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Abstract

A priori error estimates are derived for hp-versions of the finite element method

for discontinuous Galerkin approximations of a model class of linear, scalar, first-order

hyperbolic conservation laws. These estimates are derived in a mesh-dependent norm

in which the coefficients depend upon both the local mesh size h K and a number Pl,-

which can be identified with the spectral order of the local approximations over each

element. The results generalize those of Johnson and Pitkaranta to hp-methods.

1 Introduction

The discontinuous Galerkin method has received renewed interest as a higher-order scheme

for approximating solutions to hyperbolic conservation laws. The method can be interpreted

as a natural higher-order extension of finite volume methods while overcoming some of the

difficulties associated with standard Galerkin or spectral methods. Originally studied for

linear problems with constant coefficients and fixed-order approximations by Lesaint and

Raviart [1] and for linear problems with variable coefficients by Johnson and his collaborators



[2, 3], the method can be regarded as an elementwise application of the standard Calerkin

method in which jumps on element boundaries are admitted naturally in the formulation.

Since the usual condition of continuity of the solution along inter-element boundaries is not

enforced, the element equations are decoupled, thereby eliminating the need for solving large

systems of algebraic equations, even as the polynomial degree of the approximation increases.

The solution in neighboring elements is mildly coupled through the flux across element

boundaries. These element boundary fluxes are approximated using a numerical flux function

which incorporates the hyperbolic character of the conservation law in much the same way

as the finite volume method. The significant difference between the discontinuous Galerkin

method and higher-order finite volume methods is that the coefficients in the polynomial

approximation of the solution within an element are obtained by solving the conservation

law and not by some post-processing of solution mean values.

As with any higher-order method, special treatment is required to prevent oscillations in

solutions which contain steep gradients or discontinuities. In the work of Cockburn, Itou, and

Shu [4], the discontinuous Galerkin method was shown to be TVB (Total Variation Bounded)

in the solution mean values, provided that the solution satisfied certain conditions. These

conditions were used to construct a projection strategy for controlling oscillations in the

mean values. Unfortunately, these conditions are not sufficient to eliminate oscillations in

the pointwise values of the solution. Extensions of the projection ideas to the entire solution

can be found in Bey and Oden [5] and Flaherty et. al. [6]. The numerical experiments of

Bey and Oden [5] showed that with the discontinuous formulation, oscillations are confined

to elements containing the discontinuity (in contrast to global oscillations resulting from the

standard Galerkin or spectral methods) and that the order of accuracy of the method is p+ 1

in smooth regions when using uniform meshes with polynomial approximations of degree p.

The discontinuous Galerkin method is ideally suited to adaptive hp strategies and to

parallel computing. An a priori estimate of the error in the solution provides a basis for an



adaptivestrategy sinceone then knowshow the error behavesasa function of the meshsize

and the degreeof the polynomial approximation in an element. In this note, wederive an a

priori error estimate for an hp version of the discontinuous Galerkin method. This estimate

extends the previous work of Johnson and Pitkaranta [2] who analyzed an h version of the

method with a fixed polynomial degree.

2 Model Problem

For simplicity, we consider a convex polygonal domain YL The domain boundary Off with

an outward unit normal vector n(x) consists of two parts: an inflow boundary F_ to be

defined below and an "outflow" boundary I'+ = On \ F_. We consider the following linear

scalar hyperbolic model problem,

uz+au = f inf_CT"¢ 2 (1)

/3.nu = /3.rig oar_ (2)

where f E L2(a), g E L2(F_), /3 = T is a constant unit vector, uz = /3. _Tu,

a = a(x) is a bounded measurable function on f_ such that 0 < a0 < a(x), and F_ = {x E

0f_]/3. n(x) < 0}. Note that while solutions to (1) may be discontinuous across characteristic

lines x(s) defined by 0x-gT,=/3, the solution is continuous in the direction parallel to/3.

