE

4. System Data Flow

parse --> validate
validate --> IC_insert
1 _Save

5. System Control Flow

I _Insert <-- parse
validate
IC_insert
I_Save

6. Design Rationale

Tuple is inserted and Index is saved.

7. Test Plan

Test Cases should check for correct handling of invalid index names,
bad pointer values, and attribute values that are not part of the index.
Also check for attempt to insert incomplete tuples (containing NULLSs).

8. Issues

Routine Name: Update Index (1_Update())

Routine Number: 3.1.3.1.1

1. System Requirements

The 'update index' command updates the specified index using
the given attribute and pointer values. The user must

specify a valid index name an

d indexset name, attribute value(s), and/or

pointer value(s), using the correct syntax to indicate whether the
pointer or the attribute is being altered.

2. System Architecture

parse
validate

IB_build

I_first
I_fetch
alter_tuple
IC_delete
IC_insert

(repeat as necessary the 6 following commands)

1_next
I_fetch
alter_tuple
IC_delete
IC_insert
I_save

3. System Data Structures

1. Input

index_name
indexset_name
set_vals

bool_val

2. Output

IME_OK
IME_FAILURE
IME_NONUNIQUE
IME_BAD_VALUE
IME_DNE

string < name of Index to be updated >
string < indexset name of Index to be updated >
array of < array of (attribute name, value) pairs
ATTR_PAIR to be passed to IC_Update >
string < condition to be used to build a
boolean to traverse the index and select
tuples to be modified >

I_update successful

general failure

non-unique indexset/name combination
bad attribute value

index DNE

4. System Data Flow

parse -->

validate -->

I_update<--

6. Design Rationale

Get the index to be updated. Fe

validate
IB_build
I_first
I_fetch
alter_tuple
IC_delete
IC_inset
1_next
I_save

5. System Control Flow

parse
validate
IB_build
I_first
1_fetch
alter_tuple
IC_delete
IC_insert
I_next
1_save

tch tuples by traversing the index using the

boolean condition given in the update command (bool_val). Update each qualifying
tuple by setting the attributes/pointer as specified in the update command
(set_vals). When no more tuples qualify, save the changes.

7. Test Plan

Test Cases should check for correct handling of invalid index names,
bad pointer values, bad data values.

8. Issues

Routine Name: Move Index (I_move())
Routine Number: 3.1.5.1

1. System Requirements

The move index command allows the user to move an index from one
location to another. (potentially renaming the index in the
process).

2. System Architecture

parse

validate
check_uniqueness
move_index

RTIC_retrieve < update both indexset catalogs >
RTIC_delete

RTIC _insert

SIC_retrieve < update both indexset catalogs >
SIC_delete

SIC_insert

3. System Data Structures

1. Input
index_name string < name of the index to move >
old_indexset string < current location of index >
new_indexset string < place to move and name to give index >
2. Output
IME_OK success
IME_FAILURE general error
IME_DNE index to move non-existent
IME_NONUNIQUE index to move will not be unique in new location

4. System Data Flow

parse --> validate

validate --> check_uniqueness
move_index

move_index --> RTIC_retrieve
RTIC_dclete
RTIC_insert
SIC_retrieve
SIC_delete
SIC_insert

5. System Control Flow

I_move <-- parse
validate
check_uniqueness
move_index
RTIC _retrieve
RTIC_delete
RTIC_insert
SIC_retrieve
SIC_delete
SIC_insert

6. Design Rationale
This routine will move an index from one indexset to another. First
it will check that the index to move currently exists and will remain
unique in its new indexset. If so, it will move the index files from
one indexset to another, updating the catalogs of both indexsets to
reflect the change.

7. Test Plan
Test all error codes.

8. Issues

Routine Name: Delete from Index (I_Delete())

Routine Number: 3.1.3.1.3

1. System Requirements

The 'delete from index’ command allows one to modify an index by
removing one index tuple or all the tuples with a given attribute value.

2. System Architecture

parse
validate

IB_build
I_first

IC_delete

(repeat as necessary the 3 following commands)

1_next
IC_delete

] _save

3. System Data Structures

1. Input

index_name

indexset_name

bool_val

2. Output
IME_OK

IME_NONUNIQUE
IME_BAD_VALUE
IME_DNE

4. System Data Flow

parse
validate

-->
-->

validate
IB_build
I first
IC_delete
I_next
IC_delete
I_save

string < name of Index to be modified >
string < indexset name of Index to be modified >
string < boolean condition for traversing the

index and selecting tuples to be deleted >

I_delete successful

non-unique indexset/name combination
bad attribute/pointer value

index DNE

5. System Control Flow

1 _delete <-- parse

validate
IB_build
I_first
IC_delete
I_next
IC_delete
I_save

6. Design Rationale
Open the index. Position the pointer to point to tuple, using the boolean

built with attr_vals. Delete that tuple, move on to the next one.
When no more tuples qualify, save the index.

7. Test Plan
Test Cases should check for correct handling of invalid index names,

bad pointer values, and bad data values.

8. Issues

Routine Name: Copy Index (I_copy())

Routine Number: 3.1.4.1.1

1.

System Requirements

The copy index command allows the user to make identical copies of

indexes.
System Architecture
[B =copy(A)]

parse
validate

I_retrieve(A)
I_create (B)

for each tuple in A
insert_tuple into B
end loop

1_save (B)
I_return(A)
I_return(B)

System Data Structures
1. Input

index1

indexset1

index2
indexset2

Optional:

format
2. Output

IME_OK
IME_FAILURC
IME_DNE
IME_NONUNIQUE

System Data Flow

parse --> validate

validate --> I_retrieve
I_create
copy_loop
I_save
I_return

string
string
string
string

string

success
general error

< name for index to be copied from >
< indexset containing index1 >

< name of the index to copy into >

< indexset to contain index2 >

< storage representation of index >

index to copy does not exist
new index name already exists

I_return
System Control Flow

I_copy <-- parse
validate
I_retrieve
I_create
copy_loop
1 _save
I_return
I_return

Design Rationale

This routine will make a duplicate copy of the specified index (with
potentially a different format). First it will check that the index

to copy exists, and the resulting index will be unique. If no errors

are produced from these checks, then the new index will be created with
the same parameters as the index to be copied. The index name and
format are taken from the argument list. Specifying the format is
optional. If no format is specified, it is taken from the catalog

entry of the index to copy. The index is copied, and the catalog is
updated. The new index is saved and both indexes are returned.

Test Plan
Test all error codes.

Issues

Routine Name: Intersect Index (I_intersect())

Routine Number: 3.1.4.1.4

1.

System Requirements

The ‘intersect index’ command allows the user to intersect indexes.

System Architecture
[C=A-B]

parse
validate

I_retrieve(A)
I_retrieve(B)
test_compatibility(A,B)
I_create (C)

for every tuple in A
if there exists an equivalent tuple in B then
insert_tuple(C)
end loop

I_save (C)

I_return(A)
I_return(B)
I_return(C)

System Data Structures

1. Input

index1 string
indexsetl string
index2 string
indexset2 string
new_index string
indexset3 string

Optional:

new_index_format string
2. Output

IME_OK success
IME_FAILURE general error

< name of one index to intersect >

< indexset containing index1 >

< name of the other index to intersect >
< indexset containing index2 >

< name of the new index to create >

< indexset containing new_index >

< see Create Index 3.3.2 >

IME_DNE an index to interszct does not exist
IME_NONUNIQUE index to create as result already exists
IME_INCOMPATIBLE indexes to intersect are of incompatible types

System Data Flow

parse --> validate

validate --> I_retrieve
I_retrieve
test_compatibility
1_create
intersection_loop
I_save
I_return
I_return
I_return

System Control Flow

I_intersect <-- parse
validate
I_retrieve
test_compatibility
1_create
intersection_loop
I_save
I_return
]_return
I_return

Design Rationale

This routine will compute the intersection of two indexes. First it
will check that the two indexes to intersect actually exist and are of
compatible types. It will also check that the resulting index does

not already exist. If none of these checks produces an error, then

it will create the new index, compute the intersection, and save

the newly created index. The arguments passed to I_create will be
obtained from the catalog entry of the first index to be intersected.
The name of the index and the format of the index are provided by the
argument list. Specifying the format is optional. If itis not
specified, it will be taken from the first index to be intersected.

Test Plan
Test all error codes.

Issues

Routine Name: Subset Index (I_subset())

Routine Number: 3.1.4.1.2

1.

System Requirements

The 'subset index' command allows one to mak= an index from a subset of
another index.

System Architecture
[B = subset(A)]

parse
validate

I_retrieve(A)

IS_syntax(select)
IB_build(boolean)

I_create(B)

get first record in index
test record with boolean
fetch record from index
insert into index using select

(repeat as necessary the 4 following commands)
get next record in index

test record with boolean

fetch record from index using select

insert into index

I_save(B)
I_return(A)
I_retum(B)

System Data Structures

1. Input

index1 string < name of index to be created >

indexsetl string < indexset containing index1 >

index2 string < name of index to be subsetted >

indexset2 string < indexset to contain index2 >

select string < attribute names of indexed attrs
to be subsetted >

bool_str string < boolean condition used to select
tuples to go into new index >

format string < indicates r-tree, b-tree, or ascii >

2. Output

IME_OK successful creation of subset index
IME_FAILURE general failure

IME_NONUNIQUE non-unique indexset/name combination
IME_DNE index to subset from does not exist

4. System Data Flow

parse -->
validate -->

validate

I_retrieve
IS_syntax
IB_build

1_create
get_first_rec
fetch_rec_w_select
insert_rec
get_next_rec
fetch_rec_w_select
insert_rec

1_save

I_return

I_return

System Control Flow

I_subset <-- parse

validate
I_retrieve
IS_syntax
IB_build
I_create
get_first_rec
fetch_rec_w_select
insert_rec
get_next_rec
I_save
1_return
I_return

Design Rationale

Check that index to subset exists, build select, tuild boolean,
check that the index to create with result does not already exist.
Create the new index. Navigate the index. Insert the selected parts
of the retrieved tuples into the newly created index. Save the new
index. Return the two indexes.

7. Test Plan

Test Cases should check for correct handling of invalid index names,

bad format values.

8. Issues

Routine Name: Subtract Index (I_subtract())

Routine Number: 3.1.4.1.5

1.

System Requirements

The subtract index command allows the user to subtract the different
parts of indexes.

System Architecture
[C=A-B]

parse
validate

I_retrieve(A)
1_retrieve(B)
test_compatibility(A,B)
1_create (C)

for every tuple in A
if there does not exist an equivalent tuple in B then
insert_tuple(C)
end loop

I_save (C)

I_return(A)
I_return(B)
I_return(C)

System Data Structures

1. Input

index1 string < name of one index to subtract >
indexsetl string < indexset of index1 >

index2 string < name of the other index to subtract >
indexset2 string < indexset of index2 >

index3 string < name of the new index to create >
indexset3 string < indexset of new index >

Optional:

new_index_format string < see Create Index 3.3.2 >

2. Output

IME_OK success

IME_FAILURE general error

IME_DNE an index to subtract does not exist
IME_INCOMPATIBLE indexes to subtract are of incompatible types
IME_NON_UNIQUE index to create as result already exists

System Data Flow

parse --> validate

validate --> I_retrieve
I_retrieve
test_compatibility
I_create
subtraction_loop
1_save
I_return
I_return
I _return

System Control Flow

1_subtract <-- parse
validate
I_retrieve
I_retrieve
test_compatibility
1_create
subtraction_loop
I_save
I_return
I_return
I_return

Design Rationale

This routine will compute the subtraction of two indexes. First it

will check that the two indexes to subtract actually exist and are of
compatible types. It will also check that the resulting index does

not already exist. If none of these checks produces an error, then

it will create the new index, compute the subtraction, and save

the newly created index. The arguments passed to I_create will be
obtained from the catalog entry of the first index to be subtracted.

The name of the index and the format of the index are provided by the
argument list. Specifying the format is optional. If it is not
specified, it will be taken from the first index to be subtracted.

Test Plan
Test all error codes.

Issues

Routine Name: Union Indexes (I_union())

Routine Number: 3.1.4.1.3

1. System Requirements

The 'union index' command allows one to create an index that is the

union of two other indexes.
2. System Architecture
[C=AunionB]

parse
validate

I_retrieve(A)
I_retrieve(B)
test_compatibility(A,B)
I_create(C)

(for each index being unioned)
get first record in index

fetch record from index

insert into index

(repeat as necessary the 3 following commands)

next record in index
fetch record from index
insert into index

(end repeat for each index)

1_save(C)

I_return(A)
I_return(B)
I_return(C)

3. System Data Structures
1. Input

index!1
indexsetl
index2
indexset2
new_index
indexset3
format

2. Output
IME_OK

string
string
string
string
string
string
string

< name of index to be unioned >

< indexset containing index1 >

< name of index to be unioned >
< indexset containing index2 >

< name of index to be created >

< indexset to contain new index >
< indicates r-tree, b-tree, or ascii >

successful union index

IME_FAILURE
IME_DNE
IME_NONUNIQUE

general failure

failure: index does not exist
non-unique indexset/name combination
indexes to union are incompatible

IME_INCOMPATIBLE
System Data Flow

validate
I_retrieve
I_retrieve
test_compatibility
I_create
union_loop
I_save

I_return

I_return

1_return

parse -->
validate -->

System Control Flow

I_union <-- parse
validate
I_retrieve
I_retrieve
test_compatibility
I_create
union_loop
1_save
I_return
I_return
I_return

Design Rationale

Check that indexes to union exist and are compatible, and check

that the index to create as result does not already exist.

Create the new index. Navigate the indexes being unioned, retrieving
tples and inserting them into the newly created index. Save the
newly created index, and return all indexes retrieved and created.

Test Plan

Test Cases should check for correct handling of invalid index names,

bad format values.

Issues

Boolean is TRUE and Select is *.

Routine Name: Find Term in Index (I_find_term())
Routine Number: 4.1.1.3

1. System Requirements

The 'find term in index' command will enable the user to obtain from
the current index component a list of terms alphabetically surrounding
a submitted term in the logical text file.

In the Menu access, the default editor is automatically invoked to
read the logical text file. In the Host Language Interface, the result
can also be in the logical text string.

2. System Architecture

process form
parse
validate

IB_build

get first record in index

test record with boolean
fetch record from index
add to term list

(repeat as necessary the 3 following commands)
get next in index
test record with boolean
fetch record from index
add to term list
Return Term List
3. System Data Structures

1. Input (input is gotten by Process_form and returned in a string)

term_string string < string form "attr_name attr_value" >
2. Output
term_list array of < each string is a found term.

strings NULL value indicates error or no

terms found >

4. System Data Flow

form_new -—-> parse
parse --> validate
validate -> IB_build

get_first_rec

fetch_rec
add_to_term_list
get_next_rec
fetch_rec
add_to_term_list
return_term_list

System Control Flow

I_Find_Term<-- form_new
parse
validate
IB_build
get_first_rec
fetch_rec
add_to_term_list
get_next_rec
return_term_list

Design Rationale

A boolean is built using 'term’ and some pre-set range decided by the
system to be an acceptable alphabetical range for single term queries.

The index is navigated and terms are added to the term-list as they are

fetched. The term-list is returned when the entire index has been
searched.

Test Plan

Test Cases should check for correct handling of invalid attribute names
and bad term values.

Issues

The pre-defined ranges are set in the system.

Routine Name: Build Set from Index with Term (I_build_set_term())

Routine Number: 4.1.1.4.1

1.

System Requirements

The 'build set with term’ command will enable the user to build a set
of Entrids which are associated with a submitted term in the current
index. The system will assign a tag to the new set and print in the
logical text file the set tag, set description, and set size.

In the Menu access, the logical text file is automatically displayed.
In the Host Language Interface access, the result can also be in the
logical text string.

System Architecture

parse
validate

IB_build

S_build_empty

get first record in index

fetch record from index using select
insert into set

(repeat as necessary the 3 following commands)
next in index

fetch record from index using select

insert into set

return set description

System Data Structures

1. Input

set_name string
attr_name string

term string
set_attr string

2. Output

set_desc SET_INFO

System Data Flow

parse --> validate

validate --> S_build_empty

< name of the set to be built >

< name of the attribute for the term >
< term to be searched for >

< attribute to put build set from >

< string containing set tag, set
description, and set size. NULL
value indicates error >

IB_build
get_first_rec
fetch_rec
insert_into_set
get_next_rec
fetch_rec
insert_into_set
return_set_desc

5. System Control Flow

I_build_set_w_term <-- parse
validate
S_build_empty
IB_build
get_first_rec
test_w_boolean
fetch_rec
insert_into_set
get_next_rec
return_set_desc

6. Design Rationale
A boolean is built using 'term'. The index is navigated and pointer
values are added to the set as they are fetched.
The set description is returned when the entire index has been
searched.

7. Test Plan

Test Cases should check for correct handling of invalid attribute names
and bad term values.

8. Issues

Routine Name: Build Set from Index with List (1_tuild_set_list())
Routine Number: 4.1.1.4.2

1. System Requirements

The "build set with list' command will enable the user to build a set
of Entrids which are associated with a list of terns contained ina
submitted file in the current index. The system will assign a tag to
the new set and print in the logical text file the sct tag, set
description, and set size.

In the Menu access, the logical text file is automatically displayed.
In the Host Language Interface access, the result can also be in the
logical text string.

2. System Architecture

parse
validate

IB_build
S_build_empty

get first record in index

test record with boolean
fetch record from index
insert into set

(repeat as necessary the 3 following commands)
next in index

test record with boolean

fetch record from index

insert into set

return set description

3. System Data Structures
1. Input
set_name string < name of the set to be built >
attr_name string < name of the attribute for the terms >
term_list array of strings < terms to be searched for >
set_attr string < attribute to project into set >
2. Output
set_desc SET_INFO < contains set tag, set description,
and set size. NULL value indicates
error >

4. System Data Flow

parse --> validate

validate --> S_build_empty
IB_build
get_first_rec
fetch_record
insert_into_set
get_next_rec
fetch_rec
insert_into_set
return_set_desc

System Control Flow

I_build_set_list <-- parse
validate
S_build_empty
IB_build
get_first_rec
fetch_record
insert_into_set
get_next_rec
return_set_desc

Design Rationale
A boolean is built using the terms in 'term_list. The index is
navigated and pointer values are added to the set as they are fetched.

The set description is returned when the entire index has been
searched for every term in the list.

Test Plan

Test Cases should check for correct handling of invalid attribute names
and bad term values.

Issues

Routine Name: Build Set from Index with Range (1 _build_set_range())

Routine Number: 4.1.1.4.3

1.

System Requirements

The 'build set with range’ command will enable the user to build a set
of Entrids which are associated with a boolean expression in the
current index. The system will assign a tag to the new set and print in
the logical text file the set tag, set description, and set size.

In the Menu access, the logical text file is automatically displayed.
In Host Language Interface access, the result can also be int the

logical text string.
System Architecture

parse
validate

IB_build
S_build_empty

get first record in index
test record with boolean
fetch record from index
insert into set

(repeat as necessary the 4 following commands)
get next record in index

test record with boolean

fetch record from index

insert into set

return set description

System Data Structures

1. Input
set_name string < name of the set to be built >
attr_name string < name of attribute having values >
term_list arry of strings < values to create range from >
set_attr string < attribute to project into set >
E.g. If term_list = { 1, 12, 18, 22, 29, 33, NULL }
then that means get all tuples from the current index
where 1 <atr_name<12 OR

16 <atr name<22 OR
20 < attr_name < 33

2. Output

set_desc SET_INFO < entries contain set tag, set description,
and set size. NULL indicates error >

System Data Flow

parse --> validate

validate --> S_build_empty
IB_build
get_first_rec
fetch_rec
insert_into_set
get_next_rec
fetch_rec
insert_into_set
return_set_desc

System Control Flow

I_build_set_w_range<-- parse
validate
S_build_empty
IB_build
get_first_rec
fetch_rec
insert_into_set
get_next_rec
1nsert_into_set
return_set_desc

Design Rationale

A boolean is built using the information in term_list to build the
range as described above. The index is navigated and pointer values
are added to the set as they are fetched. The set description 1s
returned when the entire index has been searched.

Test Plan

Test Cases should check for correct handling of invalid attribute names
and bad term values.

Issues

Routine Name: Retrieve Index (I_retrieve())

Routine Number: 4.1.1.1.1

1.

System Requirements

The 'retrieve index' command enables the user to retrieve Or open an
index component. The retrieval can be for 'reacl-only' or 'modify' mode.
The system will automatically assign the retrieved component to a
logical tag. If the component does not exist, then an error message
appears in the logical error file.

