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Abstract

w

Future space exploration missions will rely heavily on the use of complex instrument

data for determining the geologic, chemical and elemental character of planetary sur-

faces. One important instrument is the imaging spectrometer, which collects complete

images in multiple discrete wavelengths in the visible and infrared regions of the spec-

trum. Extensive computational effort is required to extract information from such

high-dimensional data. A hierarchical classification scheme allows multispectral data to

be analyzed for purposes of mineral classification while limiting the overall computa-

tional requirements. The hierarchical classifier exploits the tunability of a new type of

imaging 'spectrometer which is based on an acousto-optic tunable filter. This spec-

trometer collects a complete image in each wavelength passband without spatial scan-

ning. It may be programmed to scan through a range of wavelengths or to collect only

specific bands for data analysis. Spectral classification activities employ artificial

neural networks, trained to recognize a number of mineral classes. Analysis of the

trained networks has proven useful in determining which subsets of spectral bands

should be employed at each step of the hierarchical classifier. The network classifiers

are capable of recognizing all mineral types which were included in the training set. In

addition, the major components of many mineral mixtures can also be recognized. This

capability may prove useful for a system designed to evaluate data in a strange

environment where details of the mineral composition are not known in advance.
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I. Background and Motivation

Planetary and Lunar exploration missions envisioned for the future rely heavily

on the use of complex instrument data for determining the geologic, chemical and ele-

mental character of the environment. Extensive computational effort is often required

before the important information may be extracted from such data. The lengthy com-

munication time and limited bandwidth involved in many exploration missions creates

a need for autonomous onboard analysis of data. This need is accentuated in missions

involving sample acquisition, where the acquisition process itself will produce a stream

of data requiring real-time analysis in order to drive the activity.

In an effort to form a technology base supporting real-time, autonomous instru-

ment data analysis, the Autonomous Exploration task and the Sample Acquisition,

Analysis and Preservation (SAAP) task have been examining methods for spectral data

analysis. The particular application is the interpretation of multiband imagery span-

ning the visible and short wave infrared regions of the spectrum to extract information

on mineral composition. However, the methods developed for this application may

also be revised for use with other types of spectral data, supporting autonomous

extraction of chemical and elemental information from a variety of instruments.

The algorithms for spectral analysis have been developed concurrently with the

development and laboratory testing of an imaging spectrometer instrument which is

based on an acousto-optic tunable filter (AOTF). The potential availability of this

instrument motivated consideration of data analysis algorithms that differed from tradi-

tional algorithms to exploit the instrument capabilities. The most important characteris-

tic of the AOTF-based spectrometer is its tunability.

A standard imaging spectrometer uses a grating or prism to diffract or refract

incoming light, causing spatial separation of the different wavelengths. The separated

wavelengths are collected on a linear array of detectors, producing a spectrum for a

single pixel encompassing the complete wavelength range of the instrument (Figure 1).

To produce an image, the single-pixel focal point may be swept in two dimensions.

Alternately, a linear array of gratings/prisms may focus a line of light onto a two

dimensional detector array, by means of a sweeping motion in a single spatial dimen-

sion. The grating/prism-based spectrometers have the attributes of requiring spatial

motion and always collecting a complete spectrum for each pixel.

The AOTF-based spectrometer passes light through a crystal while simultaneously

passing an electrically generated acoustic wave through the crystal. The acoustic wave

interferes with the light wave such that a narrow passband of light is diffracted while

the residual light passes directly through (Figure 2). The light passing into the crystal

may be an image rather than a point. The diffracted light maintains the spatial integrity

of the image, and is collected on two-dimensional detector arrays. A spectrum is

formed by changing the acoustic wave in the crystal, thereby changing the center of

the passband for the diffracted light. The spectrum is collected one band at a time,

with the complete image collected simultaneously in each band. There is no require-

ment for spatial motion, and the tunability of the filter allows the user to select only

those spectral passbands of importance for the current application.



Spectral image processing algorithms have been developed to exploit the AOTF

spectrometer tunability. These algorithms selectively acquire data in a few passbands,

analyze that data, and use the results to select the next set of passbands for each region

in the image. The resulting spectral classifier has a hierarchical structure, shown in

Figure 3. The classifier algorithm applied at each step involves a trained neural net-

work [1]. Below we describe the development of these classification approaches and

the results obtained applying the approaches to a number of datasets.

