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ABSTRACT

OLDS, JOHN ROBERT. Multidisciplinary Design Techniques Applied to

Conceptual Aerospace Vehicle Design. (Under the direction of Dr. Gerald D.

Walberg.)

Multidisciplinary design optimization (MDO) is an emerging

discipline within aerospace engineering. Its goal is to bring structure and

efficiency to the complex design process associated with advanced aerospace

launch vehicles. Aerospace vehicles generally require input from a variety of

traditional aerospace disciplines - aerodynamics, structures, performance, etc.

As such, traditional optimization methods cannot always be applied. Several

multidisciplinary techniques and methods have been proposed as potentially

applicable to this class of design problem. Among the candidate options are

calculus-based (or gradient-based) optimization schemes and parametric

schemes based on design of experiments theory.

A brief overview of several applicable multidisciplinary design

optimization methods is included in this dissertation. Methods from the

calculus-based class and the parametric class are reviewed, but the research

application reported in this work focuses on methods from the parametric

class.

A vehicle of current interest was chosen as a test application for this

research. The rocket-based combined-cycle (RBCC) single-stage-to-orbit

(SSTO) launch vehicle combines elements of rocket and airbreathing



propulsionin anattemptto produceanattractiveoptionfor launchingmedium

sizedpayloadsinto low earthorbit. The RBCC SSTOpresentsa particularly

difficult problemfor traditional one-variable-at-a-timeoptimization methods

becauseof the lack of an adequateexperiencebaseand the highly coupled

natureof the designvariables.MDO, however,with it's structuredapproach

to design,is well suitedto thisproblem.

This dissertationpresentsthe results of the applicationof Taguchi

methods,central composite designs,and responsesurfacemethodsto the

designoptimization of theRBCC SSTO.Attention is given to the aspectof

Taguchi methodsthat attemptsto locatea "robust" design- that is, adesign

that is least sensitive to uncontrollable influences on the design. Near-

optimumminimumdry weight solutionsaredeterminedfor thevehicle.

This dissertationconcludeswith a summaryand evaluation of the

various parametric MDO methods employed in this research.

Recommendationsfor additionalresearchareprovided.
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Introduction

The design of advanced space transportation vehicles typically

depends heavily on analysis from many of the traditional fields of aerospace

engineering - performance, aerodynamics, structures, weights and sizing,

propulsion, cost, operations, avionics and power, etc. Design decisions from

any single discipline are strongly influenced by decisions made in the other

disciplines. Power requirements depend on aerodynamic control requirements

which may, in turn, depend on a performance analysis. Such a design process

is multi-disciplinary, and each of the disciplines is one component of a

complicated network of data flows and interactions. These networks are often

characterized by iterative loops between several of the disciplines.

Because of the interactive nature of the disciplines, experts in each of

the fields involved are generally placed in close proximity - creating a design

team. Each discipline typically deals with one or two computer tools for its

work, and data is exchanged manually or automatically between disciplines. A

project engineer directs the process as data is exchanged and fine tuned

between disciplines in order to produce a final, converged design that meets

all of the requirements.

As in any design process, the objective is to find the best design from a

set of competing alternatives. In launch vehicle design, minimum weight is

often a criteria against which designs are judged - partly because of the

extremely high cost of launching a pound of material to low earth orbit. The

U.S. Space Shuttle delivers payloads for a cost on the order of $6000/lb [1].

The problem of minimizing weight is difficult if only one discipline is

involved. For a multidisciplinary problem, the problem is significantly harder.

Rather than optimizing a particular part of the overall design, the optimization

process must be performed at the systems level. For example, consider the

design of a winged launch system. An aerodynamicist may want to minimize

the thickness of the wing in order to reduce wave drag (and thus propellant



requirements),but thestructuresexpertmay wanta thicker wing in order to

minimize wing weight [2]. Which is the right answer? Historically, "trade

studies" have been employed to locate the best design. Trade studies generally

fix most of the design variables at some median initial value, and vary one

variable at a time in an attempt to find its best setting. Once a preferred setting

has been found for the first variable, it is fixed at that setting for the rest of the

study. The next variable is then varied in an attempt to find its best setting. It

is easy to imagine a scenario where such an approach may not be able to

locate an optimum point design. The best setting of one variable will most

likely depend on the settings of all of the other design variables. Changing one

variable at a time has little chance of optimizing the entire system. A

structured approach to optimizing several variables simultaneously in a

multidisciplinary design environment in required. Multidisciplinary design

optimization attempts to address this need.

Multidisciplinary design optimization (MDO) is a fledgling field in

aerospace engineering that attempts to bring a structured methodology to

locating the best possible design in a multidisciplinary environment. In fact,

MDO can be considered to be a discipline in and of itself with the goal of

acting as an agent to bind the other disciplines together [3]. MDO methods

can be either from the gradient-based class of methods (including classical

optimization, decomposition methods, and new techniques created specifically

for multidisciplinary environments like system sensitivity analysis) or the

parametric methods class based on Design of Experiments theory (fig. 1).

Each class of methods has it's strengths and weaknesses, and each is suitable

for different types of problems [4].

Parametric methods are particularly well suited to the design

environment found in aerospace vehicle conceptual design (i. e. the very early

phase of design). The number of systems level design variables is generally

less than ten. Parametric methods are most useful for small numbers of

variables. Conceptual vehicle analysis is generally accomplished via time

consuming iteration between several existing engineering analysis computer

2



codes(andengineeringexperts).Parametricmethodsretaintheexistingcodes
and explore the designspacethrough a seriesof carefully selectedpoint
designs. Each point design is analyzed using the existing methods.No
additionalgradientor derivativeinformation is requiredfrom eachdiscipline.
Conceptualdesign spacesare likely to contain discrete variables because
major designconfigurationdecisionsarestill beingmade.Severalparametric
methods are capableof handling discrete variables. Finally, the fact that
parametricmethodsonly producea"near-optimum"result is not considereda
particularly seriousproblemfor conceptualdesign.Parametricmethodscanbe
usedto locatea regionof interestwithin which a moredetailed analysiscan
takeplaceif required.

MultidisciplinaryDesignOptimization

m classicaloptimization

decomposition

m systemsensitivityanalysis

I
Parametric Methods [

_ design of experiments

Taguchi methods

central composite design

Figure 1 - MDO Hierarchy

Four specific methods from the parametric class of method were

selected for additional study within this research - Design of Experiments

methods, Taguchi methods, central composite designs, and response surface



methods. An example launch vehicle (RBCC SSTO) was designedand
optimized usingthreeof thefour parametrictechniques.The optimizationof
the rocket-based combined-cycle (RBCC) SSTO vehicle was a highly
multidisciplinary processthat would have beendifficult, if not impossible,
without the aid of multidisciplinary design optimization. It servedas an
excellenttestcasefor evaluatingthestrengthsandweaknessesof themethods.

It is hopedthat thedetailsof this researchwill help contributeto the
state-of-the-artin multidisciplinary designby demonstratingtheapplicability
of parametricmethodsto conceptualaerospacevehicledesign.Thesemethods
havebeensuccessfullyappliedin severaldifferent manufacturingindustries,
but literatureon aerospacedesignapplicationsis sparse.Only in the last few
yearshavesomeaerospaceapplicationsbegunto bereported[5,6,7,8]. Interest
in MDO andparametricdesignmethodsis increasing,however.This research
will hopefully serveasapathfinderfor researchto follow.
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Overview of Multidisciplinary Design Optimization Methods

Classical Optimization

Classical optimization techniques can be readily applied to some of the

more manageable problems of aerospace vehicle conceptual design. The

process first requires that the problem be placed in standard form (discussed

below). Given a starting, non-optimum design, the method then steps from

one design to the next until an optimum design is found that meets all

constraints and minimizes the objective function. The method can take

advantage of a variety of available non-linear optimization numerical methods

such as variable metric, steepest descent, and several non-gradient techniques

like Powelrs method and random walk [9]. The multidisciplinary nature of the

design problem will usually necessitate an iterative approach - sometimes

even within each step.

The standard form of a classical optimization problem has an objective

function and a list of constraints. A composite objective function representing

a weighted assessment of the goals of each of the disciplines is written in the

form:

minimize f(Yl,Y2 ..... Yi.... ) (1)

and the corresponding set of constraints written in the standard form are:

gi (Yl,Y2 ..... Yi .... ) <0 (2)

For example, if f was vehicle weight, the y's might be subsystem weights. The

overall objective function is a function of the lower level outputs. A typical

constraint may be minimum deliverable payload. The analysis outputs, Yi, are

functions of the independent design input variables, xi. Therefore, the goal of

the design process is to find the design variables, xi, which will minimize the

5



objectivefunction while satisfyingall of theconstraints.Continuousvariables
areeasilyhandledby the method.Discretevariables,like numberof engines
or numberof boosters,are moredifficult to handle,but techniquesexist to
accommodatethemto someextent.

Figure 2 showsthe graphical depiction of a design space with two

independent variables. The classical optimization method employs a repetitive

convergence method by first assessing the system objective functions and

constraints, calculating gradients, updating the design variables, and then

reevaluating the new objective function and constraints. Using this stepping

technique, an optimum feasible solution is eventually found. Because the

method steps from one solution to a better one by changing design variables

appropriately, it is not necessary to predetermine a limiting range of each

variable as required by parametric methods. The entire design space can be

used if needed because there are no artificial limits.

. ::::::::::::::::::::::

optimum_

unacceptableregions

 "i!i Jiiiiii jiiiiii ,

Figure 2 - Design Space with Constraints

The constraints in classical optimization can be treated in a variety of

ways. For linear problems, the Simplex method from linear programming can

be used [9]. The Simplex method uses the fact that the optimum solution to a

linear problem (linear objective and linear constraints) will be at the

intersection of two constraints. Those constraints are given the designation

6



"active", and the "_<" is replaced by "=" in equation 2. For more typical non-

linear problems, the constraints can be represented by penalty functions that

treat the constraints, not as on-off step functions, but as steeply sloping

functions beginning at the point where the constraint is "just satisfied" and

increasing as the design moves away from the feasible region. The penalty

function is then added (for a minimization problem) to the overall objective

function. In this way, the objective is "penalized" for being outside the

feasible region, and gradient methods will lead the design away from the

penalties and toward a feasible solution. The penalty functions are zero inside

the feasible region. Penalty functions are one method of treating constraints in

a non-linear problem. Additional methods are discussed in reference 10.

Gradient methods used in classical optimization, as the name implies,

use the gradient of the objective function, Vf, to perform the minimization.

They start with a given set of design variables and then numerically, or

analytically, determine the derivative of the objective function in each of the

design variables directions, i.e. the gradient.

_-_fl Of _fVf = '0x2 ..... 0Xi .... ) (3)

The simplest gradient method, steepest descent, then uses the fact that

the negative of the gradient lies in the direction that most improves the

objective function (for a minimization problem). Therefore, the vector of

design variables, represented by X, is changed in that direction.

Xne w = Xol d - (X * Vf (4)

In equation 4, c_ is a scalar that varies the magnitude of the step. Once

the gradient direction is determined, ct is started at a small value, an

intermediate value of f is determined, and o_ is systematically increased until

the value of the intermediate f is no longer an improvement over the previous

step. In other words, the current gradient direction is followed until it is

"played out". In practice, maximum move limits are sometimes established to

7



keeptheoptimizer from takingtoo largea stepin anon-linearproblem.Once
a best tx is determined for the current gradient direction, the design variables,

X, are updated and a new gradient direction is calculated. From here, the

process is repeated until the problem converges. Other numerical optimization

techniques may use different methods to update the design variables, but

almost all use a stepping scheme.

The minimum (or maximum) is found when the derivatives of all the

variables are equal to 0,

_f _f _f

= = =0 (5)

A minimum is, therefore, a point where changing any design variable

will result in an increase in the objective function (the increase in the objective

function may be the result of a penalty from a violated constraint). It is

possible that the optimization process may find a local minimum which is not

the global minimum. Techniques exist to solve this problem, but most involve

restarting the optimization process from a new initial condition.

Pros and Cons

The classical optimization technique depends heavily on the ability to

quickly evaluate the objective function and constraints at each iteration (and

several times within each iteration to evaluate the derivatives). The

multidisciplinary nature of most aerospace vehicle designs makes this

requirement very difficult to achieve. The current design practice of using

distributed experts and existing analysis codes would require that each

discipline perform an analysis for each iteration of the solution. If the system

is coupled, the solution process becomes even more complex and time

consuming. Discrete variables are more difficult to accommodate in this

method than in parametric studies. Additionally, the objective function and

constraints may become very difficult to formulate in a standard form.



Therefore,the classicaloptimization techniqueshouldonly beapplied to a
limited classof conceptualaerospacedesignproblems.

If thedesignproblemcaneitherbe limited in scopeor approximations
can be made to simplify the analysis equations, classical optimization
becomesa viable method.A simpleobjective function andsetof constraints
must bewritten in orderto allow fastevaluation.While theproblemcanstill
be multidisciplinary, complex computer codes for detailed aerodynamics,
propulsion,controls, and structuresanalysisaregenerallydiscardedin favor
of approximatemethods- simplealgebraicequationscombinedinto asingle
monolithic computer code in most cases.Applied to a suitable problem,
classicaloptimization providesa numericallyoptimumsolution (limited only
by the accuracy of the model, not the method), a design that meetsall
constraints, and a method that doesn't require the designer to place
predeterminedlimits ondesignvariableranges.

Decomposition

If a system consists of several coupled disciplines or tasks, it may be

possible to organize the system into a top down hierarchy of smaller

subproblems or combinations of subproblems (figure 3). This process of

decomposing the coupled system leads to a simpler set of subproblems that

can be optimized in a one-at-a-time manner rather than the all-at-once manner

employed by classical optimization. In a sense, system decomposition enables

the extension of the ideas of classical optimization to larger coupled problems.

Because multi-level decomposition generates a series of subproblems,

it lends itself well to the idea of retaining the existing tools of the disciplinary

experts and using them to provide the required level of analysis detail in an

overall design optimization problem. Once the system is decomposed, the

9



subproblemsof the hierarchical tree can be treatedas "design modules"
providing outputs to and receiving inputs from other contributing
subproblems.Optimizationof theoverall designis accomplishedby topdown
optimization of the elementsof the decomposedstructure. Comparedto
classical optimization, fewer simplifications to the analysesare required
becausethe existing,detaileddesignprogramsof thedisciplinaryexpertsare
retained.

combined

I subproblem
|

q _

Figure 3 - Complex System as a Hierarchical Structure

The setup of a decomposition problem involves describing the overall

system as individual subsystems (modules), their output variables, and their

input requirements. For example, thermal protection analysis may be a

module. It would provide TPS type, thickness, and weight as outputs and

require aerodynamic heat loads and structural backface temperature limits as

inputs. Once the entire network is created, the modules are organized in a

manner that reduces feedback (iteration) from lower to upper levels and

creates a logical hierarchical structure. Some modules may be so coupled that

they are impossible to break apart. They may instead be combined into a

larger subproblem (circuit) within which iteration may occur. Decomposition

may lead to aerodynamic analysis being performed before TPS analysis, and

the propulsion and propellant tank analysis may be combined into a new

"circuit", for example.

10



At NASA's - LangleyResearchCenter,aknowledgebasedtool called
DeMaid - Design Manager'sAid for Intelligent Decomposition [11] was
createdin order to automatetheprocessof decomposition(figure 4). In the
simplefour moduleN by N graphexampleshown,module2 providesoutput
to modules 1 and 3, and modules3 and 4 provide outputs to each other.
DeMaid can then be applied to transform the coupled, complex design
problem into a moremanageablehierarchicalstructureof subproblems.The
reorganizedsystemrecommendsanalysis in module2 first (it dependson
input from noothermodule)andcombinesmodules3 and4 into anewcircuit.
A topdownanalysisis nowpossiblebecauseno feedbackloopsexist.

modules feedforward loops

DeMaid

feedba
loops circu

Figure 4 - Decomposition Reduces Feedback

Assuming that the system can be decomposed (some systems may be

too highly coupled to create a hierarchical structure), a structured process can

be utilized to optimize the individual subproblems so that the optimum

solution of the subproblems is the optimum solution of the entire system [12]

This process is known as coordination.

As in the case of classical optimization, the overall objective function

can be written as a function of the outputs of the individual disciplines

(modules).

minimize f(Yl,Y2 ..... Yi.... ) (6)

In the simplest decomposition problem, the outputs of each of the modules

enter only into the calculation of the objective function and not into the

11



outputsof any of the other modules(called a block diagonal dependency

matrix system). For such a case, the objective function could be split into a

series of smaller independent objective functions so that:

_fi(Yi) = f(Yl,Y2 ..... Yi .... ) (7)

and the objective function of the i-th subproblem will become:

minimize fi(Yi) (8)

The system constraints can also be broken into smaller, subproblem

level constraints. In a simplified example, if the system objective function is

to minimize vehicle weight, the TPS subproblem objective may be to

minimize TPS thickness. Other subproblems would have their own objective

functions so that when each is optimized separately, the result will be the

lightest overall vehicle.

Having decomposed the system into a hierarchical structure and

rewritten the systems level objective function and constraints into subsystem

level equations, the design process proceeds from the top of the hierarchical

tree to the lower levels. Recall that higher level subproblems are analyzed

before lower level subproblems because the higher level outputs (feedforward

data) are required as inputs to lower level analyses. The individual

optimizations of the subproblems can be solved in a variety of ways, including

some of the non-linear, numerical optimization methods like steepest descent

discussed in the classical optimization section. For smaller subproblems,

designer experience may be sufficient to find an appropriate solution.

Pros and Cons

System decomposition enables a designer to extend the ideas of

classical optimization to larger and more coupled problems. However, if a

problem is very tightly coupled, it may be impossible to decompose the

problem into a simple set of subproblems that can be handled by classical

optimization. Simplifications are often made to reduce the system coupling,

12



that is, someof the weaker dependencies are often neglected. However, in

practice many aerospace design problems will be difficult to address by

hierarchical decomposition. If the overall design can at least be broken down

into 2 or more highly coupled subprobtems, the system sensitivity analysis

technique (discussed later) can be used on each of the subproblems separately,

and then the problems can be recombined using coordination thereby saving

time and effort.