System Architecture

parse
validate

SIC_retrieve
RTIC _insert

System Data Structures

1. Input

index_name string < name of index to be retrieved >

indexset_name string < indexset name of index to be
retrieved >

mode integer < signifies read-only or modify mode >

2. Output

IME_OK successful retrieval of index

IME_FAILURE general failure

IME_DNE index does not exist

System Data Flow

parse --> validate
validate --> SIC_retrieve
RTIC _insert

System Control Flow

I_retrieve <-- parse
validate
SIC_retrieve
RTIC_insert

Design Rationale
First check that the index is not already retrieved, and if

50, return an error. Otherwise, retrieve the system catalog
information, assign it a tag, and update the RT catalogs to

reflect this.
Test Plan

Test all error codes, plus the retrieval of an already retrieved
index.

Issues

Should you be allowed to retrieve the same index more than once?
-->NO

Routine Name: Pick Index (I_pick())

Routine Number: 4.1.1.1.3

1.

System Requirements
The 'pick index' command will enable the user to make as 'current’

one of the retrieved index components. If the component does not exist,
then an error message appears in the logical error file.

System Architecture

parse
validate

RTIC retrieve
I_bind_retrieve
CWA_I_update

System Data Structures

1. Input

tag TAG < identifier for retrieved index >
2. Output

IME_OK successful picking of index

IME_BAD_TAG bad tag

System Data Flow

parse --> validate
validate --> RTIC_retrieve
CWA_I_update

System Control Flow
I_pick <-- parse
validate
RTIC _retrieve
CWA_I _update
Design Rationale
Search the RTC for the tag of the index to be made current. When a
match is found, update the CWA to point to the RTC entry for that

index. Also, update the pointer to current binding for the newly
picked index.

Test Plan

Test for invalid tag values and tags that don't belong to an index

component.
Issues
The current index boolean and current index select are automatically

updated to the default boolean (TRUE) and select (*), to gurantee
that at all times the boolean and select are compatible with the

Routine Name: Save Index (I_save())
Routine Number: 4.1.1.1.4

1. System Requirements
The 'save index' command enables the user to save the 'current’

retrieved index component. If the component was not retrieved in
‘modify' mode, then an error message appears in the logical error file.

2. System Architecture

parse
validate

flush buffers to disk
RTIC_update

3. System Data Structures
1. Input

2. Output

IME_OK successful save
IME_FAILURE general failure
IME_BAD_MODE wrong mode on index
IME_BAD_TAG invalid tag

4. System Data Flow
parse --> validate
validate --> flush_buffers_to_disk
RTIC_update

5. System Control Flow

I_save <-- parse
validate
flush_buffers_to_disk
RTIC_update
6. Design Rationale

After validating that the index is open for modify mode and has
been modified since the last save, flush the buffers containing the
updated copy of the index to disk. Update the RTC to reflect that the
index has not been modified since the last save.

7. Test Plan
Test for bad mode.

Routine Name: Return Index (I_return())
Routine Number: 4.1.1.1.5

1. System Requirements
The 'return index' command will enable the user to return a retrieved

index component. If the index was retrieved for modify mode and
was not saved, the an error message appears in the logical error file.

2. System Architecture

parse
validate

RTIC _delete

CWA_I_update (if necessary)
1_bind_delete

3. System Data Structures

1. Input
tag TAG < tag for index to be returned >

2. Output

IME_OK successful save
IME_FAILURE general failure
IME_NOTSAVED index modified but not saved
IME_BAD_TAG bad tag value

4. System Data Flow

parse --> validate

validate --> RTIC_delete
CWA_I_update
I_bind_delete

5. System Control Flow

I_retum <-- parse
validate
RTIC_delete
CWA_I_update
1_bind_delete

6. Design Rationale

First check to see if any modification has been done since the last
save, and if none has, remove its entry from the RTC. If the index
you are returning is the current index, then the CWA for indexes will

have to be updated. If the index has been modified, it will still
be returned, but an error message is returned.

Test Plan

Test for bad tags and for an attempt to return a modified index before
saving it.

Issues
Since minirel is being used as the underlying system, when an index

that has been modified is returned, it is considered saved. In other
words, the modifications become permanent.

Routine Name: List Indexes (I_list())
Routine Number: 4.1.1.1.2

1. System Requirements

The 'list indexes' command will enable the user to obtain a list of the
retrieved index components of the current book.

In the Menu access, the default text editor is automatically invoked
to read the logical text file. In Host Language Interface access, the
result can also be in the logical text string.
2. System Architecture
RTIC_traverse
3. System Data Structures
1. Input
2. Output
val_list LIST < a structure containing the number
of indexes currently retrieved, and

an array of tag, index-name
pairs about each index >

4. System Data Flow

5. System Control Flow
1_list <-- RTIC_traverse
6. Design Rationale

Search the run-time catalog for indexes, return the tag, name, and
indexset name of each index entry found.

7. Test Plan

Test for case where there are no retrieved indexes.

8. Issues

Routine Name: First in Index (I_first())

Routine Number: 4.1.1.5.1.1

1.

System Requirements

The 'first in index' command will enable the user to position the
curent row pointer to point to the first row of the current index
component with respect to the current index boolean (see section
4.3.5.2). If no such row is found, then an error is indicated in the
logical error file.

System Architecture

parse
validate

search with boolean
1_bind_info
CWA_1_update

System Data Structures

1. Input

2. Output

IME_OK successful search
IME_FAILURE general failure
IME_NO_CURRENT no current index
IME_NO_QUALIFY no qualifying row

System Data Flow

parse --> validate

validate --> search_w_boolean
I_bind_info
CWA_I_update

System Control Flow

I_first <-- parse
validate
search_w_boolean
I_bind_info
CWA_I_update

Design Rationale
This routine will search from the beginning of the index file, looking

for the first tuple in the index to satisfy the current index boolean.
I_current_row is updated. Binding to program variables is performed.

7. Test Plan

Test all error codes.

8. Issues

Routine Name: Nextin Index (I_next())
Routine Number: 4.1.1.5.1.2

1. System Requirements

The 'next in index' command will enable the uscr to position the
current row pointer in the CWA to point to the next row of the current
index component with respect to the current index boolean (see section
4.3.5.2). If no such row is found, then an error is indicated in the

logical error file.
2. System Architecture

parse
validate

relative search with boolean

I_bind_info
CWA_I_update(I_current_row)

3. System Data Structures
1. Input
2. Output
IME_OK successful search
IME_FAILURE general failure
IME_NO_CURRENT no current row
IME_NO_QUALIFY no qualifying row

4. System Data Flow

parse --> validate

validate --> relative_search_w_boolean
I_bind_info
CWA_I_update

5. System Control Flow

I_next <-- parse
validate
relative_search_w_boolean
I_bind_info
CWA_I_update

6. Design Rationale
Relative_Search_w_Boolean will search from the value of I_current_row

forward through the index, looking for the next tuple that satisfies
the current index boolean. Binding to program variables 1s performed.

7. Test Plan

Test for case with no qualifying row.

8. Issues

Routine Name: Fetch from Index (1_fetch())

Routine Number: 4.1.1.5.1.4

1.

System Requirements

The 'fetch from index' command will enable the user to obtain a
row of the current index component with respect to the current index
row address. The row is output to the logical text file. The

amount of the row output is defined by the current index select (see

section 4.3.5.3).

In the Menu access, the default text editor is automatically invoked
to read the logical text file. In Host Language Interface access, the
result can also be in the logical text file, logical text string, or
assigned to program variables (see section 4.3.7).

System Architecture
parse

validate

return tuple

System Data Structures
1. Input

2. Output

tuple_val TUPLE

System Data Flow

parse --> validate
validate --> return_tuple

System Control Fiow

I_fetch<-- parse
validate
return_tuple

Design Rationale

< selected parts of the current index row
will be null if there's an error >

Return the tuple pointed to by the current row pointer in the current

working area.

Test Plan

Issues

Routine Name: Last in Index (I_last())
Routine Number: 4.1.1.5.1.5

1. System Requirements

The 'last in index' command will enable the user to position the
current row point of the CWA to point to the last row of the current
index component with respect to the current index boolean (see section
4.3.5.2). If no such row is found, then an error is indicated in the
logical error file.

2. System Architecture

parse
validate

backward search with boolean

1_bind_info
CWA_I_update

3. System Data Structures
1. Input

2. Output

IME_OK successful search
IME_FAILURE general failure
IME_NO_CURRENT no current index
IME_NO_QUALIFY no qualifying row

4. System Data Flow

parse --> validate

validate --> backward_search_w_boolean
I_bind_info
CWA_]_update

5. System Control Flow

[_last <-- parse
validate
backward_search_w_boolean
I_bind_info
CWA_I_update

6. Design Rationale
This routine will search backward from the end of the index file

looking for the first (remember searching backward) tuple that
satisfies the current index boolean. The value of I_current_row is

updated. Binding to program variables is performed.
Test Plan
Test all error codes.

Issues

Routine Name: Previous in Index (I_previous())

Routine Number: 4.1.1.5.1.3

1.

System Requirements

The 'previous in index' command will enable the user to position the
current row pointer in the CWA to point to the previous row of the
current index component with respect to the current index boolean (see

section 4.3.5.2). If no such row is found, then an error is indicated
in the logical error file.

System Architecture

parse
validate

relative backward search with boolean

I_bind_info
CWA_I_update

System Data Structures

1. Input

2. Output

IME_OK successful search
IME_FAILURE general failure
IME_NO_CURRENT no current row
IME_NO_QUALIFY no qualifying row

System Data Flow

parse --> validate

validate --> relative_backward_search_w_boolean
I_bind_info
CWA_I1_update

System Control Flow

I_previous <-- parse
validate
relative_backward_search_w_boolean
1_bind_info
CWA_I_update

Design Rationale
Get the previous row wrt the current row and current boolean. Update

the CWA current row pointer. Binding to program variables is
performed.

7. Test Plan

Test all error codes.

8. Issues

Routine Name: Build Index Boolean (IB_build())
Routine Number: 4.1.1.5.2.1

1. System Requirements

The system will enable the user to build an index boolean for
navigating through the index rows. The user receives in the logical
text file an index boolean form for building such a boolean. The user
completes the form and submits it. The system assigns the index
boolean a tag. If an error in building the boolean is made,

then an error is returned.

In Menu and Command access, the form is input/ouput through the logical
text file. In the Menu access, the default text editor is

automatically invoked to build the form. In Host Language Interface
access, the form can be built through the logical text string.

2. System Architecture
form_new
parse
validate
assign_tag
RTI_BC_insert
3. System Data Structures
1. Input
2. Output

tag TAG the tag of the index boolean just created.
NULL if error occurs.

4. System Data Flow

form_new --> parse

parse --> validate

validate --> assign_tag
RTI_SC_insert

5. System Control Flow

IS_build <-- form_new
parse
validate
assign_tag
RTI_SC_insert

6. Design Rationale

This routine will build an index boolean and insert it into the

catalog. The user is given a form to complete defining the index
boolean. This definition is then parsed into an internal format,
checking that the expression is syntactically correct. A catalog
entry is created and a tag is assigned to the boolean definition.
There is no compatibility check done at this time. That is done at
the time the user 'picks’ the index Boolean as current.

Test Plan

Issues

This routine receives it's input from form_new that is

spawned. The form_new will give this routine's input in

string format.

Boolean_list string < boolean condition >
It is up to us to parse the string into our internal format.

A valid boolean condition must follow the following rules:
Relational operators supported are <, >, =, <>, <=, >=.
Logical operators supported are AND, OR, NOT.

Attribute types supported are characters, integers, floats,
and strings.

A simple clause is of the form:

[NOT] <attr_name> <rel_op> { <attr_name> | <constant> }
NOT is optional, and if specified implies the negation

of the entire simple clause. The first operand MUST ALWAYS
be an attribute name. The second operand can be either an
attribute name or a constant.

Constants are of the following forms:

Ingeter constants the number e.g. 345 10 0-3
Float constants the number e.z. 3.1415 0.3 -3.553
Character constants the character enclosed in single quotes

e.g. Ia! lx| i?' 1@! Il'
String constants the string enclosed in double quotes

(note the quotes are NOT part of the string)

"cindy" "Delaware” "TOMORROW"

Simple clauses can be connected using AND or OR.

No order of evaluation can be imposed using parenthesis.

The boolean is evaluated such that AND has higher operator precedence
than OR.

E.g. A<B AND C>D OR A <E is automatically evaluated as the
followins ((A <B) AND (C>D))OR (A <E).

The user is responsible for ensuring that these rules are followed.

Routine Name: List Index Booleans (IB_List())
Routine Number: 4.1.1.5.2.2

1. System Requirements
The 'list index booleans' command will enable the user to obtain a list
in the logical text file of all of the constructed Index Booleans.

The list contains the boolean tag and the boolean body for each
boolean.

In the Menu access, the default text editor is automatically invoked to
read the logical text file. In Host Language Interface access, the
result can also be in the logical text string.

2. System Architecture
RTI_BC_traverse

3. System Data Structures

1. Input

2. Output
val_list LIST pointer < each entry contains tag and
body of a currently defined boolean.

val_list will be NULL if there is
an error. >

4. System Data Flow
S. System Control Flow
IB_List <-- RTI_BC_traverse
6. Design Rationale
Search the Run-time Catalog for indexes, return the tag and body
of each boolean entry found.
Note the actual return value is LIST *, a NULL terminated list
of entries, containing the tag and boolean condition in string format.
7. Test Plan
Test for case where there are no retrieved booleuns.

8. Issues

Must return both tags and bodies. Tags alone ar¢ meaningless to the
user.

Routine Name: Pick Index Boolean (IB_Pick())

Routine Number: 4.1.1.5.2.3

1.

System Requirements

The 'pick index boolean' command will enable the user to make 'current’
one of the index booleans. If the index boolean does not exist, then an
error message appears in the logical error file. If the chosen boolean

cannot be used to search the current index, an eITor message appears in
the logical text file.

System Architecture

parse
validate

RTI_BC_retrieve
test_compatibility

CWA_I_update(IB_current)

System Data Structures

1. Input

tag TAG < identfier for retrieved boolean >
2. Qutput

IME_OK successful picking of boolean

IME_BAD_TAG bad tag

IME_INCOMPATIBLE boolean not compatible with index
IME_NO_CURRENT no current index

System Data Flow

parse --> validate

validate --> RTI_BC_retrieve
test_compatibility
CWA_]_update

System Control Flow

I_Pick <-- parse
validate
RTI_BC_retrieve
test_compatibility
CWA_I_update

Design Rationale

This routine will make current the specified boolean. First it checks

that there is a current index to test compatibility with. Then it
searchs the run-time boolean catalog for the given tag.

If it is found, test for the compatibility of the boolean for
searching the current index (e.g. attribute names are attributes of
the index, values are in the domain of values for the index).

Test Plan
Test all error codes.

Issues

Routine Name: Modify Index Boolean (IB_modify())

Routine Number: 4.1.1.5.2.4

1. System Requirements
The system will enable the user to modify a index boolean. The user
receives the current index boolean definition in the logical text file
for modifying. The user then alters the definition and the system
replaces the old definition with the new one.
In the Menu access, the default text editor is autornatically invoked
to read the logical text file. In Host Language Interface access,
the result can also be in the logical text string.
2. System Architecture
form_modify (give it the current boolean definition)
parse
validate
test_syntax
test_compatibility
RTI_BC_update
3. System Data Structures
1. Input
2. Output
IME_OK success
IME_FAILURE general error
IME_INCOMPATIBLE boolean incomparible with current index
IME_BAD_BOOL boolean syntactically invalid
IME_NO_CURRENT no current index to test compatibility against
4. System Data Flow
form_modify --> parse
parse --> validate
validate --> test_syntax
test_compatibility
RTI_BC_update
5. System Control Flow

IB_modify <-- form_modify

parse

validate
test_syntax
test_compatibility

RTI_BC_update
Design Rationale

This routine will update the current definition for the current

index boolean. First it will check that there is a current index,

in order to test for compatibility. Next it checks that the user

is not trying to modify the default boolean "TRUE". Then it will check
that the current index boolean exists. The user is given a copy of the
current boolean definition and is allowed to moclify it through
form_modify. The new definition is then tested for syntatic
correctness and compatibility with the current index. If it is
compatible, then the old definition is replaced with the new one.

If it is not compatible, no change is made.

See Section 4.1.1.5.2.1 for valid syntax of boolean conditions.

Test Plan
Test all error codes.
Issues

This routine will pass to form_modify the current select definition
and receive back the modified select definition in string format.

Routine Name: Drop Index Boolean (IB_drop())

Routine Number: 4.1.1.5.2.5

1.

System Requirements

The system enables the user to delete a index boolean. If the index
boolean does not exist, then an error message appears in the logical
error file.

System Architecture

parse

validate

RTI_BC_delete (deallocate_WA)

CWA _I_update(IB_current = "TRUE") (if dropped is current)

System Data Structures

1. Input

tag TAG < tag for index boolean >
2. Output

IME_OK success

IME_FAILURE general error

IME_BAD_TAG tag specified does not exist

System Data Flow

parse --> validate
validate --> RTI_BC_delete
CWA_I_update

System Control Flow

IB_drop <-- parse
validate
RTI_BC_delete
CWA _I_update

Design Rationale

This routine will drop any index boolean that is currently in the CWA.
The user is not allowed to delete the default boolean, so there is a
check to make sure the user is not trying to delete this boolean.

It will then delete the catalog entry for the index boolean. If the

index boolean that was deleted was the current index boolean then the
current index boolean is updated to equal the default index boolean
"TRUE"‘

Test Plan

Test all error codes.

8. Issues

Routine Name: Build Index Select (IS_build())

Routine Number: 4.1.1.5.3.1

1.

System Requirements

The system will enable the user to build an index select for

navigating through the index rows. The user receives in the logical
text file an index select form for building such a select. The user
completes the form and submits it. The system assigns the index select
a tag. If an error in building the select is made, then an error is
returned.

In Menu and Command access, the form is input/ouput through the logical
text file. In the Menu access, the default text editor is

automatically invoked to build the form. In Host Language Interface
access, the form can be built through the logical text string.

System Architecture
form_new

parse

validate

assign_tag

RTI_SC_insert

System Data Structures
1. Input

2. Output

tag TAG tag of the index select created.
NULL if error.

System Data Flow

form_new --> parse

parse --> validate

validate --> assign_tag
RTI_SC_insert

System Control Flow

IS_build <-- form_new
parse
validate
assign_tag
RTI_SC_insert

Design Rationale

This routine will build an index select and insert it into the catalog.

The user is given a form to complete defining the index select. This
definition is then parsed into an internal format. A catalog entry

is created and a tag is assigned to the select definition. There is
compatibility check done at this time. That is done at the time the
user 'picks' the index select as current. The tag is returned. If

an error is encountered then NULL is returned.

Test Plan

Issues

This routine receives it's input from the form process that is

spawned. The form process will give this routine's input in

string format.

select_list string < list of the attributes of the select >
It is up to us to parse the string into our internal format.

The characters accepted as part of an attribute

name are A-Z, a-z, . - * (to allow for select *). Any other
character or sequence of characters can be used as a
separator, as long as there are no interspersed spaces.

ie.
a : b is acceptable. (separator = ":")
a . # b is acceptable. (separator = ":,#")

a:, bis not acceptable because the separator is ":" and it tries to parse *,
as an attribute name.
a b is acceptable. (separator doesn't exist, but that's ok)

Routine Name: List Index Selects (IS_list())

Routine Number: 4.1.1.5.3.2

1.

System Requirements

The system will enable the user to obtain a list in the logical text
file of the constructed index selects for the index.

In the Menu access the default text editor is automatically invoked to
read the logical text file. In Host Language Interface access,

the result can also be in the logical text string.

System Architecture

RTI_SC_traverse

System Data Structures

1. Input

2. Output

select_list LIST pointer < array of tag and definitions
NULL if error >

System Data Flow

System Control Flow

IS_list <-- RTI_SC_traverse

Design Rationale

This routine will return a list of tags and definitions for all index
selects currently defined in the current working area. This information
is retrieved from the index select run-time catalog. If there does

not currently exist any index selects, then NULL is returned. The

actual type of what is returned is LIST * (a NULL-terminated list of
index select information).

Test Plan

Test the Listing of index selects when none are defined, and also
when at least one is defined.

Issues

Routine Name: Pick Index Select (IS_pick())

Routine Number: 4.1.1.5.3.3

1.

System Requirements

The system will enable the user to make as “current” one of the index
selects. If the index select does not exist, an erTor message appears
in the logical error file.

System Architecture
parse

validate

test_compatibility

CWA _I_update(IS_current)

System Data Structures

1. Input

tag TAG < tag of the index select to pick >
2. Output

IME_OK success

IME_FAILURE general error

IME_BAD_TAG invalid tag

IME_INCOMPATIBLE select to pick is incompatible with current index
IME_NO_CURRENT no current index 10 test compatibility with

System Data Flow

parse --> validate
validate --> test_compatibility
CWA_I_update

System Control Flow

IS_pick <-- parse
validate
test_compatibility
CWA_I1_update

Design Rationale

This routine will update the current index select. First it checks
that there is a current index to verify compatibility. Next it checks
that the tag given is a valid index select tag, and that the select
currently exists. Next the compatibility is checked against the
current index. The current working area index select variable is
updated.