II. Experimental Results - Hierarchical Classifier

The initial design and testing of the classification system used a simulated dataset,

an image overlain with multispectral data. For each pixel, a single library spectrum or

a mixture of two library spectra was assigned, Gaussian noise was added to the spec-

trum, and the spectrum was scaled in intensity to match the pixel brightness in the

visible image. The library spectra and mixtures were chosen to simulate those that

would result from the expected mineral composition of the surface of Mars. Thirty-two

spectral bands in the wavelength range of 2.0 to 2.5 microns were chosen. There is

good variability among different mineral classes in this range, which assists in distin-

guishing mineral types. This simulated dataset was useful for testing since the desired

results of the classification were known for each pixel.

After initial tests on the simulated data proved successful, testing was performed

on real datasets, collected by the Airborne Imaging Spectrometer (AIS) and Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS). These images consisted of 32 spec-

tral bands ranging from 2.04 microns to 2.34 microns. Because the wavelength range

did not match that of the simulated data, a second hierarchy was constructed for the

new range, using the same protocol. Table 1 shows results of tests on the simulated

dataset and one AIS image.

For each dataset, three classification schemes were compared (Table 1):

(1) A single-step matched filter, placing each input into one of 28 mineral classes

based on all 32 spectral bands.

(2) A two-step matched filter, which first placed each input into one of seven classes,
then matched within each class.

(3) A multi-step hierarchical classifier that used reduced dimensions to subdivide the

input space followed by a matched filter to do final detailed classification.

Approaches 1 and 2 reflect methods that have been considered in the past for

spectral analysis, utilizing all dimensions of the data (i.e. all spectral bands) for

classification. The third approach utilizes only a few spectral bands at each step, and is

the approach which exploits the tunability of the AOTF spectrometer. Table 1 shows

the number of operations required to perform each activity. The accuracy of

classification for the simulated dataset reflects the number of pixels placed into the

correct geological class.



The two-step matched filterscheme places spectraintobroad classesby matching

against an average spectrum for each class. This approach causes a degradation of

pcrforrnance accuracy, although a significantsavings in computation is realized.The

poor performance resultsfrom the factthatmajor differencesexistbetween the spectra

of differentminerals within a geologicalclass,even though certainclassspecificspec-

tralfeatures are preserved. Using a matched filterclassifierwith averaged spectral

memories causes each spectralband to bc given equal weight in the classification.

Regions of the spectra which are highly variablewithin the class contributenoise to

the matching procedure, and can outweigh the contributionsof the preserved spectral

features.

The hierarchy of reduced-dimension classifiersovercomes thisproblem by using

only the dimensions which are conserved within members of a classat each stepin the

hierarchy. It is this characteristicthat allows the resultingclassificationto improve

significantlyover the classificationproduced by a single-stepmatched filter,while

simultaneouslyreducing the computational requirements.

Accuracy was not determined for the realAIS datasctbecause the pixel by pixel

mineral identitywas not known. However, overallmineral composition in the larger

regions was known, and the resultsof allclassificationmethods were consistentat this

broad level. Distributionof some mineral classeswas compared to the distribution

found by an alternateanalysismethod (SPAM - SpectralAnalysis Manager) [2,3].The

alternatemethod produced the same resultsas were seen with the simulated dataset.

The complete matched filterand pairwise averaged matchers differed very littlein

classificationresults.Accuracy degraded when the two-step matched filterwas used,

and improved considerablywith the hierarchyof classifiers.

Table 2 shows a breakdown of the computational requirements for the

classificationhierarchy used for the simulated Mars datasct. This hierarchy is

diagrammed in Figure 3. Since only three to six input dimensions were used for thc

firstbroad classificationsteps,very littlecomputation was needed. This simple hierar-

chy reduces computational requirements by a factorof more than threecompared to a

single-stepmatched filter.In the future,more geologicalclassesand mineral types will

be incorporatedintothe hierarchy,and more stepswillbe added. While thisexpansion

would dramatically increase computation were a matched filterused, the hierarchical

approach should allow computation to bc kept to a minimum.