For f E L2(a), the space of admissible functions for solutions to (1) is given by V(a) = {v E

L_(f_)lv_ E L2(f_)}. We note that the trace of functions in V(f_) exist only in the direction

/3; therefore, we further restrict 12 so that/9 • n -fi 0 on Of/. If u is a solution to (1) with

boundary values satisfying (2), then u also satisfies the following variational equality:

J a[ (u _ + a u )v dx + Jr[_ u v [/3 . aids = J a[ f v + Jr[_ g v [/3 . aids VvE V(f_) (3)
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3 Notation and Preliminaries

For a domain D in 77,.2, let (v, W)D = fD vwdx and lit, It}) = (v, v)o. Let If" Ilm,D denote the

norm in the usual Sobolev space Hm(D).

The starting point for the discontinuous Galerkin method is (3) defined on a partition

of ft. Let ;oh denote a partitioning of fl into Nt,- = N_,-(;Oh) subdomains K with boundaries

OK such that

(i) NK(;Oh) < oo

(ii) fi = U{R : K C ;oh}

(iii) For any pair of elements K, L E ;oh such that K # L, K M L = 0

(iv) K are Lipschitzian domains with piecewise smooth boundaries

(v) OK_ = {x E OKI /3- nK < 0} and OI'(+ = OK \ OK_

(vi) Fh- _-- k./K=IlINKOK M F_ coincides with F_ for every h > 0

(vii) ['KL = OK Cl OL is an entire edge of both K and L

Let V(K) = {v E L2(K)I va e L2(K)}, then V(;oh) = l-IN_=l V(K). Note that a function

v E V(;oh) need not be continuous across element interfaces. We use the following notations

concerning functions v, w E V(;oh) :

vin,u = vI,Ax), xe0K

v _xt/" = vlL(x), xeOKNOL

v a: = limv(x4-e/3)
g--+O

4



Ilvll_ = I1_11== v_ dR
K=I

The problem corresponding to (1)-(2) defined on any partition "Ph is as follows:

Find u(x) E V(T'h) such that for every If E Ph

u_ + au = f ink ]

uint Kf]. hi, = t/ext Zsft • n/_- Vx E OK \ OFt i P1
uintKf_.nK ---- gfl.nh- VxEOKMF_

Let P2 denote the following variational boundary value problem for any partition _h:

Find u(x) E V(Ph) such that / P2

B(_, _) = C(v) V,, e V(V_) I

where

NIl

B(u, v) = y_ {(u_ + au, v)u + (u + - u-, V+>oK_\r_ + (u, v)0K_nr_ }
K=I

NK

£(v) = _ {(f,v)K-t- (g,v)oK_nr_}
K=I

Note that with the definition of V('Ph) we can apply Green's formula to (4) to obtain

NK

B(u,v)= E{('_,-ve+av)-- +(u- -
K=I

,v - v+>os-_\_._+ <,_,v>o_,-+n,-+}

(4)

(5)

(6)
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Lemma 1 Let the bilinear form B(., .) be defined by (4). Then there ezist positive constants

a and M such that

B(v,v) _ _lllvlll_ W,cV(_) (7)

B(v,w) _< MIIIvlll_IIIwlll_W,,we V('Ph) (8)

'where

IIIvlll 

llvlll 

NK

a,r__{llvll_¢+ ((v+ - = OKnOn)=-- --v ))o,,'_\r'_+ (("))
K=I

NK
+ 2

K=I

- 2 2
) O KnOfl+ ((v))oK_\r_ + ((v) )

(9)

(lO)

Proof: (i) From (4) we have

B(v,v) = y] {(v O + av, v)1 ,. + (v + - v-,v+)oK_\r_ + {v,v)oK_nr_}
K E'Ph

Applying Green's formula to the first term:

1 1

(v[3, V)n =-_/K(V2)Bdx=-_foKv2_'nKds

= (((v+))_oK_+ (<v))o,,+)

and noting that

NK NK

__, _ 2((v ))o,,+
K=I K=I

Z - 2 - 2= {((v )M_\_'_+ ((v))ou+,,r+}

yields

1 1B(v,v) y] {(av, v)u + ((v + - 2 2= - v )M_\r_ + _(("))o,,+_r+}
K=I

6



from which the first inequality follows.