When applicable, decomposition can be used to improve the efficiency

of the design team. Because of the branching nature of the hierarchical tree,

unrelated lower level subproblems can be analyzed at the same time (parallel

execution), thereby speeding up the overall analysis process. Also, the

performance of the non-linear optimizers is considerably better for the smaller

subproblems than it would be for the entire system [12].

The decomposition method allows the computer codes most often used

by the individual disciplinary experts to be retained because the subproblems

created are often associated with an existing discipline. However, it is not

necessary to rely solely on computer based analysis for each subproblem.

Some subproblems can be "optimized" using only the experience and

judgment of the designer. That is, the decomposed system can consist of

automatic and "manual processes". "Manual" optimization of this nature is

generally prohibitive in the case of classical optimization where the entire

system-level analysis process must be quickly repeated a number of times and

is, therefore, usually completely automated.

Because most aerospace designs are difficult to break into smaller

subproblems, system decomposition may be best used as a planning and

scheduling tool. The ability to visualize the subsystems and structure as

related design modules is very beneficial, especially for new or one-of-a-kind

designs like those found in conceptual aerospace design. Since the method

varies design variables numerically like classical optimization, it has more

difficulty handling discrete variables. Other methods, such as system
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sensitivity analysis (discussedbelow) perhapsused in conjunction with
decomposition,maybemoresuitablefor theoverall optimizationprocess.

Sy_t¢m Sensitivity Analysis

System sensitivity analysis (SSA) is a multidisciplinary design and

optimization method designed to answer "what if" type questions and perform

optimization of an entire system. It replaces system-level gradient calculation

with a more efficient, distributed calculation scheme [2]. While classical

optimization and system decomposition/coordination are usually limited to

smaller sized or less coupled problems, sensitivity analysis is well suited to

handle more highly coupled and complex aerospace vehicle design. In fact, it

can easily incorporate the techniques of the other two methods. Therefore,

system sensitivity analysis may have the widest applicability of any of the

numerical techniques discussed in this dissertation.

System sensitivity analysis treats a system as a highly coupled set of

subproblems - perhaps determined from a decomposition process that was

unable to completely separate all of the subproblems. These subproblems are

generally associated with traditional design disciplines that retain their

existing, more detailed, design codes. These existing design codes (like

NASTRAN or POST) can be treated as individual "design modules" -

exchanging inputs and outputs with other "design modules" in the overall

system.

To compute the total change in an output variable with respect to a

change in an input design variable, the SSA method first analyzes the impacts

of the various subproblems on the output, then secondly analyzes the impacts

of a change in the input design variable on each of the subproblems while

holding other influences constant. For example, an aerodynamics subproblem
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would evaluate its own sensitivities to changes in other subproblems.
Increasedwing weight from the structures subproblemmight produce a
different trim point with a correspondingincreasein induceddrag. If wing
aspect ratio is a design variable, the aerodynamicdiscipline could also
calculate the change in trim lift coefficient with increasedaspectratio -
temporarilydisregardingthefact that anincreasein aspectratio may increase
wing weight which indirectly will also affect the trim lift coefficient. This
second influence is calculated separately. The total change (sensitivity
derivative) in wing weight is the sum of thesetwo influences [13]. These
systemsensitivityderivatives(SSD's)aretotal derivativesandareessentially
system level gradients to be used by a designer either intuitively or

numerically to iteratively improve the design. The advantage of the method

over top level system finite differencing lies in the computational efficiency,

ability to perform subproblem tasks in parallel, and the need to only calculate

the disciplinary interdependencies once (per iteration) to analyze all design

variable influences. A brief discussion of the mathematical basis of SSA is

given below.

A complex coupled system can be thought of as a mathematical

function that, for a converged solution, generates a set of output values for a

given set of input values. For example, for a given sweep, thickness ratio,

aspect ratio, Mach number, etc., a wing will have a given coefficient of lift. If

X is a set of input variables, and Y is a set of output variables, then:

Y = fiX) (9)

or written another way:

F(X,Y) = 0 (10)

The output variables are generally used in the evaluation of the objective

function or the various constraints. Assume that the parts of the system output

vector are generated by distinct disciplines so that the system output vector

can be partitioned:
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Y = (Y1,Y2,Y3) T (11)

where, for simplicity, three disciplines have been assumed. For example,

aerodynamic coefficients would be generated by an aerodynamics discipline,

engine performance would be generated by a propulsion discipline, and the

wing stresses would be generated by a structures discipline. Combining

equations (10) and (11) leads to:

F(X,Y1.Y2,Y3) = 0 (12)

The implicit function theorem allows the equation to be rewritten such

that one variable is expressed as a function of the others (assuming

decomposition has been performed so that one discipline is not a function of

its own outputs [ 14]).

Y1 = fl (Y2,Y3,X) = Y1 (Y2,Y3,X)

Y2 = f2(Y1,Y3,X) = Y2(Y1,Y3,X)

Y3 = f3(Y1,Y2,X) = Y3(Y1,Y2,X)

(13a)

(13b)

(13c)

This system and its corresponding subproblems are shown graphically

in figure 5. X represents all the inputs, and Y is shown in partitioned form.

Taking equation 13a as a representative example and using the chain

rule to write the differential form:

OY1 _Y1 dY3 + _Y1 dX (14a)dY1 =_Y2 dY2 + _Y3 OX

and the total derivative is:

dYl_
dX

c3Y1 dY2 03Y1 dY3 o3Y1
- OY2 dX + c)Y3 dX- + _X (14b)

Recall that, due to the coupling of the system, Y1 is influenced by each

of the other subsystems as well as the input variable(s). Equation 14b states

that the total change in the output Y1 with respect to a change in an input
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X

System

IY'I= Y2
Y3

Figure 5 - Coupled System as Three Disciplines

variable is the sum of the changes in each of the other subsystems times their

individual effects on Y1 (these are the partial derivatives) plus the change in

Y1 itself due to a change in the input variable. Performing a similar process on

the other two subsystems will lead to the coupled matrix equation known as

the Global Sensitivity Equation (GSE).

_Y2 _Y2 dY2 (15)

=-0Y3 0Y3 dY3 |0Y3|

Note that the partitions of the output vector, Y1, Y2, and Y3 are

typically also vectors so the terms of the GSE (e.g. -_Y1/3Y2) will generally

be matrices [14]. The matrix on the left side of the GSE is called the global

sensitivity matrix. It contains the sensitivities of each discipline to outputs

from other disciplines. The vector on the right side contains the local

sensitivity derivatives. It contains the sensitivities of each discipline to

changes in the input variables while holding other influences constant. Given

values for both of these from discipline level analysis, it is possible to solve
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the linear problemfor the vectorof systemsensitivity derivatives(left side
unknownvector)usingexisting matrix techniques[15]. That is, systemlevel
total derivatives (SSD's) are calculated from discipline level partial

derivatives. Note that the vector of local sensitivity derivatives is dependent

on the particular input variable (e.g. aspect ratio) being evaluated, and

therefore, it must be recalculated for each input variable. However, the global

sensitivity matrix is dependent only on the discipline interactions and is only

calculated once per iteration.

Using the technique described above, a new set of system sensitivity

derivatives (SSD's) is generated for each design variable. These SSD's are

essentially gradients of the output variables (weight, cost, etc.), and therefore

the objective function, with respect to changes in the design variables (aspect

ratio, wing sweep, nose radius, etc.). The calculation of the SSD's is the

equivalent of performing a finite difference analysis on the entire system for

each design variable. The SSD's can be used intuitively by the designer who

would then make changes in the inputs in order to improve the objective

function. Alternately, the SSD's could be used in a numerical optimization

scheme.

Pros and Cons

System sensitivity analysis (SSA) is very well suited to handle large,

highly coupled aerospace vehicle design problems. By making use of

decomposition/coordination techniques to break a problem down into a set of

smaller subproblems, a complex task can be divided among several design

teams. If desired, classical optimization methods can be used to optimize a set

of design variables based on the system sensitivity derivatives (SSD's)

generated by SSA. Because of this ability to incorporate and expand on

previously discussed techniques, SSA may have the widest applicability of the

numerical techniques discussed here.
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Once a systemis divided into subproblems,they can be treatedas
"design modules" providing outputs to and receiving inputs from other
"design modules".This capability is of particular interestbecauseit allows
certain disciplines to retain their existing detailed deign tools (e.g.
NASTRAN) to processinputs andcreatenecessaryoutputs.Modification of
existing codes is usually not necessary- except to perhaps speeddata
exchange.

SSA,by natureof its distributednetwork of subproblems,allows the
parallel execution of some of the subproblem tasks. For instance, local
aerodynamicsensitivities to wing sweepand local structural sensitivitiesto
wing sweepcouldbeperformedsimultaneouslyby separatedesigngroupsand
later combined to form the local sensitivity derivative vector. By taking
advantageof parallel executionof design tasks, the iteration time and the
overall designtimecanbothbeshortened.

On the negativeside,a highly non-lineardesignmay necessitatethe
frequentreevaluationof the global sensitivity matrix. Oneadvantageof the
SSA methodlies in its ability to savecomputationaltime by usingthe same
global sensitivity matrix for severaliterations of designvariable changes.
Non-linearproblemsmayerodesomeof thesetime savings.

Like all numerical optimization schemes,SSA prefers to deal with
smooth, continuous functions in order to evaluatederivatives. In typical
aerospacevehicledesign,discretevariablesarehighly likely to bepresent(for
example,thenumberof enginesor structuralmaterialtype).Techniquesexist
within numericaloptimizationto dealwith discretevariables,but themethods
work muchbetterwith continuousvariables.

Finally, the systemsensitivity analysismethodis highly numerically
intensiveduring theevaluationof theglobalandlocalsensitivities.In practice,
the methodmaybedifficult to apply to somedisciplinesthat arenot usedto
working with sensitivitiesto giveninputs(e.g.costsensitivityto wing sweep).
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Parametric Methods

Unlike the methods discussed in the previous sections that rely on

gradient derived directions to move through a design space toward a

progressively improved solution, methods based on design of experiments

theory (parametric methods) approach a design problem from a significantly

different point of view. Parametric methods establish a fixed set of point

locations (i.e. variable combinations) inside the design space at the beginning

of the optimization process. The set of points is determined based on a variety

of statistical schemes to be discussed in later sections. The points in the set

(called the experimental array) provide adequate coverage of the entire design

space (see figure 6). In parametric methods, there is no "starting point" and

the optimization process does not depend on gradient information gathered at

one design point in order to determine the next design point. Rather,

information on the location of a desirable region of the design space is

extrapolated from the results of the predetermined point designs. Because they

do not require derivatives, this class of methods is suitable for problems with

discrete and continuous variables [16, 17, 18].

In-process determined

de_ _ ] _oPredetermined!design points

Gradient Scheme Parametric Scheme

Figure 6 - Gradient Schemes vs. Parametric Schemes
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The term parametric methods represents an entire class of specific

multidisciplinary design optimization methods including Design of

Experiments methods, Taguchi methods, central composite designs (with

response surface methods), Box and Behnken designs, Box and Draper

designs, and many others [ 16, 19, 20]. Each method has unique characteristics

and certain advantages and disadvantages when applied to aerospace vehicle

conceptual design. A detailed mathematical discussion of several selected

methods is provided in succeeding sections. This section will address some

common characteristics of parametric methods - including their applicability

to the current class of design problem.

All parametric methods approach a problem by discrefizing the design

variables over an established range in the design space. That is, all variables

are reduced to a few (usually two or three) distinct values within their design

range. For example, if wing area ranges from 2500 ft 2 tO 3500 ft 2, it may be

reduced to only three values - 2500 ft 2, 3000 ft 2, and 3500 ft 2. For variables

that are already discrete or integers (e.g. number of engines), parametric

methods simply use the established values. Note that the number of levels of

discretization will determine the type of response that can be predicted. It

takes at least two levels to predict a linear effect. At least three levels are

required to predict a curvature effect. Once all of the design variables have

been discretized, various combinations of these discretized variables are

selected from all possible combinations throughout the design space according

to a statistical strategy. These combinations are combined into a set called an

experimental array. Table 1 shows a sample experimental array for a problem

with two design variables - wing area and tail area. Each variable has been

discretized to two levels within its range. In this case, the experimental array

contains every combination of the two variables and their two levels.

It is common practice to normalize (or "code") the design variables

over their determined range in a manner such that the midpoint of the range is

represented by a 0 (zero) and the lower and upper extremes are represented by

-1 and +1 respectively. Normalizing the variables over their ranges makes it
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easierto comparetheeffectsof changingvariables from one end of their range

to the other even if they have different magnitudes of associated units. The

wing and tail area example is shown in normalized form in table 2 (assuming

that the previous points represented extremes of the variables).

Table 1 - Two Variable Experimental Design Array

run Win_ Area (ft 2) Tail Area (ft 2)

1 2500 300

2 2500 500

3 3500 300

4 3500 500

Table 2 - Normalized Two Variable Experimental Design Array

run

1

Win_ Area (ft 2)

-1

Tail Area (ft 2)

-1

2 -1 1

3 1 -1

4

Objective function values are determined for each row in the

experimental array. That is, a point design is performed with the design

variables "set" at the levels prescribed by the experimental array. For the

example design, four point designs would be performed. The first one would

fix wing area at 2500 ft 2 and the tail area at 300 ft 2 and determine the vehicle

weight for those settings. The other runs would follow according to the rows

in the experimental array. Different experimental methods use different
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experimentalarraysandthedetailsof the interpretationof theresultsvary, but
in general,parametricmethodsusetheresultsof this broadexplorationof the
design space to determine the region that is most likely to contain the
optimum. That is, individual point design information is extrapolated
throughoutthedesignspace.

Onebenefitof abroadsearchof thedesignspaceis the fact that small
localizedeffectstendto beaveragedout, andthereforelocal minima trapscan
oftenbeavoided.However,parametricmethodsoften lack local resolutionfor
thesamereason.Therefore,theymayonly beableto identify a near-optimum
solutionratherthanatrueoptimum.

The detailsof severalindividual methodsfrom theparametricdesign
classwill bediscussedin later sections.

ProsandCons

Parametricmethodsareable to avoid someof the short comingsof
methodsbasedongradientschemes.By examiningthedesignspacebroadly,
parametricmethodsavoid falling into local minimums. They are perfectly
suitedto problemscontainingdiscretevariablesbecausetheyalreadyrely on a
built-in discretizationprocess.

Because parametric methods approach the design problem by
establishinga setof predeterminedruns (theexperimentalarray), theyenable
parallel executionof someof theelementsof the design.For example,once
thewing arearangeshavebeenfixed for eachpoint designin anexperimental
array, an aerodynamicist may be able to perform all of the required
aerodynamicanalysiswithout waiting for additional inputs. Gradient-based
methodsdeterminethe nextpoint designbasedon information derived from
the current point design and therefore must perform most of the
multidisciplinary analyses required between iterations in series. The
aerodynamicist would be forced to wait for the wing area results of the
previousiterationbeforeproceedingwith thenextdesign.
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Parametricmethodsplaceno requirementson theanalysistools to be
integratedinto a singlecode.Theyarevery well suitedto the"designmodule"
environment typical in conceptualaerospacevehicle design. The design
processis ultimately just a relatively small, predeterminedset of analysis
cycles. The methodsare easyto learn and apply (thereare no gradientsor
derivativesto determine).

Parametric methods also have some disadvantages,however. For
example, they only provide a nearoptimum solution to the problem. Most
parametricmethodscanonly choosethemostpromisingcombinationfrom all
of thepossiblecombinationsof thediscretizedvariables(including thosenot
included in the experimental array). The resolution of the discretization
processlimits theprocessto only a nearoptimum becausethereis nobuilt-in
interpolationbetweenthe variablelevels.In somecases,equationscanbefit
to point designdata(responsesurfacemethods),butevenin thosecases,the
model is only an approximationof thereal designspace.However, a near-
optimum solution is frequently all that is required for a conceptualdesign.
Additionally, parametricmethodshavefew provisions for treating design
constraints.Eachpoint design in the experimentalarray is assumedto lie
within thefeasibleregionof thedesignspace.

In practice, parametric methodscould be applied during the early
portions of a designprocesswhendiscretevariablesmay exist and a very
broadsearchof thedesignspaceisrequired.A near-optimumsolutionmaybe
sufficient for makingbroadconfigurationchoicesearlyin thedesignprocess.
Based on the preliminary results, the design spacecould be refined by
adjusting variables rangesand eliminating variables that may have been
provenunimportant.A secondparametricstudycouldbeusedto furtherrefine
the design space,or a gradient-methodcould be used to "home-in" on a
numericallyoptimumanswerby startingin thenear-optimumregion identified
in the initial parametricstudy.That is, parametricmethodscould easilyserve
as"front-ends" to gradientmethodsif appliedin a sequentialfashion.
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Becauseof thepotentialof parametricmethodsfor usein conceptual
aerospacevehicledesign,this researchwill be focusedonly onmethodsfrom
this classof multidisciplinary designoptimization methods- specifically,
Design of Experimentsmethods,Taguchi methods,and central composite
design(with responsesurfacemethods).
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Discussion of Selected Parametric Methods

This section will discuss the mathematical basis for four selected

techniques from the parametric class of multidisciplinary design optimization

methods. The specific methods are Design of Experiments methods, Taguchi

methods, central composite designs, and response surface methods. Design of

Experiments (DOE) methods are a widely used parametric design scheme.

Taguchi methods are a closely related field to DOE. In fact, many of the

arrays used in Taguchi methods are subsets of Design of Experiments arrays.

One of the goals of Taguchi methods is to reduce the number of point designs

(or experiments) in the design array [16]. Central composite designs add

additional experiments to two-level arrays in order to capture curvature effects

in the design variables. Response surface methods can be used to create a

mathematical model (response surface) of the objective function that

approximates the design space. The response surface can then be optimized to

find the best possible design. Mathematical models of constraints can also be

determined.