One important benefitof the hierarchy of classifiersoccurs in realapplications

where not all data needs to be classified.In an applicationwhere spectraldata are

being collectedduring planetaryexploration,itis likelythatsome geological classes

willbe of greatinterestand othersinsignificant.The classifiertreeallows one to incor-

porate a scientificgoal intothe classification.Only geologicalclassesof currentirnpor-

tancc arc classifiedin detail.Table 3 shows how specifictypes of goals willdecrease

the amount of computation required for the Mars dataset.In thisapplication,finding

clays or carbonates may be important because clays can be indicatorsof past water

activity,carbonates indicatorsof fossillife.Other applications,such as searching for

specificmineral deposits on earthor other planets,would invoke othergoals.



III. Selecting the Reduced-Dimension Space

There is a significant body of work in the area of pattern recognition and

classification supporting the contention that hierarchical classifiers are valuable both for

reducing computation and for improving accuracy [5,6]. Similarly, it is accepted that

careful selection of a subset of dimensions to be used for pattern classification will

improve results, whether or not a hierarchical classification scheme is used. However,

the selection of reduced dimensions, in this case specific spectral bands for each

classification step, is a significant problem.

Segmentation of a vector space, such as the space of mineral spectra, into only

two groups can often be achieved with a very small number of dimensions. The

difficulty lies in determining the best dimensions to classify the vectors reliably. The

following method for determining appropriate dimensions for vector space segmenta-

tion is applicable when the vectors are not randomly distributed, but fall into a number

of classes. In this ease, the classes represent geological groups of minerals (e.g. car-

bonates, borates_.

A software simulation of a fully connected, feed-forward neural network was con-

strutted [4]. This network consists of three layers, an input layer with number of nodes

equal to the full dimensional pattern vector, a middle (hidden) layer with fewer nodes,

and an output layer with nodes corresponding to the geological groups (Figure 4A).

Each node in a layer is connected to each node in the next layer with a given connec-

tion weight.

Processing of the pattern vectors occurs by inputting a vector, and setting each

hidden node value equal to the weighted sum of all the input nodes. The connection

weight between a given input node and a given hidden node differs from those

between the same input node and other hidden nodes. Since the input values are multi-

plied by these connection weights, the weighted sum of the values collected at a given

hidden node differs from the sum at each other hidden node. The value at each output

node similarly equals the weighted sum of all the hidden node values, where the

weighting factor is the connection weight between a hidden node and an output node.

At each level, a sigmoid function is performed on the weighted sum to drive the

value towards 0 or 1. When the net is properly designed and trained, a pattern may be

input to the network to produce an output value of 1 for the appropriate geological

group node, and a value of 0 for all other outputs. Although these networks may be

constructed in hardware, they are readily simulated in software as vector-matrix multi-

plications.

The network weights are set by training the net. A set of known vectors which

span the expected test space are input and the weights are altered until the desired out-

put classes are obtained [1]. During the training procedure, the hidden nodes often

come to act as feature detectors. They select from the higher dimensional inputs those

features (maxima, minima, ratios of values) which are important in distinguishing the

desired classes.



Analysis of the hidden nodes and their associated weights can assist in choosing

the appropriate subset of dimensions that will allow the input vectors to be placed into

certain classes [4,7,8]. For example, given ten output classes, a single hidden node

may always be on when the input vector belongs to one of classes one through four,

off for classes five through ten (Figure 4A). By finding which input nodes have very

strong weights connecting to that hidden node, one can determine which dimensions

are most important for distinguishing members of classes one through four from

classes five through ten. A much smaller network may then be constructed (Figure 4B)

which uses only those dimensions of the input vector to make a binary classification

decision.

The result of these steps is a tree of classifier networks, each dedicated to making

a simple segmentation (in this ease always binary), and each working on a very few

dimensions. The network architecture allows the classification to be made with compu-

tational requirements on the order of (I * H) + (H * O) where I is the number of input

dimensions, H the number of hidden nodes, and O the number of output classes (usu-

ally two). Using a series of these networks, followed by a matched filter classifier for

the final step, total computation may be reduced significantly.

IV. Application of Hierarchical Classification Scheme to AOTF Data

The hierarchical classifier scheme has been applied to a limited set of multiband

images obtained from the AOTF-based imaging spectrometer. Unfortunately, the initial

datasets have been confined to the visible region of the spectrum where differentiation

among minerals and mineral classes is minimal. Several hierarchical classifiers have

been developed which segment the images reasonably well, but the meaning of the
classes is not clear.