(ii) Adding the definitions of B(., .)in (4) and (6) yields

NK

2B(v,w) = _{(v_,w). -(v,w_), +2(av,w),
K=I

+ (v+- v-,w+)o,(_\r_+ (v-,w- - w+)oK_\__+ (v,w)oKno,,}

Applying the triangle inequality to the jump terms and the Holder's inequality to the inte-

grals and resulting sums yields

B(_,w) _<
NK

_1max(l,211allo_,_){_ [llv_l12_+ 211_112,,.+ ((v+))ou_\r_
2

K=I

- 2 2

+ 3(<v ))oK_\r_ + ((v))0Kn0n]} _

X

NK

{Z [11_11_+ 211wll_,,.+ 3((/+))ou_xr_
K--1

- 2 2

+ ((_))o_-_\r_ + ((_))o_'_o.1}_

from which the second inequality follows.

Remark: We note that it is sufficient to take the constants in the bounds of the Lemma to

be the numbers

a = min(mina(X),xau _)1 (11)

3 max(1 2]]a][oo,.) (12)
m = _

|

4 Discontinuous Galerkin Approximation

Approximate solutions to P2 are sought in a finite dimensional subspace of V('Ph) which we

denote by Vp("Ph) and define precisely below. The discontinuous Galerkin approximation is

7



obtained by replacingu,v C V(T'h) by u_,VPh C r_'_(T'h) as follows:

Find uVh C Vp(T'h) such that

B(UPh, V_h) = £(V_) Vv_ • t_(T'h) (13)

where B(uPh, v_) is given in (4) and f..(v_) is given in (5).

4.1 The Finite Dimensional Space Vp(Ph)

Let the elements K • "Ph be quadrilateral elements which are affine maps of a master element

/_" = [-1,1] x [-1,1], i.e., K = FK(/_') as illustrated in Fig. 1. Let hi,- = diam(K), S be

a sphere contained in K, and p_,- = sup{diam(S)}. For the analysis we assume that T'h

belongs to a family 9r of quasiuniform refinements, that is for every K • Ph, there exist

positive constants a and T independent of h = maxKe_,h hK such that

h h/,-
--<r and -- <a (14)
hK -- PK --

The finite dimensional space W(7:'h) C V(7:'h) is defined as follows

Vp(Ph) = {V • L2(12): v[_. o FK = 9,,- • Q'" (/_')}

where Q'_-(/_') is the space of tensor products of complete polynomials of degree _< p_.

defined on the master element/_'. We use the notation that v,_. • Q'/" (K) to imply that

bK E Q'_: (/_'). The basis for Q,X,-(/_,) is formed by tensor products of one-dimensional

Legendre polynomials. Note that in general the elements of Vp(T'h) are discontinuous across

element interfaces and that the degree of the polynomial approximation may vary from one

element to the next.

In proving a priori error estimates for solutions of (13), we will need the following basic

approximation properties of functions belonging to Vp('Ph). Since functions in Vp(Tz'h) are

8
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Figure 1: The mapping of the master element/( onto a typical element K E Ph.



discontinuous at element interfaces, we are primarily concerned with polynomial approxima-

tions on a single element and its boundaries.

Lemma 2 Let K e T¢2 be an affine map of a master element /_" = [-1,11 x [-1,1], that

is K = FK(I_'). Let "_ denote any edge of OK which is an affine map of a master edge

") = [-1, 1]. Let tbK be a polynomial of degree pl_ defined on the master element. Let

WK = FvK o Fh- denote the image of (oK

satisfies the following:

under the transformation FK.

< cP_llw_.llK
-- hE

< (;,.P_ >>_
_ Vh_,.<< w_,-

where the constants C are independent of hK,p_, and wK.