7. Test Plan

Test all error codes.

8. Issues

Routine Name: Modify Index Select (IS_modify())

Routine Number: 4.1.1.5.3.4

1.

System Requirements

The system will enable the user to modify a index select. The user
receives the current index select definition in the logical text file

for modifying. He then alters the definition and the system replaces
the old definition with the new one.

In the Menu access, the default text editor is automatically invoked to
read the logical text file. In Host Language Interface access, the result
can also be in the logical text string.

System Architecture

form_modify (give it the current select definition)
parse

validate

test_compatibility

RTI_SC_update

System Data Structures

1. Input

2. Output

IME_OK success

IME_FAILURE general error

IME_INCOMPATIBLE select definition incompatible with current index
IME_BAD_SELECT modified definition is syntactically incorrect

System Data Flow

form_modify --> parse

parse --> validate

validate --> test_compatibility
RTI_SC_update

System Control Flow

IS_modify <-- form_modify
parse
validate
test_compatibility
RTI_SC_update

Design Rationale

This routine will update the current definition for the current
index select.

There is a default index select "*" to select all attributes that the

user is not allowed to modify. First it will check that the current
index select exists, and can be modified. The user is given a copy of
the current select definition and is allowed to modify it through
form_modify. The new definition is then tested for validity against
the current index (both syntactically and semantically). Ifitis
compatible, then the old definition is replaced with the new one. If
it is not compatible, no change is made. See Section 4.1.1.5.3.1 for
definition of acceptable select input.

Test Plan
Test all error codes.
Issues

This routine will pass to form_modify the current select definition
and receive back the modified select definition in string format.

Routine Name: Drop Index Select (IS_drop())

Routine Number: 4.1.1.5.3.5

1.

System Requirements

The system enables the user to delete an index sclect. If the index
select does not exist, then an error message appears 1n the logical
error file.

System Architecture

parse

validate

RTI_SC_delete

CWA_I_update(IS_current = "y (if dropped is current)

System Data Structures

1. Input

tag TAG < tag for index select >
2. Output

IME_OK success

IME_FAILURE general error

IME_BAD_TAG tag specified does not exist

System Data Flow

parse --> validate
validate --> RTI_SC_delete
CWA_I_update

System Control Flow

IS_drop <-- parse
validate
RTI_SC_delete
CWA_I_update

Design Rationale

This routine will drop any index select that is currently in the CWA.
The user is not allowed to delete the default select, so there is a
check to make sure the user is not trying to delere this select.

It will then delete the catalog entry for the index select. If the

index select that was deleted was the current indzx select then the
current index select is updated to equal the default index select "*".
If the tag was invalid, an error is returned.

Test Plan

Test all error codes.

8. Issues

Routine Name: Bind Column Index (I_bind_column())
Routine Number: 4.1.1.7.1

1. System Requirements

The system will enable the user to bind a program variable with a
column of the index. He provides the name fo the column, a pointer
to the program variable, the type of the variable, and the length

of the program variable. When the database is being navigated, the
system places the column into the program variable.

2. System Architecture

parse

validate

test_compatibility

fill_I_bind_struct
CWA_I_update(I_binding = TRUE)

3. System Data Structures
1. Input
attribute_name string < name of the attribute to bind >
variable_ptr string < pointer to some variable >
variable_type string < type of variable to bind to >
variable_length int < length of variable to bind to >
2. Output
IME_OK success
IME_FAILURE general error
IME_NO_CURRENT no current index to validate binding
IME_BAD_ATTR invalid attribute name for current_index
IME_BAD_TYPE type does not match attribute in index

4. System Data Flow

parse --> validate

validate --> test_compatibility
fill_ I bind_struct
CWA_I_update

5. System Control Flow

1 bind_column <-- parse
validate
test_compatibility
fill_I_bind_struct
CWA_I_update

6. Design Rationale

This routine will set up for binding tuple values to program variables.
First it verifies that only one column is specified. Then it checks

that the column name given is a valid column name for the current
index, that the variable_type matches the type of the column in the
index. This information is then entered into the binding structure,
and the current working area is updated to reflect that there is

binding for the current index. During navigation, the values of tuples
are copied into the program variables.

Test Plan

Test all error codes.

Issues

The bind column command must be executed after the user has picked

the corresponding index. It is at the time the user defines the bind
(i.e. here) that a compatibility check is done.

Routine Name: Bind Table Index (I_bind_table())
Routine Number: 4.1.1.7.2

1. System Requirements

The system will enable the user to bind a set of program variables with
a set of columns of the current index. The user makes current the
index. He then provides a pointer to a data structure containing

names of the columns, pointers to the program variables, type of the
variables, and the lengths of the program variables. When the database
is being navigated, the system places the columns into the program
variables.

2. System Architecture

parse

validate

test_compatibility

fill_I_bind_struct
CWA_I_update(I_binding = TRUE)

3. System Data Structures
1. Input
bind_info variable_binding pointer
2. Output
IME_OK success
IME_FAILURE general error
IME_NO_CURRENT no current index to validate binding
IME_BAD_ATTR invalid column name for current_index
IME_BAD_TYPE type does not match column in index
IME_BAD_BIND other compatibiliry or syntax errors

4. System Data Flow

parse --> validate

validate --> test_compatibility
fill_I_bind_struct
CWA_]_update

5. System Control Flow

I_bind_table <-- parse
validate
test_compatibility
fill_I_bind_struct
CWA _I_update

6. Design Rationale

This routine will set up for binding tuple values to program variables.
First it is checked that the column names given are a valid column
names for the current Index, that the variable_types matche the type of
the columns in the index. This information is then entered into the
binding structure, and the current working area is updated to reflect
that there is binding for the current index. During navigation, the
values of tuples are copied into the program variables.

Test Plan

Test all error codes.

Issues

The bind table command must be executed after the user has picked

the corresponding index. Itis at the time the user defines the bind
(i.e. here) that a compatibility check is done.

Routine Name: Create Indexset (ISET_create())
Routine Number: 3.1.2.1.1

1. System Requirements

The create indexset command allows one to create the directory,
databook, catalog, and log devices of the indexset objects.

Example:

create indexset library

directory:

{device = [usr.smith library]library.datl,
initsize = 4096,

incrsize = 1096,

maxsize = 200000},

databook:

(device = [usr.smith.library]library.datl,
initsize = 4096,

incrsize = 1096,

maxsize = 200000},

catalog:

{device = [usr.smith.library]library.datl,
initsize = 4096,

incrsize = 1096,

maxsize = 200000},

{device = [usr.smith.library]library.datl,
initsize = 4096,

incrsize = 1096,

maxsize = 200000},

log:
{device = [usr.smith.library]library.dat1,
initsize = 4096,

incrsize = 1096,
maxsize = 200000};

The argument list for the previous example would look like this, where
each COLUMN is one of the arguments: (Note: there can be any number of
"rows" labeled 'databook’, but there should be exactly two "rows”

labeled 'catalog’, and only one "row" labeled log. The create

command must have no "rows" labeled 'directory’).

object_names device_name initsize incrsize maxsize
directory [usr.smith.library]library.datl 4096 1096 200000
databook [usr.smith.library]library.datl 4096 1096 200000
catalog [usr.smith.library]library.dat1l 4096 1096 200000
catalog [ust.smith library]library.datl 4096 1096 200000
log [usr.smith.library]library.datl 4096 1096 200000

2. System Architecture

parse

validate

create catalogs
SOMETHING
SISET _insert

3. System Data Structures

1. Input

iset_name
iset_loc
object_names

device_names

initsizes

incrsizes

maxsizes

string
string
array of strings

< object names for each element
described in corresponding locations

of other arrays >
array of strings

< device names for each component

of the indexset >
array of integers

< initial sizes for each component

of the indexset >
array of integers

< incremental sizes for each component

of the indexset >
array of integers

< maximum sizes for each component

of the indexset >

NOTE : all of these arrays act as parallel arrays, in that
entry i of each array is related to entry i of

every other array.
2. Output
IME_OK ISET _create successful
IME_FAILURE general error

4. System Data Flow

parse -->

validate

validate --> create catalogs
SOMETHING
SISET _insert

SOMETHING --> SISET _insert

5. System Control Flow

ISET create <--

parse

validate
SOMETHING
RTISET _update
SISET retrieve
SISET _delete

< name of the indexset to create >
< location of indexset to create >

SISET _insert

6. Design Rationale

This routine will create a new indexset. It will first check that the
indexset to create does not already exists. It will then do SOMETHING,

and create an indexset catalog entry for the indexset.

7. Test Plan

Test the creation of an existing and nonexistent indexset. Test
errors that relate to SOMETHING.

8. Issues

Routine Name: Drop Indexset (ISET_drop())
Routine Number: 3.1.8.2

1. System Requirements

The drop indexset command allows one to drop an indexset.

2. System Architecture

parse

validate

for each index in the catalog
I_drop { drop the index }

end loop

remove catalog

for each set in the catalog
S_drop_disk

end loop

remove catalog

SISET_delete

3. System Data Structures

1. Input
iset_name string < name of indexset to drop >
iset_loc string < location of indexset to drop >
2. Output
IME_OK ISET_drop successful
IME_FAILURE general failure
IME_DNE indexset to drop does not exist

4. System Data Flow

parse --> validate

validate --> remove index lcop
remove index catalog
remove set 100D
remove set catalog
SISET _delete

5. System Control Flow

ISET_drop <-- parse
validate
remove index loop

remove index catalog
remove set 1oop
remove set catalog
SISET_delete

6. Design Rationale
This routine will check that the indexset to drop exists, and is not
the current indexset. It will then remove each index (and potentially
any associated index_kits), and each set, and then delete the index
and set catalogs belonging to the indexset. Finally it will remove
the system catalog entry.
Note: Cannot drop the current indexset.

7. Test Plan
Test all error codes.

8. Issues

Should ISET_drop cascade down to index_kit deletion ..NO!!

Routine Name: Alter Indexset (ISET_alter())
Routine Number: 3.1.3.2.5

1. System Requirements

The alter indexset command allows one to alter the databook, catalog,
and log devices of the indexset objects. The directory devices cannot
be altered without dropping the indexset.
Example:

alter indexset library

databook:

{device = [usr.smith.library]library.datl,
initsize = 4096,

incrsize = 1096,

maxsize = 200000},

{device = [ust.smith.library]library.dat2,
initsize = 4096,

incrsize = 1096,

maxsize = 200000},

catalog:

{device = [usr.smith library]library.icat,
initsize = 4096,

incrsize = 1096,

maxsize = 200000},

{device = [usr.smith.library]library.scat,
initsize = 4096,

incrsize = 1096,

maxsize = 200000},

log:
{device = [usr.smith.library]library.log,
initsize = 4096,

incrsize = 1096,
maxsize = 200000} ;

My guess is that you can only alter the device and initsize if the
object is empty, but you can modify the incrsize anytime, and the
maxsize as long as the current size is less than the proposed maxsize.

The argument list for the previous example would look like this, where
each COLUMN is one of the arguments: (Note: there can be any number of
"rows" labeled 'databook’, but there should be no more than two "rows"”
Jabeled 'catalog', and only one "row" labeled ‘log’. The alter command
must have no "rows" labeled 'directory’).

object_names device_name initsize incrsize maxsize

databook [usr.smith.library]library.datl 4096 1096 200000
databook [usr.smith.library]library.dat2 4096 1096 200000
catalog [usr.smith.library]library.icat 4096 1096 200000
catalog [usr.smith.library]library.scat 4096 1096 200000
log [usr.smith.library]library.log 4096 1096 200000

e-3

2. System Architecture

parse
validate

SOMETHING

RTISET _update

SISET retrieve

SISET _delete
SISET _insert

/* retrieve the catalog entry */

/* delete the old catalog entry */
/* insert the updated catalog entry */

3. System Data Structures

1. Input

iset_name
iset_loc
object_names

device_names

initsizes

incrsizes

maxsizes

string < name of the indexset to alter >
string < location of indexset to alter >
array of strings
< object names for each element
described in corresponding locations
of other arrays >
array of strings
< device names for each component
of the indexset >
array of integers
< initial sizes for each component
of the indexset >
array of integers
< incremental sizes for each
component of the indexset >
array of integers
< maximum sizes for each component
of the indexset >

NOTE: all of these arrays act as parallel arrays, in that
entry i of each array is related to entry i of
every other array.

2. Output
IME_OK

IME_FAILURE

4. System Data Flow

parse -->

validate --> SOMETHING

validate

ISET _alter successful
general error

RTISET _update
SISET retrieve

SISET delete
SISET insert

SOMETHING --> RTISET update
SISET retrieve

SISET _delete

SISET insert

5. System Control Flow

ISET _alter <-- parse
validate
SOMETHING
RTISET _update
SISET _retrieve
SISET _delete
SISET insert

6. Design Rationale
This routine will alter the indexset. It will first check that the

indexset to alter already exists. It will then do SOMETHING, and
update the indexset catalog entry for the indexset.

7. Test Plan

Test the altering of an existing and nonexistent indexset. Test
errors that relate to SOMETHING.

8. Issues

When altering indexsets, must you respecify EVERYTHING that was
originally specified when the indexset was created? If not, then

how do you know, for example, which databook element they are
implying to alter (for example if you change the name).

Routine Name: Move Indexset (ISET_move())
Routine Number: 3.1.5.2

1. System Requirements

The move indexset command allows one to move an indexset from one
user to another.

2. System Architecture

parse
validate

check_uniqueness
for each index in the index catalog

I_move { not I_move exactly, but move to new location }
for each set in the set catalog

S_move { not S_move exactly, but move to new location }
SISET _retrieve { from old user indexset catalog }
SISET_delete { from old user indexset catalog }
SISET _insert { to new user indexset catalog)

3. System Data Structures

1. Input
iset_name string < name of indexset to move >
iset_loc_old string < user currently owning indexset >
iset_loc_new string < user to move indexset to >

2. Output
IME_OK ISET_move successful
IME_FAILURE general error
IME_DNE indexset to move does not exist
IME_NONUNIQUE user to move indexset to already has indexset with

the same name

4. System Data Flow

parse --> validate

validate --> check_uniqueness
move index loop
move set loop
SISET retrieve
SISET delete
SISET _insert

5. System Control Flow

ISET_move <-- parse
validate

check_uniqueness
move index loop
move set loop
SISET _retrieve
SISET _delete
SISET _insert

6. Design Rationale

This routine will move an indexset from one user to another. First it
will check that the indexset to move exists. Next, it will check that
the new user does not already have an indexset with the same name.
Then for each index and set in the indexset, it will move them

to the indexset at the new user's location. It will delete the

catalog entry from the old user's system indexset catalog, and insert
a catalog entry into the new user's system indexset catalog.

7. Test Plan
Test all error codes.
8. Issues

What should happen with associated index_kits when indexes are
moved to different users? I think they should move too.

Routine Name: Copy Indexset (ISET_copy())
Routine Number: 3.1.4.2.1

1. System Requirements

The copy indexset command allows the user to make identical copies of
indexsets.

2. System Architecture
[B = copy(A)]
parse
validate
ISET_create(B)

for each index in the index catalog
1_copy(A.index,B.index)

for each set in the set catalog
S_copy(A.set,B.set)

3. System Data Structures

1. Input
iset_namel string < name of indexset to copy >
iset_locl string < location of indexset to copy >
iset_name2 string < name of indexset to copy into >
iset_loc2 string < location of indexset to copy into >
2. Output
IME_OK ISET_copy successful
IME_FAILURE general error
IME_DNE indexset to copy does not exist
IME_NONUNIQUE indexset to copy into already exists

4. System Data Flow

parse --> validate

validate --> ISET_create
index copy loop
set copy loop

5. System Control Flow

ISET _copy <-- parse
validate
ISET create
index copy loop
set copy loop

6. Design Rationale
This routine will make an identical copy of an indexset. First it
checks that the indexset to copy exists, and that the indexset to
create does not already exist. It then will copy each index from one

indexset to the other. The ISET_create command will get ALL of its
input from the indexset to copy from.

7. Test Plan
Test all error codes.

8. Issues

Routine Name: Intersect Indexset (ISET_intersect())
Routine Number: 3.1.4.2.4

1. System Requirements

The intersect indexset command allows one to intersect the different
parts of indexsets.

2. System Architecture
[C = A intersect B]

parse
validate

ISET _create(C)
for each index in the index catalog of A
if there is a compatible index in the index catalog of B
I_intersect(A.index,B.index,C.index)
end loop

3. System Data Structures

1. Input
iset_namel string < name of indexset to intersect >
iset_locl string < location of indexset to intersect >
iset_name?2 string < name of indexset to intersect >
iset_loc2 string < loc of indexset to intersect >
iset_name3 string < name of indexset to intersect into >
iset_loc3 string < loc of indexset to intersect into >
2. Output
IME_OK ISET _intersect successful
IME_FAILURE general error
IME_DNE indexset to intersect does not exist
IME_NONUNIQUE indexset to create as result already exists

4. System Data Flow

parse --> validate
validate --> ISET _create
intersection loop

5. System Control Flow

ISET _intersect <-- parse
validate
ISET create
intersection loop

6. Design Rationale

This routine will intersect compatible indexes in the two different
indexsets. First it must check that the two indexsets to intersect
actually exist, and that the resulting indexset does not already exist.
Next it will check for pairwise compatible indexes, each from a
different indexset. If any such pairs exist, it will compute the
intersection of themn and place the resulting index in the newly
created indexset. A catalog entry is created for the new indexset.

7. Test Plan
Test all error codes.

8. Issues

Routine Name: Subset Indexsets (ISET_subset())
Routine Number: 3.1.4.2.2

1. System Requirements

The 'subset indexset' command enables users to make indexsets from
subsets of indexsets.

2. System Architecture
[B = subset(A)]
Parse
Validate
for each index in A
I_subset(A.index, B)

3. System Data Structures

1. Input
indexset_name string < name of result indexset >
sub_indexset_name string < name of indexset to be subsetted >
select_list string < attribute names of indexed attrs
to be subsetted >
bool_list string < string containing boolean condition
to subset according to >
2. Output
IME_OK successful subset indexset
IME_FAILURE general failure
IME_NONUNIQUE non-unique name for new/subsetted indexset
or indexspace
IME_BAD_BOOL boolean syntax error

4. System Data Flow

parse --> validate
validate --> I_subset

5. System Control Flow
ISET_subset<-- parse
validate
I_subset

6. Design Rationale

The indexset and indexspace(s) for the result to go into must have
already been created and must have the same indexspace names as the

iset to be subsetted.

7. Test Plan

Test Cases should check for correct handling of invalid names,
bad booleans , bad selects.

8. Issues

Routine Name: Subtract Indexset (ISET_subtract())
Routine Number: 3.1.4.2.5

1. System Requirements

The subtract indexset command allows one to subtract the different
parts of indexsets. [Namely the indexes and sets?]

2. System Architecture
[C=A-B]

parse
validate

ISET _create(C)
for each index in the index catalog of A
if there is a compatible index in the index catalog of B
1_subtract(A.index,B.index,C.index)
end loop

3. System Data Structures

1. Input
iset_namel string < name of indexset to subtract >
iset_locl string < location of indexset to subtract >
iset_name?2 string < name of indexset to subtract >
iset_loc2 string < loc of indexset to subtract >
iset_name3 string < name of indexset to subtract into >
iset_loc3 string < loc of indexset to subtract into >
2. Output
IME_OK ISET_subtract successful
IME_FAILURE general error
IME_DNE indexset to subtract does not exist
IME_NONUNIQUE indexset to create as result already exists

4. System Data Flow

parse --> validate
validate --> ISET_create
subtraction loop

5. System Control Flow

ISET subtract <-- parse
validate
ISET create
subtraction loop

6. Design Rationale

This routine will subtract compatible indexes in the two different
indexsets. First it must check that the two indexsets to subtract
actually exist, and that the resulting indexset does not already exist.
Next it will check for pairwise compatible indexes, each from a
different indexset. If any such pairs exist, it will compute the
subtraction of them and place the resulting index in the newly
created indexset. A catalog entry is created for the new indexset.

7. Test Plan
Test all error codes.

8. Issues

Routine Name: Union Indexsets (ISET_union())
Routine Number: 3.1.4.2.3

1. System Requirements

The 'union indexset' command enables users to union the different
parts of indexsets.

2. System Architecture
[C= A union B]

parse
validate

for each pair of compatible indexes in A and B
I_union(A.index,B.index,C.index)

3. System Data Structures

1. Input
result_indexset string < name of indexset to be created >
un_indexset_namel string < name of indexset to be unioned >
un_indexset_name2 string < name of indexset to be unioned >

2. Output
IME_OK ISET _union successful
IME_FAILURE general failure
IME_NONUNIQUE non-unique name for new indexset or indexspace
IME_DNE indexset to union does not exist

4. System Data Flow

parse --> validate
validate --> I_union

5. System Control Flow
ISET_union <-- parse
validate
1 _union

6. Design Rationale

The result indexset must have already been created, with indexspaces
matching those in indexset 1 being unioned.

