
NASA-CR-194297

Research Institute for Advanced Computer Science
NASA Ames Research Center

] / / , /

.... j/-

#

Formally Biorthogonal Polynomials

and a Look-Ahead Levinson Algorithm

for General Toeplitz Systems

Roland W. Freund and Hongyuan Zha

(NASA-CR-19429T) FORMALLY

dIORTHOGONAL POLYNOMIALS AND A

LOOK-AHEAD LEVINSON ALGORITHM FOR

GENERAL TOEPLITZ SYSTEMS (Research

Inst. for Advanced Computer

Science) 41 p

N94-I3586

Unclas

G3/61 0185444

RIACS Technical Report 91.27

December 1991, revised September 1992

Submitted to Linear Algebra and Its Applications

https://ntrs.nasa.gov/search.jsp?R=19940009113 2020-06-16T21:33:47+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42791151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Formally Biorthogonal Polynomials

and a Look-Ahead Levinson Algorithm

for General Toeplitz Systems

Roland W. Freund and Hongyuan Zha

The Research Institute for Advanced Computer Science is operated by

Universities Space Research Association (USRA),

The American City Building, Suite 311, Columbia, MD 21044, (301)730-2656.

Work reported herein was supported in part by DARPA via Cooperative

Agreement NCC 2-387 between NASA and USRA.

Formally Biorthogonal Polynomials and

a Look-Ahead Levinson Algorithm for

General Toeplitz Systems

Roland W. Freund*

AT&T Bell Laboratories

600 Mountain Avenue, Room 2C-420

Murray Hill, New Jersey 07974-0636

Hongyuan Zha t

Computer Science Department

The Pennsylvania State University

University Park, Pennsylvania 16802

Abstract

Systems of linear equations with Toeplitz coefficient matrices arise in many important appli-

cations. The classical Levinson algorithm computes solutions of Toeplitz systems with only

O(n 2) arithmetic operations, as compared to (9(n 3) operations that are needed for solving

general linear systems. However, the Levinson algorithm in its original form requires that all

leading principal submatrices are nonsingular. In this paper, an extension of the Levinson

algorithm to general Toeplitz systems is presented. The algorithm uses look-ahead to sk:_

over exactly singular, as well as ill-conditioned leading submatrices, and, at the same time,

it still fully exploits the Toeplitz structure. In our derivation of this algorithm, we make

use of the intimate connection of Toeplitz matrices with formally biorthogonal polynomi-

als. In particular, the occurrence of singular or ill-conditioned submatrices corresponds to

*The research of this author was performed at the Research Institute for Advanced Computer Science

(RIACS), NASA Ames Research Center, Moffett Field, Caliiornia 94035, and it was supported by Coopera-
tive Agreement NCC 2-387 between the National Aeronautics and Space Administration and the Universities

Space Research Association.
?The research of this author was supported in part by Army contract number DAAL-03-90-G-0105 and

in part by Cooperative Agreement NCC 2-387 between the National Aeronautics and Space Administration
and the Universities Space Research Association.

2 Roland W. Freund and Hongyuan Zha

a breakdown or near-breakdown in the standard recurrence relations for biorthogonal poly-

nomials. We present new general recurrence relations that connect successive pairs in any

given subsequence of all existing formally biorthogonal polynomials. These recurrences then

immediately lead to the proposed look-ahead Levinson algorithm for solving Toeplitz sys-

tems. Implementation details for this algorithm and operations counts are given. Numerical

experiments for Toeplitz systems with ill-conditioned submatrices are reported.

1 Introduction

Matrices whose entries are equal along each diagonal are called Toeplitz matrices. In partic-

ular, a general square Toeplitz matrix of order n + 1 is of the form

T. = [t,_j],,,=o..... =

"t0 t-1 t-2 ... t_.

tl to "'.

t2 "'. "'. "'. :

: "'- t-1

.t,_ tl to

(1.1)

where the entries ti are real or complex numbers. In this paper, we are concerned with the

solution of systems of linear equations

T,_xn=b,_ (1.2)

with Toeplitz coefficient matrices (1.1). The task of solving Toeplitz systems (1.2) arises in

many important applications, such as time-series analysis [13, 29], linear prediction [20, 36],

spectral estimation [22, 24], system identification [26, 27, 30], Pad6 approximation [6, 18],

and statistics [19].

There are classical fast algorithms for solving (1.2) that exploit the Toeplitz structure and

require only O(n 2) operations, as compared to O(n 3) operations for general linear systems.

These algorithms implicitly compute either an inverse triangular factorization of T_ of the

VTT, U,., = D,.,, (1.3)

type

or a triangular factorization of Tn of the form

T, = VT D,_U,_, (1.4)

see, e.g., [12]. Here, in (1.3) and (1.4), U, and V, are unit upper triangular matrices, and D,,

is a diagonal matrix. The class of fast Toeplitz solvers based on (1.3) includes the Levinson

algorithm [35] and its variants [13, 43, 48, 49]. Toeplitz solvers based on (1.4) are intimately

connected with the classical work of Schur [39, 31], and they are called Schur-type methods.

Algorithms in this second class were proposed by Bareiss [2], Rissanen [38], and others; we

refer the reader to [31] and the references given there.

Formally Biorthogonal Polynomials and a Levinson Algorithm 3

Note that, for a nonsingular matrix T_, triangular decompositions of the type (1.3)

and (1.4) exist if, and only if, all leading principal submatrices of T,, are nonsingular. Indeed,

all classical fast Toeplitz solvers require that T,_ is strongly regular, i.e., tile submatrices T_,

m = 0, 1,..., n - 1, are all nonsingular. In some, but by far not all applications that lead to

Toeplitz systems the coefficient matrices T,_ are Hermitian positive definite and thus guar-

anteed to be strongly regular. However, Hermitian indefinite and non-Hermitian Toeplitz

matrices are in general not strongly regular, and it cannot be excluded that singular or

ill-conditioned submatrices occur. We remark that Hermitian indefinite Toeplitz systems

arise, for instance, in spectral estimation [37], when inverse iteration is used to compute

eigenvalues of Hermitian positive definite Toeplitz matrices, see [10, 22, 24].

It is well known that the Levinson algorithm and the Schur-type Toeplitz solvers can be

extended to handle exactly singular leading principal submatrices, and numerous algorithms

were proposed [11, 17, 20, 23, 40, 47]. These algorithms are again based on triangular

factorizations of the type (1.3) or (1.4), where now D,_ is a block diagonal matrix. More

precisely, blocks of size hk > 1 in D,_ just correspond to hk - 1 consecutive singular leading

submatrices of Tn.

In finite-precision arithmetic, it is not enough to skip only over exactly singular subma-

trices, and a numerically robust Toeplitz solver also must be able to handle nonsingular,

yet ill-conditioned leading principal submatrices. The literature on Toeplitz algorithms with

this property is rather scarce. Sweet [41, 42] showed that, in principle, pivoting can be

incorporated into the Bareiss algorithm, which allows to treat singular and nearly singular

submatrices. However, there are some unresolved difficulties with this algorithm, such as the

necessity for an a-priori choice of parameters, and the fact that a large pivot does not nec-

essarily guarantee well-conditioned submatrices. Recently, Chan and Hansen [8] proposed a

look-ahead modification of the Levinson algorithm for general Toeplitz systems. If a singu-

lar or a nonsingular ill-conditioned submatrix occurs, then the algorithm looks ahead to the

next well-conditioned leading submatrix, and instead of a standard Levinson step, a block

step is performed. However, this look-ahead algorithm is not entirely satisfactory. The look-

ahead strategy used in [8] requires condition number estimates for all leading submatrices,

and this generates overhead of the order O(n2), even if it turns out that no block steps are

necessary. Moreover, as we will demonstrate with an example in Section 7.2 below, there is

a potential source for a breakdown of the algorithm if two or more consecutive block steps

are performed.

In this paper, we propose a look-ahead Levinson algorithm for general Toeplitz systems

that is different from the one in [8]. In our derivation of this algorithm, we make use of the in-

timate connection of Toeplitz matrices with formally biorthogonal polynomials (FBOPs). In

particular, the occurrence of singular or ill-conditioned submatrices corresponds to a break-

down or near-breakdown in the standard recurrence relations for biorthogonal polynomials.

First, we derive new general recurrence relations that connect successive pairs in any given

subsequence of all existing FBOPs. These recurrences then immediately lead to the proposed

look-ahead Levinson algorithm for solving Toeplitz systems.

The remainder of this paper is organized as follows. In Section 2, we introduce some

4 Roland W. Freund and Hongyuan Zha

notation, and we give a formal definition of FBOPs associated with general bilinear forms.

We then turn to bilinear forms induced by Toeplitz matrices, and in Section 3, we collect

some basic properties of the corresponding FBOPs. In Section 4, we derive general recur-

rence relations for FBOPs. In Section 5, we propose a look-ahead procedure for constructing

FBOPs, and we describe some properties of this algorithm• In Section 6, we present our

look-ahead Levinson algorithm for solving general Toeplitz systems. We give implementation

details and operation counts, and we discuss the look-ahead strategy. In Section 7, we con-

sider the look-ahead Levinson algorithm for the special case of Hermitian Toeplitz systems.

Also, we show that the procedure proposed by Chan and Hansen has potential breakdowns•

In Section 8, we report results of numerical experiments with Toeplitz matrices that have

various kinds of ill-conditioned submatrices. Finally, in Section 9, we make some concluding

remarks.

2 Preliminaries

In this section, we introduce some notation, and we give a formal definition of FBOPs

associated with general bilinear forms.

2.1 Notation

Throughout the paper, all vectors and matrices are allowed to have real or complex entries•

, _'TAs usual, M T := [mkj] M := [mjk], and M H := denote the transpose, complex

conjugate, and conjugate transpose, respectively, of a matrix M = [rnjk]. The vector norm

[[xl[:= _ is the Euclidean norm, and [[M[[:= maxlMl=l [[Mx[[is the corresponding

matrix norm. For square matrices M E C hxh, we use the following condition number:

(1/[M[,
_(M) := /

IIMII"IIM-111,t
if h = 1, (2.1)
ifh>l.

Whenever we call a square matrix ill-conditioned, it is with respect to the condition num-

b_ ;2.1). We denote by Ik E R k×k the k x k identity matrix, by

• "" 1 Rkxk
Jk:= E

• *

...