Proof:

Then ft. VwK

(15)

(16)

For polynomials of degree PK on the master element we have that (see Dorr [7])

I_,A-Is,_-_ II_-IIs,_ _ Cpff.'-II_ull_ (17)

I_z._l_,__ I1_-I1_,__ CpXell_ll_ (18)

where the constants C > 0 depends on s, but not on p_¢ or tbK.

For affine mappings F/c, a standard scaling argument (see Ciarlet [8]) yields that for s > 0

an integer, there exist constants C > 0 such that

IWKI.,K_ Chk_l_v_'ls,_"

Iwul.,-, _ Ch_K-"l_ul.,_

l_ul.._ _ Ch"h'_IIwKI,,_ "

I_,Klss, _< Ch_7½1wul.,.

(19)

(20)

(21)

(22)

where C depend on s, _r, and r (see (14)), but not on hK, PK, or WK.
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The first estimate (15) follows by combining (9), (7), and (21). The secondestimate (6)

follows from (20), (18), and (22). 1

We also have the following result from Babu_ka and Suri [9] concerning the polynomial

approximation of functions on a single element.

Lemma 3 (Babugka and Suri [9]) Let K e 1_h, 7 denote any edge of OK, and u C

Hs(K). Then there exists a constant C = C(S,T,a) (see (14)) independent of u,pK, and

hg, and a sequence zVh E QpK (K),p1,. = 1,2,... such that for every 0 <_ r <_ PK

I1_- zf,ll,,K _ c_II_II,,K, s >__0 (23)
PK

1

- zhllo,.__ c-_-__llull_s,-,s _llu ' h_,- 1 (24)
PK

where u = min(pK + 1, s).

4.2 A Priori Error Estimate

The discontinuous Galerkin method (13) was first analyzed by Lesaint and Raviart [1] for a

given fixed value of PK, i.e. for the case in which p_,. = p for every element K E 7vh. The

error in a solution uh to (13) approximating an exact solution u C H'(fl) to P2 was shown

to be

Ilu- uhllL=(a)_<Ch'-'llull,,a

This estimate is not optimal in the sense of interpolation error estimates and was improved

by Johnson and Pitkaranta [2]. Using a mesh-dependent norm they showed that

s_LII1_-uhlllh,z_<Ch =llull,,_

where

Illelllg.,, = Illu-_'hlll_,,_

11



-- le_llL=(1,)+ Ifelt_=<_)+ _ <<e+- e-)>201_-_\r_+ <<e>>0_
KEPh KEPh

While this estimate is not optimal in the sense of interpolation error estimates for llcllL_¢n),

it is optimal with respect to _(, lle_liL2(_-)and <<e+-_->>aK_\r_.

We shall derive estimates similar to Johnson and Pitkaranta [2]. Taking into account

that Pt,- is not constant, we shall use the following mesh-dependent norm

2 def _ t hK - 2 2
Illvll,hp,_= 1_..x-Z-llv_ll_+llvll_+<< v÷-v >>o_,'_\r_+<<v>>o_,-_0_} (25)

KEPt, FK

The presence of the polynomial degree p_,. in this norm deserves comment. For each element

K E T'h we assign to K a positive integer ),i. which serves as a weighting factor tuned

to allow optimality in some sense of the error estimate in a mesh-dependent norm. Later,

the choice A,,_ = PK will prove to be the proper one since it allows for the development of

quasi-optimal hp-estimates.

We first prove that the bilinear form in (13) satisfies an inf-sup condition with respect to

this norm on the space W(Ph) and therefore that the solution depends continuously on the

data.