Images are being acquired in the infrared region of the spectrum for use with a

hierarchical classifier. The images will be of rocks rather than pure minerals, each rock

potentially being composed of mixtures and alterations of several minerals. This

dataset will provide an interesting test of classifier algorithms, and will no doubt

uncover areas where more work will need to be performed.

Several steps are planned for the analysis of this data. The first step is the simple

construction of a hierarchical classifier based on pure-mineral spectra, using the

methods outlined above. The second step will incorporate findings (described below)

which may improve the spectral "decomposition" of mineral mixtures. The third step

will incorporate the use of textural information, should it become evident that differing

textural character affects spectral reflectance.

Although the results of previous work with imagery obtained from airborne sen-

sors indicate that neural-network based classification hierarchies are promising for the

analysis of real data, much more work needs to be done to identify and deal with

problems that do not arise in the classification of pure laboratory spectra. A series of

experiments involving the classification of simulated and real mineral-mixture spectra

is the first step in this work.



V. Spectral Mineral-Mixture Decomposition

The problem of robust, automated mixture decomposition is one of the most

important issues in the area of imaging spectrometer data analysis. Mineral mixture

data acquired by remote sensing techniques are generally analyzed using the assump-

tion that mixing is linear. Linear mixing of spectra implies that the component spectra

are added together proportionately to the amount of mineral present. This is a reason-

able assumption to use for remotely sensed data, where large pixel sizes may encom-

pass several discrete rocks, each of which contributes reflectance proportionately to its

surface area within the pixel field of view.

When sensing is performed at very close range, the predominant form of mixing

results from a physical intermingling of mineral particles at a scale comparable to or

smaller than the wavelength of the light used for sensing. This is referred to as "inti-

mate mixing" and can produce a non-linear spectral response in that one mineral com-

ponent may contribute disproportionately to the overall spectral reflectance [9-11].

Much of the current effort in mixture decomposition work focuses on developing

better algorithms for extracting the relative quantities of different mixture components,

given that a human user inputs the component minerals. This approach is designed for

non-real-time use by a user. It requires that the user have a priori knowledge of the

minerals present at the test site, or is able to make an educated guess. Such an

approach is not appropriate for use in an automated system used for planetary explora-

tion; for this application, determination of component minerals must be automated as

well.

Our current goal is to identify the major components of mineral mixtures without

attempting to produce accurate quantitative estimates of mixture composition. These

efforts apply equally to large scale and intimate mixtures. In the long term we hope to

incorporate models of intimate mixing that will support accurate quantitative decompo-

sition of both types of mixtures.

Trained neural networks have an advantage over many other types of pattern

classification techniques for the spectral decomposition of mixture patterns. During the

learning phase, the networks begin to extract the critical features from the patterns in

each class, disregarding unimportant variations. In spectral data, the critical features

are absorption features, where reflectance is minimal. Many mixtures retain significant

feature information which can be used to exa'act major mineral components. Once

likely mixture components are identified, it is a much easier task to model the quanti-

tative composition based on either the linear or intimate mixing model.

The first step in the mixture identification process is recognizing that a spectrum

may result from a mixture of minerals rather than a pure mineral. The method used to

make this determination involves the application of an "entropy" measure [12]. The

entropy measure is applied to the outputs of the neural network classifier to determine

ff a particular spectrum is well classified as a single known mineral. Those spectra

which have a high entropy do not match well with any single mineral spectrum used to

train the neural network. Such a spectrum may result from an unknown mineral or



from a mixture of minerals.

Using a testset of 180 synthetictwo-component linearmixtures and a hierarchy

trainedby using only pure mineral spectra,80% of the mixtures were flaggedas being

poorly classifiedbased on the entropy measure. However, the hierarchy correctly

identifiedat leastone component of the mixture in 70% of the cases.In an effortto

extractinformation regarding secondary mixture components, the firstidentifiedcom-

ponent was subtractedfrom the mixture spectrum (afterscalingto represent50% com-

position), and the remainder spectrum re-evaluated. This resulted in correct

identificationof both mixture components in 24% of the cases.Although thisis a very

preliminaryresult,itsuggests thatthe combined use of neural network classifiersand

subtractiveanalysisschemes may produce valuable results.