:le k x k antidiagonal identity matrix, by 0kxj the k x j zero matrix, and by Ok E R k the

zero vector of length k. We will drop subscripts and simply write I, J, or 0 if the actual

dimensions are apparent from the context•

The set of all complex polynomials of degree at most n is denoted by

:= - + +.-. I e c},

Formally Biorthogonal Polynomials and a Levinson Algorithm 5

and 79 is the set of all complex polynomials. We denote by 0(qo) the exact degree of q; E 7:',

i.e., 0(qo) is the smallest integer n > 0 such that _ E 79n. A polynomial _, E 79,_ is called

monic if it is of exact degree n with leading coefficient 1.

reverse _ by

¢(_) _ _0(.I,(1/_).

Note that q3 is a polynomial of degree at most O(q_).

Capital Greek letters are always used to denote row vectors of polynomials in 79, e.g.,

¢=[_0 _, "'" _j]. (2.3)

A vector of the type (2.3) is called a block of polynomials. The reverse _ of a block (2.3) is

defined by

For each qo E 79, we define its

(2.2)

(A) = An*¢(1/A), where n¢ := max 0(,).
i=0,1 j

(2.4)

Note that the entries of _) are again polynomials, and

= [_(.,-O(_o))¢o _(n,-o(_,))_l ... _(.,-o(_,))_j]. (2.5)

Furthermore, if j = 0 in (2.3), then (2.4) reduces to the usual reverse (2.2) of a single

polynomial.

Finally, for each n, we denote by

h,=[1 A A2 -.. A"] (2.6)

the block whose entries are the monomials Ai, i = 0, 1,... ,n. We remark that, with (2.6)

and n_ from (2.4), any block (2.3) and its reverse can be represented in the form

¢ = A,_U and _ = A,_JU, (2.7)

respectively. Here U E C ("*+1)×0+1) is a matrix whose ith column just contains the coeffi-

cients of the polynomial q0i, i = 0, 1,... ,j. In particular, each qo E 79,_ can be written in the

form

= A,u for some u E C "+a. (2.8)

2.2 Bilinear Forms and FBOPs

A complex-valued functional

is called a bilinear form if

(.,.) : 79 × 79 _----,C (2.9)

(_),O'1_1"JVO'2_2)"- O'1(_),qO1)"_O'2(1/3,_2) forz" ¢,_01,_02E79, aa, a2EC,
(2.10)

for all !ba,_b2,_E79, rl, r2 EC.

We stress that, in general, a bilinear form is not an inner product. Indeed, it is possible that

a nonzero polynomials _ has "norm" (% _) = 0 or (_, _) < 0.

6 Roland W. Freund and Hongyuan Zha

Nevertheless, it turns out to be useful to study polynomials that are orthogonal with

respect to a given bilinear form (2.9). Next we give a definition of these formally biorthogonal

polynomials (FBOPs).

Definition 2.1 A monic polynomial qo,_ E 79,, is called a right FBOP (with respect to the

bilinear form (2.9)) of degree n if

(_,_;n)=O forall _bE79,__1. (2.11)

A monic polynomial g;,, E 79,_ is called a left FBOP (with respect to the bilinear form (2.9))

of degree n if

(¢,_,qo) = 0 for all q; E 79n-1. (2.12)

A right or left FBOP _ or ¢,_ is said to be regular if it is uniquely determined by (2.11)

or (2.12), respectively.

REMARK. In general, regular FBOPs need not exist for every degree n; for instance, see

Lemma 3.1 below.

REMARK. Biorthogonal polynomials have been studied in various settings; we refer the

reader to [3, 6, 32, 33, 46] and the papers cited therein. The notation "formally biorthogonal

polynomials" goes back at least to van Rossum [46]. However, almost all the literature is

concerned with cases where regular FBOPs of every degree n are guaranteed to exist or are

assumed to exist.

In the sequel, it will be convenient to use the following extension of the bilinear form (2.9)

to blocks of polynomials of the type (2.3). More precisely, for any blocks

• =[_o0 _01 ..-qoj] and qJ=[¢0 _b_ .-. Ck],

we defne

¢) :=

(¢o,4o) -..
: E C (k+l)×(j+l)

3 FBOPs Associated with Toeplitz Matrices

Let {ti},°°____ be a given biinfinite sequence 1 of real or complex numbers, and let

T, = [ti_j];,j=0,,, n = 0,1,...,

be the associated family of Toeplitz matrices (1.1). The sequence {T,_},,___0induces a bilinear

form (_b, _) on 7_ × 79 as follows. Using the representation (2.8), for any two polynomials

_2=A,_u, ¢=A_v, u, vEC _+1,

1In the case that only a finite sequence t-n, t-n+1,. •., t, is given, we can always extend it to a biinfinite

one, by simply setting ti := t-i := 0 for all i > n.

Formally Biorthogonal Polynomials and a Levinson Algorithm 7

of degree at most n, n = 0, 1,..., we set

<¢, _2):=vTT,_ u. (3.1)

From now on, we assume that (., .) is the bilinear form defined by (3.1). Furthermore, the

term FBOP always refers to formally biorthogonal polynomials with respect to this particular

bilinear form.

Next, we list some properties of (.,.). For the monomials qo(A) _= Aj and _b(A) - A', we

obtain

(Ai, Aj) = ti-j, i, j = 0, 1,..., (3.2)

and hence the elements of {ti}_=__ are just the moments associated with (-, .). From (3.2)

and the bilinearity relations (2.10), it readily follows that

(A¢,A_) = (_,_) for all _, ¢ E "P. (3.3)

Furthermore, for all _p E "P and all j, k = 0, 1,..., with 0(_) + k - j _> 0, we have

(Ak_, AJ) = (Ao(_)+k-J,cp), (3.4)

= (3.5)

For example, to verify (3.4), we set n := 0(_), and we represent % _ in the form

¢p(A) - __,aiA', _(A)- _--_aiA n-:, with ao, a,,...,a, E C.
i=0 i=0

Then, with (2.10) and (3.2), we obtain

i=0 i=0

Similarly, one can show (3.5).

In view of (2.11), (3.1), and (1.1), a polynomial

n-1

.() - _" + _ u_.2
i=O

is a right FBOP of degree n if, and only if, its coefficients u_, satisfy

[/ ITn--1 _ --

u.-a,. J L t-a

Analogously, by (2.12), (3.1), and (1.1), a polynomial

n--1

i=O

(3.6)

8 Roland W. Freund and Hongyuan Zha

is a left FBOP of degree n if, and only if, its coefficients v,n fulfill

[Vo, van ... v,__l,n]Tn-,:-[t,_ tn-1 ... tl].

As an immediate consequence of (3.6) and (3.7), we have the following result.

Lemma 3.1 The following conditions are equivalent:

(i) A regular right FBOP q_n of degree n exists.

(ii) A regular left FBOP ¢, of degree n exists.

(iii) The matrix T,,-1 is nonsingular.

(3.7)

4 Recurrence Relations for FBOPs

In general, regular FBOPs q_,_ and ¢,_ need not exist for every n. We denote by

{nj J}j=o, where O=:no <nl <-" < nj <-.. , (4.1)

the sequence of all integers n for which regular FBOPs of degree n exist. Here, either J =

or, if there are only finitely many regular FBOPs, J is an integer. We remark that, for n = 0,

the conditions (3.6) and (3.7) are void, and thus qo0(A) - 1, ¢0(A) - 1 are regular FBOPs

of degree 0. Hence no = 0 is always included in (4.1). Note that, in view of Lemma 3.1, the

sequence {nj}]= 1 just consists of all integers n _> 1 for which T,-a is nonsingular.

In this section, we derive recurrence relations for generating regular FBOPs corresponding

to arbitrary subsequences of (4.1).

4.1 The Classical Szeg5 Recursions

If nj _-- j and thus regular FBOPs of degree n exist for every n, then they can be generated

by means of the celebrated Szeg5 recursions [19, 3, 32].

Algorithm 4.1 (Szeg5 recursions)

O) Set ¢Po = ¢o = 1, 60 = (1,1).

For n = O, 1,..., do:

1) Compute p,_ = (1, A_p,,), r,_ = (A¢,,, 1).

2) Set

3) Set

B. = r./6., ¢.+1 = _¢. - ¢.B..
(4.2)

6,+1 =6,(1- a,/3,). (4.3)

Formally Biorthogonal Polynomials and a Levinson Algorithm 9

We remark that the 5n's in (4.3) satisfy

5n = (_b_,_). (4.4)

The Szeg5 recursions are no longer valid if regular FBOPs do not exist for every n. There

are extensions of the relations (4.2) that connect consecutive pairs 9_,, ¢_j and _,_j+_, _b_,+ 1

in the sequence (4.1) of all existing regular FBOPs. For example, such recurrences are given

in [23] and, for the special case of Hermitian Toeplitz matrices {Tn}_°_=o, in [11]. These

recursions immediately lead to an extension of the Levinson algorithm that can skip over

exactly singular leading submatrices. For the derivation of a more robust Levinson algorithm

that can also skip over nonsingular, but ill-conditioned submatrices, we need more general

recurrence relations that connect consecutive pairs in a subsequence of all existing regular

FBOPs. In the next section, we present such general recursions for FBOPs.

4.2 General Recursions for FBOPs

Let {njk}_=0 C_ g{nj}j= 0 be an arbitrary, but fixed, subsequence of (4.1). Here either K -- cc

or K is an integer. For simplicity, we set nk := njk. Moreover, in view of (4.1), we can

assume that, without loss of generality, no = 0 is included in the subsequence. Therefore,

we always have
0 =: no < nl < ''' < rtk < "" • (4.5)

For all0_k<K, weset

0, if hk = 1, (4.6)hk:=nk+l--nk and 2"k:= {nlnk<n<nk+l}, ifhk>l.

If K < ecz, then we set nK+a := oo and ZK := {n I n > nK}.

The goal then is to give recurrences for generating the regular FBOPs

K g (4.7){T-k}k=o and {¢_k}k=O

corresponding to the prescribed indices (4.5). To this end, we also construct additional monic

polynomials

_,¢,E:P, forall nEZk andall k. (4.8)

The polynomials (4.8) are called inner polynomials. Note that the regular FBOPs (4.7)

together with the inner polynomials (4.8) build two sequences of monic polynomials {_ }_°°=o

and {_b_}n°°__0that both span T _. Of course, we still need to specify how to actually choose

the inner polynomials. In order to obtain recurrence relations that involve as few as possible

previous polynomials, it is crucial to construct the inner polynomials T_, _, n E :Zk, as

quasi-FBOPs, in the sense that they satisfy the relaxed biorthogonality relations

(¢,_.) = 0 for all ¢ E P_k-,, (4.9)
(¢.,qo) = 0 for all qo e 7_.k-1.