For each combination of indexes from indexsets 1 and 2, union the
indexes.

7. Test Plan

Test Cases should check for correct handling of invalid names.

8. Issues

If none of the indexes in either indexset are compatible for union,

what should the resulting indexset look like?
--> No indexes in it, but indexspaces matching indexset 1 being unioned.

How do we know what indexspace to put the index in?
--> Put it in the one corresponding to the one in indexset 1 (indexes will
have same names, indexspaces but different isets)

What happens when we run out of space in the ispace?

Routine Name: Create Indexspace (ISPACE_create())
Routine Number: 3.1.2.1.2

1. System Requirements

The create indexspace command allows one to create the databook devices
associated with the indexspace.
Example:

create indexspace library

databook:

{device = [usr.smith.library]library.dat1,
initsize = 4096,

incrsize = 1096,

maxsize = 200000},

{device = [usr.smith.library]library.dat2,
initsize = 4096,

incrsize = 1096,

maxsize = 100000};

The argument list for the previous example would look like this, where
each COLUMN is one of the arguments:

device_name initsize incrsize maxsize

[usr.smith.library]library.datl 4096 1096 200000
[usr.smith.library]library.dat2 4096 1096 100000

2. System Architecture

parse
validate

SOMETHING
SISET insert

3. System Data Structures

1. Input

ispace_name string < name of indexspace to create >
iset_name string < name of indexset to create indexspace in >
iset_loc string < locatdon of indexset >
device_names array of strings

< device names for indexset components >
initsizes array of integers

< initial sizes for indexset components >
incrsizes array of integers

< increment sizes for indexset components >
maxsizes array of integers

< maximum sizes for indexset components >

2. Output

IME_OK ISPACE_create successful
IME_FAILURE general error

. Svstem Data Flow

parse -->validate

validate --> SOMETHING
SISET _insert

SOMETHING -->SISET_insert

. System Control Flow

ISPACE _create <-- parse
validate
SOMETHING
SISET _insert

. Design Rationale

This routine will create the indexspace within an indexset. It will

first check that there does not already exist an indexspace with the

same name in the indexset. It will then do SOMETHING, and insert an
entry into the indexset catalog expressing the creation of an

indexspace.

. Test Plan

Test all error codes.

. Issues

What is this routine supposed to do?

Routine Name: Alter Indexspace (ISPACE_alter())
Routine Number: 3.1.3.2.4

1. System Requirements

The alter indexspace command allows one to alter the databook devices
associated with the indexspace.
Example:

alter indexspace library

databook:

{device = [usr.smith.library]library.datl,
initsize = 4096,

incrsize = 1096,

maxsize = 200000},

{device = [ust.smith.library]library.dat2,
initsize = 4096,

incrsize = 1096,

maxsize = 100000};

The argument list for the previous example would look like this, where
each COLUMN is one of the arguments:

device_name initsize incrsize maxsize

[usr.smith.library]library.datl 4096 1096 200000
[usr.smith library]library.dat2 4096 1096 100000

2. System Architecture

parse
validate

SOMETHING
SISET_update

3. System Data Structures

1. Input

iset_name string < name of the indexset to alter indexspace >
iset_loc string < location of indexset >
device_names array of strings

< device names for indexset components >
initsizes array of integers

< inital sizes for indexset components >
incrsizes array of integers

< increment sizes for indexset components >
maxsizes array of integers

< maximum sizes for indexset components >

2. Output

IME_OK ISPACE _alter successful
IME_FAILURE general error

. System Data Flow

parse -->validate

validate --> SOMETHING
SISET_update

SOMETHING -->SISET_update

. System Control Flow

ISPACE_alter <-- parse
validate
SOMETHING
SISET_update

. Design Rationale

This routine will alter the indexspaces within an indexset. It will
first check that the indexspaces within that indexset already exist

in order to alter them. It will then do SOMETHING, and update the
indexset catalog entry, updating the indexspace information within
the indexset catalog entry.

. Test Plan

Test all error codes.

. Issues

What is this routine supposed to do?

Routine Name: Create Index Kit (IK_create())

Routine Number: 3.1.2.5

1. System Requirements

The 'create indexkit' command allows one to create indexkit objects.

2. System Architecture

parse
validate

SIK insert
3. System Data Structures
1. Input

indexkit
kitset
2. Output
IME_OK
IME_FAILURE
IME_NONUNIQUE
4. System Data Flow

parse --> validate
validate --> SIK_insert

5. System Control Flow
IK _create <-- parse
validate
SIK _insert

6. Design Rationale

string < name of indexkit to create >
string < name of kit_set to contain indexkit >

indexkit creation successful
general error .
indexkit with same name already exists in kitset

This routine will create an empty catalog entry for an indexkit.

This routine will check that an indexkit with the same name does not
already exist in the kitset. The only field that will have any value

is the indexkit name. All other catalog fields are: changed using the
IK_update command. (See design 3.1.3.5).

7. Test Plan
Test all error codes.

8. Issues

Routine Name: Drop Index Kit (IK_drop())
Routine Number: 3.1.8.5
1. System Requirements
The 'drop indexkit' command allows one to drop an indexKkit.
2. System Architecture

parse
validate

component_update < update the component catalogs if necessary >

SIK_delete

3. System Data Structures

1. Input
indexkit string < indexkit to drop >
kitset string < kitset containing indexkit >
2. Output
IME_OK successful dropping of indexkit
IME_FAILURE general error
IME_DNE indexkit to drop does not exist

4. System Data Flow

parse --> validate
validate --> component_update
SIK _delete

5. System Control Flow

IK_drop <-- parse
validate
Component_update
SIK delete

6. Design Rationale

This routine will check that the indexkit to drop exists, and if so,
will delete the system catalog entry for the indexkit. Because an
indexkit is just a logical grouping of several physical objects, the
actual objects are not deleted, just the logical grouping. If any of
the components track indexkit associations, then those catalogs
will be updated too.

7. Test Plan
Test all error codes.
8. Issues
Component catalog changes are currently only rnade for indexes.

If the other components' catalog tracks indexkit
associations, that code needs to be added.

Routine Name: Move Index Kit (IK_move())
Routine Number: 3.1.5.5

1. System Requirements

The 'move indexkit' command allows one to mave an indexkit from
one kitset to another.

2. System Architecture

parse
validate

check_uniqueness

SIK retrieve < update both kitset catalogs >
SIK_delete

SIK _insert

3. System Data Structures

1. Input
indexkit string < name of indexkit to move >
kitset_old string < name of kitset to move from >
kitset_new string < name of kitset to move to >
2. Output
IME_OK move indexkit successful
IME_FAILURE general error
IME_DNE indexkit does not exist
IME_NONUNIQUE kitset to move to already has indexkit w/same name.

4. System Data Flow

parse --> validate

validate --> check_uniqueness
SIK _retrieve
SIK _delete
SIK _insert

5. System Control Flow

IK_move --> parse
validate
check_uniqueness
SIK _retrieve
SIK delete
SIK _insert

6. Design Rationale

This routine will move an indexkit from one kitset to another.

This routine will check that the indexkit to move does in fact exist.
This routine will check that the new kitset to move the indexkit to
does not already have an indexkit with the same name. If it does
not, it will move the indexKkit files to the new kitset, and update
the catalogs so that the indexkit catalog entry is in the new kitset
catalog. It will also need to update the components catalog entries,
if they track indexkit associations.

7. Test Plan
Test all error codes.

8. Issues

Routine Name: Update Index Kit (IK_update())
Routine Number: 3.1.3.5

1. System Requirements

The ‘update indexkit' command enables users to update
any of the components of the indexkit individually.

2. System Architecture

parse
validate

update component catalog
update system catalog for indexkits

3. System Data Structures

1. Input
kitset string < name of kitset for kit >
indexkit string < name of the kit to be altered >
component string < name of the component to update >
comp_name string < new component value >
comp_set string < name of the component-set >
2. Output
IME_OK < successful update >
IME_FAILURE < general failure >
IME_DNE < indexkit, kitset, or component non-existent >

4. System Data Flow

parse --> validate
validate --> update_comp_cat
SIKC_update

5. System Control Flow

IK_update <-- parse
validate
update_comp_cat
SIKC_update

6. Design Rationale

This routine provides a means for associating a component with an
indexkit. The name and set for the component is given and the
Indexkit is updated by making calls to update the right catalogs.
Issuing this command more than once will result in changing the
component from what it was before to the new value.

7. Test Plan

Test for invalid component, set, and kit names.

8. Issues

Unique identifier for an indexkit is the kitname and the kitset-name.

Currently, this routine will update the system catalog for indexkits,
for all component changes, but it will only change the component's
catalog for indexes. If the other components' catalog tracks indexkit
associations, that code needs to be added.

There is currently no check to make sure that the component name that
a component is being updated to actually exists.

The index component checks for existence by default, because it must
exist in order to update the index component's catalog entry.

Routine Number: 3.1.4.5.1

1. System Requirements

Routine Name: Copy Index Kit (IK_copy())

The 'copy indexkit' command allows one to make identical copies of

indexkaits.

2. System Architecture

[B =copy(A)]

parse
validate

IK_create(B)

MAN_copy(A.intro,B.intro)

IK _update(B.intro)
1_copy(A.index,B.index)
IK _update(B.index)
DBC_copy(A.dict,B.dict)
IK_update(B.dict)
BK_copy(A.thes,B.thes)
IK_update(B.thes)

3. System Data Structures

1. Input

indexkitl
kitsetl
indexkit2
kitset2

2. Output

IME_OK
IME_FAILURE
IME_DNE
IME_NONUNIQUE

4. System Data Flow

parse --> validate

validate --> IK_create
MAN_copy
IK_update
1_copy
IK_update
DBC_copy
IK_update
BK_copy

string < name of indexkit to copy >

string < kitset containing 'indexkitl’ >

string < name of indexkit to create copy into >
string < kitset to contain new indexkit >

successful copy of indexkit
general error

'‘indexkitl' does not exist
'indexkit2' already exists

IK_update
5. System Control Flow

IK_copy <-- parse
validate
IK _create
MAN_copy
IK_update
I_copy
IK_update
DBC_copy
IK_update
BK_copy
IK_update

6. Design Rationale

This routine will create an identical copy of an indexkit. Firstit

will check that the indexkit to copy does in fact exist, and then it

will check that the indexkit to create does not already exist. It

will try to create the new indexkit. Then the introduction, index,
dictionary, and thesaurus components of the indexkit are copied, and
a catalog entry in the indexkit is created.

7. Test Plan
Test all error codes.
8. Issues
The objects that result from copying the different components

of the indexkit are automatically placed in the 'szt' associated
with the first kit's components.

Routine Name: Intersect Index Kit (IK_intersect())
Routine Number: 3.1.4.5.4

1. System Requirements

The ‘intersect indexkit' command allows one to intersect the different
parts of indexkits.

2. System Architecture
[C = A intersect B }

parse
validate

IK_create(C)

MAN _intersect(A.intro, B.intro, C.intro) < manuscript intersection >
IK_update(C.intro)

I intersect(A.index, B.index, C.index) < index intersection >
IK_update(C.index)

DBC _intersect(A.dict, B.dict, C.dict) < database intersection >
IK_update(C.dict)

BK _intersect(A.thes, B.thes, C.thes) < book intersection >

IK _update(C.thes)

3. System Data Structures

1. Input
indexkit1 string < name of indexkit to intersect >
kitsetl string < kitset containing ‘indexkitl’' >
indexkit2 string < name of indexkit to intersect >
kitset2 string < kitset containing 'indexkit2' >
indexkit3 string < name of indexkit to contain result >
kitset3 string < kitset to contain 'indexkit3' >
2. Output
IME_OK successful intersection
IME_FAILURE general error
IME_DNE 'indexkitl' or 'indexkit2' does not exist
IME_NONUNIQUE 'indexkit3' already exists

4. System Data Flow

parse --> validate

validate --> IK_create
MAN_intersect
IK_update
I_intersect
IK_update

DBC_intersect
IK_update

BK _intersect
IK_update

5. System Control Flow

IK _intersect <-- parse
validate
IK_create
MAN_intersect
IK _update
I_intersect
IK_update
DBC_intersect
IK_update
BK_intersect
IK_update

6. Design Rationale
This routine will make sure that the indexkit to create as the result
does not already exist, and that the two indexkits to intersect do
already exist. It will then create the new indexkit, and then proceed
to intersect corresponding parts of each indexKkit.

7. Test Plan
Test all error codes.

8. Issues
The objects that result from intersecting the different components

of the indexkits are automatically placed in the 'set’ associated
with the first kit's components.

Routine Name: Subset Index Kit (IK_subset())

Routine Number: 3.1.4.5.2

1. System Requirements

The 'subset indexkit' command enables users to make indexkits from

subsets of indexkits.
2. System Architecture
[B = subset(A)]

parse
validate

IK_create(B)

MAN_subset(A.intro,B.intro)
IK _update(B.intro)

1_subset(A.index,B.index)
IK _update(B.index)

DBC_subset(A.dict,B.dict)
IK_update(B.dict)

BK_subset(A.thes,B.thes)
IK_update(B.thes)

3. System Data Structures
1. Input

indexkitl
kitsetl
indexkit2
kitset2
bool_cond

2. Output

IME_OK
IME_FAILURE
IME_NONUNIQUE
IME_DNE

4. System Data Flow

parse --> validate

validate --> IK_create
MAN_subset
IK_update

string
string
string
string
string

< name of indexkit to be subsetted >
< kitset containing 'indexkitl' >

< name of resulting indexkit >

< kitset to contain 'indexkit2' >

< boolean condition for subset >

successful creaticn of subset indexkit

genera] failure

'Indexkit2' already exists
'indexkitl' does not exist

I_subset
IK_update
DBC_subset
IK_update
BK_subset
IK_update

5. System Control Flow

IK_subset <-- parse
validate
IK_create
MAN_subset
IK_update
I_subset
IK_update
DBC_subset
IK_update
BK_subset
IK_update

6. Design Rationale
A new indexkit is created. Objects for the new kit are created by
subsetting the objects of the original indexkit according to the
boolean condition.
The new indexkit is updated so that these newly created kit objects are
associated with it.
7. Test Plan
Test all error codes.
8. Issues
The objects created by subsetting the different components of the

indexkits belong to the 'sets' associated with the component
being subsetted.

Routine Name: Subtract Index Kit (IK_subtract())

Routine Number: 3.1.4.5.5

1. System Requirements

The 'subtract indexkit' command allows one to subtract the different

parts of indexkits.
2. System Architecture
[C=A-B]

parse
validate

IK_create(C)

MAN_subtract(A.man, B.man, C.man)
1_subtract(A.index, B.index, C.index)
DBC_subtract(A.dict, B.dict, C.dict)
BK_subtract(A.thes, B.thes, C.thes)

3. System Data Structures

< manuscript subtraction : intro >
< index subtraction : index >

< db cluster subtraction : dict >

< book subtracton : thesaurus >

1. Input
indexkit string < name of indexkit to subtract >
kitsetl string < kitset containing 'indexkitl' >
indexkit string < name of indexkit to subtract >
kitset2 string < kitset containing 'indexkit2' >
indexkit string < name of indexkit to be result >
kitset3 string < kitset to contain 'indexkit3' >
2. Output
IME_OK successful indexkit subtraction
IME_FAILURE general error
IME_DNE 'indexkitl’ or 'indexkit2' does not exist
IME_NONUNIQUE indexkit3' already exists

4. System Data Flow

parse --> validate

validate --> IK_create
MAN_subtract
IK_update
1_subtract
IK _update
DBC_subtract
IK _update
BK_subtract
IK_update

5. System Control Flow

IK_subtract <--parse
validate
IK_create
MAN_subtract
IK_update
I_subtract
IK_update
DBC_subtract
IK_update
BK_subtract
IK_update

6. Design Rationale
This routine will subtract all components of an indexkit. This
routine will check that the indexkit to create does not already exist.
This routine will check that the two indexkits to subtract do
actually exist, and if so, will subtract corresponding parts of each
indexkit, placing the result in the newly created indexkdt.

7. Test Plan
Test all error codes.

8. Issues

Routine Name: Union Index Kit (IK_union())
Routine Number: 3.1.4.5.3

1. System Requirements

The 'union indexkit' command enables users to union the different

parts of indexkits.
2. System Architecture
[C=Aintersect B]

parse
validate

IK_create(C)

MAN_union(A.intro,B.intro,C.intro)
IK_update(C.intro)

I_union(A.index,B.index,C.index)
IK_update(C.index)

DBC_union(A.dict,B.dict,C.dict)
IK_update(C.dict)

BK_union(A.thes,B.thes,C.thes)
1K _update(C.thes)

3. System Data Structures

1. Input
indexkitl string < name of indexkit to be unioned >
kitsetl string < kitset containing ‘indexkitl’ >
indexkit2 string < name of indexkit to be unioned >
kitset2 string < kitset containing 'indexkit2' >
indexkit3 string < name of resulting indexkit >
kitset3 string < kitset to contain 'indexkit3' >

2. Output
IME_OK successful creaticn of union indexkit
IME_FAILURE general failure
IME_NONUNIQUE 'indexkit3' already exists
IME_DNE ‘indexkitl’ or 'indexkit2' does not exist

4. System Data Flow

parse --> validate
validate --> IK_create
MAN_union

IK_update
I_union
IK_update
DBC_union
IK_update
BK_union
IK_update

5. System Control Flow

IK_union <-- parse
validate
IK_create
MAN_union
IK_update
I_union
IK_update
DBC_union
IK _update
BK_update
IK _update

6. Design Rationale
Create a new indexkit. Create each of the elements in the index kit by

unioning the two objects in the original kits. Use update to associate
the new elements with the new indexkit.

7. Test Plan

Test cases should check for correct handling of invalid names.
8. Issues

The objects that result from unioning the different components

of the indexkits are automatically placed in the 'set’ associated
with the first kit's components.

Advanced Communications Technology Inc.

Part III: User’s Guide

SBIR Phase II-Final Report User’s Guide

Advanced Communications Technology Inc.

Although all commands and operations described in Part I of this report were designed, only a subset was
implemented. Table E lists the operations that were implemented both at the Host Language Interface and at

the Command Language Interface. In the rest of this section we give the User’s Guide for the Command

Language Interface.

Table E;: UIMS Commands

Index Management Commands

create index drop index insert index copy index
update index move index delete index search index

Index Browsing Commands

retrieve index pick index save index
return index list indexes

Index Navigation Commands

first in index next in index fetch using index
last in index previous in index
build index boolean list index booleans pick index boolean

modify index boolean drop index boolean

Index Run-Time Environment Commands

create column binding create row binding
drop column binding drop row binding

Indexset Management Commands

create indexset drop indexset

SBIR Phase II-Final Report User’s Guide

Indexes
In this section, we discuss the use of the indexes commands.

1. Creating Index Objects
We specify how to create indexsets and indexes.

1.1. Creating Indexsets

The create indexset command allows one to create the directory databook, catalogue
and log devices of the indexset objects. The format of the command is shown in Figure
1a. Figure 1b contains requests to create indexsets nssdca.smith.library and

ipac.smith.library.

create indexset <indexset_name>

Figure 1a; Creating indexsets

create indexset nssdca.smith.library
create indexset ipac.smith.library

Figure 1b: Creating indexsets

1.2. Creating Indexes

The create index command allows one to create index objects within indexsets. The
format of the command is shown in Figure 2a. "type" can be one of "btree, heap, rtree",
while schema is a file containing the information about the attributes of the index, and
is a file with the following structure

attribute1_name type length
attribute2_name type length

"type" can be one of string, int and float. Figure 2b contains requests to create indexes
subject, grid and grid-time within indexset nssdca.smith.smith.

create index <index_name> <indexset> <type> <schema>

Figure 2a: Creating indexes

create subject nssdca.smith.library btree btree.schema
create grid nssdca.smith.library rtree 2rtree.schema
create grid-time nssdca.smith.library rtree 1rtree.schema

Figure 2b: Creating indexes

where the schema files are respectively
btree.schema:
subject string 20
pointer int 4

2rtree.schema:

lon1 real 8
lat1 real 8
lon1 real 8
lat2 real 8
pointer int 4
1rtree.schema:
time1 real 8
time2 real 8
pointer int 4

2. Deleting Index Objects
We specify how to delete indexsets and indexes.

2.1. Deleting Indexsets

The delete indexset command allows one to delete the indexset objects. The format
of the command is shown in Figure 3a. Figure 3b contains requests to delete indexsets
nssdca.smith.library and ipac.smith.library.

delete indexset <indexset_name>

Figure 3a: Deleting indexsets

delete indexset nssdca.smith.library
delete indexset ipac.smith.library

Figure 3b: Deleting indexsets

2.2. Deleting Indexes
The dlete index command allows one to delete index objects from indexsets. The

format of the command is shown in Figure 4a. Figure 4b contains requests to create
indexes subject, and grid within indexset nssdca.smith.smith.

drop index <index_name> <indexset>

Figure 4a: Deleting indexes

drop subject nssdca.smith.library
drop grid nssdca.smith.library

Figure 4b: Deleting indexes

3. Modifying Index Objects
The update, insert and delete index commands allow one to modify indexes. The

format of the commands is shown in Figure 3a. "update” updates the current row with
the values in "row". "insert" inserts a new row with values in "row" after the current row,

while "delete" deletes the current row. Figure 3b contains requests to modify index
subject within indexset nssdca.smith.smith.

update index <row>
insert into index <row>
delete from index

Figure 5a. Modifying indexes

first open and make the index current
update index subject|New Title|pointer|101
insert into index subject|Last Titie|pointer|104
delete from index

Figure 5b: Modifying indexes

4. Reproducing Index Objects
We specify how to reproduce indexes. The reproducing commands copy and move
allow one to reproduce information about one index into another index.