Lemma 4 For every v[ C V_(7:)h), there exists a WPhC Vp(Ph) such that

B(vL w[) >_ C.lll._,l _]lhv,B (26)

IIIw_,lllh,_,z_ ClllvY,IIIhp,_ (27)

where the positive constants C B and C are independent of hu, pu, and v_. Moreover, the

solution UVhto (I3) satisfies the following global stability estimate:

IIl_'_lll_p,__<C(llfltn+ << g >>r_)

12



Proof: Define the restriction of w_ C Yp(Ph) to an element K ¢ Ph as

where 5 ¢ (0, 1] is defined later in the proof.

notation, we have

B_-(v,w) =

Noting that

÷

+

(_98)

Dropping the h,p, and K scripts for ease in

£.(ve + av)(v+ ,p_Ve) dx
K

f0K_\r_(v +- V-)(v+ ÷ 5_VB+)I/3- NKI ds

+
PK

aollvll_-÷ ghKIp--_.tv_ll_,-÷ £ vvo dx

÷ 5hK /K 2 v + 2P--_K VVB dx÷ << v + >>aK_nr_ ÷ << >>OK-W-

- JfoK_\r_v+v- 1¢1"nKl ds + gh_" fot,._kr_(v+ - v-)vz+l/3" nKI dsP'-_K

hK

+ _p_ fos'_nr_v+v_+l_""_1 ds

[[ 1

21 (v-)21/3 n_l ds _fo_ (v+)21¢1 n_,-I dsj_,.v,,_dx=-o_,. * • _ .

2

I fv+vB+l/_ t. nKI dsl < c2P_--_KK << v + >>_

and that from Lemma 2

(29)

13



we have

B,,(v,w) > (ao-c,5)llvll_ + p_<Itv_ll_-

1 1 _ c25) << v >>gK_nr_+ _ << v+ >>gK_\r_ +(

Using the Schwarz inequality and the previous inequalities, one can show that

I_p_ fot_._\ r (v+-v-)v/3+lCl'nhIds[ < -_5(<< v+ >>g/v_\r_ + << v- >>g/<_\r_ )
K

Now summing over all the elements K E "Ph and realizing that

1: << v- >>gK_\r_ -3c252 << v- >>gK_\r_

2 - fo v+v-lCt • nKl ds}1 3c25) << v+ >>0K_\r_+ (_ 2 K_\r_

1 1 3_2 8) E>_ _ << v >>_+ +min(1, 2
KEPh

2
<< v + -- v- >>0K_\F_

results in

hK

B(v_,w_) > (ao- Cl_)llvll_+ 6 _ p--_.IIv_tlff_"
KE'Ph

i--c25)<< v >>__ -t-_<:< v >>_++ (:

21 3225) E+ min(1,
KEPh

<< v + --v- >>gK_\l'_

Choosing 5 = min(¼, 2c,, 6-_-2)yields the first inequality.

The second inequality easily follows from the definition of w[ and Lemma 2. The third

inequality follows by combining (26) with (13) and (5):

c_III_ZI =

14



wherev_[ u = u_l K + _¢1. VUVhlK and applying Holder's inequality to £(v_) defined in (5). II

We now have all the preliminary results needed to prove an a priori error estimate for

an hp-version of the discontinuous Galerkin method.

Theorem 1 Let u C H_(f_) be a solution to P2 and let u_ be a solution to (13). Then there

exists a positive constant C independent of hK, PK, and u such that the error, c = u - uVh,

satisfies the following estimate

1

,,u h K 1
Illelllhp,B _< C _max 1, 2 ' Ilull_,r, " (30)

h Pu p,,- PK

where uK = min(p u + 1, r).

Proof: Let 1]_u c Vv(Ph ) be an hp-approximation of u that satisfies the estimates in Lemma

3 and write

which implies that

=. - u_ =. - n_. + n_. - _,_

l_lllh,,_--<2(Illu- IXZull=[hp,_+ IlluZ- IIZulllh.,_) (31)

Subtracting (13) from P2 yields the orthogonality condition that

B(e,v_) = B(u- II]u,v_) - B(u]- n_u,v_) =O Vvf,¢ 14(75,)

Combining this with Lemma 4 yields that

C.lll_ n2ul = (32)

for a particular choice of _3E Vv(Ph ). To simplify the notation, let

,7=,,-n_,,, and w=,4-n_,_

15



and recall from Lemma 4 that the particular choiceof ¢, E _'_(Ph) for which (32) holds also

satisfies the estimate

II1_,111_,,_< CIIl_lll_p,_ (33)