10 Roland W. Freund and Hongyuan Zha

Next we introduce some further notation.

polynomials

(I)(k) :_--- [_nk _Onk+l "'" _Onk+l-1] , II/(k) :_---[_)nk _nk+l

If K < oc, then we also define infinite row vectors of polynomials

¢(K) := [_,_. _,_+1 "'"],

Moreover, for all 0 _< k < K, we set

A (k) := [A_ A_+I

F(k) := (A(_), _(k)),

For all 0 _< k < K, we define blocks of

"'" _,_k+l-a]. (4.10)

and we set

We remark that, with (4.11), the biorthogonality conditions (2.11) and (2.12) for the reg-

ular FBOPs (4.7) and the relaxed biorthogonality relations (4.9) for quasi-FBOPs can be

summarized as follows: the polynomials _,_, ¢,_, n = 0, 1,..., are required to satisfy

(A(m),_,)=0 and (_b,,A('_))=0 forall m=O,l,...,k(n)-l, (4.13)

where k(n) is the integer such that nk(_) _< n < rtk(n)+a.

Note that F (k) and G (k) defined in (4.12) are hk × hk matrices, with hk from (4.6). We

will need the fact that these matrices are nonsingular.

Lemma 4.2 If the inner polynomials (4.8) are constructed as quasi-FBOPs, then the ma-

trices F (k) and G (_) are nonsingular for all 0 < k < K.

Proof. Suppose that F (k) is singular. Then there exists a vector z C C hk such that

F(k)z = 0 and z # O, (4.14)

:= _,_k+_ + (I)(k)z" (4.15)

Clearly, _o is a monic polynomial of degree nk+l, and since the polynomials in the block (I)(k)

are linearly independent, we have _o ¢ _o_k+1. Using (4.13)-(4.15), we deduce that

(A(,_), _o) = (A(,_), _o,k+l) + (A(m), ¢(k))z = { 0,F(k)z = O, ifif0m<=ink. < k,

Hence _o is a regular right FBOP of degree nk+a, and this contradicts the uniqueness of

regular FBOPs.

Similarly, one shows that G (k) is nonsingular. [3

For the formulation of our recurrence relations, we will also need the following quantities.

If hk > 1, we define

• .. A"k+a-a], (4.11)

G (k) := (qAk),A(k)). (4.12)

:= ""].

Formally Biorthogonal Polynomials and a Levinson Algorithm 11

and, if hk = 1, we set fk = gk "- 0. We remark that fk and gk just consist of the first hk - 1

elements of the last columns of F (k) and (G(k)) T, respectively. Thus we have

F(k)= [: fk], and (G(k))T= [: g:], (4.17)

where the elements * in the lower right corners in (4.17) are 1 x 1.

After these preparations, we can now state our recurrence relations for generating the

regular FBOPs (4.7) corresponding to the prescribed indices (4.5), together with inner

polynomials (4.8) satisfying the relaxed biorthogonality conditions (4.9). First, we set

_-1 = ¢-a = A-1 and (I)(-1) _- lx_/(-1) : _. Then, for all -1 _< k < K and nk+ 1 < n+l < nk+2,

we set:

{ (I)(:)#,,,

ifn+l =nk+a,

if n + 1 E 2-k+1,
(4.18)

and

[] [o]0hk-1 Pn = (1, A_n}, #'_ = (F(k))-I fkwhere a,_ = (G(k)) -T P,, ,

lt=_k+l

(4.19)

(4.20)

[Oh_-I] [0] (4.21)where /3_ = (F(k)) -_ t rn ' r_ = (A¢,_, 1), u_ = (G(k)) -T gk "

Here, in (4.18) and (4.20), _}'_), _) E C are coefficients that can be chosen arbitrarily.

Note that, by Lemma 4.2, the inverse matrices in (4.19) and (4.21) all exist. Moreover,

we remark that the recurrence (4.20) can be equivalently formulated in terms of the reverse

polynomials that appear in (4.18). The resulting relation is as follows:

{ A_(k)u,,, if n + 1 = nk+l,
¢,+x = ¢, -- A"+2-"k+l ¢(k)fl, _ X-" r!")X'_+l-i,7, if n + 1 E Zk+l.

l--'--nk+ 1

Of course, we still need to verify that the recursions (4.18)-(4.21) indeed generate the

regular FBOPs (4.7).

Theorem 4.3 Let {_p,_}W=o and {¢,_}W=o be the sequences of polynomials defined by the

recurrence relations (4.18)-(4.21). Then, these polynomials satisfy the biorthogonality rela-

are{qO,*k}k=O and the uniquely definedtions (4.13). In particular, the polynomials I(K

regular FBOPs corresponding to the prescribed indices (4.5).

12 Roland W. Freund and Hongyuan Zha

Proof. We show (4.13) by induction on n. For n = 0, by (4.5), k(0) = 0, and the condi-

tions (4.13) are void.

Now let n _> 0, and assume that (4.13) holds for all polynomials _0, c21,-..,_ and

¢0, _-'1,--., G_. We need to show that _,_+1 and _b,_+l satisfy

(AJ,qon+l) = 0 for all j = 0, 1,...,nk+l - 1, (4.22)

and

(¢,+I,AJ)=0 forall m----0,1,...,nk+l--1, (4.23)

respectively. Here k is the integer defined by nk+l _< n + 1 < nk+2. To simplify notation,

we set h' := h_ - 1 and n' := nk+l - 1. Moreover, in the following, we always assume that

j e {0,1,...,n'}.

First, we consider (4.22).
verifies that

Writing _(k)in the form (2.5) and using (3.5), one readily

(4.24)

From (4.24) and (4.13), it follows that

(A_,_(_))=0 for all j with h'<j_<n'. (4.25)

Using notations introduced in (2.6), (4.11), and (4.12), we can summarize (4.24) for the

remaining indices 0 _< j < h' as follows:

(Ah,, _(k)) = (qj(k), A(k)j)T = j(G(k))T. (4.26)

Next, we note that, in view of (3.3) and (4.13), we have

= o,

ifj = 0,

ifl_<j_<n'andn+l E2"k+a,

ifl <j<nkandn+l =nk+l,

ifnk<j<n'andn+l =nk+l.

(4.27)

Using the vector A defined by (4.16) and (4.12), we can summarize the relations (4.27) for

nk < j < n' and n + 1 = nk+l as follows:

0] if n+l =nk+l.(A (k),A_,,) = fk ' (4.28)

With these preparations, it now readily follows that _0,_+1 satisfies (4.22). With (4.18)

and (4.13), we obtain

{ ,I,(k))..,= o,
if n + 1 = nk+l, (4.29)
if n + 1 E 2"k+1.

Formally Biorthogonal Polynomials and a Levinson Algorithm 13

By (4.27), (4.25), and (4.13), all terms on the right-hand side of (4.29) vanish and hence

(AJ,c2,_+a) = 0 for all j in the range h' < j < nk, if n + 1 = nk+l, and for all j in the range

h' < j _< n', ifn+ 1 E Zn+l. For j in the range 0 <_ j _< h', we use (4.29), (4.13), (4.27), (4.26),

and the definition of a,_ in (4.19) to deduce that

[P'_]- J(G(k))Ta,_=O.(Ah,,_+l) = Oh,

For the case that n + 1 = nk+l, it remains to prove (4.22) for all j in the range nk _< j _< n'.

Here we use (4.29), (4.28), (4.25), (4.12), and the definition of #,_ in (4.19) to verify that

[0] [0](h(k)'_'_+a) = fk -- (A(k)'¢(k))#= = fk -- F(k)#" = 0.

This concludes the proof of (4.22).

To show (4.23) we proceed similarly. First, using (3.4) and (4.13), one verifies the relations

(¢(k)'hh') = (F(k))TJ' (4.30)

($(k),Aj,) =0 for all j with h'<j <n'.

With (3.3) and (4.13), we obtain

{ (AVe, 1) = r,,
= o,

0,

ifj = 0,

ifl__<j <n'andn+l EZk+I,

if 1 _< j < nk and n + 1 = nk+l,

(4.31)

(AV_,A (k)) = [0 gT], if n + 1 = _k+l- (4.32)

Here gk is the vector defined by (4.16) and (4.12). From (4.20) and (4.13), we have

{ vT(¢(k), _J), if n + 1 = nk+,, (4.33)(_b,,+l, Aj) --= (A¢=,M) - _T(_(k),AJ) -- 0, if n + 1 E 2"k+1.

Finally, using (4.30)-(4.33)and the definitions of fl= and v= in (4.21), one easily veri-

fies (4.23). [3

REMARK. Our derivation of general recurrence relations is different from the one used

in [23, 11] to obtain special recursions for all existing FBOPs. The approach in [23, 11] is

based on Iohvidov's results [25] on the structure of exactly singular Toeplitz matrices, and

it cannot be directly used to prove general recurrences of the type (4.18)-(4.21).

5 An A $orithm for Constructing FBOPs

In this section, we propose an algorithm for constructing regular FBOP based on the general

recurrence relations derived in Section 4.2, and we describe some properties of this algorithm.

We use the notation introduced in Section 4.2.

14 Roland W. Freund and Hongyuan Zha

5.1 The Algorithm

The algorithm generates two sequences {qo,},_=o and {¢-},_--o of monic polynomials, where,

for each n, _= and _b, are either regular FBOPs or inner quasi-FBOPs. As in (4.5), we

use the indices nk, k = 0, 1,..., to mark the regular FBOPs, and we always set no = 0,

qOo= _bo = 1. The index n = 0, 1,..., is used as an iteration counter, where in the course of

the nth iteration the algorithm generates the next pair of polynomials q_+l and _bn+l. For

each fixed n, we define 1 = l(n) by

nt _< n < n,+l. (5.1)

Note that l = l(n) is just the number of the last pair of regular FBOPs _o,, and _b=, with

degree < n. In addition to the blocks ¢(k), kO(k), k = 0, 1,..., l - 1, defined in (4.10), we set

¢(,) := ... := [¢., ¢.,+, ... ¢.]. (5.2)

We call the blocks ¢(0 and _(0 complete if n + 1 = hi+l; in this case, the next polynomials

,+1 and _b,+l are constructed as regular FBOPs. If n + 1 < nl+a, then the blocks (5.2) are

still incomplete; in this case, the next polynomials qo_+l and _b_+a are constructed as inner

quasi-FBOPs and added to (I)(0 and _(0, respectively. Finally, as in (4.11), (4.12), we set

i(l) :____ [)_.| _nl+l ...)_-], F(I):__ (A(0,¢(,)), G(0 :__ {k0(0,A(,)). (5.3)

Using these notations, we can rewrite the recurrences (4.18)-(4.21) in the form of the fol-

lowing algorithm.