4.1. Copying Indexes

The copy command allows one to make identical copies of indexes. The format of the
command is shown in Figure 6a. Figure 6b contains requests to copy the subject index
from indexset nssdca.smith.library onto another index "newsubject" within the indexset
ipac.smith.library.

copy index <index_name1> <indexset1> <index_name2> <indexset2>

Figure 6a: Copying Indexes

copy index subject nssdca.smith.library newsubject ipac.smith.library

Figure 6b. Copying Indexes

4.2. Moving Indexes

The move command allows one to one index from one indexset to another, or within an
indexset to a different name. The format of the command is shown in Figure 7a. Figure
7b contains requests to move the subject index from indexset nssdca.smith.library into
another index "newsubject” within the indexset ipac.smith.library.

move index <index_name1> <indexset1> <index_name2> <indexset2>

Figure 7a: Copying Indexes

move index subject nssdca.smith.library newsubject ipac.smith.library

Figure 7b: Copying Indexes

5. Searching Index Objects

We specify how to navigate through and search indexes. The navigation commands
first, next, previous, last, allow one to position the cursor to the elements of an index.
The command fetch allows one to bring in a record. Indexes are retrieved, in the
beginning, then saved (if they have been modified), and finally returned. The
commands pick and list allow one to make an index current and check which indexes
are opened respectively.

5.1. Opening Indexes

The retrieve command allows one to open an index. The format of the command is
shown in Figure 8a. "mode" can be one of "read-only" and "modify". "tag" is a unique
identifier that the user supplies; if not present the system generates one. Figure 8b
contains requests to retrieve the subject and the grid index from indexset
nssdca.smith.library.

retrieve index <index_name1> <indexset1> <mode> [<tag>]

Figure 8a: Retrieving Indexes

retrieve index subject nssdca.smith.library read-only
retrieve index grid nssdca.smith.library modify t2

Figure 8b: Retrieving Indexes

5.2. Listing Retrieved Indexes

The list command allows one to list the opened indexes and see their tags. The format
of the command is shown in Figure 9a. It has no arguments. Figure Sb shows the
output of the command.

list index

Figure Sa: Listing Indexes

INDEX: nssdca.smith.library/subject t1
INDEX: nssdca.smith.library/grid t2

Figure 9b: Listing Indexes

5.3. Picking Indexes

The pick command allows one to pick an opened index and make it current. The format
of the command is shown in Figure 10a. "tag" is a unique identifier that the user
supplies. Figure 10b contains a request to pick the subject index from indexset
nssdca.smith.library.

pick index <tag>

Figure 10a: Picking Indexes

pick index t1

Figure 10b: Picking Indexes

5.4. Saving Indexes

The save command allows one to save permanently an opened and modified index.
The format of the command is shown in Figure 11a. "tag" is a unique identifier that the
user supplies. Figure 11b shows how to save the subject index in indexset
nssdca.smith.library.

save index <tag>

Figure 11a: Picking Indexes

save index t1

Figure 11b: Picking Indexes

5.4. Returning Indexes

The return command allows one to close an opened index. The format of the command
is shown in Figure 12a. "tag" is a unique identifier that the user supplies. Figure 12b
shows how to close the subject index from the indexset nssdca.smith.library.

return index <tag>

Figure 12a: Returning Indexes

return index t1

Figure 12b: Returning Indexes

5.5. Positioning within Indexes

The navigation commands first, next, previous, last, allow one to position the cursor
to the elements of an index. These can be executed after an index has been picked to
be the current one and a boolean for the search has been defined (if no such boolean
has been defined it is assumed that one want to navigate through all of the elements).
The command fetch allows one to bring in a record.

The format of the commands is shown in Figure 13a. "tag" is a unique identifier that
the user supplies. Figure 13b shows how to navigate and get records from the subject

index from the indexset nssdca.smith.library.

first in index

next in index
previous in index

last in index
fetch from index

Figure 13a: Navigating Through Indexes

open subject index and
pick it to be the current one; then

first in index
fetch from index

next in index
fetch from index
fetch from index

last in index
fetch from index
previous in index

Figure 13b: Navigating Through indexes

6. Manipulating Booleans
We specify how to define booleans and use them for searching through indexes.

6.1. Building Booleans

The build boolean command allows one to define booleans and use them for
searching through indexes. The format of the command is shown in Figure 14a.
"expression" is a boolean expression and "tag" is a unique identifier that the user
supplies; if not present the system generates one. Figure 14b contains requests to
build two booleans.

build boolean <expression> [<tag>]

Figure 14a: Building Booleans

build boolean subject="New Title"
build boolean lat1=15 b2

Figure 14b: Building Booleans

6.2. Listing Booleans

The list boolean command allows one to list the defined indexes and see their tags.
The format of the command is shown in Figure 15a. It has no arguments. Figure 15b
shows the output of the command.

list boolean

Figure 15a: Listing Booleans

BOOLEAN: subject="New Title" b1
BOOLEAN: lat1=15 b2

Figure 15b: Listing Booleans

6.3. Picking Booleans
The pick boolean command allows one to pick a previously defined boolean and make
it current. The format of the command is shown in Figure 16a. "tag" is a unique

identifier that the user supplies. Figure 16b contains a request to pick the subject
boolean.

, pick boolean <tag>

Figure 16a: Picking Booleans

pick boolean b1

Figure 16b: Picking Booleans

6.4. Modifying Booleans

The modify boolean command allows one to change the expression of a defined
boolean. The format of the command is shown in Figure 17a. Figure 17b shows how to
modify a previously defined boolean.

modify boolean <new_expression>

Figure 18a: Modifying Booleans

modify boolean subject="Second Title"
modify boolean lat1=20

Figure 18b: Modifying Booleans

6.5. Droping Booleans
The drop boolean command allows one to drop a previously defined boolean. The

format of the command is shown in Figure 19a. "tag" is a unique identifier that the user
supplies. Figure 19b shows how to drop the boolean defined on "subject".

drop boolean <tag>

Figure 19a: Droping Booleans

drop boolean b1

Figure 19b: Droping Booleans

Advanced Communications Technology Inc.

Part IV: Reference Manual

SBIR Phase II-Final Report Reference Manual

Advanced Communications Technology Inc.

Although all commands and operations described in Part I of this report were designed, only a subset was
implemented. Table E (repeated from Part III) lists the operations that were implemented both at the Host

Language Interface and at the Command Language Interface. In the rest of this section we give the Reference

Manual for both Interfaces.
Table E: UIMS Commands
Index Management Commands
create index drop index insert index copy index
update index move index delete index search index
Index Browsing Commands
retrieve index pick index save index
return index list indexes
Index Navigation Commands
first in index next in index fetch using index
last in index previous in index
build index boolean list index booleans pick index boolean

modify index boolean drop index boolean

Index Run-Time Environment Commands

create column binding create row binding
drop column binding drop row binding

Indexset Management Commands

create indexset drop indexset

SBIR Phase II-Final Report Reference Manual

Host Language Interface

SBIR Phase I1-Final Report Reference Manual-Host Language Interface

Advanced Communications Technology

ISET _create

Function Name:

ISET_create
Purpose:

To create an indexset.
Function Module:

uinms.a
Function Type:

integer. Returns OK or an error code
Parameters:

IN: char *indexset The name of the indexset
Description:

To create an indexset
ISET_create (indexset)

Errors:
If there is an existing indexset with the same name

Examples:
ISET_create("iueobs");

See Also:

Advanced Communications Technology ISET_delete

Function Name:
ISET_delete
Purpose:
To delete an indexset.
Function Module:
uinms.a
Function Type:
integer. Returns OK or an error code
Parameters:
IN: char *indexset The name of the indexset

Description:

To delete an indexset
ISET_delete (indexset)

Errors:
If there is no indexset with the given name

Examples:
ISET_delete("iueobs");

See Also:

Advanced Communications Technology

1_create

Function Name:

|_create
Purpose:

To create an index in an indexset.
Function Module:

uinms.a

Function Type:
integer. Returns OK or an error code

Parameters: _

IN: WA *wa A pointer to a work area

IN: char *indexname The name of the source index

IN: char *indexset The name of source parent indexset

IN: FORMAT *mode The type of the new index (heap, hash, b-tree, r-tree)

IN: ATTR_DESC **attr_info An array indicating the structure of the index attributes
Description:

To create an index

I_create(wa, indexname, indexset, mode, attr_info)

Errors:

If there is no such indexset, or attribute information is incorrect

Examples:

WA *wa /* work area definitions */
ATTR DESC **attr_info; /* attribute information structure */

WA_open ("nick r", “"cecc",wa);
Fill_in_attr_info(attr_info);
I_create(wa, “objclass", "jueobs", "b-tree", attr_info):

See Also:

Advanced Communications Technology

1_drop

Function Name:
|_drop
Purpose:
To drop an index from an indexset
Function Module:
uinms.a
Function Type:
integer. Returns OK or an error code

Parameters:

IN: char *indexname The name of the source index
IN: char *indexset The name of source parent indexset

Description:

To drop an index
I_drop (indexname, indexset)

Errors:
If there is no such index, or such indexset.

Examples:
I_drop("objclass", "iueobs");

See Also:

Advanced Communications Technology I_insert

Function Name:
I_insert

Purpose:
To insert a row into the current index of an indexset.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

WA *wa A pointer to a work area
IN: char *buffer The buffer area holding the row to be inserted

Description:

To insert into an index:
I_insert (wa, buffer)

Errors:

If the current index is not open for modify. The type of the data is inconsistent with
the defintion.

Examples:

+ WA *wa /* work area definitions */
TAG *tagl;
BUFFER *buffr;

WA_open ("nick r", "ccc",wa):;

I_retrieve(wa, "objclass"”, "iueocbs", 2, tagl):;
I_pick (wa, tagl):

setup_row (buffr); /* sets the values of the columns */
I_first(wa);

I_next (wa):

I_insert(wa, buffer);

I_save(wa);

I_return{wa);

WA_close (wa);

See Also:

Advanced Communications Technology I_update

Function Name:
|_update
Purpose:
To update the current row of the current index of an indexset.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *row The new row to replace the existing one

Description:

To update current row of the current index:
I_update (wa, row)

Errors:

If the current index is not open for modify. The type of the data is inconsistent with
the defintion.

Examples:

Suppose "objclass" is an index with two columns, "class” and "id", and we want to
replace the second row of this index with the row (LWR,15)
WA *wa /* work area definitions */

TAG *tagl;
BUFFER *buffrl;

WA_open ("nick r", “ccc", wa):;

I_retrieve(wa, "objclass"™, "iueobs”, 1, tagl):
I_pick (wa, *tagl);

insert_to_buffer (puffrl, "LWR",15);

I_first(wa);

I_next (wa);

I_update(wa, buffrl);

I_save(wa);

I_return(wa, *tagl);

See Also:

Advanced Communications Technology

I_move

Function Name:
|_move

Purpose:
To move an index from an indexset into another index

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

IN: char *indexnamei The name of the source index

IN: char *indexset1 The name of source parent indexset

IN: char *indexname?2 The name of the destination index

IN: char *indexset2 The name of destination parent indexset
Description:

To move an index

I_move (wa, indexnamel, indexsetl, indexname2, indexset?2)

Errors:
If there is no such source index, or such source indexset.

Examples:

WA *wa /* work area definitions */

WA_open ("nick r", "ccc",wa):
I_move(wa, "objclass", "jueobs", "objclass", "newiueobs");

See Also:

Advanced Communications Technology

I_delete

Function Name:
I_delete

Purpose:
To delete current row of the current index of an indexset.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:
IN: WA *wa A pointer to a work area

Description:

To delete current row from the current index:
I_delete (wa)

Errors:
If the current index is not open for modify.

Examples:

WA *wa /* work area definitions */
TAG *tagl;

BUFFER *buffr;

VAR *classbuf;

WA _open ("nick r", "ccc",wa);
I_retrieve(wa, “objclass", "iueobs", 1, tagl);
I_crbind(wa, tagl, buffr);
I_ccbind(wa, tagl, "class", clasbuf) ;
I_pick (wa, tagl);

I_first(wa);

I_fetch(wa);

I_next (wa);

I_fetch(wa);

I_delete(wa);

I_dcbind(wa, tagl, "class", clasbuf);

See Also:

Advanced Communications Technology I_copy

Function Name:

I_copy
Purpose:

To copy an index from an indexset into another index
Function Module:

uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

IN: char *indexname1 The name of the source index

IN: char *indexset1 The name of source parent indexset

IN: char *indexname?2 The name of the destination index

IN: char *indexset2 The name of destination parent indexset

IN: FORMAT *mode The type of the new index (heap, hash, b-tree, r-tree)
Description:

To copy an index
I_copy (wa, indexnamel, indexsetl, indexname2, indexsetZ2, mode)

Errors:
If there is no such source index, or such source indexset.

Examples:
WA *wa /* work area definitions */

TAG *tagl, *tag2;

WA_open ("nick r", “"ccc",wa);;
I_copy(wa, "objclass", "iueobs"™, “objclassl™, "newiueobs", "b-
tree");

See Also:

Advanced Communications Technology

I_search

Function Name:
I_search

Purpose:
To search the current index of an indexset.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: IN: WA *wa A pointer to a work area

IN: FILE *infile Name of file containing terms

IN/OUT: FILE *outfile Name of file containing pointers

IN/OUT: FILE *pairfile Name of file containing term-pointer pairs
IN/OUT: FILE *statfile Name of file containing statistics

Description:

To search an index:
I_search(wa, infile, outfile, pairfile, statfile)

Errors:
If there is no current index. If there is no input or output file.

Examples:

WA *wa /* work area definitions */
TAG *tagl:

WA_open ("nick r", "cece",wa);
I_retrieve(wa, "objclass", "iueobs™, 1, tagl):
I_pick (wa, *tagl);
I_search(wa, "windows", "output", "pairs", "stats");
For example, the contents of file "windows" may be:
99
24
Then, the contents of file "output” might be:
LWP2346
LWP2347
while the contents of file "pairs" will be:
99 LWP2346
24 LWP2347

The contents of file "stats" will be:
3 records found

See Also:

Advanced Communications Technology

I_retrieve

Function Name:
I_retrieve

Purpose:
To retrieve an index in an indexset.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

IN: char *index Name of the index

IN: char *indexset Name of the indexset

IN: int mode mode of access e.g., read (0) or write (1). Default is read

IN/OUT: TAG *tag Optional tag name (the system generates a tag if none is specified)

Description:

To retrieve an index:
I_retrieve(wa, index, indexset, mode, tag)

Errors:
If there is no index. If there is no indexset. If the mode is not correct.

Examples:

+ WA *wa /* work area definitions */

TAG *tagl:;
TAG *tag2;

WA_open ("nick r", “ccc",wa);
I retrieve(wa, “objclass", "iueobs", 1, tagl);
I_retrieve(wa, "objclass", "rectss", 1, tag2);

See Also:

Advanced Communications Technology I_pick

Function Name:
I_pick
Purpose:
To pick a index
Function Module:
uinms.a
Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

IN: TAG tag The tag of the index
Description:

To pick an index

I_pick(wa, tag)

Errors:

If there is no tag of that name.

Examples:

WA *wa /* work area definitions */
TAG *tagl, *tag2l:;

WA_open ("nick r", "cec",wa):;

I_retrieve(wa, "objclass"™, "iueobs", 1, tagl):
I_retrieve(wa, “"objclass", "rectss", 1, tag2);
I_pick (wa, *tagl):

I_first(wa);

pProcess rows

I_pick (wa, *tag2);

I_first(wa):

Process rows

See Also:

Advanced Communications Technology 1_save

Function Name:
|_save

Purpose:
To save an index in an indexset.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

IN: TAG tag The tag of the index
Description:

To save an index:

I_save(wa, tag)

Errors:

If there is no such tag

Examples:

+ WA *wa /* work area definitions */
TAG *tagl, *tag2;

WA _open ("nick r", "ccc",wa);

I_retrieve(wa, “objclass", "jueocbs", 1, tagl);
I_retrieve(wa, "objclass", "rectss", 0, tag2);
update indexes

I_save(wa, *tagl):

I_save(wa, *tag2l);

I_return(wa, *tagl);

I_return(wa, *tag2);

See Also:

Advanced Communications Technology

I_return

Function Name:
I_return
Purpose:
To return an index in an indexset.
Function Module:
uinms.a
Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: TAG tag The tag of the index

Description:

To return an index:
I_return(wa, tag)

Errors:
If there is no such tag

Examples:

+ WA *wa /* work area definitions */
TAG *tagl, *tag2;

WA_open ("nick r"“, “"cee",wa);

I_retrieve(wa, "objclass", "iueobs", 1, tagl);
I_retrieve(wa, “"objclass", "rectss", 0, tag2);

process indexes
I_return(wa, *tagl);
I_return(wa, *tagl);

See Also:

Advanced Communications Technology I_list

Function Name:

I_list
Purpose:

To list the retrieved indexes
Function Module:

uinms.a
Function Type:

integer. Returns OK or an error code
Parameters:

IN: WA *wa A pointer to a work area
Description:

To list all indexes

I_list(wa)
Errors:
None.
Examples:
WA *wa /* work area definitions */
TAG *tagl, *tag2:;
WA _open ("nick r", "ccc",wa);
I_retrieve(wa, "objclass"™, "iueobs", 1, tagl);
I_retrieve(wa, "rects", "jueobs", 1, tag2);
I_list(wa):
The result is:
INDEX: iueobs/objclass TAG: Il
INDEX: iueobs/rects TAG: I2

See Also:

Advanced Communications Technology

I_first

Function Name:

I_first
Purpose:

To make the first row of the current index current.
Function Module:

uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:
IN: WA *wa A pointer to a work area

Description:

To get the first row of the current index:
I_first(wa)

Errors:

Examples:

WA *wa /* work area definitions */
TAG *tagl;
BUFFER *buffr;

WA_open ("nick r", "ccc",wa);
I_retrieve (wa, "objclass", "iueobs", 1,
I_pick (wa, tagl):

I_first(wa);

buffr = I_fetch(wa);

print_row (buffr);

See Also:

taqgl);

Advanced Communications Technology

I_next

Function Name:
I_next
Purpose:
To make the next row of the current index current.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:
IN: WA *wa A pointer to a work area

Description:

To get the next row of the current index:
I _next (wa)

Errors:

Examples:

WA *wa /* work area definitions */
WA *wa /* work area definitions */
TAG *tagl;

BUFFER *buffr;

WA_open ("nick r", "ccc",wa);
I_retrieve(wa, "objclass", "iueobs", 1,
I_pick (wa, tagl);

I_first(wa);

buffr = I_fetch(wa);

print_row (buffr);

I next (wa);

buffr = I_fetch(wa);

print_row (buffr);

See Also:

tagl):

Advanced Communications Technology I_fetch

Function Name:
|_fetch

Purpose:
To get the current row of the current index.