A small set of real intimate-mixturespectrawas also testedusing a single-stage

trainedclassificationnetwork. The mineral composition of the materialscausing these

spectrawas known preciselyfrom separateanalysis.The network was trainedtorecog-

nize classesratherthan singleminerals.In allcases,at leastone component of binary

and trinarymixtures was recognized as the major class.In thisset of tests,subtractive

analysiswas not performed, but the second-best output class proposed by the neural

network was examined. In more than halfthe cases,the second-bestclassrepresented

the second component of the mixture.

Although the spectralmixture-decomposition work is stillin the early stages,the

initialresultssuggest thatneuralnetwork based classificationsystems may bc effective

for this problem. Future work will examine the relativemerits of hierarchicaland

single-stageclassifiersfor mixture decomposition, and will consider approaches to

extractingmultiple components from the mixture spectrum. The goal is to develop a

set of neural network based classificationtools that will address the real needs of

extraterrestrialmineral classification.

VI. Conclusion

A hierarchy of spectral pattern classifiers has proven to be a useful tool for reduc-

ing computation in a large pattern matching problem. With careful selection of the

reduced dimensions for initial grouping of patterns, final classification accuracy may be

increased as well. The hierarchical classification scheme fits well with the data acquisi-

tion scheme utilized by the AOTF-based imaging spectrometer, exploiting the spectral

tunability of this instrument. Neural network based pattern matching has been utilized

successfully within the hierarchical classifier. In addition, neural networks show prom-

ise when applied to the problem of spectral mineral-mixture decomposition; the net-

works are usually able to identify one or more of the major mineral components.

The combination of neural network processing units and hierarchical classification

schemes has great potential for automated mineral classification as required by the

Sample Acquisition, Analysis and Preservation task. It is quite possible that this

classification approach will also be applicable for the analysis of other types of spectral

data acquired for ebemical and elemental characterization.
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Figure 1. Traditional Imaging Spectrometer.
A single line of pixels is collected at one time, and
each pixel is separated into the full range of wavelengths
using a grating or prism. A full image is collected by
sweeping in one spatial dimension.

First order image

--_- 0 order image
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Figure 2.

First order image

AOTF-Based Imaging Spectrometer.
A complete image scene in one passband is collected
from the first order images. The crystal is tuned
sequentially to different wavelengths.
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Sorosilicates,

Amphiboles,
Carbonates
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Phosphates
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Level 3

6 dimensions
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Amphiboles Carbonates
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Clays, Micas, Borates,
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Figure 3. Three-Level Hierarchical Classifier.

Spectra from seven classes of minerals (sorosilicates,
amphiboles, carbonates, clays, micas, borates and
phosphates) are placed into progressively finer groups.
A subset of the total 32 spectral bands (dimensions)
is used at preliminary stages of classification.
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Figure 4. Neural network for mineral spectra classification.
A. A completely connected, feed-forward network has been
trained on all input vector dimensions. Input vectors are
placed into one of 10 classes. Analysis of the connection
weights shows which input nodes are important for
distinguishing output classes 1-4 from classes 5-10.
B. A small network uses only a subset of the total input
dimensions to distinguish between two groups of classes.
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Table: 1. COMPARISON OF 3 CLASSIFICATION METHODS

METHOD DATASET TOTAL OPERATIONS ACCURACY

Single Matched Filter

Two Step Matched Filter

Hierarchy

Mars 16,226,560 80%

AISA 5,017,600

Mars 6,374,720 69%

AISA 1.971,712

Mars 4.858.284 89%

AISA 1,006,099

12
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Table 3. NUMBER OF OPERATIONS WITH GOAL DRIVEN ANALYSIS (MARS SIMULATED DATA)

GOAL LEVELS NEIWORKS OPERATIONS PER NET TOTAL FOR GOAL

i)FredClays

2) Fred Carbonates

3) Classify Silicates

4) Classify All Areas

Level 1 1 253,540

Level 2 2 55.340

Level 3 3 2.794,496 1) 3,103,376

Level 1 1 253,540

Level 2 1 301.824

Level 3 2 731,648 2) 1,287,012

Level 1 1 253,540

Level 2 1.2 357,164

Level 3 1,3 3,269,120 3) 3.879.824

Level 1 1 253,540

Level 2 1.2 357.164

Level 3 1.2.3.4 4.274,432 4) 4.885.136

14