Algorithm 5.1 (Construction of FBOPs)

O) Set _o = _bo = 1, (I)(°) - @(0) _ 1, F (°) -- G (°) -- (1, 1), no - 0, l - 0.

For n=0,1,..., do:

1) Compute

p, = (1,AV,,) and r, = (M.,,_,I). (5.4)

2) Decide whether to construct qon+l and ¢,+1 as regular FBOPs or as inner polynomials

and go to 3) or 4), respectively.

3) (Regular step) Set

[0] [0]0l. : (G(l)) -T On ' _n = (F(/)) -1 fl ' _.+1 = ._n - _l(l)Ol. -- (_(l)#n, (5.5)

/3, = (F(0)-'[0]r,_ , u,, = (G(t)) -r [0]g,, ¢,+,=A¢- _(05_ q*(')u,. (5.6)

Set nt+l = n + l, l = l + l, ¢(O = °flt) = O, and go to 5).

Formally Biorthogonal Polynomials and a Levinson Algorithm 15

4) (Inner step) Set

n

, = -- -- ¢i _,,
i=nl

(5.7)

fl,_ = (F(t-'))-' [0],

n

_----?l|

(5.8)

5) Set (I)(1) -_ [(I)(I) _n+l], _I/(1) ----[kI/(l) l/)n+l] , F(I) ---- (A(0, (I)(0}, G(t) = (q_(0, A(t)).

Note that the description of Algorithm 5.1 is still incomplete, since no criteria for the decision

in step 2) are given. We defer a discussion of this so-called look-ahead strategy to Section 6.3.

Here, we only remark that, in view of Lemma 4.2, the polynomials c2,_+1 and ¢,_+1 can be

constructed as regular FBOPs only if the following necessary condition holds true:

F (t) and G (0 are nonsingular if n+ 1 = nt+l. (5.9)

In particular, (5.9) guarantees that the inverse matrices in (5.5)-(5.8) all exist.

5.2 Inverse Block Factorization of Toeplitz Matrices

Next, we show that Algorithm 5.1 yields a factorization of T,_ of the form (1.3), where Dn

is now a block diagonal matrix. In the following, let n > 0 be arbitrary, but fixed, and let

l = l(n) be the corresponding index defined by (5.1).

Recall that, by Theorem 4.3, the polynomials

{q_J}j_0 and {_bj}j_=0 (5.10)

satisfy the conditions (4.13), which are equivalent to the following block biorthogonality

relations:

(qJ(k),(I)('_))=0 forall kT_ m, k, m=O, 1,...,l. (5.11)

Moreover, we set

D(k) := (_(k), (i)(k)), k = 0, 1,..., I. (5.12)

Here, in (5.11) and (5.12), _(k) and ¢(k) are the blocks defined in (4.10), if k < l, and in (5.2),

if k = I. In view of (2.8), the monic polynomials (5.10) can be represented in the form

q_j -- Ajuj, where uj := [u0j ulj "" uj-a,j 1]T E C j+l,
(5.13)

_bj =Ajvj, where vj:=[Voj vlj -'- vj-lj 1]TEc j+l.

Using (5.13) and the definition of (.,.} in (3.1), we can rewrite the relations (5.11) and (5.12)

in the following matrix formulation:

VTT,_U,_ = D,,, (5.14)

16 Roland W. Freund and Hongyuan Zha

where

U,_ := [u O]i,i=o ,_ = 1 :
•.. Un-l,n

0 1

and

V. := [vis]i,s=o.....- =
[0 V01 • . . 'O0n

1 "'. :
• •

•. •. lln_l, n

• .. 0 1

are unit upper triangular matrices, and

(5.15)

(5.16)

D,, := diag(D (°), D(1),..., D (t)) (5.17)

is block diagonal• In other words, Algorithm 5.1 generates an inverse block factoriza-

tion (5.14) of T,_, where the columns of U,_ and V,_ are just the coefficients of the poly-

nomials (5.10). Furthermore, the sizes of the blocks in (5.17) are given by

D (k) E C hk×hk, where hk = (nk+ln+ 1--nk'nt, ifif0k<= kl. < l, (5.18)

In particular, hk = 1 for all k if only regular steps 3) are performed in Algorithm 5.1. In

the sequel, the construction of a true block of size hk > 1 will be referred to as a look-ahead

step, and hk will be called the length of the look-ahead step.

Finally, we remark that, by (5.13), the blocks ¢(k) and _(k) have the following represen-

tations:

¢(k) = A_k+l_lU(k) ' where U (k) := [uij]i=0 ,,_+l-1;j=-k,,_+i-I,

_j(k) __ Ank+l_lV(k}, where V (k) := [vlj]i= 0.....nk+a_l;j=nknk+l_ 1 ,
(5.19)

if 0 _< k _< l- 1, and

¢(0 = A.U(0, where U(0 := [uij]i=o,...,.;i=.,-,

ql(t)-A,_V (t), where V (i) := [vij]i=o,_;J=m,_'
(5.20)

if k = I. Note that, by (5.14), (5.17), and (5.20), we have

D(O = (V(t))TT,,U (0. (5.21)

5.3 Further Properties

In this subsection, we collect some further properties of Algorithm 5.1 that will be needed

later on.

Formally Biorthogonal Polynomials and a Levinson Algorithm 17

Using (5.20), (4.13), (5.3), and the definition of (','/in (3.1), one readily verifies that

Next, we partition the matrices U (0 and V (0 in the form

[0 (0] [1 _'(t)] O(t), 1_(0 ×h,U(t) = L(f(° , V (0 = _V(t) , where E C h' (5.23)

Note that _(t) and Q(l) are unit upper triangular matrices, and in particular, they are

nonsingular. With (5.21) and (5.23), it follows from (5.22) that

F(0 = (V(0)-TD(0, G (0 = D(0(U(0) -1. (5.24)

By means of the relations (5.24), F (t) and G (0 can be obtained without evaluating the bilinear

forms (A (0, (I)(0) and (_(0,A(0) in step 5)of Algorithm 5.1, provided that D (0 is available.

It turns out that the elements of D (t) can easily be updated from step to step, see Lemma 5.2

below.

Recall that the recurrence coefficients _}'_) and ¢['_) in (5.7) and (5.8), respectively, are

still arbitrary. From now on, we assume that they are chosen as

},) = ¢[n) = 0 for all i, n. (5.25)

Furthermore, it will be convenient to set

:= (G(k))_ T [Oh]-l] , /_1):--(F(k))-I [Oh]-l] ,0_(1) (5.26)

Note that, with (5.26), the coefficient vectors a,_,/3,, in step 3) and step 4) of Algorithm 5.1

are given by

Oln "-- pnOl} 1),]_n : Tn_ 1) and ci_n = pnOlll_)l, _n = Tn_!_, (5.27)

respectively.

By (5.12) and (5.2), the matrix D(0 is given by

D (0 = [(¢i,_oj)]id=,_,-" (5.28)

In the following lemma, we give formulas for updating the elements of (5.28) in the course

of Algorithm 5.1.

Lemma 5.2 Let ¢pn+l, _b,+a be the polynomials constructed in step n Algorithm 5.1.

a) If _rOn+l, l/)n+l are constructed as regular FBOPs, then

(1/)n+l,_On+l)=(1/)n,tlOn)--iOn[Tn 0 gT]JV(t)a}l)-l'r,_ 0 gT]U(t)_,. (5.29)

18 Roland W. Freund and Hongyuan Zha

b) If _n+l, _,_+1 are constructed as inner polynomials, then

Vo,,._p,_, if m + 1 = nt,
(5.30)

(era, _,_) + Vo,,_+lp., if nz < m + 1 <_ n + 1,

and

ttO,nl Tn ,

if m+l =n/,

if ni<ra+l<_n+l.
(5.31)

Proof. First we show part a). Here the polynomials _b,,+l and q_,,+a are given by (5.6)

and (5.5), respectively. Using (5.6), the biorthogonality conditions (4.13), (5.5), (3.3), and

the first formula for a,, in (5.27), one readily verifies that

= (a¢.,:.+1) = (af., _:. _ _,1_. _ ¢¢%.)

= (_., _.) _ p.(_¢., _(z))_},l_ (_¢., ¢(,I),.. (5.32)

In view of (4.31) and (4.32), we have

(_¢.,h.) = [.. o 9r]. (5.33)

Note that, by (5.20) and (2.7), 0(0 = AnU(0 and _(t) = AnJV(0. Together with (5.33), it

follows that

(XV,,,_(O)=[rn 0 gT]JV(O, (AV,,,(I)(O)=[r,_ 0 gT]u(O. (5.34)

By inserting (5.34) into (5.32), we obtain the relation (5.29).

Now we turn to part b). Since the proofs of (5.30) and (5.31) are complete analogous,

we will only show (5.30). We assume that q0,,+l is constructed as an inner polynomial; note

that _,+1 is given by (5.7), where, by (5.25), _}_) = 0 for alli. Let nt _< m+l < n+l.

From (5.6), if m + 1 = nt, and (5.8) (with _'!") = 0 for all i), if m + 1 > nt, it follows that

_bm+l can be written in the form

Cm+l(,_) _ era+l(0) + ,_¢m(,_) + _Xm()i) for some X,,, E 79,,,-2. (5.35)

Moreover, in view of the representation (5.13) of ¢,,+1, we have

Cm+l(0) = _0,m+l- (5.36)

Using (5.7), (4.13), (5.35), (3.3), (5.36), and the formula of p,, in (5.4), one easily verifies

that

-- _bm+l(0)(1,)_qPn)+ ()_bm,)_qon)+ (._Xm,)_qOn)

= Vo,m+_p,_ + (era, qo,,). (5.37)

Formally Biorthogonal Polynomials and a Levinson Algorithm 19

If m + 1 > n_, then (5.37) is just the desired relation (5.30). If m + 1 = n_, then, by (4.13)

and since n _> n, > m, we have (_b,,,, _,_) = 0, and thus (5.37) reduces to (5.30). [3

Typically, Algorithm 5.1 will perform mostly regular steps 3), and then the formulas (5.5)

and (5.6) simplify somewhat. Indeed, assume that Algorithm 5.1 performs regular steps in

two consecutive iterations, i.e.,

n+l=nt+l =nl+l and ht=nt+l-nl= 1. (5.38)

Using (5.3), (5.2), (4.13), and (5.12), one easily shows that, in this case,

F (0 = G (t} = (_b_, :,) = D (t). (5.39)

With (5.39), (4.16), (5.5), and (5.6), we conclude that

p_ fl_ _ r_ (5.40)
f,=g,=O, U.=,',_=O, ,_.-- (_,.,,_.), (_,,,,_,,).