Next we seek to bound from above B(r/, t3) on the right hand side of (32). Using the definition

in (6), we have

B(,._) = _ {(_.-_e+a_)=+{_-._--_+>o..-_\F_ +(V,_>o,,-+oF+}
h" ET_h

<
Z

KEPt, " PK
--II_',_IIK + Ilalloo,ull,711,,ll,_llu

+ <<,->>oK_\r_<<_+ - _-))o_._\r_ + <<">>o_'+nr+<<_)>o_.'+o_+}

Using Holder's inequality for sums results in

B(_,_) _4<max(1, llalloo,a), _ _£ll_ll,_
K 6"Ph K

_._. _11_,_11[..+
h

+ ,/Z ((,-llI=__._./Z(<_+- _-llI=_.._
V ueP,, V Ke;,:',-,

2+ ,1_ <<_>>o=+o,+,/_<-,<v)>o_-+nr+ (34)

Applying Holder's inequality for sums again yields

1

B(_,_) _<C II_ll_,-+ II,ll_,-+ <<_ _ II1_111_,,_ (35)

Combining (35), (33), and (32) results in

p2 2]}+ I'_11_,-+ ((_))oK+w++ <<'_>)om_r+ (36)

Using the estimates (23)-(24) in Lemma 3, we have

IMI= < C_llull,,u
PK

16



_v F-I

v,, -

1

lq

((_-))o,,-+w+ < c---7__,_II_'ll_,u
2

P_c

where v u = min(p_. + 1, r).

Substituting the above estimates involving y into (36) yields

c
h _K

1

'-1/K hi,"

+ _ + .=r-------TIlull_,K (37)
PK -t_

Recalling (3a), we see that all that remains is to bound Illu- rI_lllhp,z which follows from

Lemma 3 and (25):

1

k p_r + p_-----7--+-_,-'_r------TIlull_,u
(38)

Combining (31), (37), and (38) completes the proof. |

Remarks:

h 2_K -I 2 1

(i) For _ < 1, the estimate becomes Illelllh_,_ < C{Es_h _llulk,_:} _

(ii) For pu =constant, the a priori error estimate reduces to the one derived by

Johnson and Pitkaranta [2].

(iii) The error estimate reveals that the discontinuous Galerkin method provides some

natural control in the/3-derivatives of the approximate solution. The factor

means, however, that this control decreases as _ --, 0.

5 Numerical Examples

We verify the estimate in (30) with two examples where/3 = (0.8,0.6) r, a(x) = 1.0, and

f_ = (-1, 1) x (-1, 1).

17



Figure 2: Quadrilateral elementmeshusedfor quasiuniformrefinementsin Example 1

5.1 Example 1

In the first example, the sourceterm f(x) was chosen so that the exact solution to (1) is the

C°°(fl) function

u(x)=l+sin(8(l+x)(l+y)_)

with an inflow boundary condition of g = 1. The error in the solution obtained with

varying h and p is listed in Table 1 for uniform refinements of a mesh consisting of square

elements. The error in the solution obtained for quasluniform refinement of a mesh consisting

of quadrilateral elements (see Fig. 2) is listed in Table 2.

To verify the estimate (30), we first consider the case when PK is fixed and h_. is varied.