These four methods were selected for further study from the class of

parametric methods because they seem to be well suited to the problems of

conceptual aerospace vehicle design. These methods are not new. They have

been successfully applied in a variety of fields - mostly manufacturing related

industries like automobiles and electronics [21]. While these methods may be

relatively well understood by industrial engineers and operations researchers,

aerospace engineers have had far less exposure to parametric design methods.

Additionally, parametric methods have traditionally been applied later in the

design cycle like during the product improvement and process design phases.

Conceptual design problems have been addressed less frequently, although

this particular set of four methods seems well suited for the early phases of

aerospace design. Hopefully, the current research will contribute to the

literature in the field and increase the acceptance of these methods as
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multidisciplinary design optimization methods for conceptual aerospace
design.Eachmethodis discussedin detailin thefollowing sections.

Design of Experiments Methods

Design of Experiments methods (or sometimes simply Designed

Experiments) had their origin with Sir R.A. Fisher in England in the 1920's

[16]. Fisher was performing agricultural experiments to increase crop yields.

Typical variables were field conditions, fertilizer, seed types, etc. His goal was

to be able to determine the effect of each input variable on the overall crop

yield given that interactions are likely to exist between the variables. That is,

the effect of one variable is dependent on the values of the other variables. For

example, the crop yield may increase dramatically for a case where one seed

type is combined with a particular fertilizer type. Such an interaction (or

coupling) could easily be overlooked if a one-variable-at-a-time optimization

method was used.

Fisher's design space is analogous to some multi-variable design

spaces found in conceptual aerospace design. The number of systems level

design variables is typically small - less than 10 in most cases. The variables

are most likely coupled, and discrete variables are likely to be present early in

the design. For example, a decision to place the engines under the wings or at

the aircraft tail is likely to be found during the conceptual, exploratory phases

of the design. Design of Experiments methods are ultimately the basis for

almost all methods from the parametric class.

DOE methods have been advanced over the years by statistical

researchers like Box, Hunter, and Hunter (see reference 22), Box and Draper

(see reference 23), and Hicks (see reference 22) [16]. DOE related methods

have been successfully applied in a variety of industries - manufacturing,
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automotive, and electronics [21]. They are generally easy to apply, only
requiring elementaryknowledgein statisticsto get usefulresults.Basedon
preliminaryresearch,DOE methodshaveconsiderablepotentialin theareaof
conceptualaerospacedesign.

Designof Experimentsmethodsbeginwith the identification of a set
of design variables and a process that producesa measurableobjective
function (or response).The design variables could be chosen basedon
engineering experience,concurrent engineeringwith inputs from various
engineeringdisciplines, or as theresultsof preliminary investigations.The
numberof variablesin aDOE applicationis usuallyrelativelysmall (lessthan
10) in order to keep the experimentaleffort small. Rangesof interest are
establishedfor eachdesignvariable,andthecombinationof designvariables
and rangesforms a design space. The design space is a regular sided,

multidimensional figure (e.g. a cube for three variables). There are an infinite

number of design points within the design space, but the objective of the

method (like all parametric methods) is to identify a manageable set of points

for which to perform an analysis, and then extrapolate the resulting

information throughout the complete design space. The selected set of points

is called the experimental array.

DOE methods create the experimental array by discretizing the

variables across each of their predetermined ranges. That is, each variable is

temporarily limited to only a few values over its entire range. The discretized

values of the variables are referred to as "levels" or "settings". The levels are

generally evenly spaced throughout the design space (although this is not a

requirement). For example, a variable discretized to three levels would have

one value at each of its extreme settings and one value at its midpoint. In order

to make simple comparisons between the effects of variables with different

units, the levels are typically normalized to a range of -1 to +1 as shown in

table 3. Discrete variable settings are simply assigned to a value on the

normalized range. For example, a discrete variable such as "Does the vehicle
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havecanards- Yesor No?" could assign"Yes" to a valueof +1 and"No" to a
valueof-1 asshownin table4.

Table3 - Discretization of a Continuous Thrust Variable

Variable

engine thrust

Range

100 - 200 Klbs

Discretized

100 Klb

Normalized

-1

200 Klb

150 Klb 0

+1

Table 4 - Use of a Truly Discrete Design Variable

Variable Discrete Normalized

Canards? Yes + 1

No -1

In order to keep the problem manageable, the number of variable

levels is limited to three or four. Two-level arrays are the most popular.

Arrays containing variables with different numbers of levels among the

variables (called mixed level arrays) are possible, but it is more common to

have the same number of levels for all of the variables in the array.

Consider a problem with three design variables, A, B, and C. Each of

the three variables can be discretized to two levels and normalized to a range

of -1 to +1. That is, each variable can be either -1 or +1. For the purposes of

this example, it doesn't matter whether the design variables were originally

continuous or if they are truly discrete. All eight (23 ) possible combinations of

these three variables are represented in table 5. Each combination is

represented as a row in the experimental array. Point designs are often referred
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to as "runs" or "experiments" becauseof the method's origin in process

analysis where an apparatus may have been tested after an experimental setup.

Table 5 - Example of All Variable Combinations

Run A

-1

B

-1

C

1 -1

2 -1 -1 1

3 -1 1 -1

4 -1 1 1

5 1 -1 -1

6 1 °1 1

7 1 1 -1

8 1 1 1

B

3 7

A

Figure 7 - Graphical 23 Full Factorial Array
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Suchanexperimentalarraythat containsall of thecombinationsof all
of the variablesis calledafull factorial array. The information in table 5 is a

full factorial array for three two-level design variables. Graphically, the eight

design points are shown in figure 7 where each of the eight comer points of

the cube represents an experimental run in the array. Note that a full factorial

array for four variables at two levels each would require 2 4 =16 runs (or

experiments).

Setting up all of the combinations of the design is only one part of the

process. The goal of the method is to determine the effects of each variable on

the response. For the two-level array shown in table 5, a linear model with

interaction terms can be created like

y = [3o + 131*A + 132"B + _3"C + [34*AB + 135"AC + 136*BC + 137"ABC (16)

where y is the measured response (i.e. the objective function). A, B, and C are

the design variables that can take on values of + 1 or -1. The eight [3 values are

the unknown coefficients that represent the magnitudes of the effects of each

term on the response. For example, if the variable A is placed at its largest

level (+1) then a value of 91 is added to the mean response. If A is placed at

its smallest level (-1) then a value of 131is subtracted from the mean response.

The cross terms like AB represent the interaction between design variables. If

A and B are both +1 or both -1, then a value of _4 is added to the mean

response. If either A or B is -1 and the other is +1, then a value of 94 will be

subtracted from the mean response. This model is sometimes called an

additive model because the effects of each term are "added" or "subtracted"

from the average response [16]. The average response is represented by the 13o

coefficient in equation 16. In general, the additive model for a full factorial,

two-level array of n design variables is:

y=130 + _13ixi + _I3kXiXj+...+I32._,XlX2.-.X,
i=l i=l j=i+l

(17)
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where,
k= (n+l) to n(n+l)/2 by l's

In theexamplein table5 andequation16,thereareeight experimental
runs in thedesignarrayandthereareeight unknownsin the additivemodel.
The unknowns can be determinedexactly by using the following matrix
equation

y = [X]13 (18)

where y is thevectorof theeightexperimentalresponsesand 13is thevector
of theeightunknowncoefficientsof theadditivemodel.Thatis,

y = (yl,y2,y3,y4,ys,y6,YT,ys)r (19)
m

13= (130,13 ,13 ,133,134,13,,136,137)" (20)

The matrix [X] is called the design matrix. For the example

experimental design, the design matrix [X] is •

[X] =

"1 -1 -1 -1 1 1 1 -1-

1 -1 -1 1 1 -1 -1 1

1 -1 1 -1 -1 1 -1 1

1 -1 1 1 -1 -1 1 -1

1 1 -1 -1 -1 -1 1 1

1 1 -1 1 -1 1 -1 -1

1 1 1 -1 1 -1 -1 -1

1 1 1 1 1 1 1 1

(21)

Each term of the additive model is assigned to a column in the design

matrix as shown in table 6. The column for the mean is associated with the

constant term 13o and is always a column of all +1 's. The columns for A, B,

and C are taken directly from the experimental array settings. The columns for

AB, AC, etc. are determined by multiplying the terms in each of the required
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columnstogether.Each row in the designmatrix representsanexperimental
run (i.e. apoint design).

In order for a solution to bepossible, the rows of the designmatrix
mustform an independentsetof vectors.That is, thedeterminantIXl cannot
equalO. If the determinantIXI=O,then the matrix is singularand cannotbe
inverted.

Table6 - ColumnAssignmentsin DesignMatrix for ExampleArray

term mean A B C AB AC BC ABC

column 1 2 3 4 5 6 7 8

The vector, y, in equation19containstheresponsesfor eachof the
experimentalruns.The responseis thevalueto beminimizedor maximized.
Vehicle weight is a typical responseto be minimized in aerospacedesign.
Other typical responsesarepower requirements,aerodynamicdrag,or fuel
requirements.A simpleevaluationof an algebraicmodelmay be all that is
required to determine somesimple responses,but most aerospacedesign
problemsrequirecomplicated,iterative,multidisciplinary analysiscycles in
order to generateresponses.Eachentry in the y vectorcould be theresult of
hoursor evenweeksof work.

For the example experimentaldesign (equation 18), the vector of
unknowns,_, canbedeterminedfrom thefollowing matrixequationin which
thedesignmatrix hasbeeninverted:

= [x]-17 (22)

which can be represented by:
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(23)

The resulting 13's are inserted into the additive model given in equation

16. Since the variables have been normalized to the same -1 to +1 range, the

relative sizes of the 13coefficients indicate the magnitude of the influence of

each of the variables on the response as each variable is varied over its range.

For example, if [31 is significantly larger than the other coefficients, then

Variable A would have a larger influence on the response than the other

variables. The additive model can be used to find the best settings of the

design variables that will optimize the response. Usually this process can be

done by simple inspection. For example, if the response is to be minimized,

then the largest terms of equation 16 should be made negative by choosing

appropriate values of A, B, and C. Since the additive model is linear in all

variables, the minimum (or maximum) will lie at one comer of the design

space (unless one of the coefficients is zero). That is, each term in the model

will either have a positive or negative slope and the minimum will either be at

+1 or -1. In cases where the interaction terms are as large as the main effect

terms, an optimization routine could be used to determine the proper settings

for each variable.

In some cases, the number of experiments required by a full factorial

experimental array (every combination) may be too time consuming or too

costly to perform. In such cases, it is common to use only a subset of the full

factorial army. The subset is called a fractional factorial array and the process
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of creatingthe new array is sometimesreferredto as"fractionating" the full
factorial array [22].

In mostcases,thefull factorialis reducedby a powerof thenumberof
levels in the array.For example,a full factorial array like 24 (a 16run two-
level arrayof four variables)might bereducedto eightruns (divide by 21) or
to four runs(divideby 22).Thenotationfor afractionaltwo-level arrayis 2n-p
wheren is the numberof variablesin the full arrayandp is thepower of the
fraction. A half fraction of a two-level array of four variables would be
designateda 2 4-1 fractional factorial array, and it would require eight runs.

It is obvious that some information must be sacrificed when the size of

the array is reduced. In the example design, all eight experimental runs are

required to determine the eight coefficients in the additive model. For a half

fraction (also called a half-replication), the model can contain no more than

four coefficients. The selection of the subset of four runs (from the complete

set of eight) depends on the coefficients in the model to be estimated. The

problem must always be well posed and the design matrix must be invertible

(if the number of equations and unknowns are equal).

Assume that the model for the three variable, two-level design is now written:

Y = 13o + I31*A +_*B + 133"C (24)

In this model (one of many possible with four terms), only the main

effects are being estimated. The design engineer may know enough about the

design to know that the interaction terms will be negligible, and he or she

wants to save some experimental effort by only performing four experiments.

In practice, it is dangerous to assume that the interactions in an unknown

design space will be small because, if they are present but ignored, then their

effects will influence the other coefficients in the design. If it is necessary to

fractionate a design, a proper selection of the subset of runs will provide some

predictable structure to the way the ignored terms could possibly influence the
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included terms.The processof selectingthe subsetof runs for a fractional
factorial arrayisdiscussedbelow.

Therearemanywaysto createa23'1 fractional factorial array for the
23arrayshownin table5. If thefull factorialarrayis fractionatedby selecting
the second,fourth, sixth, andeighthruns,then thefollowing, singular,design
matrix wouldbecreated.

IX] = 1--1--11 -1 1

1 1 -1

1 1 1

(25)

Table 7 - Column Assignments for Singular Design Matrix

term mean A B C

column 1 2 3 4

Note that the first and last columns are identical. This design matrix

cannot be inverted. A better selection in this case would be the second, third,

fifth, and eighth runs from table 5. The design matrix would then be

ll11:il1 -1 1

[X]= 1 1 -1

1 1 1

(26)
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where the column assignmentsare the sameas those shown in table 7.
Equation26 is an invertible matrix that would allow a solution for the main
effectsmodelshownin equation24.

The increasedexperimentalefficiency of a fractional factorial array

allows the main effects to be estimated in only four experiments. However, as

previously mentioned, fractional factorial arrays have a hidden danger. By

ignoring some of the interaction terms, a designer is assuming that they do not

exist. In reality, interactions almost always exist in advanced aerospace

design, he or she is just hoping that they are small compared to the main

effects.

The design matrix in equation 26 is designed to capture three main

effects. If an interaction between variables A and B exists (an AB term), it will

have the same design vector as the C variable. That is, C=A*B for every row

in [X], or put another way, the product of all of the terms in the second and

third columns is equal to the terms in the fourth column. The effects are

indistinguishable. This situation is called confounding [16] and the main effect

C is said to be aliased with AB. Similarly, A is aliased with BC, and B is

aliased with AC in equation 26. If the interaction terms are suspected to be

large, then the experimental array should be carefully chosen to keep the

desired coefficients free from aliasing interference. Aliasing patterns and

methods to select a suitable fractional array are discussed in references [16],

[20], and [22]. The designer should be aware of the fact that simplifying the

model does not simplify the design space. Just because an interaction does not

appear in the model, does not mean it is absent from the true response.

To this point, only arrays that have equal numbers of experiments and

unknowns in the additive model have been considered. That is, the design

matrices have been square and invertible. Square designs are called saturated

designs [25]. Saturated designs perform the minimum number of runs required

to fit the additive model. It is possible, however, to create an experimental

array with more than the minimum number of point designs. Consider the
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following equation with more experimental runs than coefficients in the
model:

Ym,l = [X]m.n_n,1 wherem>n (27)

In this case,[X] is not directly invertible. The vectorof coefficients,
_, canbeestimated,however,usingthemethodof leastsquaresdescribedin
reference 19. The method of least squares selects the coefficients that
minimize thesquareof theresidualerrorsbetweentheobservedresponsesand
thepredictedresponses.Thesolutionfor _ is determinedasfollows.

(28a)

(28b)

By using such a regressiontechnique, measurementerrors in the
responsescan be "averagedout" and while the model may no longer pass
through every designpoint, it will probably more accuratelyrepresentthe
overalldesignspace.

Additional statistical testsare possiblefor experimentalarrayswith
moreexperimentsthancoefficients.Phadke[16]givesadiscussionof analysis
of variance(ANOVA) tests,teststo determinethequalityof theregressionfit,
andtestsfor statisticalsignificanceof eachof thecoefficients.

Considertheexperimentalarrayin table 8. Theexperimentalrunscan
be usedto predict the coefficients in equation24. This array containsfive
point designs,but there are only four coefficients in the additive model.
Therefore,thedesignmatrix IX] is not square,andthemethodof leastsquares
must be to be usedto solve for the _ vector of coefficients.Note that this

particulardesignarray is beingusedonly to demonstratetheconceptof least
squares.It is nota recommendeddesignbecauseit is not fractionatedbasedon
apowerof two.
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Table8 - FractionalFactorialExperimentalArray

Run

1

A

-1

B

-1

C

-1

2 -1 -1 1

3 -1 1 -1

4 -1 1 1

5 1 -1 -1

The design matrix, [X], associated with table 8 is

[X] =

1 -1 -1 -1

1 -1 -1 1

1 -1 1 -1

1 -1 1 1

1 1 -1 -1

(29)

The vector of unknowns, _, can be solved using the method of least squares.

= [XTX] -1[X] Ty (30a)

I °l[1113i]IYl_1 1 -3 -1 -1 1 ,Y2

13_= 8 -_ -2 2 2 Y_
133 - 2 -2 2 Y4

Y5.

(30b)

Many specialized forms and applications of Design of Experiments

have been researched and developed since Fisher's early work. Specialized

arrays have been developed that fractionate full factorial arrays in ways that

are useful for determining only main variable effects (i.e. Plankett-Burman
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designs [20]). Saturateddesigns have been developed that are able to
minimize thevariancein thecoefficientsin themodel.Most of thesedesigns
are basedon the so called "D-optimality" criteria [25]. Other statistically
generatedminimum variancecriteria havealso beenproposedfor evaluating
experimentalarrays(e.g."G-optimality") [25]. GenichiTaguchidevelopeda
systematicapproachto robustdesignbasedon orthogonalexperimentalarrays
[18] that is of particular interestto engineersin conceptualdesign. In other
methods,the simple additive modelsof two-level experimental arraysare
efficiently augmentedby runsatadditionallevelsin orderto capturecurvature
in thedesignspace.Thesesecondordermethodsarecalledcentralcomposite
designs,and they areclosely associatedwith a curve fitting methodcalled
responsesurfaceanalysis[19, 20]. Theselast threemethodswill bediscussed
in moredetail in thefollowing sections.

Taguchi Methods

Taguchi methods are based on Design of Experiments methods, and in

some cases, the experimental arrays used by the Taguchi method are simply

carefully selected fractions of full DOE arrays. Taguchi methods emphasize

orthogonal experimental arrays in his method because they exhibit attractive

characteristics for solving for the coefficients in an additive model. Because of

the use of orthogonal arrays, the effects of the variables are easy to determine.