In particular, in recurrences for _P,+l and ¢,+1 in (5.5) and (5.6) reduce to

¢2n+1 = A_, - ¢"_c_,_ and _Dn+1 "--)_-)n -- _n]_n, (5.41)

respectively. Furthermore, with (5.40), (5.26), (5.39), and since JV (0 = Jv,_ = [1 ...]T,

it follows that the update formula (5.29) reduces to

(_)n+l,_On+l) : (¢n, _On) (1 p,v_) (5.42)(¢,,¢,)2 "

Note that, in view of (4.4), the recursions (5.41) and (5.42) are identical to the update

formulas (4.2) and (4.3). In other words, the nth step of Algorithm 5.1 just reduces to the

nth step of the Szeg5 Algorithm 4.1, if (5.38) is satisfied. In particular, for the case that

nk+l = nk + 1 for all k = 0, 1,..., we have the following result.

Corollary 5.3 If all polynomials are constructed as regular FBOPs, then Algorithm 5.1

reduces to the Szeg5 Algorithm 4.1.

6 A Look-Ahead Toeplitz Systems Solver

In this section, we present our look-ahead Levinson algorithm for solving general Toeplitz

systems. We give implementation details and operation counts, and we describe the look-

ahead strategy.

20 Roland W. Freund and Hongyuan Zha

6.1 The Algorithm

By means of (5.13),Algorithm 5.1 can be rewritten in terms of the coefficientsvectors u_

and vn of the polynomials _,_and Cn, n = 0,I,.... Recallfrom Section 5.2 that these vectors

are just the columns of the triangularmatrices U,_and V,_in the factorization(5.14)-(5.17)

of T_. We callu_ and v_ regularvectorsifthey are the coefficientvectors of regular FBOPs

_ and Cn, and we referto un and v_ as inner vectorsifthey correspond to a pair of inner

polynomials.

In the following,we denote by sn, r,_E C '_+Ithe vectorsdefined by the partitioning

T,.,+,=[_: T_.IS_] (6.1)

of T,_+l. In view of (5.13), we have

Aqon--An+l [0]
Un

From (6.1), (6.2), and the definition of (-,-) in (3.1), it follows that

(1,Ag_,,) = sTu,_ and (A_b,,,1) = vTr,_. (6.3)

Also, note that (1,1) = to. Finally, using (5.13), (6.3), (5.19), (5.20), (2.7), (5.25), and the

vectors a(k1),/3(1) defined in (5.26), we can rewrite Algorithm 5.1 as follows.

Algorithm 6.1 (Inverse block factorization of general T,,)

O) Set Uo=vo=l,U (°)=V (°)=1, F (°)=G (°)=t0,no=0,l=0.

For n = 0,1,..., do:

1) Compute

2)

3)

(6.4)

Decide whether to construct u,_+l and v,_+l as regular vectors or as inner vectors

and go to 3) or 4), respectively.

(Regular step) Compute al 1), _,,, B_I), u,_ by solving

[7] [o](G(O)T al*)= ' F(O#_ = fi ' ' gi ' (6.5)

respectively, and set

un+,= o o
v.+.=[:]_

(6.6)

Set ni+l = n + l, l = l + l, U (t) = V (t) = F (O = G (t) = O, and go to 5).

Formally Biorthogonal Polynomials and a Levinson Algorithm 21

4) (Inner step) Set

5) Set

0 Un+l ' 0 l)n+l '

and update F (0, G (t).

Note that Algorithm 6.1 only computes the inverse block factorization (5.14) of T,_. Next,

we discuss how to obtain solutions for nested Toeplitz systems

Tnxn - bn, n = O, 1, (6.7)

Here the right-hand sides b,_ C C '_+a are assumed to be nested, i.e.,

bn+l=[b,_ [,r 1 with a,_+IEC, forall n.
[JO'n+l

Recall that T,_ is guaranteed to be nonsingular for n = nk - 1, k = 1,2,... ,l, and we only

update the solution x,_ of (6.7) for these values of n. To this end, we simply need to insert

the following procedure at the beginning of each regular step 3) in Algorithm 6.1:

Set n' = nt - 1, and partition U (0, bn, and T,, as follows :

uC,)-- LO(') ' b. = , Y. = R T._., ' (6.8)

where 0 (t) and a just contain the last n - n' rows of U (0 and bn, respectively.

Compute y by solving

F(t)y = o"- Rxn,, (6.9)

and set

[zn,] + U(t)y. (6.10)Xn = l On-n'

We need to show that x, given by (6.10) and (6.9) is the solution of (6.7). Indeed, by means

of (6.8)-(6.10) and the first relation in (5.22), it follows that

22 Roland W. Freund and Hongyuan Zha

6.2 Implementation Details and Operation Counts

We now discuss some implementation details for Algorithm 6.1, and we present operation

counts.

Except for contrived examples, Toeplitz matrices that arise in practical applications have

at most a small number of consecutive ill-conditioned leading principal submatrices. Conse-

quently, Algorithm 6.1 mostly performs regular steps. Typically, only a few true look-ahead

steps occurs, and their length h_ is usually small, mostly hz = 2. This justifies the follow-

ing convention that we will use for the operation count: a computation that requires only

arithmetic operations of order O(h_) or less is considered negligible.

We now consider steps 1)-5) of Algorithm 6.1 in more detail. Step 1) involves the

computation of two inner products of vectors of length n + 1. It turns out that these are the

only two inner products that are required during the nth iteration. This is exactly the same

as in the classical Levinson algorithm for strongly regular matrices.

The look-ahead strategy for the decision in step 2) will be described in Section 6.3. As

we will see there, it only involves negligible work.

Next we turn to step 3). Note that (G(O) T and F (0 are hi x hi matrices, and, if ht > 1,
we use Gaussian elimination to solve the four linear systems in (6.5). Recall from (4.17) that

ft and g_ are given as part of the last columns of F (0 and (G(O) T. If hi = 1, then, by (5.40),

#n = un = 0, and the two updates in (6.6) require two SAXPYs 2 with vectors of length n + 1.

If ht > 1, then we first compute the two vectors

JV(Oal 1) and JU(O_ 1), (6.11)

which costs 2h_ SAXPYs. The two updates in (6.6) then require 2(h_+l) additional SAXPYs.

Step 4) always requires two SAXPYs. This is obvious if hi-1 = 1. If hi-1 > 1, we use the

vectors (6.11) (with l replaced by 1 - 1), which were already computed in the course of the

last regular step.

In step 5), we need to update the matrices F(0 and G (0. To this end, we first update

D (0 using Lemma 5.2, and then we compute F (0 and G (l) by means of (5.24). Note that,

by (5.23), the triangular matrices/)(0 and 1)'(0 in (5.24) are given as part of U (0 and V (0.

Consequently, step 5) only involves negligible work.

Finally, we turn to the procedure for updating solutions of Toeplitz systems (6.7). To

compute the right-hand side of (6.9), we need to generate R x', which involves ht = n - n'

inner products. The computation of the vector x, in (6.10) requires another ht SAXPYs.

Note that x, is only updated once within each cycle of ht steps. Thus, in the average, the

update procedure requires one inner product and one SAXPY per nth step.

In Table 1, we summarize the operation counts for one step of Algorithm 6.1, and for the

updating procedure for solutions of general Toeplitz systems (6.7).

:A SAXPY operation is z = x + ay, where z and y are vectors and a is a scalar, see, e.g., [16].

Formally Biorthogonal Polynomials and a Levinson Algorithm 23

regular step inner step update of zn

withht=l withht> 1

inner products/step 2 2 2 1

SAXPYs/step 2 2(2ht + 1) 2 1

Table 1: Operation counts for Algorithm 6.1

6.3 The Look-Ahead Strategy

The look-ahead strategy is crucial both for the accuracy and efficiency of Algorithm 6.1.

Its main purpose is to skip over ill-conditioned leading principal submatrices in order to

avoid breakdowns and numerical instabilities. However, as is obvious from the operation

counts in Table 1, it is more expensive to perform a look-ahead step of length ht > 1 than

hi classical Levinson steps. Therefore, for the sake of efficiency, it is desirable to perform

look-ahead steps only when necessary. The look-ahead strategy is implemented through

the criteria that are used in step 2) of Algorithm 6.1 to decide whether the next vectors are

constructed as regular or inner ones. There are two quantities, denoted by _(Fl) and r/_, that

are monitored throughout the algorithm. Both of them are obtained from local information

only. In particular, we do not need to estimate the condition number of the current leading

principal submatrix T_. The decision about building regular or inner vectors is then based

on a comparison of x(r (0) and r]_ with two threshold parameters COND (> 0) and C-FACTOR

(> 1), respectively. The algorithm dynamically determines COND and GFACTOR, and the only

input that is required from the user is the number hmax, which is the maximal length of a

look-ahead step the algorithm is allowed to perform. Note that, in view of (5.18), we then

have

hk < hmax for all k,

and Algorithm 6.1 generates an inverse block factorization (5.14) with blocks of size < hmax.

We remark that Algorithm 6.1 reduces to the classical Levinson algorithm if we set hm_x = 1.

The initialization phase of the algorithm is as follows. As the first block, we set D(0) =

T,,,, where T_ is the matrix with the smallest condition number 3 x(T,,,) among Th, h =

0, 1,..., hma: - 1. Then we build the next vector u,,,+a and v_+l as regular vectors and we

set nl = m + 1. Furthermore, we initialize C0ND to be this smallest condition number _(T,,,),

and we set GFACTOR to 1.

Now we consider a general iteration step of Algorithm 6.1. As we mentioned before, for

the sake of efficiency, the look-ahead Toeplitz solver should build as many regular vectors as

possible. Therefore, in each iteration step, we first pretend that u,_+l and vn+l can actually

be constructed as regular vectors. Recall from (5.9) that, for a regular step, it is necessary

that F(0 and G (0 are nonsingular. To check this condition, we compute the matrix

F(0 := (_-(0)-TD(0(_rl0)-I,

3Recall the definition of of x in (2.1).