According to (30), we should get [[le[]lhp,_ < Ch_!_+½[[u[]r,a. This is verified in Fig. 3

where [][e][[hp,Z is shown as a function of h_,.. On the log-log scale, the slope of the lines

1 for both the uniform and quasiuniformcorresponding to a fixed value of PK is indeed PK +

meshes. Next we consider the case when h K is fixed and PK is varied. In this case, the estimate

18



Mesh

2x2

-log li1¢,- _,_111_,_

32 x 32

- log h

0.000

p=l

1.204

p=2 p=3

1.8323

p=4

2.2787

4 × 4 0.301 0.5552 1.7066 2.5426 3.6065

8 × 8 0.602 0.9692 2.3909 3.5467 4.9612

16 × 16 0.903 1.4003 3.1163 4.5834 6.3047

t.8412 3.8574

Table 1: Example 1 _ Error using uniform hp meshes

Mesh

2x2

- log h

-0.2116

-log Illu- uhlll_p,_
p=l p=2

0.8586

4 x 4 0.0689 0.5153 1.5930

8 × 8 0.347 0.9571 2.3641

16 x 16

32 × 32

1.3913

1.8129

0.641

0.938

3.0955

3.7870

p=3 p=4

1.7402 2.2831

2.5395 3.4998

3.5814

4.6208

4.9723

6.3196

Table 2: Example 1 _ Error using nonuniform h and uniform p meshes
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lllelll.p._

10.3

10 -4

10 "s

104
4.5

O" 1
I v I | , m,I I I I I I I

10-_ 100

Figure 3: Example 1- Rate of convergence of error for fixed p

(30) reduces to IIl_lllhp,z _ Cp.-'+111ull,,n• Since u • C°°(fl), we should expect exponential

rates of convergence. This is confirmed in Fig. 4 where the curves corresponding to IIl lllhp, 

as a function of Pz,- have a slope on the log-log scale which increases as Pt,- increases. These

results are combined in Fig. 5 where IIl_llJhp,_is shown as a function of the total number

of unknowns in the solution. The solid lines represent h-refinements for a fixed p and the

dashed lines represent p-enrichment for a fixed h. Clearly for smooth solutions, higher-order

accuracy is achieved for the same number of unknowns by using higher-order elements.

5.2 Example 2

In this example the source term f(x) was chosen so that 9 = 1 and the exact solution to (1)

is the C°_(fl) function

u(x) = 1 + 1(1 + x)(1- x)(1 + y)(1- y)tan-'(c_(_-40))
1t3
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Figure 4: Example 1- Rate of convergence of error for fixed h
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Figure 5: Example 1- Rate of convergence of error with number of unknowns
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Mesh

2×2

4×4

8x8

16x 16

32 x 32

- log h

0.000

0.301

0.602

0.903

1.204

p=l

1.5571

2.0017

2.4512

-log lli -   illhp, 
p=2

1.9235

2.6252

3.3471

4.0925

p=3

1.7957

2.5461

3.4634

4.4822

p=4

2.1453

3.0656

4.2565

5.5530

Table 3: Example 2 _ Error using uniform hp meshes

where

2+x+y

- 2v_ ' a--10, and _0=0.6

The error in the discontinuous Galerkin solution obtained on uniform meshes with various

values of h and p are listed in Table 3. The error in the solution for uniform h-refinements

with fixed p is shown in Fig. 6. The error for uniform p-enrichments with fixed h is shown

in Fig. 7. The error as a function of the total number of unknowns is shown in Fig. 8. The

rate of convergence of the error given in Theorem 1 is verified for this example.

6 Concluding Remarks

The discontinuous Galerkin method can be viewed as an elementwise application of the

standard Galerkin method in which jumps on element boundaries are admitted naturally in

the formulation. The method can also be viewed as a natural higher-order extension of finite

volume methods, except that the coefficients in the higher-order polynomial representation

of the solution are obtained by solving the conservation law and not by some post-processing

of solution mean values.

In this paper, we have derived an a priori error estimate for an hp-version of the discon-

tinuous Galerkin method. These estimates are derived in a mesh dependent norm in which

the coefficients depend upon the local mesh size h,,. and a number PK which can be identified
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Figure 7: Example 2' Rate of convergence of error for fixed h
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Figure 8: Example 2- Rate of convergence of error with number of unknowns

with the spectral order of the local approximation over each element. The estimate is general

in the sense that it is valid for general quadrilateral elements of any degree PK. Moreover,

the estimate is valid for meshes in which the size and the spectral order of the elements vary

throughout the mesh.