Taguchi methods are named for the Japanese engineer, Genichi

Taguchi, who refined and simplified existing DOE methods through the use of

orthogonal arrays [26]. Taguchi applied experimental design techniques to

quality improvement issues. He formulated many of his ideas while trying to

improve the off-line quality control of the Japanese communications system

after World War II [27]. He realized that the quality of a given product must

be "designed in" during the early stages of the overall design process. If the
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product was designed properly off-line (i.e. before it actually went into
production), it would be fairly insensitiveto theuncontrollablenoisesit may
encounterduring themanufacturingprocessandthereforefewerdefectswould
be produced and money could be saved.Taguchi wanted a techniquethat
could beusedby engineersearly in the designphase.The existing statistical
methodsembodiedby Fisher'sdesignof experimentstheorywere available,
but they were generally thought to be too complicatedor unwieldy for the
averageengineerto use.Taguchiusedsimpleorthogonalarraysto reducethe
complexity and the number of experimental runs involved in solving a
problemwith a full factorial design.Taguchipublishedtheorthogonalarrays
usedby his method,andheessentially"cook-booked"theanalysistechniques
thatallow the designerto efficiently analyzetheexperimentalresultsin order
to determine the most important parameters. Since the mid-1960's all
Japaneseengineershavebeentrainedin the useof Taguchimethods[28]. In
the early 1980's, the Taguchi methodbeganto beusedby engineersin the
United States- primarily in the manufacturing,automotive,and electronics
industries[28]. The methodhasapplicability to theearly stagesof aerospace
vehicledesign.

Taguchi methods are basedon the useof orthogonal experimental
arrays.An orthogonalarray is onethat producesadesignmatrix, [X], whose
columns are all mutually orthogonal.That is, the dot product of any two
columnsof thedesignmatrix is 0. Taguchiidentifieshisorthogonalarraysby
theletter L followed by asubscriptindicatingthenumberof rows in thearray.
For example,an L32 orthogonalarraywill contain 32 rows. The maximum
numberof columnsin theorthogonalarraydependson thenumberof levelsof
the design variables. Two-level arrayscontain one less column than the
numberof rows. The L32 orthogonalarray will containa maximum of 31
columns. Table 9 showsanL4 experimentalarraydesignedto capturethree
mainvariableeffects(asin equation24).
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Table9- L40rthogonal Array

run
1

A

-1

B

-1

C

1

2 -1 1 -1

3 1 -1 -1

4 1 1 1

The design matrix, [X], associated with table 9 is:

[X] = 111:i]1 -1 1

1 1 -1

1 1 1

(31)

We can verify that the first two columns of the design matrix are

orthogonal by evaluating their dot product.

(col 1).(col 2) = (1"-1)+(1"-1)+(1"1)+(1"1) = 0 (32)

All other columns in the design matrix are similarly orthogonal. Note that

some arrays with three or more levels can also be orthogonal.

Another characteristic of orthogonal arrays is called the balancing

property [16]. Every column contains an equal number of the variable levels

and, for every set of two columns, the pairs of levels -1 and +1 occur in all

combinations and an equal number of times. For the L4 array, the pairs of

levels (-1,-1), (-1,+1), (+1,-1), and (+1,+1) each occur once for any two

columns. For an L8 orthogonal array, those combinations would each appear

twice. The balancing property has the effect of making the array "unbiased"

with respect to any one of the variable levels. As a result, the effects of

changing variable levels is distributed evenly between any two columns and

the array is not "slanted" toward any one setting of the design variables. The
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balancing property is a sufficient condition to prove the orthogonality of an

experimental array [16]. Figures 8a, 8b, and 8c show the concept of

orthogonality graphically. Figure 8a shows a full factorial array of three

variables (A, B, and C) at two levels each and figure 8b shows a selection of

four points that is not balanced. Figure 8c shows a proper, balanced array (the

L4 array).

,¢

B

6 7

i 8
Figure 8a - Full
Factorial Array

A t
/c

_B

6 7

Figure 8b - Unbalanced
Array

A

B

6 7

2
C

Figure 8c - L4
Orthogonal Array

A

The most important characteristic of orthogonal arrays is that they

diagonalize the [xTx] -1 term in equation 30a which, in turn, makes the
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calculation of the effect of each variable very easy. Consider the orthogonal

design matrix from equation 3 l. Then the [xTx] -I term would be

if00l1010

[XrX]-X = 4" 0 1

00

(33)

and the solution for the variable of coefficients, 13, is:

II30l _111 ll[Y,l

,[-1-11
113 1= |_1 1 _, 111Y3[

L133J L 1 -1 -1 lj[.y4j

(34)

The mean response 130 is (as expected) the average of all four experimental

responses and the other 13's can be shown to be half of the difference between

the average responses at one level of the variable and the average responses at

the other level. That is,

130 _ Yl + Y2 4- Y3 + Y4
4

(35a)

and using _1 as an example

131= 1Iy3 +Y42 Y_ + Y2]2 (35b)

The responses Y3 and Y4 were determined with A set to a value of +1,

and the responses Yl and Y2 were determined with A set to -1. With

orthogonal arrays, the effect of a variable on the response can be determined

by a simple difference of averages rather than by having to perform a complex

matrix inversion. The same result is true for larger orthogonal arrays with

more variables and more runs (and even interactions). This property of
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orthogonalarraysmakesthemvery easyfor the averageengineerto learnand
applyandhascontributedto thepopularityof Taguchimethods.

To this point, only experimentalarrayswith two levels per variable
havebeendiscussed.Taguchihaspublishedorthogonalarraysfor three,four,
andfive level variables,andhehasevencreatedsomearraysthat havemixed
levels (e.g. the L18 array). The mathematicalinterpretation of theseother
arraysis more difficult, but Taguchimaintainsthat the "averaging" method
(calledanalysisof themean, ANOM) is applicablefor thesearraysaswell as
two-level arrays [16, 17]. For example,a variable could have three levels
(eitherdiscreteor discretized).Whenplacedin athree-levelorthogonalarray,
theeffectof thevariablecanbedeterminedfrom averagingtherunsat eachof
thethreelevelsandpicking thelevel that producesthe bestaverageresponse.
Three level arrays are able to capture some curvature effects using this
technique.BecauseTaguchi relieson easyto analyzeorthogonalarrays,his
methodis lessconcernedwith "the mathematicalmodel" anddealsmorewith

questionslike "which variable setting (and which combination of settings)
producesthe best averageresult?". In fact, most historical applicationsof
Taguchimethodsdealwith only mainvariableeffects(no interactionterms)in
anattemptto find thebestoverallcombination.In advancedaerospacedesign,
however, it is unwise to ignore the interactions. The following section
illustratesthat two variableinteractionscanbeanalyzedby thesameANOM
techniquesif the columnsof the designarray arecarefully chosento avoid
aliasingproblems.

As discussedin the DOE section, interactions can sometimesbe
aliasedto (or confoundedwith) mainvariableterms.That is, certaincolumns
in a design array could representinteractions and main effects. Taguchi
methodshavetraditionally emphasizedusingorthogonalarraysto determine
main effectsonly. If fact, criticsof themethodpoint out Taguchi'sclaim that
two variableinteractionsdo notneedto beconsideredat all becauseaproper
selectionof designvariableswill minimize interactions[20]. However, there
areprovisionsin themethodto properly treatinteractions.Taguchideveloped
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andpublisheda graphicaltool called linear graphs that can be used to help

identify columns that contain two variable interactions. Linear graphs show all

of the columns of the experimental array either as points (main effects) or

lines between two points (a two variable interaction between two points) as

shown in figure 9.

1 2
3

© ©

Figure 9 - Linear Graph for L4 Array

By using the linear graph for the L4 array, a designer can easily see

that an interaction between the first and second columns of the array will be

present in the third column. Therefore, any main effect variable placed in the

third column will be confounded with the interaction. If the designer is

interested in estimating the interaction, then the column should be left empty

(i.e. no main effect in the third column). The resulting experimental array can

be used to estimate the coefficient associated with the interaction term. In

most cases, a given experimental array will have more than one linear graph

indicating different ways that the columns can be used.

As an example, consider a problem that has four two-level design

variables, and two variable interactions are likely to exist between three of the

design variables. The linear graph for the L 8 array (figure 10) indicates that it

is an acceptable orthogonal array that can determine the required terms in only

8 runs (a full factorial array would take 24 = 16 runs).

Therefore, if variable A is assigned to column 1, variable B is assigned

to column 2, variable C is assigned to column 4, and variable D is assigned to

column 7, then the AB, AC, and BC interactions can all be estimated as shown

in table 10. Note that only the four main variables are changed during the

experimental process (i.e. the array is treated as four main columns and eight
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rows). The interaction coefficients are estimated after the experiment is
completedby calculatingone-halfof thedifferencebetweentheaverageof the
four runswith a settingof +1andtheaverageof thefourrunswith a settingof
-1.

6
4

7

©

Figure 10 - Linear Graph for L8 Array

Table 10 - L80rthogonal Array

Run A B AB C AC BC D

1 -1 -1 1 -1 1 1 -1

2 -1 -1 1 1 -1 -1 1

3 -1 1 -1 -1 1 -1 1

4 -1 1 -1 1 -1 1 -1

5 1 -1 -1 -1 -1 1 1

6 1 -1 -1 1 1 -1 -1

7 1 1 1 -1 -1 -1 -1

8 1 1 1 1 1 1 1

As mentioned previously, Taguchi methods place less emphasis on

matrix operations to determine coefficients and model fits because by using
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orthogonal arrays, the process can be reduced to simply averaging the

responses at the different levels (analysis of the mean). Many applications of

Taguchi methods simply present the results in a graphical format. For

example, if variable A in the L8 array was engine thrust and the response was

gross weight, then the average responses could be plotted on a graph like that

shown in figure 11. The value plotted for engine thrust of -1 is

(yl+Y2+Y3+Y4)/4 and the value plotted for engine thrust of +1 is

(y5+Y6+Y7+Y8)/4. If the objective is to minimize gross weight, then setting the

engine thrust to its highest value would be the best choice (in the absence of

large interactions). ANOM results are also frequently shown in tables called

mean response tables.

I
-1

engine thrust

Figure 11 - ANOM Result for L8 Array

Interactions can be analyzed graphically using ANOM or by using

mean response tables. The mean response tables can either be shown as the

difference of the averages of the interaction "levels" shown in the orthogonal

array (the same method as used for main effects) or as separate average

responses for each of the four combinations of the two variables (i. e. (-1,-1),

(-1,+1), (+1,-1), and (+1,+1)). The first method is analogous to calculating the

interaction term coefficient in the additive model, and it is useful for

determining the magnitude of the interaction effect. The second method is

useful for determining the best combination in the two variables involved in

the interaction. Interactions can also be interpreted graphically as shown in
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figure 12.Here,the interactioneffectof asecondvariable(variableB - engine
exit area) hasbeenshownon the graph.For this example,there is a strong
interaction betweenengine thrust and engine exit area. An engine thrust
settingof 1 producesthelowest grossweight, but only if theexit areais also
setto +1. As arule of thumb,a stronginteractionis saidto exist if thelineson
sucha grapharecrossed.

exit area= -1

"5 area= 1

_a0

I

-1 1
engine thrust

Figure 12 - Graphical Interpretation of an Interaction

An extension of the ANOM technique is the more powerful technique

for determining the statistical information about the variables called Analysis

of the Variance (ANOVA). ANOVA, while not used by many designers and

not necessary for all situations, uses additional statistical techniques to further

analyze the problem and provide additional data [27]. For example, ANOVA

uses the standard deviation of the mean results from a particular parameter to

insure that the changes in the overall response are statistically valid. That is,

are the results inside or outside of the statistical noise of the experiments?

Reference 29 contains ANOVA data from an experimental application of the

Taguchi method to the design of a plastic container using finite element

analysis. Using ANOVA, the designer was able to determine relative

importance of the various design parameters on the overall product design

[29]. References 16 and 27 provide additional information about the analysis

of variance technique.
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The secondprimary analysistool within theTaguchimethodis signal-
to-noiseratio (S/N)analysis.As mentionedearlier,agooddesignis onethatis
fairly insensitiveto uncontrollableoutsideinfluences.For example,a launch
vehicle that is more tolerant to unexpectedweight growth is moredesirable
than one that is not. Once the noise factors and appropriate levels are
identified, a secondorthogonalarrayis selectedto createa noisearray (also
called the"outer array") [27]. The noisearrayis usedin conjunctionwith the
original controllablefactorsarray (or"inner" array)suchthat for eachrow of
the inner array, experimentsareperformedfor all of the rows of the outer
array.If the innerandouterarraysareboth L8 arrays, then the result would be

64 evaluations of the objective function. Using the objective function data for

each case, an appropriate signal-to-noise ratio is calculated that, in effect,

represents the ratio of the effect of the parameter on the mean of the objective

function to the sensitivity of that parameter to the uncontrollable noises. A

higher signal-to-noise ratio is the most desirable because it indicates a

parameter that controls the objective function without being overly sensitive

to uncontrollable noises. For the L8 controllable factors array used in the

previous example, assume a designer wants to test the sensitivity of the system

to three noise factors at two levels each (e.g. 10% and 15% weight growth,

two levels of cross winds during landing, and two launch delays periods). We

can construct the noise array using an L4 Taguchi orthogonal array. So, for

each of the eight rows of the original array, we now perform experiments at

four different noise combinations. The result is 32 evaluations of the objective

function - vehicle gross weight (see figure 13).

Taguchi created several definitions for calculating signal-to-noise

ratios. Since we are trying to minimize the vehicle weight, the appropriate

signal-to-noise ratio to use is the "smaller-the-best" S/N. The S/N for each

row of the controllable factors array is calculated using the following equation

from reference 16.

1 n

S/N = -10*log10 (n _ yi2) (36)
i=1
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where,

n = number of rows in the noise array (4)

Yi = objective function at each noise column

--L8 Controllable--
__ Factors (inner) __

Array __

, , ' [L 4 Noise (outer)
Array

Output Table

Figure 13 - Inner and Outer Arrays

After a single S/N is calculated for each row, an average SB'q is then

calculated for each of the controllable design parameters at each of its settings

(similar to the ANOM calculation). Higher S/N's indicate a statistically lower

vehicle weight even when noise is included and are, therefore, better settings

for the parameters. Using S/N information, a designer can identify which

parameter levels are most sensitive to uncontrollable noises. Therefore, a more

robust, noise tolerant system can be designed. Figure 14 shows a case where

knowledge of the noise sensitivities allows a designer to select a more robust

design point rather than risk a more "optimum" setting that is overly sensitive

to uncontrollable factors. The S/N formulas for cases where a specific output

value is being targeted (i.e. nominal-the-best S/N) include additional terms

such as the standard deviation and mean of the row [16]. In all S/N cases,

however, a larger S/N is a more desirable case.
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Figure 14 - Robust Design vs. Numerical Optimum

While many applications of the Taguchi method do not make use of

signal-to-noise ratio techniques, it is perhaps the greatest strength of the

method. In reference 30, Byrne and S. Taguchi give an example of signal-to-

noise ratio analysis applied to the design of an elastomeric hose connector

where the controllable factors are adhesive concentration, connector wall

thickness, insertion depth, and interference fit. The noise factors are

conditioning time, conditioning temperature, and conditioning humidity.

In general the Taguchi method is very easy to apply and does not

require numerical gradients and derivatives to be generated for each step in an

iteration process. The experimental runs, with or without noise factors, to be

analyzed are established from the beginning of the design process. Existing

detailed analysis codes can be retained. The method does not require the

analysis experts to provide any "new" information as part of their individual

analysis processes.

Because parametric ranges and levels are used, the process lends itself

very well to the use of discrete variables. Structural material type, for

example, could be one of the input parameters with the two levels representing
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two completely different materials. Numerical optimization techniques would

have a very difficult time dealing with such a parameter because derivatives

do not exist for discrete variables.

In addition, the Taguchi method tends to characterize the entire design

space rather than just finding the optimum answer. Interactions, parametric

trends, and noise variances are all identified by the method. Armed with such

information, a designer may have more confidence in the final design.

On the negative side, the results from the Taguchi method (like all

DOE based methods) are not truly optimums in the sense of several decimal

place accuracy. The results will only show trends over the range and levels

given by the designer. The "near-optimum" solution will only be the best

combination of the design variables as limited by their levels. In some cases,

the ranges may be too large, and therefore, the "grid" may be too coarse to

predict a suitable optimum. In that case, the ranges should be redefined, and

the process should be repeated. Large ranges are useful for exploring the

entire design space, but care should be taken to avoid infeasible regions in the

design space. The method is not well suited to dealing with infeasible design

points. Taguchi methods are also useful for screening variables to determine

the most significant ones. Using the method, variable trends and interactions

can be identified to enable one or two designs to be selected for more detailed

study.

Because of the Taguchi method's ease of use, ability to deal with

discrete variables, ability to find a near-optimum (if not an exact optimum),

and ability to screen a set of variables over the entire design space, it may be

most applicable to the early phases of a vehicle design - where many of the

major configuration decisions remain open. This method is particularly

attractive to the conceptual aerospace vehicle designer.
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Central Composite Design

Methods based on two-level arrays (like 2 n full factorial arrays, 2n-p

fractional factorial arrays and Taguchi's L4, L8, and L32 arrays) are designed

to capture linear main variable effects and interactions between variables.

However, many aerospace designs contain curved design spaces. In order to

capture curvature in a particular variable, it must be represented at least by

three levels in the experimental array. In addition, curved models can be used

to help locate a near-optimum within the design space - not just at the corners

as with an additive model. Full factorial and fractional factorial three-level

DOE arrays are candidates. However, full factorial 3 n arrays generally require

many experimental runs and do not fractionate very cleanly (i.e. it is difficult

to obtain simple aliasing structures). Taguchi's three-level orthogonal arrays

are also candidates, but again they can be large and have complicated aliasing

patterns [20].

Central composite designs (CCD's) are a class of designs that are able

to capture curvature effects in the design space, specifically a quadratic model.