24 Roland W. Freund and Hongyuan Zha

where _r(_) and _'(0 are the triangular matrices given by (5.23). Note that, by (5.24), we

have

r_l = yl0(DI0)-I = (_(0)-rG_t/,

and hence F(0 and G (0 are nonsingular if, and only if, I'(0 is nonsingular. We now check

whether

_;(F (0) < 2,C0ND. (6.12)

If (6.12) is not satisfied, then we go to step 4) in Algorithm 6.1, and we build un+l and vn+l

as inner vectors. To justify the criterion (6.12), recall that, in view of Lemma 3.1, Tn is

required to be nonsingular for a regular step. Actually, at the end of this section, we will

point out that _;(F (0) is closely related to _;(T,_).

If (6.12) is satisfied, then we compute the quantities a,_, #n, ¢/,_, and v,_, using (6.5) and

the first two relations in (5.27), and we set

r/n := max{[lo_nl[1, [[_n[[1, [l_n][1, [[lYn[[1 }"

Here I[x{[1 := [_1[+"" + {_h{ denotes the 1-norm of a vector z = [(1 "'" (h]T E C h. Then,

we check whether

rtn < 2,GFACTOR. (6.13)

If the criterion (6.13) is not satisfied, we proceed with step 4) and construct u,_+l and v_+l

as inner vectors. The justification for (6.13) is as follows. Note that, by (5.14),

T,_+, = V__t.TDn+IU_.I and TT+I -- DL, (6.14)

If one would compute the decompositions (6.14) of T,,+I or TT+1 directly by means of Gaussian

elimination, then pivoting would be used to ensure that the size of the off-diagonal elements

of U_-,_I and V_7+llis bounded by 1. Indeed, this is the key to numerical stability of Gaussian
elimination. Recall that the elements of the strictly upper triangular parts of U_-._I and V_+11

are just the multipliers in Gaussian elimination. Now, for Toeplitz matrices pivoting would

destroy the Toeplitz structure. Roughly speaking, the look-ahead Algorithm 6.1 performs

a true look-ahead step of length ht > 1, whenever one would encounter a small pivot in

Geussian elimination. Consequently, the look-ahead strategy should also guarantee that

off-diagonal elements of U_,_I and V_._ are not too large. Since

U_',_I=I+C+C 2+-..+C "+1, where C:=I-U_+I,

a large off-diagonal element of U,,+I usually leads to a large off-diagonal element of U_._I. A

similar conclusion also holds for V_74._• Therefore, in each step of the Algorithm 6.1, we limit

the growth in the newly generated off-diagonal elements of U,_+I and Vn+l, which are just

the components of u,,+l and v,_+l. This is the purpose of imposing check (6.13).

If both criteria (6.12) and (6.13) are satisfied, then we proceed with step 3) in Algo-

rithm 6.1 and construct u,,+l and v,,+l as regular vectors.

It cannot be excluded that the algorithm has reached the maximal block size h_,,, but

the two checks for building the next vectors as regular ones are still not satisfied. More

Formally Biorthogonal Polynomials and a Levinson Algorithm 25

precisely, the algorithm has built a pair of blocks U (0 and V (0 of size hmax, both starting

with index nt and ending with index nt + hm_x - 1, and the criteria (6.12) and (6.13) for

constructing u,_+h,,,, and v,_+h,,,, as regular vectors are not fulfilled. In this case, we adjust

the values of the threshold parameters COND and GFACTOR in such a way that the criteria for

building regular vectors are satisfied within the maximal look-ahead size hm_x. To this end,

we first determine a step size h 6 {2, 3,..., hm_x} such that

°) + (6.15)

is minimal. Here F_ 0, j = 1,..., hm_x, denotes the j x j leading principal submatrix of

P (l). We then set COND to be the condition number of the corresponding F(h0, and the

second parameter GFACTOR is set to the value of the corresponding r/n_+h-1. This choice of

h guarantees that the vectors with index nt + h can be constructed as regular vectors. The

motivation for the choice (6.15) is as follows. From the above discussion, it is clear that the

goal is to minimize simultaneously _¢(F(h0) and r/n_+h-1; this is exactly what (6.15) attempts

to ensure. The weighting factor IF_0[in (6.15) was chosen based on extensive numerical

tests, and the choice (6.15) was found to work satisfactory in practice. With the described

look-ahead strategy, the algorithm can be expected to produce accurate solutions of Toeplitz

systems as long as the coefficient matrix has at most hm_x - 1 consecutive ill-conditioned

leading principal submatrices.
We conclude this section with a discussion of the connection of the condition numbers of

p(0 and T,,. We set n' := nt - 1, and we partition Tn as follows:

S

Here T,,, is the last well-conditioned Toeplitz submatrix. With this notation, F(0 is, in fact,

the Schur complement of T,_, in T,_, and we have the decomposition

which implies that

', [,]
= [--RT_ 1 ,]Tn [-T_IS] .

(6.16)

From (6.16), it follows that

[[F(O][-<[[[-RT_;1 I][[" [[[-T_'ISI][.[[T,_[[.

26 Roland W. Freund and Hongyuan Zha

It can be verified that

Therefore, setting

we have

[[[-RT_ 1 1][[__ ql --[-([[R[ltc(T.,)/][Tn,l[)2,

[-5 ''s] _<_/1+ (IISlI,<(T:,)/IITn,II)_.

:= _/1+ (IIRtI_(T.,)IIIT.,II)_I1 + (IISlI_(T.,)IIIT.,II)_,

Ilrmll < _ IIT.II. (6.17)

Similarly, we can show

(r(,))-,I_< T:'I (6.18)

To get bounds for the condition numbers, we distinguish two cases. First, assume that F (z)

is of size > 1. Then, by combining (6.17) and (6.18), we arrive at

(T,,) S :(r(')).

With the same technique, we can show that

(r(0) < e2(T_),

and hence

¢(T,,)I 2 <_ _(F (0) _< _2tc(T,_). (6.19)

For the case that F (0 is a scalar, from (6.17) and (6.18), we obtain

1 _<_(r(')) < _ IIT:'li. (6.20)
ellT.,ll

Roughly speaking, the inequalities (6.19), respectively (6.20), state that, if T,, is well condi-

tioned, then T_ is well conditioned if, and only if, F(0 is well conditioned.

7 The Special Case of Hermitian Toeplitz Matrices

In this section, we consider the special case of Hermitian Toeplitz matrices.

7.1 A Look-Ahead Levinson Algorithm

Suppose that the elements of the biinfinite sequence {ti}i°°__ oo satisfy t_i = t, for all i. Then

the Toeplitz matrices (1.1) are all Hermitian, i.e.,

T,=T H, n=O, 1, (7.1)

Formally Biorthogonal Polynomials and a Levinson Algorithm 27

Using (7.1) and the definition of (-,.), one easily verifies that regular FBOPs and inner

quasi-FBOPs associated with the bilinear form (., .) are connected by

_b,, = _,_. (7.2)

Here _ denotes the polynomial whose coefficients are just the complex conjugates of the

coefficients of _. In other words, the coefficient vectors un and v,, of ¢2n and ¢,_ satisfy

v,_ =_n. (7.3)

Consequently, for Hermitian Toeplitz matrices, Algorithm 6.1 simplifies, since we only need

to update the vectors u,,. Furthermore, note that, in (6.1), s,_ = _n, and together with (7.3)

and (6.4), we obtain
T H (rHu _n (7.4)"In = V nrn ---- U n rn "= _ n n] = Pn"

In view of (7.2), the matrices (4.12) are now connected by

F (k)= (G(k))H. (7.5)

respectively, and set

ttn+ 1

Set nl+l = n + l, l = l + l, U (0 = 0, and go to 5).

Finally, using (7.3)-(7.5) and setting

1 '

we obtain from Algorithm 6.1 the following look-ahead Levinson algorithm for Hermitian

Toeplitz matrices.

Algorithm 7.1 (Inverse block factorization of Hermitian T,_)

O) Set Uo= 1, U (°)=1, F (°)=to,no=0,1=0.

For n=0,1,..., do:

1) Compute r,_ = u_r,_.

2) Decide whether to construct u,_+l as a regular vector or as an inner vector

and go to 3) or 4), respectively.

3) (Regular step) Compute 7_1), _t,_, by solving

28 Roland W. Freund and Hongyuan Zha

4) (Inner step) Set

5) Set

and update F (t).

Un+ 1 ,,-1,]-
Un 0

U(O = [U(O0

7.2 A Counterexample

Chan and Hansen proposed a look-ahead Levinson procedure that is different from our al-

gorithm. Their method was first presented for the special case of real symmetric Toeplitz

matrices [9], and then extended to general nonsymmetric Toeplitz systems in [8]. The deriva-

tion of their algorithm is actually based on the assumption that only isolated look-ahead

steps occur, which are preceded and followed by standard Levinson steps. However, in

general it cannot be excluded that T_ has two or more consecutive blocks of singular or

ill-conditioned leading principal submatrices, which then requires two or more consecutive

look-ahead steps. In both papers [9] and [8], this case is treated separately, and special

recurrences are derived for handling two consecutive look-ahead steps, see [9, Theorem 3]

and [8, Theorem2]. However, the proposed approach involves division by the first component

cl of a coefficient vector c, see [9, Equation (5.9)] and [8, Equation (50)]. Unfortunately, it

is not guaranteed that Cl # 0, and thus division by 0 can occur. Indeed, we now present

a real symmetric Toeplitz matrix for which cl = 0. Consequently, the look-ahead Levinson

algorithm proposed by Chan and Hansen can break down for general Toeplitz systems, as

well as for the special case of Hermitian Toeplitz matrices.