Function Module:
uinms.a

Function Type:

pointer to character string (the buffer to hold the row)
Parameters:

IN: WA *wa A pointer to a work area
Description:

To get the current row of the current index:
I_fetch(wa)

Errors:
If there is no current row.
Examples:

WA *wa /* work area definitions */
TAG *tagl;
BUFFER *buffr;

WA_open ("nick r", "ccc",wa);

I_retrieve(wa, "objclass", "jueobs", 1, tagl):
I_pick (wa, tagl):

I_first(wa);

buffr = I_fetch(wa);

print_row(buffr);

I next (wa):;

buffr = I_fetch(wa);

print_row(buffr);

See Also:

Advanced Communications Technology I_last

Function Name:
I_last
Purpose:
To make the last row of the current index current.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:
IN: WA *wa A pointer to a work area

Description:

To get the last row of the current index:
I_last (wa)

Errors:

Examples:

WA *wa /* work area definitions */
TAG *tagl;
BUFFER *buffr;

WA _open ("nick r", "ccc",wa);

I_retrieve{wa, “objclass", "iueocbs", 1, tagl):
I_pick (wa, tagl):

I last(wa);

buffr = I_fetch(wa);

print_row (buffr);

See Also:

Advanced Communications Technology I_previous

Function Name:
|_previous

Purpose:
To make the previous row of the current index current.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:
IN: WA *wa A pointer to a work area

Description:

To get the previous row of the current index:
I_previous (wa)

Errors:

Examples:

WA *wa /* work area definitions */
TAG *tagl;

BUFFER *buffr;

WA_open ("nick r", “"ccc",wa);
I_retrieve(wa, "objclass", "iueobs", 1, tagl):
I_pick (wa, *tagl);

I_last(wa);

buffr = I_fetch(wa);
print_row(buffr):;

I_previous(wa);

buffr = I_fetch(wa);

print_row (buffr);

See Also:

Advanced Communications Technology IB_build

Function Name:
IB_build
Purpose:
To build a boolean for searching an index in an indexset.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: BOOL *boolean The boolean
IN/OUT: TAG *tag The tag of the boolean

Description:

To build a boolean for searching an index in an indexset:
IB_build (wa, boolean, tag);

Errors:
If there is an incorrectly specified boolean.

Examples:

WA *wa /* work area definitions */

TAG *tagl;
BUFFER *buffrl;

TAG *tagZl;
BUFFER *buffr2;

WA_open ("nick r", "ccc",wa);

I_retrieve(wa, "objclass", "iueobs", 1, tagl);

I_crbind(wa, tagl, buffrl);
To search for the first row of a b-tree index with named objclass in indexset iueobs
satisfying the condition objclass = 99

I _pick (wa, "il");

strcpy (log_txt_str, "objclass=99");

IB_build (wa, log_txt_str, "bl");

IB _pick(wa, "bl"):;

I_first(wa);

I_fetch(wa):

See Also:

Advanced Communications Technology

IB_list

Function Name:
IB_list
Purpose:
To list the booleans.
Function Module:
uinms.a
Function Type:
integer. Returns OK or an error code
Parameters:
IN: WA *wa A pointer to a work area

Description:

To list all booleans:
IB_list (wa)

Errors:
None.

Examples:

WA *wa /* work area definitions */

TAG *tagl, *bl, *b2;
BUFFER *log txt_str;

WA_open ("nick r", “ccc",wa);

I_retrieve(wa, "objclass"™, "iueobs", 1, tagl):;

I_pick (wa, tagl);
strcpy (log_txt_str, "objclass=99");
IB build (wa, log_txt_str, bl);
strcpy (log_txt_str, “objclass=101");
IB build (wa, log_txt_str, b2);
IB list(wa);

The result is:
BOOLEAN: objclass=99 TAG: Bl
BOOLEAN: objclass=101 TAG: B2

See Also:

Advanced Communications Technology IB_pick

Function Name:
IB_pick

Purpose:
To pick a boolean.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: TAG tag The tag of the boolean

Description:
To pick a boolean:
IB_pick(wa, tag)
Errors:
If there is no tag of that name.

Examples:

WA *wa /* work area definitions */

TAG *tagl, *bl;
BOOL *log_txt_str;

WA_open ("nick r", "ccc",wa);

I_retrieve(wa, "objclass™, "iueobs", 1, tagl):;
I_pick (wa, *tagl):;

strcpy (log_txt_str, "objclass=99");

IB_build (wa, log_txt_str, bl);

IB_pick(wa, *bl);

I_first(wa);

See Also:

Advanced Communications Technology IB_modify

Function Name:
IB_modify

Purpose:
To modify a boolean for searching an index in an indexset.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: BOOL *boolean The boolean expression

Description:

To modify a boolean
IB_modify (wa, boolean);

Errors:
If there is an incorrectly specified boolean.

Examples:

WA *wa /* work area definitions */
TAG *tagl;

BOOL *boolean;

char *buffer;

WA_open ("nick r", "ccc", wa);

I _retrieve(wa, "objclass"™, "iueobs", 1, tagl);
I_pick (wa, tagl);

strcpy (boolean, "objclass=99");
IB_build (wa, boolean, bl);

IB _pick(wa, *bl);

I_first(wa);

buffer = I_fetch(wa);
print_row(buffer);

strcpy (boolean, "objclass=101"):
IB modify(wa, boolean);
I_first(wa);

buffer = I_fetch(wa);

print_row (buffer);

WA close (wa);

See Also:

Advanced Communications Technology

IB_drop

Function Name:
IB_drop

Purpose:
To drop a boolean.

Function Module:
yinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: TAG tag The tag of the boolean

Description:

To drop a boolean:
IB_drop(wa, tag):

Errors:
If there is no such tag

Examples:

WA *wa /* work area definitions */
TAG *tagl, *bl;
BUFFER *buffr;

WA _open ("nick r", "ccc", wa):
I_retrieve(wa, "objclass", "jueobs", 1, tagl);
I_crbind(wa, tagl, buffr);

I pick (wa, tagl);

strcepy (log_txt_str, "objclass=99");
IB build (wa, log_txt_str, bl):

IB pick(wa, *bl);

I_first(wa);

I_fetch(wa);

print_row (buffr);

IB drop((wa, *Dbl);

I _drbind(wa, tagl, buffr);

See Also:

Advanced Communications Technology I_ccbind

Function Name:
I_ccbind

Purpose:
To bind a column to a buffer area

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area

IN: char *column The column to bind

IN: char *var The buffer area (variable)

IN: char* var_type The type of the variable to be used
IN: char *var_len The length of the variable to be used

Description:

To bind a column to a buffer area
I_ccbind(wa, column, var, var_type, var_len)

Errors:
If the column does not exist, or space has not been allocated for the buffer area

Examples:

WA *wa /* work area definitions */
TAG *tagl;

BUFFER *buffr;

VAR *classbuf;

WA_open ("nick r", "ccc",wa):

I_retrieve(wa, "objclass", "iueobs", 1, tagl);
I pick (wa, tagl};

I_crbind(wa, buffr);

I_ccbind(wa, "class", clasbuf, "string", 20);
I_first(wa);

I_fetch(wa);

I_next (wa);

I_fetch(wa):

I_delete(wa):;

I_dcbind(wa, "class", classbuf);

See Also:

Advanced Communications Technology

I_dcbind

Function Name:
I_dcbind
Purpose:
To drop a binding of a column
Function Module:
uinms.a
Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *column The column to bind

IN: char *buffer The buffer area

Description:
To drop a binding of a column

Errors:

If the column does not exist or the binding was never established

Examples:

See Also:

I _dcbind(wa, column, buffer)

WA *wa /* work area definitions */
TAG *tagl;

BUFFER *buffr;

VAR *classbuf;

WA_open ("nick r", "ccc",wa):
I_retrieve(wa, “objclass™, "iueobs"
I_pick (wa, tagl);

I_crbind(wa, buffr);
I_ccbind(wa, "class", clasbuf);
I _first(wa);

I _fetch(wa);

I_next (wa);

I_fetch{wa);

I_delete(wa);

I_dcbind(wa, "class", classbuf);

’

1,

tagl):;

Advanced Communications Technology

1_crbind

Function Name:
I_crbind
Purpose:
To bind a row to a buffer area

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN/OUT: char *buffer The buffer area

Description:

To bind a row to a buffer area
I_crbind{wa, buffer)

Errors:
If space has not been allocated for the buffer area

Examples:

WA *wa /* work area definitions */
TAG *tagl;

BUFFER *buffr;

VAR *classbuf;

WA_open ("nick r", “cec",wa) ;s
I_retrieve(wa, “objclass", "jueobs", 1,
I_pick (wa, tagl);
I_crbind(wa, buffr);
I_first(wa);

I_fetch(wa):
print_row(buffr);

I_next (wa);

I_fetch(wa);
print_row(buffr);

I_delete (wa);

I_drbind(wa, buffr);

See Also:

tagl):

Advanced Communications Technology

I_drbind

Function Name:
|_drbind
Purpose:
To drop the binding of a row

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:

IN: WA *wa A pointer to a work area
IN: char *buffer The buffer area

Description:

To drop the binding of a row
I_drbind(wa, buffer)

Errors:
If the binding was never established

Examples:

WA *wa /* work area definitions */
TAG *tagl;

BUFFER *buffr:;

VAR *classbuf;

WA_open ("nick r", "ccc“,wa};
I_pick (wa, tagl):
I_retrieve(wa, "objclass", "iueobs", 1,
I_crbind(wa, buffr);
I_first(wa);

I_fetch(wa);
print_row(buffr);

I_next (wa);

I _fetch(wa):
print_row(buffr);
I_delete(wa);

I_drbind(wa, buffr);

See Also:

tagl);

Advanced Communications Technology WA _open

Function Name:
WA _open
Purpose:
To initialize a work area.
Function Module:
uinms.a
Function Type:
integer. Returns OK or an error code

Parameters:

IN: USER *user The name of the user
IN: PASS *pass The password of the user
OUT: WA *wa A pointer to a work area

Description:

To initialize a work area.
WA_open (user, pass, wa);

Errors:
If the user, or password is incorrect.

Examples:

WA *wa /* work area definitions */
WA_open ("nick r", “ccc", wa);

WA _close (wa);

See Also:

Advanced Communications Technology WA _close

Function Name:
WA _close

Purpose:
To close a work area.

Function Module:
uinms.a

Function Type:
integer. Returns OK or an error code

Parameters:
IN: WA *wa A pointer to a work area (ret)

Description:

To close a work area.
WA _close (wa);

Errors:
If the work area pointer is incorrect.

Examples:

WA *wa /* work area definitions */
WA_open ("nick r", "“ccc", wa);

WA close (wa);

See Also:

Command Language Interface

SBIR Phase II-Final Report Reference Manual-Command Language Interface

Advanced Communications Technology

create indexset

Command Name:

create indexset
Purpose:

To create an indexset.
Command Module:

uinms.exe
Synopsis:

create indexset <indexset>
Parameters:

indexset- name of parent indexset
Description:

To create an indexset
create indexset <indexset>

Errors:
If there is an existing indexset with the same name

Examples:
create indexset ineobs

See Also:

Advanced Communications Technology

delete indexset

Command Name:

delete indexset
Purpose:

To delete an indexset.
Command Module:

uinms.exe
Synopsis:

delete indexset <indexset>
Parameters:

indexset- name of parent indexset
Description:

To delete an indexset
delete indexset <indexset>

Errors:
If there is no existing indexset with name given

Examples:
delete indexset iueobs

See Also:

Advanced Communications Technology create

Command Name:
create

Purpose:
To create an index in an indexset.

Command Module:
uinms.exe

Synopsis:
create index <indexname> <indexset> <mode> <definition_file>

Parameters:

indexname- name of the index

indexset- name of parent indexset

mode- mode of access (e.g., heap, hash, b-tree, r-tree) Default is heap
definition_file- the file containing the schema of the index

Description:

To create an index:
create index <indexname> <indexset> <mode> <definition_file>

Errors:
If there is no indexset. If there is no correct mode. etc.

Examples:

To create a b-tree index with name "objclass” in indexset "iueobs™ with definition file
"schema"”
create index objclass iueobs b-tree schema
Assuming that the two fields in the index are "name” and "id", the file "schema” will
have the following information
name string 30
id int 4
If we would have liked to create an r-tree index on a set of rectangles, the file
"schema" would contain
attra int 4
attrb int
attrc int
attrd int
id int

[N S

See Also:

Advanced Communications Technology drop

Command Name:
drop
Purpose:
To drop an index in an indexset.
Command Module:
uinms.exe
Synopsis:
drop index <indexname> <indexset>

Parameters:

indexname- name of the index
indexset- name of parent indexset

Description:

To drop an index:
drop index <indexname> <indexset>

Errors:
If there is no such index, or such indexset.

Examples:
To drop an index with name "objclass” in indexset "iueobs”

drop index objclass iueobs

See Also:

Advanced Communications Technology

insert

Command Name:
insert
Purpose:
To insert a row into the current index of an indexset.
Command Module:
uinms.exe
Synopsis:
insert into index <row>
Parameters:
row- the row to be inserted

Description:

To insert into an index:
insert into index <row>

Errors:

If the current index is not open for modify. The type of the data is inconsistent with

the defintion.
be inserted using the symbol "|"
Examples:

retrieve index objclass iueobs modify il
retrieve index rects iueobs modify i2

To insert into a b-tree index with name objclass in indexset iueobs with format:

objclass integer
cam string 9
we do the following:
pick il
insert into index obijclass|99|cam|LWP2344

To insert into an r-tree index with name rects in indexset iueobs with format:

ral integer 4
decl integer 4
ra2 integer 4
dec2 integer 4
cam string 9

we do the following:
pick i2

insert into index ral|2344|dec1]37384|ra2|39494|dec2|23399%|cam|LWP2346

See Also:

Advanced Communications Technology update

Command Name:
update

Purpose:
To update current row of the current index of an indexset.

Command Module:
uinms.exe

Synopsis:
update index <row>

Parameters:
row- the row to be updateed

Description:

To update current row of the current index:
update index <row>

Errors:

If the current index is not open for modify. The type of the data is inconsistent with
the defintion.

Examples:

retrieve index objclass iueobs modify il
retrieve index rects iueobs modify i2

To update the first row of a b-tree index "objclass” in "iueobs” with format :
objclass integer
camseq string 9

we do the following:
pick il
first in index
fetch from index
update index objclass|99|camseq|LWP2345
To update the first row of an r-tree index "objclass” in "iueobs" with format
ral integer 4 decl integer 4
ra2 integer 4 dec2 integer 4
camseq string 9
we do the following:
pick i2
first in index
fetch from index
update index ral|2344|dec1|37384|ra2|39494|dec2|23399|camseq|LWP2348

See Also:
insert

Advanced Communications Technology move

Command Name:
move

Purpose:
To move an index from an indexset into another index

Command Module:
uinms.exe
Synopsis:
move index <indexname1> <indexset1> <indexname2> <indexset2>

Parameters:
indexname1- name of the source index
indexset1- name of source parent indexset
indexname2- name of the destination index
indexset2- name of destination parent indexset
Description:
To move an index:
move index <indexnamel> <indexsetl> <indexname2> <indexset2>
Errors:
If there is no such source index, or such source indexset. The new index retains
the structure of the source index.
Examples:

To move an index with name "objclass” in indexset "iueobs" into index "objclass2”
in indexset "oldiue”
move index objclass iueobs objclass2 oldiue

See Also:

Advanced Communications Technology

delete

Command Name:
delete
Purpose:
To delete current row of the current index of an indexset.
Command Module:
uinms.exe
Synopsis:
delete from index
Parameters:
none

Description:

To delete current row from the current index:
delete from index

Errors:
If the current index is not open for modify.
Examples:

retrieve index objclass iueobs modify il
retrieve index rects iueobs modify i2

To delete the first row of a b-tree index "objclass” in "iueobs” with format :

objclass integer

camseq string 9
we do the following:

pick il

first in index

fetch from index

delete from index

To delete the second row of an r-tree index "rects" in "iueobs” with format:

ral integer 4 decl integer 4
ra2 integer 4 dec2 integer 4
camseq string 9

we do the following:
pick i2
first in index
fetch from index
next in index
fetch from index
delete from index

See Also:

Advanced Communications Technology copy

Command Name:

copy
Purpose:
To copy an index from an indexset into another index

Command Module:
uinms.exe
Synopsis:
copy index <indexname1> <indexset1> <indexname2> <indexset2> <mode>

Parameters:
indexname1- name of the source index
indexset1- name of source parent indexset
indexname2- name of the destination index
indexset2- name of destination parent indexset
mode- type of the new index (heap, hash, b-tree, r-tree)
Description:
To copy an index:
copy index <indexnamel> <indexsetl> <indexname2> <indexset2> <mode>

Errors:
If there is no such source index, or such source indexset.

Examples:

To copy an index with name "objclass” in indexset "iueobs” into another b-tree in-
dex "objclass2” in indexset "oldiue”
copy index objclass iueobs objclass2 oldiue b-tree

See Also:

Advanced Communications Technology

search

Command Name:
search

Purpose:
To search the current index of an indexset.

Command Module:
uinms.exe

Synopsis:
search index <infile> <ouftfile> <statfile>

Parameters:

infile- name of file containing terms

outfile- name of file containing pointers

pairfile- name of file containing term-pointer pairs
statfile- name of file containing statistics

Description:

To search an index:
search index <infile> <outfile> [<pairfile>] [<statfile>]

Errors:
If there is no index. If there is no indexset. If there is no input file.

Examples:

retrieve index objclass iueobs read-only il
retrieve index rects iueobs read-only i2
To search a b-tree index with name objclass in indexset iueobs where the input file
is "windows" and the output file is "observations”, pairsfile is "pairs” and the statfile
is "stats"
pick il
search index windows observations pairs stats
The contents of file "windows" will be:
99
24
38
The contents of file "observations" will be:
LWP2346
LWP2346
LWP2347
The contents of file "pairs" will be:
99 LWP2346
24 LWP2346
24 LWP2347
The contents of file "stats" will be:
3 records found
To search n r-tree index with name objclass in indexset iueobs where the input file

Advanced Communications Technology search

is "windows" and the output file is "rects.dat", pairsfile is "pairs” and the statfile is
"stats”

pick i2

search index rects iueobs windows rects.dat pairs stats
the contents of file "windows" will be:

2344 37384 39494 23399

5344 47384 33394 83399

5344 47384 33394 83399
the contents of file "rects.dat" will be:

LWP2346

LWP2347

LWP2349
the contents of file "pairs” will be:

2344 37384 39494 23399 LWP2346

5344 47384 33394 83399 LwWP2347

5344 47384 33394 83399 LWP2347
The contents of file "stats" will be:

3 records found

See Also:

Advanced Communications Technology retrieve

Command Name:
retrieve

Purpose:
To retrieve an index in an indexset.

Command Module:
uinms.exe
Synopsis:
retrieve index <indexname> <indexset> <mode> [<tag>]

Parameters:

indexname- name of the index

indexset- name of parent indexset

mode- mode of access (e.g., read or write) Default is read

tag- optional tag name (the system generates a tage if none is specified)

Description:

To retrieve an index:
retrieve index <indexname> <indexset> <mode> [<tag>]

Errors:
If there is no index. If there is no indexset. If there is no correct mode. etc.

Examples:

To retrieve a b-tree index with name objclass in indexset iueobs where the mode is
read:

retrieve index objclass iueobs read-only
To retrieve a hash index with name objclass in indexset iueobs where the mode is
write :

retrieve index objclass iueobs modify t3
To retrieve an r-tree index with name rects in indexset iueobs where the mode is
read:

retrieve index rects iueobs read-only

See Also:

Advanced Communications Technology

pick

Command Name:
pick
Purpose:

To pick an index in an indexset and make it current.

Command Module:

uinms.exe
Synopsis:

pick index <tag>
Parameters:

tag- tag name
Description:

To pick an index:
pick index <tag>

Errors:
If there is no tag of that name.

Examples:

To pick an index t1:
pick index t1l

See Also:

Advanced Commaunications Technology

save

Command Name:
save

Purpose:

To save an index in an indexset.

Command Module:

uinms.exe
Synopsis:

save index <tag>
Parameters:

tag- tag name
Description:

To save an index:
save index <tag>

Errors:
If there is no tag of that name.

Examples:

To save a b-tree index t1 with name objclass in indexset iueobs where the mode is

modify:

save index tl

To save a hash index t2 with name obijclass in indexset iueobs where the mode is

modify:

save index t2

To save an r-tree index t3 with name rects in indexset iueobs where the mode is

modify:

save index t3

See Also:

Advanced Communications Technology

return

Command Name:
return

Purpose:

To return an index in an indexset.

Command Module:

uinms.exe
Synopsis:

return index <tag>
Parameters:

tag- tag name
Description:

To return an index:
return index <tag>

Errors:
If there is no tag of that name.

Examples:

To return a b-tree index t1 with name objclass in indexset iueobs where the mode is

read:
return index tl

To return a hash index t2 with name objclass in indexset iueobs where the mode is

write :
return index t2

To return an r-tree index t3 with name rects in indexset iueobs where the mode is

read:
return index t3

See Also:

Advanced Communications Technology list

Command Name:
list
Purpose:
To list the retrieved indexes.
Command Module:
uinms.exe
Synopsis:
list index
Parameters:
none

Description:
To list all retreived indexes:
list index
Errors:
If there is no tag of that name.

Examples:
retrieve index objclass iueobs modify il
retrieve index rects iueobs modify i2

To list all indexes:
list index

The result is:
INDEX: iueobs/objclass TAG: il
INDEX: iueobs/rects TAG: i2

See Also:

Advanced Communications Technology first

Command Name:
first

Purpose:
To make the first row of the current index current.