CCD's were introduced in the 1950's by statistical researchers Box and

Wilson as an altemative to three-level factorial designs [19]. CCD's are built

from full or fractional factorial two-level arrays that already contain a

sufficient number of runs to capture first order effects (and interactions) for a

given number of design variables. Then, a point is added at the center of the

design space and two points are added along each variable axis for which

curvature is to be estimated. These "star" points are placed an even distance to

the left and right of the center point. Figure 15 illustrates a CCD for a three

variable problem for which all interactions are to be estimated and all three

variables are expected to have curvature effects. The white circles represent

the points from a 23 full factorial array, and the black circles represent the

points added to form the central composite design (i.e. center point and the

star points).
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Figure 15 - Three Variable Central Composite Design

The star and center points add 2n+1 points to the experimental design.

Table 11 lists the number of experiments required to estimate quadratic

curvature and all 2 variable interactions for Taguchi and CCD. The number of

runs required by the CCD is tabulated based on a suitable orthogonal

fractional two level array (one that will capture all of the interactions) and

based on a full factorial two level array. The full factorial three level array is

also listed.

Table 11 - Comparison of CCD and Other Methods

_# Variables _ Full
Factorial

3 n

3 Level

Taguchi

Fractional

2n-p based
CCD

Full

based 2 n
CCD

2 9 9 9 9

3 27 9 15 15

4 81 81 25 25

5 243 81 27 43
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As the numberof variablesincreases,the efficiency of the fractional
2n'p basedCCD becomesevident. Note that the number of experiments
required by the fractional arraysdoes not vary smoothly with number of
variables becausethe amountof fractionating requiredto preservean array
that will capture all of the two variable interactions varies. CCD's are
designed to be able to fit a model that capturesall of the two variable
interactions,all of the linear terms,and all of the secondorder terms.For
example,consideratwo variableCCDdesign.Themodelto be fitted is

Y= 13o+ 13,*A+132"B+ 133*AB +134"A2+135"B2 (37)

This equation has six unknowns so there must be at least six
experimentsin thedesignarray.TheappropriateCCDdesignis

Table 12- Two VariableCCD

Run

1

A

-1

B

-1

2 -1 1

3 1 -1

4 1 1

5 -0q 0

6 o_1 0

7 0 -a2

8 0 a2

9 0

Note that the first four runs are a full factorial 2 2 array. The full

factorial is required in this case to capture the two variable interaction. The
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fifth throughninth experimentscapturethequadraticterm in variablesA and
B. Theninth experimentis thecenterpoint. Graphically,this arrayis thetwo
dimensionalgraphicshownin figure 16.
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Figure 16 - Two Variable CCD

The selection of values for the coefficients o_1 and o_2 will have an

effect on the characteristics of the second order model. If t_l=O_l=l, then the

star points will lie in the same plane as the upper and lower settings for each

variable. Counting the center point, each variable will be represented at three

different levels. Such a design is said to be face centered [20]. Face centered

designs have some advantages. They are simple to construct, and they are

useful for cases when the high and low settings of a design variable are

physically limited to the values within the assigned range of +1 and -1. For

example, if a variable was engine throttle setting, and a normalized setting of

+1 was given to a throttle setting of 100% in the fractional part of the design,

then it would not make sense to assign a star point to a value higher than +1. It

can be shown, however, that if 0_1 and o_2 are carefully selected, then the

variance of the fitted model will depend only on the distance from the center

point and not on the direction. Variance is a statistical term that is analogous

to the precision of the fit [20]. Such a design is called a rotatable design [19].

The term rotatable is derived from the fact that the design can be rotated about
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its centerpoint, andthevarianceat a givenpoint would beunaffected(since
its distancefrom thecenterpoint would notchange).

where,

Thevaluefor a in arotatabledesignis givenby:

I'l
= F _ (38)

F = the number of points in the factorial portion of the design

For the example CCD shown in figure 16 and table 12, F--4 and the

design will be rotatable if tx is set according to equation 39.

(1)
tx = 4 _ = _ (39)

Rotatability of the array is a desirable theoretical goal since the object

of the design is to find the minimum point in the design space and rotatable

designs provide equal precision in all directions [20]. Note that all orthogonal

first order arrays are rotatable. 3 k arrays are not rotatable [20].

In practice, rotatability may be most useful only as a design guideline.

In some cases, it may be impractical to select 0_ such that it equals F TM. In

those cases, a value close to the optimum will make a "near rotatable" design

that should be sufficient. In fact, different values of tXl and ct2 could be used if

necessary. The second point to remember about using rotatable designs is that

they calculate variance based on a second order model. It is highly likely that

the actual physical design space may not be a true second order space. That is,

there will likely be other sources of variance in the model.

One attractive characteristic of central composite designs is the fact

that they can be created as "add-ons" to existing flu'st order, two-level designs.

A design space could be first explored with a simple fractional factorial array,

and if the model is later found to be inadequate, then the design could be built

into a CCD by the addition of a center point and star points. The new second
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order model would take advantageof the previous work. It is a common
practice to determine the accuracyof a first order model by performing a
design at the center of the design spaceand comparing the result to the
predictedcenterpoint. Thepredictedcenterpoint is themeanresponseof the
first order model (the _30 coefficient). If the actual center point differs

significantly from the predicted center point, then it is highly likely that there

is curvature in the design space. However, there is no indication of which of

the variables is contributing the most to the curvature effect. It is not

necessary to add star points for every variable in the design - only those for

which a quadratic term is desired. In many cases, the majority of the curvature

is the result of only one or two variables.

In summary, CCD's are a potentially very useful technique for use in

advanced aerospace vehicle design. Unlike two-level methods, CCD's can

capture second order effects in the design space (at the expense of additional

runs compared to linear models). They are easy to construct, and they can be

"built up" from a fractional factorial array. CCD's can be designed to be

rotatable (equal precision in all directions), while three-level methods like a 3 k

full factorial design cannot. They are more efficient and require fewer

experimental runs than Taguchi's three-level orthogonal arrays. CCD's,

however, are not orthogonal. They cannot be readily used with discrete

variables using Taguchi's analysis of the mean technique, but they are very

attractive for use with continuous variables.

Once a suitable design array has been selected using CCD techniques

(either rotatable, near-rotatable, or face centered), then the individual

experiments can be used to fit a mathematical model of the response.

Generally, the actual process of determining the coefficients in the second-

order model is part of a technique called response surface analysis or response

surface methods. Response surface methods are discussed in the following

section.
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Response Surface Methods

Response surface methods (RSM) are very closely associated with

arrays created with central composite design. RSM refers to the actual process

of determining or "fitting" an approximate mathematical model for an

experimental response (the objective function). RSM is not restricted to fitting

experimental arrays formed with central composite design techniques, but it is

one of the most common uses of RSM. RSM can be used to fit mathematical

response models to full and fractional factorial two-, three-, and higher-level

design of experiments arrays as well as other statistically derived three level

arrays. However, RSM is not generally associated with Taguchi methods

because orthogonal arrays can be analyzed with simple analysis of the mean

techniques.

Central composite designs contain information to fit a mathematical

response model of the form (containing all main effects, all two variable

interactions, and all quadratic terms for a given number of design variables):

y =130 + _13ix, + _[3_x,xj + y,13,x_
i=l i--I j--i+l i--I

(40)

where,

n= the number of design variables

k= (n+l) to n(n+l)/2 by l's

1= I(n + 1)(n + 2) ]{-(i- n) -1

Equation 40 can be written in the matrix form:

= [X]_ (41)

!

where y is the vector of experimental responses, 13 is the vector of unknown

coefficients, and [X] is the design matrix. For the two variable CCD shown in

table 12, second order model is
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Y= _o+ 131*A+_r2*B+ _3*AB +_4*A2+_5*B2 (42)

Taking ot1=o_2=',,/2-to make the design rotatable, the design matrix, IX],

[X] =

becomes

1 -1 -1 1 1 1-
1 -1 1 -1 1 1
1 1 -1 -1 1 1
1 1 1 1 1 1
1 -'x/2- 0 0 2 0
1 _ 0 0 2 0
1 0 -',,/2 0 0 2
1 0 _ 0 0 2
1 0 0 0 0 0

(43)

wherethecolumnsin thematrix areassociatedwith thetermsin themodelas
shownin table 13.

Table 13- ColumnAssignmentsfor 2 VariableCCDDesign

term mean A B AB A2 B2

column 1 2 3 4 5 6

Note thatthedesignmatrix formedfrom acentralcompositedesignis
not orthogonal. Sincethe matrix is not square,the solution of equation41
requires the useof the least squaresmethod.The least squaresmethod is
appropriatefor usewith polynomialequations[20]. Solutionsfor coefficients
in non-polynomial equations can be found by using various forms of
regressionanalysis[seereference20]. Regressionanalysiscanalsobeusedas
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an alternative to matrix manipulation to solve for the coefficients in a
polynomial equation.Regressionanalysiscapabilitiesexist in manypersonal
computerbaseddataanalysispackages.

Using themethodof leastsquares,equation41becomes,

= [xTx]-, IX]Ty

and the solution for _ can be written

"130

131

132

133

135

1

16

0 0 0 0 0 0 0 0

-2 -2 2 2--,_ _ 0 0

-2 2 -2 2 0 0-x/'8

4 -4 -4 4 0 0 0 0

1 1 1 1 3 3 -1 -1

1 1 1 1 -1 -1 3 3

16"

0

0

0

-8

-8

Yl

Y2

Y3

Y4

Y5

Y6

Y7

Yg

.Yg_

(44)

(45)

Once a model has been determined, the goal is to minimize (or

maximize) the response. A non-linear, gradient-based optimization technique

can be used to locate the minimum. Many of the techniques discussed

previously in the classical optimization section are appropriate - steepest

descend, Powell's Method, etc. If a central composite design is used (thereby

allowing a quadratic response surface to be calculated) then it is possible that

a minimum may exist within the design space. Recall that two-level methods

will only locate a near-optimum along the edges of the design space. In

addition, the RSM optimum is not limited to the best combination of the

different levels of all of the variables (unlike Taguchi). Even though a variable

may only be limited to a few levels in the experimental array (i.e. -1, 0, and 1),

the optimum may be determined to be a value like 0.567. Therefore, RSM

may allow a more optimum solution than Taguchi methods.
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Oneof the mostimportantadvantagesof responsesurfacemethodsis
thefact that constraintscanbe includedin theprocess.At thesametime that
experimentsare being performed to determine the objective function at
variouspointsin thedesignspace,thevalueof anoutputto beconstrainedcan
also be recorded.A separateresponsesurfacecan be createdto model the
value of the constraint, and a non-linear optimizer capable of treating
constraintscanbeusedto minimize theobjectivesubjectto theconstraint.For
example,a launch vehicle is beingoptimized for minimum weight using a
CCD with RSM. Thedesignvariablesarewing size,enginethrust,andengine
mixture ratio. The vehicle is also constrainedto a maximumlanding speed.
For eachpoint in the CCD, a complete,convergedvehicle point designis
performed for the prescribedsettingsof the designvariables.The vehicle
weight andlanding speedarerecordedfor eachpoint, andRSM is usedto fit
second order models of both the objective function and the constraint
function. An optimizer is then used to find the minimum vehicle weight
subjectto amaximumlanding speedconstraint.This sametechniquecould be
performedwith severalsimultaneousconstraints.Stanley,et. al. [7] provides
an example of such an application to an advancedrocket design. In that
example, the vehicle dry weight was minimized subject to minimum
aerodynamiccontrol constraints.Theability to handleconstraintsis oneof the
mostpowerful aspectsof responsesurfacemethods.Suchanability is lacking
in purely parametricmethodslike theTaguchimethod.

Responsesurfacemethodsarevery well suitedto advancedaerospace
vehicle design. They are basedon parametric design arrays which have
alreadybeenshownto beuseful (theyretainexisting analysiscodes,explore
theentiredesignspace,areresistantto local minima,allow parallelexecution
of someanalysis,they usea small numberof point designs,etc.). In addition,
RSM methods basedon second order experimental arrays like central
compositedesignsallow the determinationof anoptimumthat is not just the
bestcombination of the levels of the designvariables(i.e. valuesbetween
levels arepossible).It is important to remember,however,that themodel is
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still just anapproximationof thetruedesignspace.Usingasecondorder RSM

model does not mean that the design space will be quadratic. The numeric

optimum of the model (determined by the optimizer) will not necessarily be

the optimum of the true design space. Also, RSM based on CCD's require

more point designs than two-level models (although they provide more

information), and they are not well suited to the use of discrete variables.

Taguchi methods are better suited for use of discrete variables. However,

RSM appears to be a very attractive method for use in aerospace design.
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SAMPLE DESIGN APPLICATION

(ROCKET-BASED COMBINED-CYCLE LAUNCH

VEHICLE)

In order to test some of the hypotheses concerning the applicability of

the parametric class of multidisciplinary design methods to advanced

aerospace vehicle conceptual design, a sample application was selected. The

rocket-based combined-cycle (RBCC) vehicle is a single-stage-to-orbit

(SSTO) launch vehicle of current interest. It is a highly multidisciplinary

design - requiring separate analysis capabilities in propulsion, performance,

aerodynamics, weights and sizing, structures, and aerodynamic heating.

Ultimately, a converged point design is obtained from extensive iteration

between existing, disciplinary analysis tools. The selected design variables are

highly coupled (interrelated), and therefore interactions are expected to be

present. Traditional one-variable-at-a-time optimization is not appropriate for

this design. The objective of the RBCC SSTO design is to determine the

settings of the design variables that will minimize vehicle dry weight. Dry

weight is a better indicator of cost than gross weight since gross weight is

primarily composed of propellant weight and propellant is relatively cheap.

The objective of the application of the parametric methods to this problem is

to verify their applicability, point out strengths and weaknesses, and

contribute to the literature in the field by demonstrating an actual application

of the methods.

The design was performed in three phases. An initial exploration of the

design space was performed using a three-level Taguchi array (L27) and eight

design variables. The initial design phase contains two truly discrete variables.

Based on the results of the initial array, a second L8 experiment was

performed using three of the design variables that required further study. The

second experiment also used Taguchi's "noise" array (L4) in order to

determine a robust design. In this case, the vehicle sensitivity to three weight

growth and engine performance degradation variables was to be minimized.
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Finally, theexperimentalarraywasextendedto acentralcompositedesignin
thethreemain variables.Responsesurfacemethodswereusedto optimizethe
resultingquadraticresponsesurface.

Vehicle Background

The next generation of piloted launch vehicles will have emphasis on

low cost design, responsiveness, and reusability. In the past 10-15 years,

advances in structural technologies (composites, advanced metallic alloys) and

reductions in subsystems weights have made single-stage-to-orbit (SSTO)

designs more feasible [31]. New SSTO vehicle designs are generally fully

reusable and, if flight rates are high enough, they have potential to reduce

recurring costs associated with expendable systems.

Among the SSTO designs currently being considered for initial

operating capabilities (IOC's) in the 2005-2010 time frame are advanced

rocket powered vehicles [7] and airbreathing concepts that are derivatives of

the National Aerospace Plane (NASP). Rockets and airbreathing systems each

have advantages and disadvantages. Rockets, which carry their own oxidizer,

are characterized by high engine thrust-to-weight ratios (70-100) and

relatively low trajectory averaged Isp'S (350-450 sec for LH2/LOX systems).

Rocket SSTO's have relatively high gross weights, high bulk propellant

densities, and low dry weights (i.e. empty weight) (fig. 17). Airbreathing

concepts do not carry a substantial amount of onboard oxidizer. Instead they

derive it from the atmosphere. They have higher Isp'S (1500 - 2500 sec. for

LH2), but their complex airflow paths (inlets, cowls, nozzles) generally

produce heavy engines with thrust-to-weight ratios around 5-15. Airbreathing

SSTO concepts have low gross weights but higher dry weights when

compared to rockets. Combined cycle propulsion concepts have potential to

combine the best aspects of both rockets and airbreathing propulsion.
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Figure 17 - Propulsion Concept Characteristics

Combined cycle engines merge the functions and operating modes of

different engine cycles into a single unit. Rocket-based combined-cycle

propulsion, sometimes referred to as an air-augmented rocket, utilizes a

"ducted rocket" approach with a rocket primary embedded in the duct of an

airbreathing engine (fig. 18).
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Figure 18 - Typical RBCC Engine Layout
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RBCC engineshavethrust-to-weightratiosof 25-40andaverageIsp's
that arehigher thanthat for rockets(420-800sec).RBCCenginesfunction in
four different operationmodes.From0 to Mach3, theengineoperatesasan
ejector.The rocketprimary entrainsadditionalair throughthe inlet to which
LH2 fuel is addedin an afterburning fashion. Beyond Mach 3 the engine
operatesin ramjetand scramjetmodes.For terminalaccelerationto orbit, the
RBCC engineis capableof operatingin rocket mode.TheRBCC enginehas
beenstudied in somedetail including work by the MarquardtCorp. in the
1960's[32] andRocketdyne[33].

Airbreathers with an axisymmetric fuselagehave been previously
studied becauseof advantagesin high engine capture area (thus high
acceleration),relatively low drag,andsimplified loadpathsassociatedwith a
circular tank crosssection. [34, 35]. In fact, a conical vehicleconfiguration
wasconsidereda candidateearly in the NASP program[35]. Preliminary
work to combinetheadvantagesof RBCCpropulsionwith theadvantagesof
an axisymmetric fuselage was performed in the late 1980's by the
Astronautics Corp. [36, 37]. The Astronautics Corp. work showed the
potentialweight andperformanceadvantagesin avehicle like theone shown
in figure 19, and it identified severalkey variablesthat have a significant
impacton thevehicledesign.However,that work wasunableto identify the
optimum settings for the variables because multidisciplinary design
optimizationtechniqueswerenotavailableto theresearchers.

Theresearchreportedin thispaperis anattemptto extendtheprevious
work by employingmultidisciplinarydesignoptimization(MDO) techniques.
It is hoped that parametric designmethodscan be usedto locate a near-
optimum setting for the designvariables. In addition, it is hoped that this
particularuseof MDO methodswill documentanexampleaerospacevehicle
conceptualdesignapplicationanddemonstratetheutility of multidisciplinary
designoptimization.
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Figure 19- RBCCSSTOConfiguration

Thebaselinedtechnologieschosenfor this work areshownin table 14.
Thesetechnologiesareconsistentwith a vehicle of IOC 2005-2010and are
based on technology efforts that are currently in-work at NASA and in
industry. Advanced technologies, particularly lightweight structures are
critical to thefeasibilityof aRBCCSSTOvehicle.