Consider the 7 × 7 Toeplitz matrix

T_

"0 1 0 1 1 0 1

1 0 1 0 1 1 0

0 1 0 1 0 1 1

1 0 1 0 1 0 1

1 1 0 1 0 1 0

0 1 1 0 1 0 1

1 0 1 1 0 1 0

(7.6)

This matrix has exactly singular leading principal submatrices To, T2, T3, and T4, while the

remaining submatrices T1, Ts, and T6, are all nonsingular with condition numbers t:(T1) = 1,

a(Ts) _ 18.1, and a(Ts) _ 7.2. In particular, T1 is optimally conditioned, and the algorithm

in [9] starts with a look-ahead step of length 2, followed by another look-ahead step of

length 4 or 5. For the update of quantities corresponding to the second look-ahead step,

the algorithm [9] requires division by the first component cl of a vector c that, using the

Formally Biorthogonal Polynomials and a Levinson Algorithm 29

lOll .

lOtS

1012

109

106

103

0 10 20 30
i J i

40 50 60 7O

Dimension of principal leading submaU'ix

Figure 1: Condition number profile of a 64 x 64 Toeplitz matrix

notations from [9], is given as follows:

[i] i10101 [i]r_2) Y2 =- R4 = 0 1 _r_2) Rr4 jy 2 1= ' ' 1 1 , c= - =

Thus we have cl = 0, and the algorithm breaks down in the course of the second look-ahead

step.

8 Numerical Experiments

In this section, we report results of numerical experiments with the look-ahead Algorithms 6.1

and 7.1, and the classical Levinson algorithm. All computations were carried out using

MATLAB on a DEC 3100 workstation with machine precision of order O(10-1s). For all

the examples, we generated the right-hand side bn such that the vector of all l's is the exact

solution Xexact of Tnxn = bn. In the following, we always list the relative error defined as

IIX°omp*-Xox *ll
relative error =

IIx,. ,ll '

where Xcompt is the computed solution.

EXAMPLE l. This test set consists of 100 nonsymmetric 64 × 64 matrices with at least

one ill-conditioned leading principal submatrix. The off-diagonal entries ti of these matrices

30 Roland W. Freund and Hongyuan Zha

3O

25

2O

15

10

_16 -14 - 2 - 0 -8 -6

log_ 1O(relat/ve moo

Figure 2: Histogram of the relative errors for the classical Levinson algorithm, Example 1

n+l

64

200

classical look-ahead overhead

12096 12740 3.7%

119400 120010 3.5%

Table 2: Average number of multiplications for Examples 1 and 2

were generated as random numbers in [-1, 1], and t0 was then chosen so that at least on

submatrix is ill-conditioned. A typical condition number profile of a matrix in this test set

is shown in Figure 1. First, we use the classical Levinson algorithm, and in Figure 2, we

show--in the form of a histogram--the relative errors for the 100 test matrices. We see that

the relative errors are rather poor. In Figure 3, we plot the relative errors for the look-ahead

Algorithm 6.1 (with hm_, = 2). We see a substantial improvement of the relative errors.

EXAMPLE 2. This test set consists of 100 nonsymmetric 200 x 200 matrices with at least one

ill-conditioned leading principal submatrix. The matrices were generated as in Example 1. In

Figure 4 and Figure 5, we plot the histograms of the relative errors for the classical Levinson

algorithm and the look-ahead Algorithm 6.1 (with hm_x = 2), respectively. In Table 2, we

list, for both Example 1 and Example 2, the average number of multiplications required

to solve one system in the test set by the classical Levinson algorithm and the look-ahead

algorithm, and we state the corresponding overhead for the look-ahead algorithm.

EXAMPLE 3. This test set consists of symmetric matrices given by

t0=e, ti=t__=(1/2) i, i=l,2,...,n. (8.1)

Formally Biorthogonal Polynomials and a Levinson Algorithm 31

3O

2O

15

10

H
iI[t i i i

016 -14 _ -6 -4 -2 0-12 -10

log..10(rclative enor)

Figure 3: Histogram of the relative errors for the look-ahead algorithm, Example 1

25

2O

15

10

A i

016 -14 -12 -10 ",_ "6

log_lO(relative error)

Figure 4: Histogram of the relative errors for the classical Levinson algorithm, Example 2

32 Roland W. Freund and Hongyuan Zha

35

30

25

20

15

10

5

0
-16

i

i , i ,

-l_ -12 -lo -8 g _ -_

log...l O(rclativ© error)

Figure 5: Histogram of the relative errors for the look-ahead algorithm, Example 2

These are special cases of a class of Toeplitz matrices called Kac-Murdock-Szeg5 (KMS)

matrices (with p = 1/2), see [28]. The eigenvalues of the KMS matrices (8.1) can be eas-

ily computed [44]. It turns out that, for e = 0, each third principal submatrix, i.e., Tzm,

m = 0, 1,..., is exactly singular, while the remaining submatrices are well conditioned.

Consequently, if e is set to a small number, then every third principal leading submatri-

ces is ill-conditioned. The KMS matrices (8.1), with e = 10 -14, were also used as test

examples in [9], and we chose the same parameter e = 10 -14. We ran the classical Levin-

son algorithm and the look-ahead Levinson Algorithm 7.1 for KMS matrices T, of order

n + 1 = 15, 30, 60, 120, 240, 480. The relative errors and the number of multiplications are

listed in Table 3. We see that the look-ahead procedures yields solutions with nearly full

accuracy. Considering that one third of the iteration steps are inner steps, the overhead of

the look-ahead procedure is still reasonable.

EXAMPLE 4. This test set consists of three small nonsymmetric matrices that have at least

two consecutive ill-conditioned leading principal submatrices. To list the entires {tj}j_=_, of

a Toeplitz matrix (1.1), T,, of order n + 1, we use the following convention:

t:=to, tl:=[t_, t-2 "-t_,,], t2:=[t, t2 "" t.].

EXAMPLE 4.1. This is a 5 x 5 matrix whose entries are listed in Table 4. As the condition

number profile in Table 5 shows, this matrix has two consecutive ill-conditioned leading

principal submatrices.

EXAMPLE 4.2. This is a 6 x 6 matrix with three consecutive ill-conditioned leading principal

submatrices. Its entries are listed in Table 6, and its condition number profile is shown in

Table 7.

Formally Biorthogonal Polynomials and a Levinson Algorithm 33

relative error

n+ 1 classical

15 0.0191

30 0.0184

6O 0.0185

120 0.0186

240 0.0186

480 0.0187

multiplications

look-ahead

1.20 -15

1.79 -is

1.98 -15

4.61-15

6.85 -15

3.69 -14

classical

630

2610

10620

42840

172080

689760

look-ahead

960

3870

15340

62280

248333

995853

overhead

52%
48%

46%

45%

44%

44%

Table 3: Test results for the KMS matrices, Example 3

t tl t2

-1.00000000000001 1.27324683138786 0.78539366864947

-1.62115749363923 3.41046741401696

1.06413364195684 -17.92422495778239

1.21785304238395 38.20692196916536

Table 4: Elements of the matrix in Example 4.1

m 0 1 2 3 4

x(Tm) 1.00 1.25e+15 7.46e+14 4.00e+l 4.70e+2

Table 5: Condition number profile of the matrix in Example 4.1

t tl t2

-0.99999999999998 1.05288024249153 0.94977563415339

-1.10855680502906 3.85673107101965

1.16717755769466 -13.61721591570147

-2.22889818997626 3.81850412563076

4.51853189291597 73.05176317918625

Table 6: Elements of the matrix in Example 4.2

34 Roland W. Freund and Hongyuan Zha

m 0 1 2 3 4 5

_(Tm) 1.00 7.70e+14 6.33e+14 3.91e+15 4.00e+1 4.80e+2

Table 7: Condition number profile of the matrix in Example 4.2

t 5

tl -1 6

t2 1 -3

2 5.697 5.850

12.755 -19.656 28.361

3 -5 -2 -7 1 10 -15

-7 -1 2 1 -6 1 -0.5

Table 8: Elements of the matrix in Example 4.3

EXAMPLE 4.3. This example is taken from [41], and it was also used in [8]. It is a 13 x 13

matrix with five consecutive ill-conditioned leading principal submatrices. Its entries are

listed in Table 8, and the condition number profile is shown in Table 9.

We ran the classical Levinson algorithm and the look-ahead Algorithm 6.1 for the three

matrices in Example 4. The relative errors are presented in Table 10.

EXAMPLE 5. Finally, we consider the symmetric 7 × 7 matrix (7.6) from Section 7.2. The

classical Levinson algorithm breaks down for this matrix, while the look-ahead Algorithm 7.1

generates the exact solution. Next, we perturb the matrix slightly by adding a Toeplitz

matrix with random entries in [-10 -14 , 10 -14] to (7.6). The condition number profile of

the resulting matrix is shown in Table 11. Note that none of the submatrices are exactly

singular. Nevertheless, the classical Levinson algorithm still breaks down. The look-ahead

Algorithm 7.1 computes a solution with relative error 1.33e-14.

9 Concluding Remarks

We studied formally biorthogonal polynomials (FBOPs) for bilinear forms induced by general

Toeplitz matrices. We presented new recurrence relations that connect successive pairs in

any given subsequence of all existing FBOPs. Based on these recursions, we proposed a

m 0 1 2 3 4 5

x(Tm) 2.00e-1 1 1.63 9.45e+5 2.40e+6 3.61e+5

6 7 8 9 10 11 12

4.76e+6 3.60e+6 3.34e+2 1.71e+2 1.63e+1 4.02e+1 2.05e÷1

Table 9: Condition number profile of the matrix in Example 4.3

Formally Biorthogonal Polynomials and a Levinson Algorithm 35

classical look-ahead

Example 4.1 0. 50112484863612 5. 232908767834996e-15

Example 4.2 0. 66589668180614 4. 028860512358659e-14

Example 4.3 3.204212636311192e-10 7.089249323695304e-14

Table 10: Comparison of the relative errors for the three matrices in Example 4

m 0 1 2 3 4 5 6

_(Tm) 1.09e+15 1.00 3.98e+14 6.53e+14 8.74e+14 1.81e+1 7.21

Table 11: Condition number profile of the matrix in Example 5

look-ahead algorithm for solving general Toeplitz systems. This procedure is an extension of

the classical Levinson algorithm for strongly regular Toeplitz matrices. We stress that our

look-ahead algorithm is different from other generalizations of the Levinson algorithm that

have been proposed. Except for the procedure devised by Chan and Hansen [8], all these

algorithms can only skip over exactly singular submatrices. The algorithm in [8] allows to

skip over ill-conditioned submatrices; however, as we showed, the procedure can break down

if two or more consecutive blocks of ill-conditioned submatrices occur. In contrast to these

other proposed extensions of the Levinson algorithm, our look-ahead procedure skips over

exactly singular, as well as ill-conditioned leading principal submatrices, and it can handle

arbitrary consecutive blocks of ill-conditioned submatrices. We reported results of numerical

experiments, which demonstrate that our look-ahead Levinson algorithm generates solutions

of Toeplitz systems with ill-conditioned submatrices to nearly full accuracy.