References

1. P. Lesaint and P. A. Raviart. On a Finite Element Method for Solving the Neutron

Transport Equation. In C. de Boor, editor, Mathematical Aspects of Finite Elements

in Partial Differential Equations, pages 89-123. Academic Press, 1974.

2. C. Johnson and J. Pitkaranta. An Analysis of the Discontinuous Galerkin Method for

a Scalar Hyperbolic Equation. Mathematics of Computations, 46:1-26, 1986.

3. C. Johnson, U. Navert, and J. Pitkaranta. Finite Element Methods for Linear Hyper-

bolic Problems. Computer Methods in Applied Mechanics and Engineering, 45:285-312,

24



1984.

4. Cockburn, Hou, and Shu. The Runge-Kutta Local Projection Discontinuous Galerkin

Method for Conservation Laws IV: The Multidimensional Case. Mathematics of Com-

putations, 54:545-581, 1990.

5. K. S. Bey and J. T. Oden. A Runge-Kutta Discontinuous Galerkin Method for High

Speed Flows. In Proceedings of the lOth AIAA Computational Fluid Dynamics Con-

ference, Honolulu, Hawaii, 1990.

6. J. Flaherty, K. Devine, and R. Biswas. Parallel, Adaptive Finite Element Methods

for Conservation Laws. In Proceedings of Workshop on Adaptive Methods for Partial

Differential Equations, Rensselaer Polytechnic Institute, Troy, New York, May, 1992.

7. Milo R. Dorr. The Approximation Theory for the p-Version of the Finite Element

Method. SIAM Journal of Numerical Analysis, 21:1180-1207, 1984.

8. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, 1978.

9. I. Babu_ka and Manil Suri. The hlmVersion of the Finite Element Method with Qua-

siuniform Meshes. Mathematical Modeling and Numerical Analysis, Vol. 21:199-238,

1987.

25



Form Approved
REPORT DOCUMENTATION PAGE OMeNo o7o4o,8s

Public reDort_ng burden for this collection of information _s e_,t_mated to average _ hour Der resl:_onse, ,nctuding the _me for reviewing instructions, searching ex,sting data sources,

gathering and maintalr_ing the data needed, and corn!Dieting and rewew=ng the collecuon of information Send comments rec)arding this burden estimate Or any other aspect of this
collection of informati0n, tncluding suggestions for reducing this burden to WashingtOn HeadQuarters Services. Directorate tot InformatiOn O!_etations and ReDorts, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302. anti to the Office of Management and Budget. Paperwork Reduction Proiect (0704.0188), Washington, DC 20503.

=l

1. AGENCY USE ONLY (Leave b/ank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

June 1993 Technical Memorandum

4. TITLE AND SUBTITLE IS. FUNDING NUMBERS

A Priori Error Estimates for an hp-Version of the

Discontinuous Galerkin Method for Hyperbolic WU 506-43-31

Conservation Laws

6. AUTHOR(S)

Kim S. Bey

J. Tinsley Oden

7. PERFORMING ORGANIZAT!ON NAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADORESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

,.m

11. SUPPLEMENTARY NOTES

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA TM-I08993

Kim S. Bey: Langley Research Center, Hampton, VA

J. Tinsley Oden: The Texas Institute for Computational Mechanics, University of

Texas at Austin_ Austin_ TX
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassified - Unlimited

Subject Categories 34 and 64

13. ABSTRACT(Maximum200wo_$)

A priori error estimates are derived for hp-versions of the finite element method

for discontinuous Galerkin approximations of a model class of linear, scalar,

first-order hyperbolic conservation laws. These estimates are derived in a mesh-

dependent norm in which the coefficients depend upon both the local mesh size

h K and a number PK which can be identified with the spectral order of the local

approximations over each element.

14. SU_ECTTERMS

A priori error estimates, Discontinuous Galerkin, Hyperbolic
Conservation Laws

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

26
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Prescrtbed by ANSI Std. zJg-IB
298-102