Table 14- BaselinedRBCCSSTOTechnologies

LH2 tank

LOX tank

Structure

OMS/RCSsystems

TPS(passiveareas)

Active cooling

Subsystems

graphite/PEEK,filament wound,integral loads

aluminum-lithium,integralloads

NASP-derivedtitanium-aluminideBeta21S

LH2/LOX cryogenicpump-fed OMS, LH2/LOX
pressure-fed RCS)

ACC and mechanically bonded metallic (Inconel
and titanium standoff)

heat pipe and active hydrogen cooling for engine,

nosecap, cowl and wing leading edges

lightweight avionics, ECLSS, crew systems,
EMAs
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Analysis Tools and Process

The analysis was performed using computer-based conceptual

aerospace design tools that are available at the NASA - Langley Research

Center's Vehicle Analysis Branch (analogous to the "design modules"

discussed previously) and proceeded according to the flow chart shown in

figure 20. The design was highly multidisciplinary - containing disciplinary

analyses from aerodynamics, performance, aeroheating, weights and sizing,

structures, and propulsion. The general RBCC SSTO vehicle layout is shown

in figure 21. A general discussion of the analysis process follows.
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Figure 20 - Analysis Cycle
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LOX tank

Top View

Figure 21 - General RBCC SSTO Vehicle Layout

APAS (the Aerodynamic Preliminary Analysis System) [38] was used

to determine the lift and drag coefficients for each vehicle point design for

Mach numbers from 0 to Mach 25. APAS is a conceptual level aerodynamic

design tool that has been shown to produce relatively accurate answers when

compared to wind tunnel tests on conical configurations [39, 40]. Additional

confidence was placed in the data because APAS used a tangent cone solution

at high Mach numbers - a solution originally derived from conical forebody

aerodynamic data. Because the scramjet engine data was provided in cowl-to-

tail form, the aerodynamic pressures on the conical forebody were treated as

drag rather than as part of the engine cycle. For each design, the wing was

kept at a constant leading edge sweep of 76 °, aspect ratio of 1, and a thickness

of 4% (the existing wind tunnel test values). The wing area was sized to

provide a 200 kt. landing (or a 250 kt. take-off speed for the case of horizontal

take-off vehicles). Wing location (fore to aft) was varied in order to maintain

subsonic and hypersonic static stability.

The RBCC ejector mode engine characteristics for each engine from 0

to Mach 3 were determined using a quasi-l-D inlet, combustor, and nozzle
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model with appropriatecomponentefficienciesderived from reference32.
Engineuninstalledweights (lessinlet) werealso derivedfrom references32
and 36 as a function of maximumairbreathingMachnumber,capturearea,
inlet height, and rocket primary mass flow rate. Ramjet and scramjet
performancehadbeenpreviouslygeneratedfor a 5° conehalf anglewinged-
coneconceptby researchersatNASA - Langleyandwastakenfrom reference
39. This data exists as cowl-to-tail engine thrust coefficients and Isp as a

function of Mach number and fuel equivalence ratio (the normalized ratio of

fuel flow rate to captured air flow rate with 1 being stoichiometric). Cowl-to-

tail engine thrust was determined from Ct using the equation T = CtqAc where

Ac is the physical annular area between the outer engine cowl and the vehicle

body. The engine data was originally generated for a reference Ac of 207 sqft.

The reference engine area was scaled up or down for each point design. In

order to account for the LH2 that is necessary to cool the engine at higher

Mach numbers, a minimum cooling schedule for equivalence ratio was

established. Equivalence ratio was required to be at least .5 at Mach 8, 1 at

Mach 12, and 2.5 at Mach 18 with linear variation between design points.

The ascent trajectory was optimized using POST 3D [41]. POST is

widely used in aerospace industry to perform numerical optimization of

trajectories. Engine throttle settings and vehicle pitch angles were varied in

order to minimize the mass ratio (MR) of the vehicle. The point designs were

each flown to a 100 Nmi circular polar orbit (a NASP reference mission) from

a fictitious launch site at Vandenberg Air Force Base in California. The

reference payload was 10,000 lbs. The OMS propulsion system was designed

to circularize the ascent orbit, perform a delta velocity maneuver of 50 fps on-

orbit, and deorbit the vehicle. POST was slightly modified to allow the vehicle

to fly a constant dynamic pressure boundary and later a constant stagnation

point heating rate during ascent.

Vehicle take-off was either vertical or horizontal as determined by a

design variable. Horizontal take-off versions (HTO) accelerated to 250 knots

before lifting off. The vehicle operated in ejector (rocket primary on) until
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Mach 3, then switchedto ramjetandlater scramjetmode.During this phase,
the vehicle was constrainedto fly a constantdynamic pressureboundary
determined by the optimization process.Angles of attack, _, during this
portion of the trajectory generallywere between2° and 5°. The stagnation
heating rate to a reference one foot radius sphere(Chapman's equation
heating) was monitored during the ramjet and scramjet portions of the
trajectory. If the heating rate reacheda prescribedvalue, againas set by a
designvariable, thevehicle left theconstantdynamicpressureboundaryand
flew along theconstantstagnationpoint heatrateboundaryuntil thescramjet
to rocket mode transition Mach number was reached.During ascent, the
vehiclewaslimited to 3gsensedaccelerationby throttling theengines.

After the ascent trajectory wasdetermined,windward and leeward
centerlineheatingwasdeterminedusingMiniver [42]. Miniver usessimplified
geometry representationsand a choice of several acceptedheating rate
calculationmethodsto determinethe aerodynamicheatingto various sample
points on the vehicle.TPSconceptsfor eachvehiclewere selectedbasedon
radiation equilibrium temperaturesat different points along the cone,cowl,
andwing. Active LH2 cooling wasrequiredon thenosecap,thewing leading
edges,the cowl leading edges,the engine,and part of the engine nozzle.
Advanced carbon-carbonTPS was used for areasreaching temperatures
between1800°Fand 2800°F. Inconel superalloyconstructedinto standoff,
mechanicallyattachedpanelswasusedfor areasbetween1200°Fand1800°F.
Titanium standoffpanelswere usedfor areasbelow 1200°F.In areaswhere
appropriate (such as the wings and upper cowl surface), the titanium-
aluminidestructurewasallowedto getashot as 1500° F without a protective
TPScovering.

A complex, inter-related series of mass estimating relationships
(MER's) wasestablishedfor thecurrentvehiclebasedon existing, historical
dataregressionMER's obtainedfrom theVehicleAnalysisBranchat NASA -
Langley. The MER's used for this work are listed in Appendix A and
Appendix B. Some equation constants were modified to reflect mass
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reductionsfrom expectedtechnologyandmaterialsadvancements.Structural
sizing constantson a per area or per volume unit basisfor tank weights,
smearedprimary andsecondarystructure,andeachof theTPSconceptswere
updatedto reflect theanticipatedIOC for thisvehicleof 2005 - 2010. In many

cases, NASP-derived technology improvements were assumed to be available.

For example, the primary vehicle structure was baselined to be an advanced

NASP titanium- aluminide alloy - Beta 21S. The constants for the filament

wound LH2 tank were established specifically for this vehicle through a finite

element structural analysis including appropriate non-optimum factors.

Subsystem MER's (avionics, ECLSS, etc.) were determined based on

previous NASA - Langley VAB work on SSTO winged-cone concepts and

expected NASP-derived improvements.

For each point design in the experimental array, a series of iterations

was made through each of the analysis codes as shown in figure 20. Once the

systems level design parameters were established, an initial gross weight and

geometry was assumed in order to start the design cycle. The analysis then

proceeded from one analysis code to the next with data being exchanged

between each code. This process simulates the way a typical engineering

design team functions. Each engineer in a team functions in the role of

disciplinary expert. The disciplinary expert performs the required analysis in

his or her field and then passes the results on to the next disciplinary expert.

Each cycle through the design codes took four to eight hours. A typical

point design converged after about three iterations. A design was considered

to be converged when the mass ratio (MR) from one POST run to the next

changed by less than about 3%. As will be seen, however, some designs did

not converge at all. For the designs that converged, the dry weight was

recorded. Dry weight (i.e. no propellant, payload, or crew) was selected as the

objective function because it is generally a better indicator of cost than gross

weight.
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Initial Screening Analysis (LZT.Aj.A_.ff.g__

Based on previous work on a conical RBCC SSTO by the Astronautics

Corp. [36], eight key variables were selected for this study and are listed in

table 15 along with the potential effects that each variable might be expected

to have on the vehicle design. Figure 6 illustrates the location of both the cone

half angle, e, and the cowl wrap around angle, _.

Table 15 - L27 Design Variables

Parameter

scramjet to rocket mode

transition Mach number (Mtr)

max q of ascent (for a constant

q boundary trajectory)

engine cowl wrap around

angle (_)

Forebody cone half angle (®)

Vehicle lift-off

thrust-to- weight ratio (T/Wo)

stagnation point heating limit

boundary (heat rate)

(referenced to 1' sphere)

supercharged engine (Y/N)?

Potential trades

lower LOX propellant weight vs.

smaller hydrogen tanks

increased thrust-to-drag ratio vs.

higher heating and aero. loads

increased thrust-to-drag ratio vs.

additional engine weight

higher drag vs. improved propellant tank

structural efficiency (volume/area)

lower gravity losses and LOX weight vs.

increased engine weight

improved high Mach number

airbreathing performance vs.

higher TPS weight

improved low speed RBCC performance

(engine 12 or 10 from

Marquardt work)

take-off mode

(vertical vs. horizontal)

vs. additional engine weight

higher engine weight vs.

higher wing and gear weight
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Figure22 - ConeHalf AngleandCowl WrapAngle

Of theeight designvariables,two variablesarediscrete.Two take-off
options, vertical or horizontal, were considered (the vehicle landed
unpowered,horizontally in both cases),and the RBCC engine was treated
with andwithout anoptional superchargingfan. In previouswork on a series
of preliminary RBCC enginedesignsat the MarquardtCorp. [32], the non-
superchargedengine was referred to as engine concept number 10. The
superchargedengineconceptwas referredto asengineconceptnumber12.
The samenomenclaturewasusedto distinguishbetweenthe two options in
this study as well. The other six variables arecontinuous,but have been
discretizedto threelevels (or values)asrequiredby theTaguchimethod.A
rangefor eachof thedesignvariableswasestablishedbasedon previouswork
and engineeringexperience.Referto table 16 for the selectedlevelschosen
for eachvariable.

Basedon the numberof variablesbeing consideredand the desired
numberof two variableinteractions(three),a three-levelorthogonalarrayof
27point designswasselectedusingtheTaguchimethod.TheL27orthogonal
arrayshownin table 17outlinestherunsperformedandthelevelsfor eachof
theeight designvariablesfor eachof the27 requiredpoint designs.Note that
theTaguchiarrayis a fractionalarray- thatis, noteverycombinationof all of
the variables is required to be run. For comparison, a full factorial
experimentalarray including every combinationwould take 36x22or 2916
runs.
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Table 16- DesignParameterLevels

Parameter L M H
rockettrans.Mtr 12 15 18

max.q (psO
cowl angle(_)

1000 1500 2O0O

180 ° 270 ° 360 °

cone angle (®) 5 ° 6.5 ° 8 °

T/Wo (VTO) 1.2 1.3 1.4

(HTO) 0.6 0.7 0.8

250 300 350

10(N)

heat rate limit

(BTU/sqft-sec)

supercharger?

take-off mode

Ji/ilii!!i!iiiii#i!i!ii/i!iiiiii12 (Y)

VTOHTO

The standard L27 Taguchi array was modified in two ways for this

analysis. First, the two discrete variables are combined into a single three-

level column of the array without loss of information about either variable.

This technique is known as the compound factor method [16], and it is made

possible by the fact that these two variables each have only two settings rather

than three. Second, a technique known as branching [16] is used to establish

two ranges for vehicle thrust-to-weight ratio depending on whether the design

is horizontal or vertical take off. T/Wo ratios of 1.2, 1.3, and 1.4 are

associated with VTO designs. T/Wo ratios of 0.6, 0.7, and 0.8 are associated

with HTO designs.

The resulting dry weights for each of the 27 point designs are shown in

the last column of table 17. Several designs (nine) represented points that were

not feasible. That is, for reasons of low capture area, low dynamic pressure, or

high cone angle, these designs exhibited an unacceptably low thrust-to-drag

ratio. These infeasible points or "no-closure" cases were assigned a maximum

dry weight value of 300,000 lbs. This somewhat arbitrary limit was set higher
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than any converged case values in order to properly penalize the poor designs,

but it was found that if it was set too high, it would completely "wash out" the

real data. The value chosen seemed to represent a reasonable medium.

However, as will be shown, the "no-closure" runs still have a negative impact

on the analysis.

R Max. q
u bndry, off
n T/Wo

1 12 1000 psf 180 ° 5.0 ° 0.8

2 12 1000 psf 270 ° 6.5 ° 1.3

3 12 1000 psf 360 ° 8.0 ° 1.4

4 12 1500 psf 180 ° 6.5 ° 1.3

5 12 1500 psf 270 ° 8.0 ° 0.6

6 12 1500 psf 360 ° 5.0 ° 1.2

7 12 2000 psf 180 ° 8.0 ° 1.4

8 12 2000 psf 270 ° 5.0 ° 1.2

9 12 2000 psf 360 ° 6.5 ° 0.7

10 15 1000 psf 180 ° 6.5 ° 1.4

11 15 1000 psf 270 ° 8.0 ° 0.8

12 15 1000 psf 360 ° 5.0 ° 1.3

13 15 1500 psf 180 ° 8.0 ° 1.2

14 15 1500 psf 270 ° 5.0 ° 1.3

15 15 1500 psf 360 ° 6.5 ° 0.6

Table 17 - L27 Taguchi Array

Mtr • 0 Lift- Max. stag. Engine # &
heat rate T.O. mode

250 BTU/ft2-s

300 BTU/ft2-s

350 BTU/ft2-s

350 BTU/ft2-s

10 & HTO

10 & VTO

12 & VTO

12 & VTO

250 BTU/ft2-s 10 & HTO

300 BTU/ft2-s 10 & VTO

Dry
Weight

qhs)

300+000

114,220

193,510

109,320

300 BTU/ft2-s 10 & VTO

350 BTU/ft2-s 12 & VTO 124,110

10 & HTO250 BTU/fd-s

300 BTU/ft2-s 12 & VTO

350 BTU/ft2-s 10 & HTO

250 BTU/ft2-s 10 & VTO

250 BTU/ft2-s

300 BTU/ft2-s

350 BTU/ft2-s

150t690

118,330

113,180

136,520

300,000

300_000

124r720

300,00010 & VTO

12 & VTO 122,520

10 & HTO 135,450
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Table 17 (continued)

R Mtr Max. q ¢_ 0 Lift-
u bndry, off
n T/Wo

16 15 2000 psf 180° 5.0° 0.7

17 15 2000psf 270 ° 6.5 ° 1.4

18 15 2000 psf 360 ° 8.0° 1.2

19 18 1000 psf 180° 8.0° 1.3

20 18 I000 psf 270 ° 5.0° 1.4

21 18 10130psf 360° 6.5 ° 0.8

22 18 1500 psf 180° 5.0° 0.6

23 18 1500 psf 270 ° 6.5 ° 1.2

24 18 1500 psf 360 ° 8.0 ° 1.3

25 18 2000 psf 180° 6.5 ° 1.2

26 18 2000 psf 270 ° 8.0° 0.7

27 18 2000 psf 360° 5.0° 1.4

Max. stag. Engine # & Dry
heat rote T.O. mode Weight

Obs)

350 BTU/ft2-s ]10 & HTO

250 BTU/ft2-s 10 & VTO

124,040

98,350

300 BTU/ft2-s 12 & VTO 155,590

350 BTU/ft2-s 10 & VTO 300,000

250 BTU/ft2-s 12 _ VTOl 208,860

300 BTU/ft2-s 10 & HTO 272r810

300 BTU/ft2-s 10 & HTO 300,000

350 BTU/ft2-s 10 & VTO 132,970

250 BTU/ft2-s 12 & VTO 300,000

250 BTU/ft2-s 12 & VTO 300,000

300 BTU/ft2-s 10 & HTO

350 BTU/fd-s 10 & VTO

300r000

113r200

The "no-closure" cases have a very significant impact on the analysis

of the mean process. The method relies on determining differences between

average vehicle weights at different points in the design space. Since there is

no difference between the dry weight for two designs that did not close, all of

the variable effect information pertaining to the differences between the two

runs is lost, even for the variables that did not contribute significantly to the

problem. It could be argued that the analysis process might work better

without these runs, but the orthogonality of a "true" Taguchi analysis would

be lost. The method's inability to handle infeasible points is a serious

weakness.
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The no-closure cases are indicative of the complex interactions going

on between the variables. In particular, every case of a cowl wrap angle (_) of

180 ° and a max dynamic pressure boundary of 1000 psf did not close.

However, taken at other dynamic pressure limits, 180 ° cowl wraps do close.

Additionally, every case of Mtr 18 scramjet to rocket mode transition and 180 °

cowl wrap angle did not close. The relationship between q, t_, and Mtr

suggests a three variable interaction. The Taguchi method is only capable of

handling two variable interactions. In fact, three variable interactions tend to

confound the method results. For the L27 array that was used in this

experiment, a three variable interaction between M_, q, and t_ would tend to

confound the results of the T/Wo and maximum stagnation point heat rate

mean responses.