We remark that similar techniques can be used to derive a look-ahead algorithm for

solving general Hankel systems. A detailed description of such a look-ahead Hankel solver

can be found in [15]. We stress that the Hankel case is fundamentally different from the

Toeplitz case. The Hankel case is actually simpler in the sense that bilinear forms associated

with Hankel matrices are always symmetric, and consequently one only has to deal with one

sequence of formally orthogonal polynomials (FOPs), rather than two sequences of FBOPs

as in the Toeplitz case. We note that FOPs associated with Hankel matrices are intimately

connected with the nonsymmetric Lanczos process [34] for matrix computations; see, e.g., [14]

and the references given there.

In future work, we intend to give a rigorous stability analysis of the look-ahead Levinson

algorithm proposed in this paper. Furthermore, we plan to develop a software package with

FORTRAN and MATLAB implementations of this algorithm, as well as the Hankel solver

described in [15].

In recent years, various so-called super-fast algorithms were developed that solve Toeplitz

systems with only O(nlog 2 n) operations, see, e.g., [1, 4, 5, 45]. Bunch [7] discussed the

36 Roland W. Freund and Hongyuan Zha

stability of some of these algorithms, and he pointed out that they are unstable in the case

of general Toeplitz systems. It is natural to ask whether look-ahead techniques can also be

used to enhance the stability of super-fast Toeplitz solvers. This question is addressed in a

recent paper by Gutknecht [21] who devised two super-fast Toeplitz algorithms with look-

ahead. However, no numerical results are given in [21], and it remains to be seen whether

these algorithms can be turned into practical numerical procedures.

References

[i]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[1o]

[II]

[12]

G. S. Ammar and W. B. Gragg, Superfast solution of real positive definite Toeplitz

systems, SIAM J. Matrix Anal. Appl. 9:61-76 (1988).

E. H. Bareiss, Numerical solution of linear equations with Toeplitz and vector Toeplitz

matrices, Numer. Math. 13:404-424 (1969).

G. Baxter, Polynomials defined by a difference system, J. Math. Anal. Appl. 2:223-263

(1961).

R. R. Bitmead and B. D. O. Anderson, Asymptotically fast solution of Toeplitz and

related systems of linear equations, Linear Algebra Appl. 34:103-116 (1980).

R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun, Fast solution of Toeplitz systems of

equations and computation of Pad6 approximants, J. Algorithms 1:259-295 (1980).

A. Bultheel, Laurent Series and their Padd Approximations, Birkh£user, Basel, 1987.

J. R. Bunch, Stability of methods for solving Toeplitz systems of equations, SIAM J.

Sci. Star. Comput. 6:349-364 (1985).

T. F. Chan and P. C. Hansen, A Stable Levinson Algorithm for General Toeplitz Sys-

tems, Technical Report CAM 90-11, University of California, Los Angeles, May 1990.

T. F. Chan and P. C. Hansen, A look-ahead Levinson algorithm for indefinite Toeplitz

systems, SIAM J. Matrix Anal. Appl. 13:490-506 (1992).

G. Cybenko and C. F. Van Loan, Computing the minimum eigenvalue of a symmetric

positive definite Toeplitz matrix, SIAM J. Sci. Stat. Comput. 7:123-131 (1986).

P. Delsarte, Y. V. Genin, and Y. G. Kamp, A generalization of the Levinson algorithm

for Hermitian Toeplitz matrices with any rank profile, IEEE Trans. Acoust. Speech

Signal Process. ASSP-33:964-971 (1985).

C. J. Demeure and L. L. Scharf, Linear statistical models for stationary sequences and

related algorithms for Cholesky factorization of Toeplitz matrices, IEEE Trans. Acoust.

Speech Signal Process. ASSP-35:29--42 (1987).

Formally Biorthogonal Polynomials and a Levinson Algorithm 37

[13] J. Durbin, The fitting of time-series models, Rev. Inst. Internat. Statist. 28:233-243

(1960).

[14] R. W. Freund, M. H. Gutknecht, and N. M. Nachtigal, An implementation of the look-

ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Star. Comput. 14

(1993), to appear.

[15] R. W. Freund and H. Zha, A look-ahead algorithm for the solution of general Hankel

systems, Numer. Math., to appear.

[16] G. H. Golub and C. F. Van Loan, Matrix Computations, Second Edition, The Johns

Hopkins University Press, Baltimore, 1989.

[17] M. 3. C. Gover and S. Barnett, Inversion of Toeplitz matrices which are not strongly

non-singular, IMA J. Numer. Anal. 5:101-110 (1985).

[18] P. R. Graves-Morris, The numerical calculation of Pad@ approximants, in Padd Approx-

imation and its Applications, Proceedings, 1979 (L. Wuytack, Ed.), Lecture Notes in

Math. 765, Springer-Verlag, Berlin, 1979, pp. 231-245.

[19] U. Grenander and G. SzegS, Toeplitz Forms and their Applications, Second Edition,

Chelsea, New York, 1984.

[20] G. Gueguen, Linear prediction in the singular case and the stability of eigen models, in

Proc. I98I IEEE Int. Conf. Acoust., Speech, Signal Process., Atlanta, GA, pp. 881-885.

[21] M. H. Gutknecht, Stable Row Recurrences for the Pad@ Table and Generically Superfast

Look-Ahead Solvers for Non-Hermitian Toeplitz Systems, IPS Research Report 92-14,

ETH, Z_rich, August 1992.

[22] M. H. Hayes and M. A. Clements, An efficient algorithm for computing Pisarenko's

harmonic decomposition using Levinson's recursion, IEEE Trans. Acoust. Speech Signal

Process. ASSP-34:485-491 (1986).

[23] G. qeinig and K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators,

Bi: ,.h_user, Basel, 1984.

[24] Y. H. Hu and S.-Y. Kung, Toeplitz eigensystem solver, IEEE Trans. Acoust. Speech

Signal Process. ASSP-33:1264-1271 (1985).

[25] I. S. Iohvidov, Hankel and Toeplitz matrices and forms, Birkh/iuser, Boston, 1982.

[26] E. Jonckheere and C. Ma, Combined sequence of Markov parameters and moments in

linear systems, IEEE Trans. Automat. Control AC-34:379-382 (1989).

[27] E. Jonckheere and C. Ma, Recursive partial realization from the combined sequence of

Markov parameters and moments, Linear Algebra Appl. 122/123/124:565-590 (1989).

38 Roland W. Freund and Hongyuan Zha

[28] M. Kac, W. L. Murdock, and G. Szeg6, On the eigen-values of certain Hermitian forms,

d. Rat. Mech. Anal. 2:767-800 (1953).

[29] T. Kailath, A view of three decades of linear filtering theory, IEEE Trans. lnform.

Theory IT-20:146-181 (1974).

[30] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, 1980.

[31] T. Kailath, A theorem of I. Schur and its impact on modern signal processing, in 1. Schur

Methods in Operator Theory and Signal Processing (I. Gohberg, Ed.), Operator Theory

Adv. Appl. 18, Birkh£user, Basel, 1986, pp. 9-30.

[32] T. Kailath, A. Vieira, and M. Morf, Inverses of Toeplitz operators, innovations, and

orthogonal polynomials, SIAM Rev. 20:106-119 (1978).

[33] J. D. E. Konhauser, Some properties of biorthogonal polynomials, d. Math. Anal. Appl.

11:242-260 (1965).

[34] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear

differential and integral operators. J. Res. Nat. Bur. Standards 45:255-282 (1950).

[35] N. Levinson, The Wiener RMS (root mean square) error criterion in filter design and

prediction, J. Math. Phys. 25:261-278 (1946).

[36] J. Makhoul, Linear prediction: a tutorial review, Proc. IEEE 63:561-580 (1975).

[37] V. F. Pisarenko, The retrieval of harmonics from a covariance function, Geophys. J.

Royal Astron. Soc. 33:347-366 (1973).

[38] J. Rissanen, Algorithms for triangular decomposition of block Hankel and Toeplitz ma-

trices with application to factoring positive matrix polynomials, Math. Comp. 27:147-

154 (1973).

[39] I. Schur, l_lber Potenzreihen, die im Innern des Einheitskreises beschr_.nkt sind, Parts I

and II, J. Reine Angew. Math. 147:205-232 (1917) and 148:122-145 (1918).

[40] Y. Sugiyama, An algorithm for solving discrete-time Wiener-Hopf equations based upon

Euclid's algorithm, IEEE Trans. Inform. Theory IT-32:394--409 (1986).

[41] D. R. Sweet, Numerical Methods for Toeplitz Matrices, Ph.D. thesis, University of

Adelaide, Australia, 1982.

[42] D. R. Sweet, The use of pivoting to improve the numerical performance of Toeplitz

solvers, In Advanced Algorithms and Architectures for Signal Processing (J. M. Speiser,

Ed.), Proc. SPIE 696, 1986, pp. 8-18.

[43] W. F. Trench, An algorithm for the inversion of finite Toeplitz matrices, J. Soc. Indust.

Appl. Math. 12:515-522 (1964).

Formally Biorthogonal Polynomials and a Levinson Algorithm 39

[44]

[45]

[46]

[47]

[48]

[49]

W. F. Trench, Numerical solution of the eigenvalue problem for Hermitian Toeplitz

matrices, SlAM J. Matrix Anal. Appl. 10:135-146 (1989).

E. E. Tyrtyshnikov, New cost-effective and fast algorithms for special classes of Toeplitz

systems, Sov. J. Numer. Anal. Math. Modelling 3:63-76 (1988).

H. van Rossum, Formally biorthogonal polynomials, in Padd Approximation and its

Applications, Proceedings, 1980 (M. G. de Bruin and H. van Rossum, Eds.), Lecture

Notes in Math. 888, Springer-Verlag, Berlin, 1981, pp. 341-351.

C. J. Zarowski, Schur algorithms for Hermitian Toeplitz, and Hankel matrices with sin-

gular leading principal submatrices, IEEE Trans. Signal Process. 39:2464-2480 (1991).

S. Zohar, Toeplitz matrix inversion: the algorithm of W. F. Trench, J. Assoc. Comput.

Mach. 16:592-601 (1969).

S. Zohar, The solution of a Toeplitz set of linear equations, J. Assoc. Comput. Mach.

21:272-276 (1974).

RIACS
Mail Stop 230-5

NASA Ames Research Center

Moffett Field, CA 94035