Command Module:

uinms.exe
Synopsis:

first in index
Parameters:

none

Description:

To get the first row of the current index:
first in index

Errors:
If no index has been picked as current.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2
To retrieve first row of index i1:

pick il

first in index

fetch from index
To retrieve first row of index i2:

pick 12

first in index

fetch from index

See Also:

Advanced Communications Technology next

Command Name:
next
Purpose:
To make the next row of the current index current.
Command Module:
uinms.exe
Synopsis:
next in index

Parameters:
none

Description:

To get the next row of the current index:
next in index

Errors:
If no index has been picked as current.

Examples:

retrieve index objclass iueobs modify il
retrieve index rects iueobs modify i2

To retrieve next row of index i1:
pick il
first in index
next in index
fetch from index

To retrieve next row of index i2:
pick i2
first in index
next in index
fetch from index

See Also:

Advanced Communications Technology fetch

Command Name:
fetch

Purpose:
To display the current row of the current index.

Command Module:
uinms.exe

Synopsis:
fetch from index

Parameters:
none

Description:

To display the current row of the current index:
fetch from index

Errors:
If there is no current row.

Examples:

retrieve index objclass iueobs modify il
retrieve index rects iueobs modify i2
To fetch last row of index i1:
pick il
last in index
fetch from index
The last row is:
99 "LWP2345"
To fetch first row of index i2:
pick i2
first in index
fetch from index

The first row is:
2344 37384 39494 23399 "LWP2348"

See Also:

Advanced Communications Technology last

Command Name:
last

Purpose:
To make the last row of the current index current.

Command Module:
uinms.exe

Synopsis:
last in index

Parameters:
none

Description:

To get the last row of the current index:
last in index

Errors:
If no index has been picked as current.

Examples:

retrieve index objclass iueobs modify il
retrieve index rects iueobs modify i2

To retrieve last row of index i1:
pick il
first in index
last in index
fetch from index
To retrieve last row of index i2:
pick 1i2
first in index
last in index
fetch from index

See Also:

Advanced Communications Technology previous

Command Name:
previous

Purpose:
To make the previous row of the current index current.

Command Module:

uinms.exe
Synopsis:

previous in index
Parameters:

none

Description:

To get the previous row of the current index:
previous in index

Errors:
If no index has been picked as current.

Examples:

retrieve index objclass iueobs modify il
retrieve index rects iueobs modify i2

To retrieve previous row of index i1:
pick il
last in index
previous in index
fetch from index

To retrieve previous row of index i2:
pick i2
last in index
previous in index
fetch from index

See Also:

Advanced Communications Technology

build boolean

Command Name:
build boolean

Purpose:
To build a boolean for searching an index in an indexset.

Command Module:

uinms.exe
Synopsis:

build boolean <expression> [<tag>]
Parameters:

expression - boolean condition
tag- optional tag name (the system generates a tag if none is specified)

Description:

To build a boolean for searching an index in an indexset:
build boolean <expression> [<tag>]

Errors:
If there is an incorrectly specified boolean.
Examples:

retrieve index objclass iueobs modify il
retrieve index rects iueobs modify i2

To search for the first row of a b-tree index with name objclass in indexset iueobs

satisfying the condition objclass = 99:
pick index il
build boolean objclass=89 bl
pick boolean bl
first in index
fetch from index

To search for the first row of an r-tree index with name rects in indexset iueobs

satisfying the condition (ra1,dec1,ra2,dec2) overlaps (23,3456,85754,5599):

pick index i2

build boolean (ral,decl,ra2,dec2) OV (23,3456,85754,5599) bl

pick boolean bl
first in index
fetch from index

See Also:

Advanced Communications Technology list boolean

Command Name:
list boolean

Purpose:
To list the booleans.

Command Module:
uinms.exe
Synopsis:
list boolean

Parameters:
none

Description:

To list all booleans:
list boolean

Errors:
None.

Examples:

retrieve index objclass iueobs modify il

retrieve index rects iueobs modify i2
To search for the first row of a b-tree index with name objclass in indexset iueobs
satisfying the condition objclass = 99:

build boolean objclass=89 bl

build boolean (ral,decl,ra2,dec2) OV (23,3456,85754,5599) bl

To list all boolean:
list boolean

The result is:
BOOLEAN: objclass=99 TAG: bl
BOOLEAN: (ral,decl,ra2,dec2) OV (23,3456,85754,5599) TAG: b2

See Also:

Advanced Communications Technology

pick boolean

Command Name:

pick boolean
Purpose:

To pick a boolean.
Command Module:

uinms.exe
Synopsis:

pick boolean <tag>
Parameters:

tag- tag name
Description:

To pick an boolean:
pick boolean <tag>

Errors:

If there is no tag of that name.

Examples:

To pick an boolean b1:
pick boolean bl

See Also:

Advanced Communications Technology

modify boolean

Command Name:
modify boolean

Purpose:

To modify current boolean.

Command Module:
uinms.exe

Synopsis:

modify boolean <boolean>

Parameters:
boolean- the new boolean

Description:
To modify current boolean :

Errors:

If the boolean is syntactically incorrect.

Examples:

modify boolean <boolean>

retrieve index objclass iueobs modify il
retrieve index rects iueobs modify i2

To search for the first row of a b-tree index with name objclass in indexset iueobs
satisfying the condition objclass = 99:

build boolean objclass=99 bl

build boolean (ral,decl,ra2,dec2) OV (23,3456,85754,5599) bl

To modify boolean b1:

pick boolean bl
modify boolean objclass=24

To modify boolean b2:

See Also:

pick boolean b2

modify boolean (ral,decl,ra2,dec2) OV (23,3456,85754,5598)

Advanced Communications Technology

drop boolean

Command Name:

drop boolean
Purpose:

To drop a boolean.
Command Module:

uinms.exe
Synopsis:

drop boolean <tag>
Parameters:

tag- tag name
Description:

To drop a boolean:
drop boolean <tag>

Errors:

If there is no tag of that name.

Examples:

To drop boolean b1:
drop boolean bl

See Also:

Advanced Communications Technology

create indexset

Command Name:

create indexset
Purpose:

To create an indexset.
Command Module:

uinms.exe
Synopsis:

create indexset <indexset>
Parameters:

indexset- name of parent indexset

Description:

To create an indexset
create indexset <indexset>

Errors:
If there is an existing indexset with the same name
Examples:

create indexset iueobs

See Also:

Advanced Communications Technology delete indexset

Command Name:

delete indexset
Purpose:

To delete an indexset.
Command Module:

uinms.exe
Synopsis:

delete indexset <indexset>
Parameters:

indexset- name of parent indexset
Description:

To delete an indexset
delete indexset <indexset>

Errors:
If there is no existing indexset with name given

Examples:

delete indexset iueobs

See Also:

UIMS TEST SUITE

Steve Kelley
Nick Roussopoulos
Timos Sellis

Advanced Communication Technology Inc.
1209 Goth Lane
Silver Spring, Maryland 20905

Final Report
SBIR Phase II Contract Number NAS5-30628

Prepared for
Goddard Space Flight Center
Greenbelt, Maryland 20771

November 10, 1992

Advanced Communications Technology Inc.

README FILE

This directory tree contains the source code, libraries, executable, script, data and
test directorys for the NASA sponscred UIMS system.

Directory List and Contents:

README - this file

Source Code Directories:

include - header files (.h) which define UIMS internal structures
bTREE - source and object code for "B-Tree" index type

bind - soruce code for binding indexes to names

bool - source and object code which deal with boolean expressions
index - source and objsect code common to all index types

minirel - source and object code for basic file operations
rtindex - r-tree index source and object clode (not available)
sec - source and object code for B-Tree creation

sec_aux - utility source and object code for B-Trees

select - source and object code for index selection
tools - source and object code for UIMS utilities

Library Directory:
1lib - object code libraries (made from the source directories)

Executable Directory:
bin - where the "index" executable is created/run from

Test Directories:
script - contains test scripts - command execution files

data - contains test data used by the scripts
db - (empty) directory where test may scripts be run

To Make a new version of the system:

Change directory (cd) to each of the source code directories {(excluding
"include" and saving "index" for last) an type:

make all

For each directory excpting "index", this will compile the source code into object

code and create an objdect codae library in "1lib". Typing this in "index"
will result in compiling the source code thare and then link it with the

libraries to create the "index" executable in "bin".

Testing the System

If you wish to test the system, there are script files in
UIMS/script that act as input to an interactive program demonstrating the system.

TS-2 UIMS TEST SUITE

Advanced Communications Technology Inc.

Change to the "db" directory than execute the following command scripts.

Thaey will completely test all functioning user level routines.

. ./bin/index
. ./bin/index
. ./bin/index
../bin/index
../bin/index

./bin/indax

AAAAANA

./script/input.
./script/input.
./script/input.
./script/input.
./script/input
./script/input.

create.load.unload.help > testl
copy.move > test2
retrieve.navigate.return > test3
boolean.navigate > testd

.modify > testS

drop > testé

All the 'test’ files will show the error codes/return values for each

command in the input file.

There are some commands that are intended
to give error codes back (e.g. trying to update an index that was retrieved

for read only, requesting the previous tuple when currently at the beginning

of the index, atc.).

TS-3

UIMS TEST SUITE

Advanced Communications Technology Inc.

The taest suite consiste of 6 scripts.

TEST SUIT

each of these tests.

SCRIPT 1

input.create.lcad.unload.halp

sarah

passwd
create
create
create
create
create
create
create
create

load index indexhp sarahiset .
load index indexhs sarahiset ..
load index indexbt sarahiset

indexset sarahiset
indexset aliset
indexset jeniset
indexset joiset

index indexhp sarahiset heap ../data/heap.def
index indexhs sarahiset hash ../data/hash.def
index indexbt sarahiset btree ../data/btree.def
index indexrt sarahiset rtree ../data/rtreae.def
./data/sarahiset.data
/data/aliset.data
../data/jeniset .data

load index indexrt sarahiset ../data/rtree.data
index indexhp sarahiset indexhp.unload
index indexhs sarahiset indexhs.unload
index indexbt sarahiset indexbt.unload
index indexrt sarahiset indexrt.unload
help index indexhp sarahiset indexhp.help
help index indexhs sarahiset indexhs.help
help indax indexbt sarahiset indexbt.help
help index indexrt sarahiset indexrt.help

unload
unload
unload
unload

quit

TS-4

Below are the scripts and the output of

UIMS TEST SUITE

Advanced Communications Technology Inc.

input.copy.

sarah
passwd
copy index
copy index
copy index
copy index
copy index
copy index
copy index
copy index
copy index
copy index
move index
move index
move index
move index

quit

move

indexhp
indexhs
indexbt
indexrt
indexhp
indexhp
indexhs
indexhs
indexbt
indexbt
indexhp
indaxhs
indexbt
indexrt

sarahiset
sarahiset
sarahiset
sarahiset
sarahiset
sarahiset
sarahiset
sarahiset
sarahiset
sarahiset
sarahiset
sarahiset
sarahiset
sarahiset

SCRIPT 2

indexhp aliset
indexhs aliset
indexbt aliset
indexrt aliset

indexhsl
indexbtl
indexhpl
indexbt2
indexhp2
indexhs2

jeniset hash
jeniset btree
jeniset heap
jeniset btree
jeniset heap
jeniset hash

indexhp joiset
indexhs joiset
indexbt joiset
indexrt joiset

TS-5

UIMS TEST SUITE

Advanced Communications Technology Inc.

SCRIPT 3
input.retrieve.navigate.return
sarah
passwd
retrieve index indexhp joiset read only ihp
list index

pick index ihp
first in index
fetch from index
previous in index
first in index
next in index
fetch from index
last in index
fetch from index
next in index
last in index
previous in index
fetch from index
return index ihp
retrieve index indexhs joiset read only ihs
pick index ihs
first in index
fetch from index
previous in index
first in index
next in index
fetch from index
last in index
fetch from index
next in index
last in index
previous in index
fetch from index
return index ihs
retrieve index indexbt joiset read only ibt
pick index ibt
first in index
fetch from index
previous in index
first in index
next in index
fetch from index
last in index
fetch from index
naxt in index
last in index
previous in index
fetch from index
return index ibt
retrieve index indexrt joiset read onlu irt
pick index irt
batch search index ../data/rtree.search rtree-id.out rtree-tup.out

TS-6 UIMS TEST SUITE

Advanced Communications Technology Inc.

return index irt
quit

TS-7 UIMS TEST SUITE

Advanced Communications Technology Inc.

SCRIPT 4

input.boolean.navigate
sarah

passwd

retrieve index indexhp joiset read only ihp
list index

pick index ihp
build boolean attra < "barbara" ibl
pick boolean ibl
first in index
fetch from index
previous in index
first in index
naxt in index
fetch from index
last in index
fetch from index
next in index
last in index
previous in index
fetch from index
return index ihp
retrieve index indexhs joiset read only ihs
pick index ihs
pick boolean ibl
first in index
fetch from index
previous in index
first in index
next in index
fetch from index
last in index
fetch from index
next in index
last in index
previous in index
fetch from index
return index ihs
retrieve index indexbt jolset read only ibt
pick index ibt
pick boolean ibl
first in index
fetch from index
previous in index
first in index
next in index
fetch from index
last in index
fatch from index
next in index
last in index
previous in index
fetch from index

TS-8

UIMS TEST SUITE

Advanced Communications Technology Inc.

return index ibt
drop boolean ibl

quit

TS-9 UIMS TEST SUITE

Advanced Communications Technology Inc.

SCRIPT 5
input .modify
sarah
passwd
retrieve index indexhp joiset modify ihp
list index
pick index ihp
last in index
fetch from index
update index attrajtimos sellis|id|3030
last in index
fetch from index
delete from index
last in index
fetch from index
insert into index attralnick roussopoulous|id|9090
last in index
fetch from index
save index ihp
return index ihp
retrieve index indexhs joiset modify ihs
pick index ihs
last in index
fetch from index
update index attra|richard wallace|id|3030
last in index
fetch from index
delete from index
last in index
fetch from index
insert into index attralnick roussopoulous|id|9090
last in index
fetch from index
save index ihs
return index ihs
retrieve index indexbt joiset modify ibt
pick index ibt
last in index
fetch from index
update index attrajtimos sellisjid3030
last in index
fetch from index
delete from index
last in index
fetch from index
insert into index attrajnick roussopoulous|id{9090
last in index
fetch from indax
save index ibt
return index ibt
retrieve index indexhp joiset read only ihp
list index
pick index ihp

TS-10 UIMS TEST SUITE

Advanced Communications Technology Inc.

last in index

fetch from index

update index attrajtimos sellis|id|3030

last in index

fetch from index

delete from index

last in index

fetch from index

insert into index attrajnick roussopoulous|id|9090
last in index

fetch from index

save index ihp

return index ihp

retrieve index indexhs joiset read only ihs
pick index ihs

last in index

fetch from index

update index attrajtimos sellis|id|3030

last in index

fetch from index

delete from index

last in index

fetch from index

insert into index attrajnick roussopoulous|id|9090
last in index

fetch from index

save index ihs

return index ihs

retrieve index indexbt Jjoiset read only ibt
pick index ibt

last in index

fetch from index

update indax attrajltimos sellis|id|3030

last in index

fetch from index

delete from index

last in index

fetch from index

insert into index attrajnick roussopoulous|id|9090
last in index

fatch from index

save index ibt

return index ibt

quit

TS-11

UIMS TEST SUITE

Advanced Communications Technology Inc.

SCRIPT 6
input .drop
sarah
passwd
drop index indexhp aliset
drop index indexhs aliset
drop index indexbt aliset
drop index indexhp joiset
drop index indexhs Jjoiset
drop index indexbt joiset
drop index indexhpl jeniset
drop index indexhp2 jeniset
drop index indexhsl Jeniset
drop index indexhs2 jeniset
drop index indexbtl jeniset
drop index indexbt2 jeniset
delete indexset sarahiset
delete indexset aliset
delete indexset jeniset
delete indexset joiset

quit

TS-12 UIMS TEST SUITE

Advanced Communications Technology Inc.

TEST 1

Please enter your username: Please enter your password:
Need to validate user and password.
COMMANDS AND THEIR SYNTAX:

create index <indeaxname> <indexset> <format> <infile>

drop index <indexname> <indexset>

copy index <from-index> <from-indexset> <to-index> <to-indexset> [<format>)
move index <from-index> <from-indexset> <to-index> <to-indexset>

help index <indexname> <indexset>

load index <indexname> <indexset> <infile>

unload index <indexname> <indexset> <cutfile>

insert into index <attr, value, attr, value, . . .>

update index <attr, value, attr, value, . . .>

delete from

delete rectangle

index

first in index
next in index
last in index

previous in

index

fetch from index
batch search index <«infile> <idfile> [<tuplefile>]
search index <idfile> [<tuplefile>]

list index

<id>

retrieve index <indexname> <indexset> <mode> [<tag>]

save index

<tag>

return index <tag>

pick index

<tag>

build booclean <boolean definition> [<tag>]
list boolean

pick boolean

<tag>

modify boolean <boolean definition>
drop boolean <tag>
build select <attr,

list salect
pick select

<tag>

attr,

modify select <attr, attr,

drop select

create indexset
delete indexset

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

<tag>

EXECUTED:
0
EXECUTED:
0
EXECUTED:
0
EXECUTED:
0
EXECUTED:
o]
EXECUTED:
0
EXECUTED:

create

create

create

create

create

create

create

> [<tag>]

<indexset>
<indexset>

indexset sarahiset

indexset aliset

indexset jeniset

indexset joiset

index indexhp sarahiset heap ../data/heap.def
index indexhs sarahiset hash ../data/hash.def

index indexbt sarahiset btree ../data/btree.def

TS-13 UIMS TEST SUITE

Advanced Communications Technology Inc.

RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: 0
>>> COMMAND EXECUTED:
RETURN CODE: 0
>>> COMMAND EXECUTED:
RETURN CODE: 0
>>> COMMAND EXECUTED:
RETURN CODE: 0
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: 0
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: 0O
>>> COMMAND EXECUTED:
RETURN CODE: 0

create index indexrt sarahiset
load index indexhp sarahiset

load index indexhs sarahisaet

load index indexbt sarahiset .
load index indexrt sarahiset .
unload index indexhp sarahiset
unlocad index indexhs sarahiset
unload index indexbt sarahiset

unload index indexrt sarahiset

rtree ../data/rtree.def

./data/sarahiset.data
./data/aliset .data
./data/jeniset.data

./data/rtree.data

indexhp.unload
indexhs.unlocad
indexbt .unload

indexrt .unload

help index indexhp sarahiset indexhp.help

help index indexhs sarahiset indexhs.help

help index indexbt sarahiset indexbt.help

help index indexrt sarahiset indexrt.help

quit

TS-14

UIMS TEST SUITE

Advanced Communications Technology Inc.

TEST 2

Please enter your username: Please enter your password:
Need to validate user and password.
COMMANDS AND THEIR SYNTAX:

create index <indexname> <indexset> <format> <infile>
<indexname> <indexset>
<from-index> <from-indexset> <to-index> <to-indexset> [<format>]
<from-index> <from-indexset> <to-index> <to-indexset>

<indexname> <indexset>
<indexname> <indexset> <infile>
unload index <indexname> <indexset> <outfile>

drop index
copy index
move index
help index
load index

insert into

index

<attr,

value,

attr,

update index <attr, value, attr, value,
delete from index

delete rectangle

first in index
next in index
last in index

previous in

index

fetch from index

batch search index <infile> <idfile> [<tuplefile>]

<id>

search index <idfile> [<tuplefile>]

list index

valuae,

>

retrieve index <indexname> <indexset> <mode> [<tag>]

save index

<tag>

return index <tag>

pick index

<tag>

build boolean <boolean definition> [<tag>]
list boolean

pick boolean

<tag>

modify boolean <boolean definition>
drop boolean <tag>
bulld select <attr,

list select
pick select

modify select <attr, attr,

drop select

create indexset
delete indexset

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

<tag>

<tag>

EXECUTED:
0
EXECUTED:
(o}
EXECUTED:
0
EXECUTED:
0
EXECUTED:
(o}
EXECUTED:
0
EXECUTED:

attr,

<indexset>
<indexset>

copy index
copy index
copy index
copy index
copy index
copy index

copy index

.> [<tag>]

indexhp

indexhs

indexbt

indexrt

indexhp

indexhp

indexhs

sarahiset

sarahiset

sarahiset

sarahiset

sarahiset

sarahiset

indexhp aliset
indexhs aliset
indexbt aliset
indexrt aliset
indexhsl jeniset hash

indexbtl jeniset btree

sarahiset indexhpl jeniset heap

TS-15

UIMS TEST SUITE

Advanced Communications Technology Inc.

RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: 0
>>> COMMAND EXECUTED:
RETURN CODE: 0
>>> COMMAND EXECUTED:
RETURN CODE: O
>>> COMMAND EXECUTED:
RETURN CODE: 0

copy

copy

copy

move

move

move

move

quit

index

index

index

index

index

index

index

indexhs

indexbt

indexbt

indexhp

indexhs

indexbt

indexrt

sarahiset

sarahiset

sarahiset

sarahiset

sarahiset

sarahiset

sarahiset

TS-16

indexbt2 jeniset btree
indexhp2 jeniset heap
indexhs2 jeniset hash
indexhp joiset
indexhs joiset
indexbt joiset

indexrt joiset

UIMS TEST SUITE

Advanced Communications Technology Inc.

TEST 3

Please enter your username: Please enter your password:

Need to vali
COMMANDS AND

date user and password.
THEIR SYNTAX:

create index <indexname> <indexset> <format> <infile>

drop index <indexname> <indexset>

copy index <from-index> <from-indexset> <to-index> <to-indexset> [<format>]
move index <from-index> <from-indexsaet> <to-index> <to-indexset>

help index <indexname> <indexset>

load index <indexname> <indexset> <infile>

unload index <indexname> <indexset> <outfile>

insert into index <attr, value, attr, value, . . .>

update index <attr, value, attr, value, . . .>

delete from index

delete rectangle <id>
first in index
next in index
last in index

previous in
fetch from i

index
ndex

batch search index <infile> <idfile> [<tuplefile>]
search index <idfile> [<tuplefile>]

list index

retrieve index <indexname> <indexset> <mode> [<tag>]

save index

<tag>

return index <tag>

pick index

<tag>

build boolean <boolean definition> [<tag>]

list boolean
pick boolean

<tag>

modify boolean <boolean definition>

drop boolean <tag>
build select <attr, attr, . . .> [<tag>]
list select
pick select <tag>
modify select <attr, attr, . . .>
drop select <tag>
create indexsat <indexset>
delete indexset <indexset>
>>> COMMAND EXECUTED: retrieve index indexhp joiset read only ihp
RETURN CODE: 0
>>> COMMAND EXECUTED: list index
Tag: IHP Value: JOISET/INDEXHP
RETURN CODE: O
>>> COMMAND EXECUTED: pick index ihp
RETURN CODE: 0
>>> COMMAND EXECUTED: first in index
RETURN CODE: O
>>> COMMAND EXECUTED: fetch from index
Tupla: aloysius yoon|123
RETURN CODE: 0
>>> COMMAND EXECUTED: previous in index

TS-17

UIMS TEST SUITE

Advanced Communications Technology Inc.

RETURN CODE: -2

>>> COMMAND EXECUTED: first in index
RETURN CODE: O

>>> COMMAND EXECUTED: next in index
RETURN CODE: O

>>> COMMAND EXECUTED: fetch from index
Tuple: jennifer carle|234

RETURN CODE: 0

>>> COMMAND EXECUTED: last in index
RETURN CODE: 0

>>> COMMAND EXECUTED: fetch from index
Tuple: barb tower|d5

RETURN CODE: 0

>>> COMMAND EXECUTED: next in index
RETURN CODE: -2

>>> COMMAND EXECUTED: last in index
RETURN CODE: O

>>> COMMAND EXECUTED: previous in index
RETURN CODE: O

>>> COMMAND EXECUTED: fetch from index
Tuple: dean perkins|34

RETURN CODE: O

>>> COMMAND EXECUTED: return index ihp
RETURN CODE: 0

>>> COMMAND EXECUTED: retrieve index indexhs joiset read only ihs

RETURN CODE: O

>>> COMMAND EXECUTED: pick index ihs
RETURN CODE: O

>>> COMMAND EXECUTED: first in index
RETURN CODE: 0

>>> COMMAND EXECUTED: fetch from index
Tuple: stephen wallace|5678

RETURN CODE: 0

>>> COMMAND EXECUTED: previous in index
RETURN CODE: -2

>>> COMMAND EXECUTED: first in index
RETURN CODE: 0

>>> COMMAND EXECUTED: next in index
RETURN CODE: 0

>>> COMMAND EXECUTED: fetch from index
Tuple: lillian wallace|6789

RETURN CODE: O

>>> COMMAND EXECUTED: last in index
RETURN CODE: 0

>>> COMMAND EXECUTED: fetch from index
Tuple: richard wallace|2345

RETURN CODE: O

>>> COMMAND EXECUTED: next in index
RETURN CODE: -2

>>> COMMAND EXECUTED: last in index
RETURN CODE: 0

>>> COMMAND EXECUTED: previous in index
RETUORN CODE: O

TS-18

UIMS TEST SUITE

Advanced Communications Technology Inc.

>>> COMMAND EXECUTED:

fetch from index

Tuple: sandra wallace|1234

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED: retrieve index indexbt joiset read only ibt

RETURN CODE: 0O

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

return index ihs

pick index ibt
first in index

fetch from index

Tuple: allen wallace|7890

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: -2

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

Tuple: amy wallacell2
RETURN CODE: O

>>> COMMAND EXECUTED:

RETOURN CODE: O

>>> COMMAND EXECUTED:

Tuple: wally tower|56
RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: -2

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

previous in index
first in index
next in index

fetch from index

last in index

fetch from index

next in index
last in index
previous in index

fetch from index

Tuple: peggy wallace|8901

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETORN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: O

return index ibt

retrieve index indexrt joiset read onlu irt

pick index irt
batch search index

return index irt

quit

TS-19

../data/rtree.search rtree-id.out rtree-tup.out

UIMS TEST SUITE

Advanced Communications Technology Inc.

TEST 4

Please enter your username: Please enter your password:

Need to vali

date user and password.

COMMANDS AND THEIR SYNTAX:

create index <indexname> <indexset> <format> <infile>

drop index
copy index
move index
help index
load index

insert into

<indexname> <indexset>

<from-index> <from-indexset> <to-index> <to-indexset> [<format>]

<from-index> <from-indexset> <to-index> <to-indexset>

<indexname> <indexset>

<indexname> <indexset> <infile>
unload index <indexname> <indexset> <ocutfile)>

index <attr, value, attr, value,

update index <attr, value, attr, value,

delete from

index

delete rectangle <id>
first in index
next in index
last in index

previous in
fetch from i

index
ndex

>

batch search index <infile> <idfile> [<tuplefile>]
search index <idfile> [<tuplaefile>]

list index

retrieve index <indexname> <indexset> <mode> [<tag>]

save index

<tag>

return index <tag>

pick index

build boclean <boolean dafinition> [<tag>]

list boolean

<tag>

pick boolean <tag>
modify boolean <boolean definition>

drop boolean
build select
list select
pick select

<tag>
<attr, attr, . . .> [<tag>]

<tag>

modify select <attr, attr, . . .>

drop select

<tag>

create indexset <indexset>
delete indexset <indexset>

>>> COMMAND
RETURN CODE:
>>> COMMAND

EXECUTED: retrieve index indexhp joiset read only ihp

0
EXECUTED: list index

Tag: IHP Value: JOISET/INDEXHP

RETURN CODE:
>>> COMMAND
RETURN CODE:

>>> COMMAND EXECUTED: build boolean attra <

RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND
RETURN CODE:

0
EXECUTED: pick index ihp
o]

0

EXECUTED: pick booclean ibl
0

EXECUTED: first in index
0

"barbara"

TS-20

ib1

UIMS TEST SUITE

Advanced Communications Technology Inc.

>>> COMMAND EXECUTED: fetch from index
Tuple: aloysius yoon|123

RETURN CODE:

0

>>> COMMAND EXECUTED: previous in index

RETURN CODE:

-2

>>> COMMAND EXECUTED: first in index

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0
EXECUTED:

0
EXECUTED:

next in index

fetch from index

Tuple: allen wallace|7890

RETURN CODE:

0

>>> COMMAND EXECUTED: last in index

RETURN CODE:

>>> COMMAND
Tuple: barb

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0
EXECUTED:
tower|ds

o]
EXECUTED :

-2
EXECUTED:

0
EXECUTED:

0
EXECUTED:

Tuple: amy wallacel|l2

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0
EXECUTED:
0
EXECUTED :
0
EXECUTED:
0
EXECUTED:
0
EXECUTED:
0
EXECUTED:

Tuple: amy wallace|l2

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0
EXECUTED:
-2
EXECUTED:
0
EXECUTED:
0
EXECUTED:

fetch from index

next in index
last in index
previous in index

fetch from index

return index ihp

retrieve index indexhs joiset read only ihs
pick index ihs

pick boclean ibl

first in index

fetch from index

previous in index
first in indaex
next in index

fetch from index

Tuple: allen wallace|7890

RETURN CODE:

0

>>> COMMAND EXECUTED: last in index

RETURN CODE:

0

>>> COMMAND EXECUTED: fetch from index
Tuple: allen wallace|7890

RETURN CODE:

o]

TS§-21

UIMS TEST SUITE

Advanced Communications Technology Inc.

>>> COMMAND EXECUTED:

RETURN CODE: -2

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

Tuple: amy wallace|l2
RETURN CODE: ©

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

next in index
last in index
previous in index

fetch from index

return index ihs

retrieve index indexbt joiset read only ibt

pick index ibt
pick boolean ibl
first in index

fetch from index

Tuple: allen wallaca|7890

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: -2

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

Tuple: amy wallace|l2
RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

Tuple: barb towerid5
RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: -2

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

Tuple: amy wallace|l2
RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: O

previous in index
first in index
next in index

fetch from index

last in index

fetch from index

next in index
last in index
previous in index

fetch from index

return index ibt

drop boolean ibl

quit

TS-22

UIMS TEST SUITE

Advanced Communications Technology Inc.

Need to validate user and password.
COMMANDS AND THEIR SYNTAX:

create index <indexname> <indexset> <format> <infile>

drop index
copy index
move index
help index
load index

next in index
last in index

<indexname> <indexset>
<from-index> <from-indexset> <to-index> <to-indexset> [<format>]

<from-index> <from-indexset> <to-index> <to-indexset>

<indexname> <indexset>
<indexname> <indaexset> <infile>
unload index <indexname> <indexset> <ocutfile>
insert into index <attr,
update index <attr, value, attr, value,
delete from index

delete rectangle <id>
first in index

previous in index
fetch from index

batch search index <infile> <idfile> [<tuplefile>]

search index <idfile> [<tuplefile>]

list index

retrieve index <indexname> <indexset> <mode> [<tag>]

save index

<tag>

return index <tag>

pick index

build boolean <boolean definition> [<tag>]

list boolean
pick boolean

<tag>

<tag>

modify boolean <boolean definition>
drop boolean <tag>
build select <attr, attr,

list select
pick select

<tag>

modify select <attr, attr,

drop select

create indexset
delete indexset
>>> COMMAND EXECUTED: retrieve index indexhp joiset modify ihp

<tag>

. .> [<tag>]

<indexset>
<indexset>

index
JOISET/INDEXHP

index ihp

RETURN CODE: 0
>>> COMMAND EXECUTED: list
Tag: IHP Value:
RETURN CODE: 0
>>> COMMAND EXECUTED: pick
RETURN CODE: O
>>> COMMAND EXECUTED: last in index
RETURN CODE: 0

>>> COMMAND EXECUTED: fetch from index
Tuple: barb tower]45s

RETURN CODE:

>>> COMMAND EXECUTED: update index attrajtimos sellis|id|3030

0

TEST 5
Please enter your username: Please enter your password:

value, attr, value,

>

TS-23

UIMS TEST SUITE

Advanced Communications Technology Inc.

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0
EXECUTED: last in index
0
EXECUTED: fetch from index

Tuple: timos sellis|3030

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND
Tuple: dean

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND
Tuple: nick

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0

EXECUTED: delete from index
0

EXECUTED: last in index

0

EXECUTED: fetch from index
perkins|34

0

EXECUTED: insert into index attrajnick roussopoulous{id]9090
0

EXECUTED: last in index

0

EXECUTED: fetch from index
roussopoulous|9090

0

EXECUTED: save index ihp
0

EXECUTED: return index ihp
0

EXECUTED: retrieve index indexhs joiset modify ihs
0

EXECUTED: pick index ihs
0

EXECUTED: last in index
0

EXECUTED: fetch from index

Tuple: richard wallace|2345

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0

EXECUTED: update index attrajrichard wallace|id|3030
(o}

EXECUTED: last in index
0

EXECUTED: fetch from index

Tuple: richard wallace|3030

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0

EXECUTED: delete from index
0

EXECUTED: last in index

0

EXECUTED: fetch from index

Tuple: sandra wallace|l1234

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0

EXECUTED: insert into index attrajnick roussopoulous|id|(9090
0

EXECUTED: last in index
0

EXECUTED: fetch from index

Tuple: sandra wallaca|l234

TS-24 UIMS TEST SUITE

Advanced Communications Technology Inc.

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

Tuple: wally tower|{56
RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

save index ihs

return index ihs

retrieve index indexbt joiset modify ibt
pick index ibt

last in index

fetch from index

update index attrajtimos sellis|id|3030
last in index

fetch from index

Tuple: timos sellis|3030

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

delete from index

last in index

fetch from index

Tuple: peggy wallace{8901

RETURN CODE: 0
>>> COMMAND
RETURN CODE: ©
>>> COMMAND
RETURN CODE: O
>>> COMMAND

EXECUTED:

EXECUTED :

EXECUTED :

insert into index attranick roussopoulous|id|9090
last in index

fetch from index

Tuple: peggy wallace|8901

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:
Value:

Tag: IHP
RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: O

>>> COMMAND EXECUTED:

save index ibt
return index ibt
retrieve index indexhp joiset read only ihp

list index

JOISET/INDEXHP
pick index ihp
last in index

fetch from index

Tuple: nick roussopoulous|9090

RETURN CODE: 0

>>> COMMAND EXECUTED:

RETURN CODE: -9

update index attrajtimos sellis|id|3030

TS-25 UIMS TEST SUITE

Advanced Communications Technology Inc.

>>> COMMAND

RETURN CODE:

>>> COMMAND
Tuple: nick

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

EXECUTED: last in index

0

EXECUTED: fetch from index
roussopoulous|9090

0

EXECUTED: delete from index
-9

EXECUTED: last in index

0

>>> COMMAND EXECUTED: fetch from index

Tuple: nick rcussopoulous|9090

RETURN CODE: 0

>>> COMMAND EXECUTED: insert into index attrajnick roussopoulous|id|9090
RETURN CODE: -9

>>> COMMAND EXECUTED: last in index

RETURN CODE: 0

>>> COMMAND EXECUTED: fetch from index

Tuple: nick roussopoulous|9090

RETURN CODE: 0

>>> COMMAND EXECUTED: save index ihp

RETURN CODE: -9

>>> COMMAND EXECUTED: return index ihp

RETURN CODE: O

>>> COMMAND EXECUTED: retrieve index indexhs joiset read only ihs
RETURN CODE: 0

>>> COMMAND EXECUTED: pick index ihs

RETURN CODE: 0

>>> COMMAND EXECUTED: last in index

RETURN CODE: 0O

>>> COMMAND EXECUTED: fetch from index

Tuple: sandra wallace{1234

RETURN CODE: O

>>> COMMAND EXECUTED: update index attraftimos sellis|id|3030

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

-9
EXECUTED: last in index
0
EXECUTED: fetch from index

Tuple: sandra wallace{1234

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0
EXECUTED: delete from index
-9

EXECUTED: last in index

0

EXECUTED: fetch from index

Tuple: sandra wallace|1234

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

0
EXECUTED: insert into index attrajnick roussopoulous|id|9090
-9
EXECUTED: last in index

0
EXECUTED: fetch from index

Tuple: sandra wallace/l1234

RETURN CODE:

0

TS-26 UIMS TEST SUITE

Advanced Communications Technology Inc.

>>> COMMAND
RETURN CODKE:
>>> COMMAND
RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND

EXECUTED: save index ihs
-9

EXECUTED: return index ihs
0

EXECUTED: retrieve index indexbt joiset read only ibt

(o}
EXECUTED: pick index ibt

0

EXECUTED: last in index

0
EXECUTED: fetch from index

Tuple: peggy wallace|8901

RETURN CODE:

>>> COMMAND EXECUTED: update index attraltimos sellis|id{3030

RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND

0

-9
EXECUTED: last in index
0
EXECUTED: faetch from index

Tuple: peggy wallace|8501

RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND

(o]

EXECUTED: dalete from index
-9

EXECUTED: last in index

(o}

EXECUTED: fetch from index

Tuple: peggy wallace|8901

RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND

0

EXECUTED: insert into index attrajnick roussopoulous|id|9090

-9
EXECUTED: last in index
0
EXECUTED: fetch from index

Tuple: peggy wallace|8901

RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND
RETURN CODE:
>>> COMMAND
RETURN CODE:

0

EXECUTED: save index ibt
-9

EXECUTED: return index ibt
0

EXECUTED: quit
0

TS-27

UIMS TEST SUITE

Advanced Communications Technology Inc.

TEST 6

Please enter your username: Please enter your password:
Need to validate user and password.
COMMANDS AND THEIR SYNTAX:

create index <indexname> <indexset> <format> <infile>

<from-index> <from-indexset> <to-index> <to-indexset> [<format)>]
<from-index> <from-indexset> <to-index> <to-indexset>

<indexname> <indexset> <infile>

attr,
value,

value,
.

drop index <indexname> <indexset>

copy index

move index

help index <indexname> <indexset>

load index

unload index <indexname> <indexset> <outfile>
insert into index <attr, value,

update index <attr, value, attr,

delete from index

delete rectangle <id>

first in index
next in index
last in index

previous in

index

fetch from index
batch search index <infile> <idfile> [<tuplefile>]
search index <idfile> [<tuplefile>]

list index

retrieve index <indexname> <indexset> <mode> [<tag>]

save index

<tag>

return index <tag>

pick index

<tag>

build boolean <boolean definition> [<tag>]
list boolean

pick boclean

<tag>

modify boolean <boolean definition>
drop boolean <tag>
build select <attr,

list
pick select

select

modify select <attr, attr,

drop select

create indexset
delete indexset
EXECUTED:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETORN CODE:

>>> COMMAND

<tag>

<tag>

0

EXECUTED :

(o]

EXECUTED:

0

EXECUTED:

0

EXECUTED:

0

EXECUTED :

0

EXECUTED :

attr,

<indexset>
<indexset>

drop index
drop index
drop index
index
index
drop index

drop index

.> [<tag>]

indexhp aliset
indexhs aliset
indexbt aliset
indexhp joiset
indexhs joiset
indexbt joiset

indexhpl jeniset

TS-28 UIMS TEST SUITE

Advanced Communications Technology Inc.

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

>>> COMMAND

RETURN CODE:

0

EXECUTED:

0

EXECUTED:

0

EXECUTED:

0

EXECUTED:

0

EXECUTED:

(o]

EXECUTED:

0

EXECUTED:

(]

EXECUTED:

0

EXECUTED:

0

EXECUTED:

0

drop index indexhp2
drop index indexhsl
drop index indexhs2
drop index indexbtl

drop index indexbt2

jeniset
jeniset
jeniset

jeniset

jeniset

delete indexset sarahiset

delete indexset aliset

delete indexset jenisaet

delete indexset Jjoiset

quit

TS-29

UIMS TEST SUITE

‘NASA

Report Documentation Page

i1 . Report No.

FINAL

2. Government Assession No.

3. Recipient’s Catalog No.

2. Title and Subtitle

5. Report Date

VIEWCACHE: An Incremental Pointer-Based 31-0Oct-92
Access Method for Distributed Databases 6. Performing Organization Code
N/A
7. Author(s) 8. Performing Organization Report No.
FINAL

Steve Kelley, Nick Roussopoulos, Timos Sellis

10. Work Unit No.

9. Performing Organization Name and Address

Advanced Communication Technology Inc.
1209 Goth Lane
Silver Spring, MD 20905

11. Contract or Grant No.

NASS5-30628

'12. Sponsoring Agency Name and Address
NASA
Washington, D.C. 20546-0001

‘TO: Dr. Barry Jacobs
Code 934
Goddard Space Flight Center
Greenbelt, MD 20771

13. Type of Report and Period Covered

FINAL
May 2, 1989- October 31, 1992

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

The goal of the Universal Index System (UIS), is to provide
an easy-to-use and reliable interface to many different
kinds of database systems. The impetus for this system was
to simplify database index management for users, thus
encouraging the use of indexes. As the idea grew into an
actual system design, the concept of increasing database
performance by facilitating the use of time-saving tech-
niques at the user level became a theme for the project.

were don on the IUE database.

This Final Report describes the Design, the Implementation of
UIS, and its Language Interfaces. It also includes the User’s Guide

and the Reference Manual.

17. Key Words (Suggested by Author(s))

Indexing, Spatial Access Methods,
R-trees, index Management System

18. Distribution Statement

19. Security Classif. (of this report)

U

20. Security Classif. 21.

No. of Pages 22. Price

{of page)
U 563

NASA FORM 1626 Oct 86