The sensitivities are calculated for each design variable by individually

averaging the vehicle weights at each of its three levels - L, M, and H. Since

the array is balanced, one-third of the runs corresponds to each of the three

levels. The results of the analysis of the mean technique for dry weight are

shown in the mean response tables 18, 19, and 20 and graphically in figure

23. The selected levels to minimize dry weight have been circled in the tables.

Judgment has been temporarily reserved on cowl angle and Mtr because of the

possible interaction between them. However, the H setting for dynamic

pressure (2000 psf), the L setting for cone half angle (5°), and the H setting

for maximum stagnation heat rate (350 BTU/sqft-sec) seem fairly clear and

are supported by engineering experience. High dynamic pressures produce

higher accelerations and lower angles of attack (and therefore lower drag

losses). The 5 ° half angle cone generates a relatively low drag and thus has a

high thrust-to-drag ratio. Its low shock angle produces relatively few heating

problems even at 2000 psf dynamic pressures. The maximum stagnation point

heating value of 350 BTU/sqft-sec also makes engineering sense. The thrust

penalty due to lost dynamic pressure incurred by leaving the q boundary and

flying a heat rate boundary is significant in terms of lost acceleration

capability.
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Table 18 - Mean Responses for L27 Array

L

M

H

Mtr Max. q Cowl Ang. Cone Ang. Max. Heat

151;098 234,,902 238,504 _"_70_64_ 213,238

184_519 185,476 172,413 177,738 199,628

162,777-_ _--170,28_247,538 "_-- 172,237 234,774 (
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Figure 23 - Graphical Results of L27 Array

Table 19 - Engine Type and Take-off Mode Responses

Engine # T.O. Mode

L _"_7,219_ 224,39011
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Table20 - T/Wo byTake-off ModeResponses

T/Wo
(VTO)

T/Wo

(HTO)

195,380 ,
"_6, 85_'_

290,937

L 188,500

M 178,463

H ,_1,18_.,

The non-supercharged engine (L) produces a lower dry weight vehicle

compared to the super-charged engine (table 19). However, before a final

decision is made regarding supercharging, the operational advantages of a

supercharged engine during landing, self ferry operations, subsonic loiter, etc.

must be carefully weighed. This research only considered the impact of

supercharging on ascent performance. For ascent, the small increase in engine

Isp is not worth the extra weight of the fan system. Table 19 also shows the

advantage of vertical take-off (H) over horizontal take-off. Since the RBCC

essentially behaves like a rocket at lift-off, it is easier and lighter to add

additional engine thrust than it is to add wing size and landing gear weight.

Table 20 shows the results for the take-off thrust-to-weight ratio

variable. Recall that the ranges for T/Wo depended on whether the vehicle

was HTO or VTO. For vertical take-off, a T/Wo of H (1.4) produces the

lowest dry weight. Engineering judgment suggests that this value may be

somewhat high. As mentioned above, a three way interaction between Mtr, q,

and • would tend to disrupt the results of this variable. Since the variable is

considered to be one of the least critical (based on the relatively small

difference in dry weight between its highest and lowest settings) it was left at

the H setting. Additional work is recommended for this variable.

The L27 Taguchi array is capable of determining the interactions

between three sets of two variable interactions. These interactions were
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preplannedto be Mtr x q, Mtr x <l), and q x • based on the placement of the

variables within the L27 array and the L27 linear graph. The results are shown

in tables 21-23. Interesting, but contradictory combinations have been circled.

12

15

18

Table 21 - Mtr x q Interaction

1000 psf 1500 psf

202,577 .126,1

241,573 185,990

260,557 244,323

2000 psf

124,603

237,733

Table 22 - Mtr x Cowl Angle Interaction

12

15

18

180 ° 270 ° 360 °

174,167 (_29,673_ 149,453

 678241,347 173,623 ,58_

300,000 213_943 228r670

Table 23-q x Cowl AngleInteracdon

1000 psf 1500 psf 2000psf

180 °

270 °

360 °

300,000 236,440 179,073

207,693 _5,39_ 174,153

197,013 184,59-'"--_ ""_5,1b'_

Unlike main effect response tables that average a particular variable

effect over all of the simultaneous changes of the other variables, a two

variable interaction can discern the effects of changing one variable while

holding a second variable at each of its three levels. An interaction is usually
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said to be strong if the graphical mean plots cross (i.e. figure 24, Mtr x • and

q x _). Given such a strong interaction, the variable settings should be

determined from the interaction plots rather than the mean responses for each

variable. However, tables 21-23 show mixed results. In table 21 at 2000 psf q,

Mtr of 12 and 15 appear to be very close together and show the lowest dry

weights. In table 22, a • of 270 ° and a Mtr of 12 seem to produce the best

combination. Also in table 22, Mtr of 15 doesn't seem to be as close to 12 as

indicated in the previous table - the best M= 15 answer being found for a • of

360 °. Finally, table 23 indicates that either • of 270 ° or 360 ° would be good

choices, but for different dynamic pressure limits.

• q=L • cl)=L

-- [] q:M _ V n 0 =M _m

L M H L M H

Mtr Mtr

e_

¢.q

.__=l q=L
[] q=M

H

I I

L M H

Cowl Angle

Figure 24 - Graphical Interaction Results for L27 Array

85



Confusing two-variable interaction information, coupled with the fact

that a three way interaction between Mtr, q, and • is suspected, led to the

performance of an additional set of runs outside of those required by the

Taguchi method. The final set of runs to determine the best combination of

and Mtr (as shown in table 24) was performed by fixing 6 of the 8 variables

of the study to values that the L27 analysis indicated to be their best settings.

Max. q was set to 2000 psf, O was set to 5% max. heat rate was set to 350

BTU/sqft-sec, the non-supercharged engine was used (#10), and the vehicle

was VTO with an initial T/Wo of 1.4. With these variables held constant, a

sweep of all nine combinations of • and Mtr was performed. The results show

that a • of 180 ° and a Mtr of 15 results in the lowest dry weight. These results

were somewhat unexpected, because • of 180 ° was not indicated by any of

the main effect tables or the two variable interaction tables of the Taguchi

method. The fact that Taguchi "missed" this result is probably a result of the

high number of "no-closure" designs and the suspected three way interaction

discussed above. It is interesting to note that the dry weight is relatively flat

between Mtr of 12 and Mtr of 15. In light of operational and technical

complexities due to higher Mach numbers, a designer might choose to select

the Mtr 12 case for only a slight penalty in dry weight.

Table 24 - Dry Weight Extra Runs Results

180 ° 270 ° 360 °

85,210 99,470 116,93012

18 100,110

93,460

102,880

105,960

113,200

In summary, a set of parameter levels was found that produces a very

attractive dry weight for the conical RBCC SSTO. Table 25 lists the final
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parameterlevelsthatwerechosenandtable26 listssomeof thecharacteristics
of thefinal vehicle.A morecompletereport of thefinal vehiclecharacteristics
is included in Appendix C. Figure 25 lists some RBCC SSTO vehicle
characteristicsandthoseof thecurrentU.S. SpaceShuttle.The two vehicles
arenotdirectly comparablein termsof mission,payload,andtechnology.The
informationin figure25 is includedonly for referencepurposes.

Table25 - SelectedParameterLevels

Mtr 15

max. q

cowl wrap angle (¢)

2000 psf

180 °

cone half angle (®) 5 °

T/Wo 1.4

max. heat rate

supercharged engine?

take-off mode

350 BTU/sqft-sec

N (engine #10)

VTO

The Taguchi method was largely a success at determining the best

levels for each of the parameters in order to determine the minimum vehicle

dry weight. Six of the eight design variables were determined based on the

results of the initial L27 Taguchi matrix. However, the method failed to

capture the correct settings for cowl wrap angle, _, and Mtr (as determined by

a full sweep of those variables) even though interaction information was also

available for those variables. As noted in the analysis discussion, the fact that

many of the point designs did not produce feasible "closed" designs most

likely contributed to the Taguchi method's inability to correctly select the

proper levels for ¢ and Mtr. When designs did not close, the information used

to compare variables between them was lost. This inability to deal with
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infeasible points in the experimentalarray is a serious weaknessof the
method. An appropriatereaction to an infeasible point would be for the
designerto redefine thevariableranges(i.e. limit theworst combinationsof
variables)andstartover.However,sincethedesignerismostlikely unfamiliar
with the designspace,thiscould leadto time consumingrestartsituations.In
addition, redefining and reducing variable ranges may eliminate some
attractiveregionsof thedesignspace.

It is also very likely that a three variable interaction was present
betweencowl wrap angle,q, andMtr. Taguchimethodscannot handlethree
way interactions.However,it shouldbenotedthat if the suspectedthreeway
interactionis present,it couldbeconfoundingtheresultsof theT/Wo. Follow-
on researchshouldattemptto verify thecurrentselectionfor T/Wo andtry to
gain additionalinformationaboutcowl wrapangle(_) andMtr. Additionally,
follow-on researchshouldattemptto discover themostrobustRBCC SSTO
design. A robust vehicle design is one that is relatively insensitive to
uncontrollable influences like weight growth and engine performance
degradation.The ability to determinea robustdesignis a powerful, butoften
overlooked,capabilityof Taguchimethods.

The final resultsproducedby this applicationof theTaguchimethod
can only beconsidereda "near optimum" becauseof the Taguchimethod's
inability to interpolatebetweenvariablelevels.That is, Taguchimethodsonly
determine the bestcombinationof all of the possiblecombinationsof the
levels of the designvariables (in this case, the best combination of 2916
alternatives). In somecases,this "near optimum" may be sufficient for a
conceptualvehicledesign.However,theresultsof this work couldbeusedas
a"front-end" for amoredetailedoptimizationprocessif necessary.Themore
detailed process could either be another parametric study with refined
variablesandrangesor a gradient-basedoptimization (sinceall of thediscrete
variableshavebeensatisfactorilydeterminedby thecurrentwork).
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Table 26 - Selected Vehicle Characteristics

Characteristic

GLOW

dry weight

mass ratio

LH2 prop wt./total prop

payload to polar 100 Nm

payload to 28.5 ° 100 Nm

vehicle length

max. body diameter

wingspan

Value

416,000 lbs

84,090

3.934 (_=.746)

.354

10,000 lbs

20,100 lbs

188.5

29.3 ft (w/cowl )

48.4 ft

Crew

GLOW

Landed Wt.

Payload (10_
nm, 28.5 °)

i
200'

150'

I
100'

50'

7 crew, 14 days 2 crew, 3 days

4.5 Mlbs 420 Klbs

220 Klbs 100 Klbs

-45 Klbs 20 Klbs

partially reusable fully reusable

Figure 25 - Comparison of L27 Vehicle to STS
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Second Design Analysi_ Cb8_.h.y__L4- Arrays)

Based on the results of the initial L27 Taguchi study of eight design

variables, three variables were selected for further study. They are the cowl

wrap around angle (_), the airbreathing to rocket transition Math number

(Mtr), and the overall vehicle liftoff thrust-to-weight ratio (T/Wo). The other

six variables investigated in the initial array were considered to be

satisfactorily determined. For the current work, the dynamic pressure limit

was set to 2000 psf, the cone half angle (8) was set to 5 °, the maximum

stagnation point heating rate was set to 350 BTU/ft2-s, the engine was not

supercharged (engine 10), and the vehicle took off vertically.

In order to study the three main variables and all three of their two-

variable interactions, an L8 two-level orthogonal array was selected. The L8

orthogonal array was shown previously in table 10, and the linear graph

showing the placement of the interaction columns was shown in figure 10.

Note that the seventh column of the L8 array was not used for this study

because it is confounded with the three variable interaction between Mtr, _,

and T/Wo. This was an attempt to avoid any three variable interaction

problems like those encountered in the L27 array. The discretized levels for

the three design variables are shown in table 27.

Table 27 - Variables and Levels for L8 Array

Variable L

1.2T/Wo

Mtr 12 15

Cowl Angle (_) 180 °

H

1.4

360 °
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In table 27, the variablesT/Wo, Mtr, and • correspondto the A, B,
and C variables in table 10, respectively. The column assignmentsand
interactioncolumnsaresimilar.

Becausethe variables are all two-level, an additive model of the
following form canbeestimated.

Dry Weight= 13o+[3, +132* (M_)+133*(q))

+13,* (M_) + 135 * (_) + 136* (M_)* (_)

(46)

It is alsoa goalof this researchto determinethesettingsof thethree
designvariablesthatwill producethemostrobustvehicledesign.Robustness
is definedasinsensitivity to different typesof uncontrollableinfluenceon the
design. If a designersuspectsthat theremay be an adversechangein the
designconditions,thenheor shecouldplan the original designto beableto
accommodatethe changes. In this case, there are three uncontrollable
variablesthatmay haveanadverseeffecton the vehicle- off nominalIspin
the airbreathing cycles of the ascent,unexpected weight growth in the
airbreathingcomponentsof the engine,andunexpectedweight growth in the
body structureandTPSweight.

TheIspof theairbreathingcomponentsof theengineis very dependent
on technological advancesover the next 10-15 years.An Isp schedule vs.

Mach number and fuel equivalence ratio has been baselined in reference 39.

However, given the likelihood of a reduction in Isp, the vehicle should be

designed to be as insensitive as possible to changes in Isp. Similarly, the

baselined weights of the airbreathing components of the engine (as shown in

Appendix B and derived from ref. 32) are likely to increase thereby reducing

the uninstalled thrust-to-weight ratio of the engine. The airbreathing

components of the engine are the inlet, the mixer/diffuser, the combustor, the

fuel injectors, and the internal parts of the nozzle. The "smeared" fuselage
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weight (including nosecap,crew cabin, tank structure,tank insulation, non-
inlet sectionsof thecowl, tailcone,basearea,andactiveandpassivethermal
protection systems)was also considereda potential growth variable.These
threegrowth variables(often callednoise variables) were each discretized to

two levels as shown in table 28, and given the designations Nisp, Neng, and

Nfuse respectively. Note that the -20% setting of Nisp refers to a 20%

degradation or reduction in airbreathing Isp.

Table 28 - L4 Outer Array Variable Levels

Variable

Airbreathing Isp Change (Nisp)*

Airbreathing Engine Weight Growth (Neng)

Fuselage Smeared Weight Increase (Nfuse)

L

-20%

0%

0%

H

O%

20%

20%

* the 20% reduction in airbreathing Isp actually follows the following linear schedule by Mach

number: -15% for M=3, -6% for M=5, -20% for M>8. This is because ramjet Isp's were
considered to be more predictable than scramjet Isp'S.

Interactions between noise variables are typically ignored, so the three

noise variables can be placed in the three columns of an L4 orthogonal array.

Here, the L4 array is referred to as the "outer" array, and the array containing

the main variables is called the "inner" array (i.e. the L8 array). Each of the

experiments in the L8 array is then performed for each combination of noises

in the L4 array. The 32 resulting dry weights (measured in lbs.) are shown in

table 29. The inner array is shown on the left, and the outer array is on the top.

The actual design variable values are shown, not the normalized -1 and +1

levels.
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The signal-to-noise ratio (S/N) is calculated in the last column of table

10 for each row. Taguchi documented several formulas for calculating signal-

to-noise ratio. In this case, the dry weight is to be minimized, so the

appropriate S/N is the "lowest is the best" [16].

1 4

S/N = -10*lOgl0 (4 Z yi2)
i=l

(47)

where,

Yi = dry weight for each column in the row

Table 29 - Dry Weight and S/N Results for L8 x L4 Arrays

T/Wo Mtr

12 180 °

12 360 °

15 180 °

1.2

1.2

1.2

1.2

1.4

1.4

1.4

1.4

0% 0% -20% -20% Nisp

0% 20% 0% 20% !Neng

Nfuse
0% 20% 20% 0% S/N

92,498 118,623 119,865 109,261 -100.875

125,091 161,283 154,076 151,943 -103.448

92,121 123,229 131,979 117,139 -101.368

15 360 ° 118,731 162,323 166,299 165,534 -103.780

12 180 ° 92,871 120,909 122,145 110,463 -101.001

12 360 ° 124,903 161,361 153,085 151,701 -103.428

15 180 ° 91,685 124,938 135,532 118,943 -101.502

15 360 ° 118,690 161,095 164,714 163,823 -103.711

For the analyses that generated the dry weights in table 29, the mass

estimating relationships (MER's) were slightly modified from those used in

the L27 study. A separate 10% weight growth margin on the engines was

eliminated (a 10% margin still exists on all dry weights at the vehicle level),
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the engine side walls were modified to run the entire length of the inlet, and

the payload bay volume was increased to 5300 ft 3 in order to accommodate

larger sized payloads. Unfortunately, the exact dry weights are not directly

comparable to those from the L27 set of experiments, but the differences are

small (the current weight results are about 9% higher). The design variable

trends and conclusions are expected to be similar, however. The MER's listed

in Appendices A and B are the updated equations used in the current analysis.

L8-Only Analysis

One of the goals of this phase of the research was to determine the

coefficients in equation 46. All but the first column of dry weights in table 29

can be temporarily ignored because the noise variables are set to their baseline

values in column 1. Because the L8 array is orthogonal, the simple analysis of

the mean technique can be used to determine the coefficients. The averages of

each variable and each interaction are listed in table 30. The "levels" of an

interaction are determined from the -1 and + 1 values for their assigned column

in the L8 array (see table 10). The mean responses are depicted graphically in

figure 26. The overall mean of the 8 responses ([30) is 107,074 lbs.

Table 30 - L8 Mean Response Table

T/Wo Mtr _ T/W o x Mtr T/W o x _ Mtr x

L

.(

[_i' S

107,110 108,841 (,. 92,294 4) 107,157

_)_ 106,991

I-1,767 14,780 1 -83

107,095 108,450

107,053 105,698
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The 13 coefficients in table 30 for the normalized variables are

calculated by taking one-half of the difference between the average responses

at the high and low values of each term in the equation. For example, [31 is

associated with T/Wo.

1/.
(48)

1(107,037 107,110) -37=_ -- =

2

The other [3 coefficients are determined from a similar process. The

additive model (in terms of normalized design variables) is shown in equation

49. Note that a design matrix equation could have been formed to solve for _,

but the analysis of the mean process is much simpler.

Dry Weight= 107,074- 37 * (_-- 1 - 1,767 * (l_u) + 14,780 * (_)

k"0J
(49)

-83* *(1_I_)-21

Based on the magnitude of the 13 coefficients and the graphically

display of the mean effects, the cowl wrap angle, _, has the most significant

effect on the dry weight as it is varied from 180 ° to 360 °. Mtr and the Mtr x

interaction are also relatively strong effects. The other effects are

insignificantly small. Most notably, the vehicle thrust-to-weight ratio has very

little effect on the dry weight. This is probably due to the fact that the extra

engine weight of a higher T/Wo vehicle is counteracted by the fact that the

vehicle accelerates to ramjet speed faster and therefore requires less on-board

oxidizer. It is also interesting to note that if • is set to -1 (the strongest effect)

then the interaction between Mtr and • indicates a preferred setting for Mtr of

-1. However, the main effect for Mtr prefers a setting of +1. Since the

magnitudes of [32 and [36 are roughly equal, the two terms nearly cancel each

other out. The result is that the design space is very flat in terms of Mtr.
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The bestcombinationof settingsfor theL8 arrayis shownin table31.

Table31 - L8 VariableSettings

T/Wo 1.4
Mtr 15

Cowl WrapAngle 180°

Thesesettingsare the sameasthosedeterminedfrom the additional
nineexperimentsperformedafter the initial L27 array(i.e. tables24 and25).
However,theexperimentsperformedin theL8 arrayprovideusefulinteraction
information,andtheyarefreefrom theinfluencesof "no-closure"runs.

Using thevariable settingsin table31, thepredicteddry weight from
equation 49 is 91,805 lbs. This combination of settings was actually
performed during the experiment(row 7, column 1) and resulted in a dry
weightof 91,685lbs.The additivemodeloverpredictstheactualvalueby an
extremelyacceptable0.13%.

L8 by L4 RobustDesign

Taguchi's method for robustdesign usesthe signal-to-noiseratios
calculated for eachrow as shownin table 29. The column containing the
S/N's is usedin a similar manneras that usedin locating a minimum dry
weight for the L8-only analysisdescribedabove.However, the objective is
always to determinethe variable settingsthat maximize the S/N. Sincethe
S/N's arenegative,thebestoneis theonethathasthesmallestmagnitude.

The meanresponsetablefor thesignal-to-noiseratiosaredisplayedin
table32andgraphicallyin figure 27.ThemeanS/N (13o)is -102.390.
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Table 32 - S/N Mean Responses for Robust Design

TfWo Mtr _b TfWo x Mtr T/Wo x Mtr x

H

I_i's

-102.411

-0.021

-102.590

-0.201

-103.592

-1.203

-102.394

-102.384

0.005

-102.433

-102.346

0.044

-102.437

-102.342

0.047

Using the values of the [3 coefficients in table 32, the following model

for S/N can be formed (for the normalized variables):

S -102.39-0.021 - 0.201 * (1_I_) - 1.203" (_)
N

+0.005"(_o1"(1_I_)+0.044"(_o1"(_)+0.047"(1_I_,)*(_)

(5O)

As with the L8 dry weight minimization in the previous example, the

cowl wrap around angle (_) has the largest effect on signal-to-noise ratio. A

cowl wrap angle of -1 (180 °) will help maximize S/N. This is not a surprising

result since the S/N combines the effect of the lowest dry weight with

insensitivity to the noise variables. • has already been shown to have a

significant effect on the dry weight. The transition Mach number is the second

most significant influence on S/N, but unlike the previous dry weight

minimization example, Mtr should be set to -1 (M = 12) to maximize vehicle

robustness. T/Wo is still the least significant of the three main variables, but

its value has also changed from the previous example. T/Wo = -1 (1.2) will

maximize robustness. The levels that maximize robustness are shown in table

33. The details of the resulting robust vehicle are listed in Appendix D.
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Table33 - RobustDesignVariableSettings

T/Wo 1.2

Mtr 12

Cowl Wrap Angle 180 °

The results of this robust design analysis present some extremely

useful and interesting information to the vehicle designer. If the engine weight

is expected to grow and the scramjet Isp is expected to be reduced, then the

designer should designer a vehicle with a smaller engine (i.e. a smaller T/Wo)

and spend less time using airbreathing propulsion. These deductions may

seem obvious, but given the highly multidisciplinary, coupled nature of this

design, they would have been risky to make prior to such an analysis.

Reducing cowl wrap angle to its lowest setting is beneficial both in reducing

dry weight and making the vehicle insensitive to the noise variables. The

airbreathing engine weight is significant, and while a higher wrap angle

provides more thrust, the benefits are quickly outweighed by the extra engine

weight. During the analysis process, a design was run at the settings

recommended by the robust design results (row 1, column 1) and produced a

dry weight of 92,498 lbs. The initial penalty for the selection of the robust

design over the minimum dry weight design is small (only about 800 lbs), but

the benefits are clearly evident as the noise variables are introduced (scanning

across row 1 and row 7 of table 29). The weight growth of row 7 is higher

than that associated with row 1 for every column (47% compared to only 30%

for the worst column).

As mentioned in the previous section on Taguchi methods, the robust

design capability of the method is often overlooked, but may actually be one

of it's most useful attributes. The technique provides useful information on the

sensitivity of a design to uncontrollable noise variables like weight growth and

off-nominal engine performance. It should not be used to replace engineering
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judgment,but it providesanexcellentresourcefor makingplanningdecisions.
Therearesomedrawbacks.For example,it requiresmoreanalysisruns thana
simpleminimizationof theobjectivefunction,but thebenefitsaresignificant
and make it a highly recommendedtool for conceptualaerospacevehicle
design.

RSM and Central Composite Design Analysis

The 32 experiments performed as part of the L8 by L4 robust design

provide an excellent set of data for using response surface methods (RSM).

Since the variables are all continuous, an approximate mathematical model of

dry weight as a function of the main design variables, main variable

interactions, noise variables, and the main variable-noise variable interactions

can be determined with regression techniques. However, interactions among

the noise variables cannot be estimated because the original L4 noise array

(the outer array) was not designed to capture these interactions. In fact, if two-

variable interactions exist between the noise variables, they will be

confounded with the noise variables themselves.

The 32 dry weights from the L8 by L4 robust design experiments can

be written as a single experimental array as shown in table 34. The columns in

the experimental array are all orthogonal, and, in fact they are columns

associated with Taguchi's L32 orthogonal array. Specifically T/Wo is L32

column I, Mtr is column 2, • is column 4, Nisp is column 8, Neng is column

16, and Nfuse is column 24 (see reference 43 for the complete L32 array and

associated linear graph). However, the interaction column created from Nisp x

Neng is the same as Nfuse and therefore they cannot both be included in the

model. Similar confounding exists for the other two noise variable

interactions.
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Run

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

3O

31

32

Table

T/Wo

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1 1

-1 1

-1 1

-1 1

-1 1

-1 1

-I 1

1 -1

1 -1

1 -1

1 -1

I -1

1 -1

I -1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 I

34 - L8 by L4 Experiments as a Single Array

Mtr • Nisp Neng Nfuse

-1 -1 1 -1 -1

-1 -1 1 1 I

-1 -1 -1 -1 1

-1 -1-1 -1

-1 1 1 -1 -1

-1 1 1 1 I

-1-1 -1

1 1 -1 1 -1

1 -1 1 -1 -1

-1

-I

-1

-1-1

-1 -1

Dry Weight

92r498

118,623

119r865

109,261

125,091

161,283

154T076

151r943

92r121

123,229

131,979

117,139

1 1 -1 -1 I18r731

1 1 1 I 162,323

1 -1 -1 1 166,299

-1

-1

-1

-1-1

-1 1 1 1

-1 -1 -1 1

-1-1 -1

-1-1

165,534

92,871

120r909

1221145

110,463

124,903

161,361

1 -1 -1 1 153,085

1 -1 1 -1

-1-1 -1

-1

-1 -1 -1 1

-1 -1 1 -I

-1

-1

-1

-1

-1°1

151r701

91T685

124,938

135,532

118,943

118,690

161,095

164,714

163,823
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By examiningthelineargraphfor theL32array,it canbeshownthatif
the Nfusecolumn was changed from column 24 to column 15 in the
experimentalarray,thenall of the interactionsbetweenthevariablescould be
determined.This is a particularly interesting result becauseit points out a
sacrificethathasto bemadein orderto performrobustdesignusingTaguchi's
inner andouter arrays.If a designerhadstartedout with an L32 array, he or

she could capture all of the variable effects and interactions. By having to

place the noise variables in a separate L4 array instead, the designer lost some

of the interaction information.

Based on the 32 runs and available interaction columns, the following

linear mathematical model for dry weight can be formed in terms of the

normalized variables.

(51)

Equation 51 can be written in matrix form.

(52)

where,

and

y is the vector of 32 dry weight responses

is the vector of 19 unknown coefficients

[X] is the design matrix containing 32 rows and 19 columns
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Using apersonalcomputerbaseddata analysis program, the following

results were determined for the coefficients in equation 51. When the

coefficients from equation 53 are inserted in equation 51, the resulting model

characterizes the design space in terms of the main variables and the three

noise variables.

- [30

_2
[33
[3,
[32
[3°
_7
_8
[39

1310

[311

[31z

[3,3i

13,_J
_6 I
[3,71

"132,089"

214

2,709

18,202

-7,692

6,821

10,502

-85

-584

= -55

29

167

-349

-3,005

508

963

-914

2,771

-263

(53)

This RSM model is more useful than the signal-to-noise ratio analysis

in many ways. Rather than relying on a single S/N ratio that includes a

"smeared" effect of all of the noises, the RSM model specifies the individual

sensitivities of each noise variable. By inspecting the [3 coefficients, it can be

seen that the dry weight sensitivity to increases in the fuselage weight (Nfuse)

is the largest of all of the noise variables (adding 21,004 lbs to the dry weight

as it varies from -1 to 1). In fact, the sensitivity to Nfuse is second in
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magnitudeonly to the sensitivity to cowl wrap angle (_). The othernoise
variables are also very significant. The designer can use the linear RSM
equationto determineinformationabout thevehicle for unlimited "what-if"
scenarios.For example,whatwouldbe thebestsettingsfor T/Wo, Mtr, and
if the airbreathingenginecomponentsgrew in weight by 10%,but theother
noisevariablesremainedattheir baselinedsettings?

The linear RSM model for the L32 analysiscan be optimized to
producethedesignvariablesettingsin table35.

Table35- VariablesOptimumsfor L32RSMModel

T/Wo 1.2

Mtr 15

Cowl Angle, • 180 °

Nisp

Neng

N fuse

0%

0%

O%

Note that the noise variables are all optimized to their baseline values

as expected. Compared to the results of the additive model (equation 49 and

table 31), only the thrust-to-weight variable has changed settings. However, it

has been shown that the T/Wo variable has a very small effect on the dry

weight. For the current combination of variables, the predicted dry weight is

90,413 lbs. The actual experiment was run in row 9 of the L32 array and

produced an actual dry weight of 92,121 Ibs. The model under predicts the

actual dry weight by 1.9% at this point in the design space.

In summary, the application of response surface methods to this

problem produces a useful linear equation for approximating the dry weight
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for variouspointsin thedesignspace(but actuallyyieldedno improvementin
the vehicle dry weight over the L8-only study). Unlike Taguchi's robust
design analysis,sensitivity information is available for each of the noise
variable individually. However, the determinationof a robustdesignwould
still require thedesignerto createa combinedeffectof all the noisevariables
for which heor shewoulddeterminetheleast sensitivesettingfor thedesign
variables.That is, the"smearing"effectof Taguchi'ssignal-to-noiseratios is
actually desirableif the design is to be madeinsensitive to all threenoise
variablessimultaneously.

As discussedpreviously, the 32 runs in this RSM analysis were
derivedfrom theL8 by L4 experimentalruns.Becauseof this limitation, all of
the noise variable interaction terms could not be included in equation51.
However, if the original goal of the researchwas to producea response
surfaceequationinvolving all of thepossibleterms,thentheresultcouldhave
been accomplishedby selecting a slightly different configuration of the
experimentalarrayand still performingonly 32 runs.The runs requiredby
Taguchi's robust design method are slightly less efficient than the runs
requiredto fit the"full" RSMmodel in thiscase.

CentralCompositeDesign(with RSM)

As discussedin the previoussection on central compositedesigns,
CCD's arean excellenttool for extendinga first-orderexperimentalarrayto
includethe effectsof curvature.In order to checkfor curvaturein theRBCC

SSTOdesign,anexperimentwasperformedat thecenterof thedesignspace.
T/Wo wasset to 1.3,Mtr wassetto 13.5,and • wassetto 270°. The three

noisevariableswereall setat theirmidpoint (0) levels(i.e.Nisp= -10%,Neng
= 10%,Nfuse= 10%).The actualdry weight resultis comparedto themeanof
theL32arrayin table36.
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Table36 - Actual vs.PredictedDesignCenterPoint

Predicted- Meanof L32Array
Actual - VerificationRun

132,089lbs
127,552lbs

Thedifferencebetweenthepredictedmeanandtheactualcenterpoint
is relatively small (only 3.5%). In most cases,it would be assumedthat the
linear model is adequate,and if a more detailed optimum is desired, the
designercould usea gradient-basedMDO methodon thetrue designspace
(response surfacesare only approximations of the true design space).
However, in this caseaquadraticRSM canbeusedto demonstratetheCCD
with RSM method,and it may be able to locate an optimum designpoint
inside thedesignspaceratherthanalongtheedges.Linearmodelslike theone
in equation51areonly capableof determininganoptimumalongtheedgesof
thedesignspace.By addinga centerpoint andstarpointsfor eachof thethree
mainvariables,thefollowing modelcanbedetermined.

Dry Weight= 130+ [31*/w_T1+ [32* (1QI,_)+ 133* (_)

"_-[34 g¢ (Nisp) "Jr- [35 * (]_enll)"_ _6 * (Nfu$¢)

+131o

+[319

*:q_P/

* *_ +_" _w _° +13,2"(_*+)

* (_Vltr * i_isp) "l- 1314 * (lVltr * X_¢mg) -[" [315 * (l_tr * ]_fus¢)

, (+ • r_.) + 13,7*(_ *N=g)+ 1318*(+ *_,o,o)

, + [32o• (_) _+_,*(_)_

(54)
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In order to have a rotatable design, central composite design requires

the placement of star points at a distance of _ = F 1/4 from the center point. For

the L32 experimental array, F=32 and _ = 2.38 . However, there are some

difficulties in creating a rotatable design with the current design. An o_ of 2.38

would place variables settings for actual T/Wo at 1.063 and 1.537. Physically,

it is unwise to design a vertical lift off launch vehicle with a thrust-to-weight

of less than around 1.1. Vehicles with very low lift-off T/Wo's are susceptible

to cross winds and might drift into the launch tower. Therefore, cx1 was set to

2. ot2 for Mtr was set near the optimum value at 2.33 corresponding to Mtr star

points of 13.5 and 17. However, since 360 ° is the maximum physical cowl

wrap around angle, ot3 can be no higher than 1 (face centered). The resulting

array is not rotatable, but it is reasonably close. The seven additional runs

(2n+l) required to form a CCD in the three main variables and the selected

levels are shown in table 37.

Run

33

34

35

36

37

38

39

Table 37 - Additional Runs Required for CCD

T/Wo Mtr _ Nisp Neng Nfuse Dry Weight

0 0 0 0 0 0 127,552

-2 0 0 0 0 0 129r163

2 0 0 0 0 0 128_921

0 -2.33 0 0 0 0 128r467

0 2.33 0 0 0 0 136,295

0 0 1 0 0 0 109,221

0 0 -1 0 0 0 149,310

Because the CCD is "built up" from the L32 two-level array, the additional

runs are numbered 33 through 39. The entire CCD consists of all 39 runs.

Note that the noise variables were set to their midpoint levels for every point
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in the additional set. The curvature effects due to the noise variables were

assumed to be small and were not included in the model.

Using a computer based regression analysis program, the 22 [3

coefficients in equation 54 can be determined. The resulting coefficients are

130

13,
13,
133
13,
135
130
137
13_
139

13t0

1311

1312

1313

1314

1315

1316

1317

131s

IL i
1320

1322

"126,668

159

2,447

18,310

-7,692

6,821

10,502

-85

-584

-55

29

167

-349

-3,005

-508

963

-914

2,771

-263

657

1,084

3,616

(55)

The last three terms in equation 55 correspond to (T/Wo) 2, (Mtr) 2, and

(0) 2 respectively. The largest quadratic effect is due to the cowl wrap angle.

The other variables generally follow the trends established in the L32 study.

The largest linear influence on the dry weight is also the cowl wrap angle. The
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threenoisevariablesrepresentthenext largestinfluenceon the design.It is
interestingto notethe fairly largeMtr x Nis p term represented by _13- Since

the coefficient is negative, the signs of the normalized Mtr and Nisp variables

should be the same to reduce dry weight. As Nisp goes to -1 (indicating a 20%

degradation in airbreathing mode Isp), then the transition Mach number should

also go to -1 (Mtr = 12). The result makes good engineering sense because a

lower Mtr will spend less time in airbreathing mode.

When the [_ coefficients in equation 55 are combined with equation 54,

the resulting response surface is a quadratic approximation of the RBCC

design space. The dry weight can be minimized with a non-linear optimizer to

produce the variable settings shown in table 38. Unlike all of the previous

examples, the optimum variable settings do not necessarily lie at the edge of

the design space. _, however, has been consistently limited by its artificially

determined lower limit of 180 °. The "true" optimum for • probably lies

below 180 °. Additional work is recommended for this variable.

Table 38 - CCD Optimum Variable Settings

T/Wo

Mtr

Cowl Angle, q)

Nisp

Nen_

N fuse

1.27

14.6

180 °

O%

0%

0%

The predicted optimum dry weight is 89,660 lbs. An actual verification

run at the settings shown in table 38 produced an actual dry weight of 91,578

lbs. The quadratic RSM model under predicted the actual dry weight by 2.1%.

The detailed datasheets for the actual verification run are listed in Appendix E.
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Sincethedesignspaceis relatively linear,no largeimprovementin the
optimum dry weight was expected by adding the quadratic terms. However,

there is a slight (almost negligible) improvement. The best design produced by

the linear model was 92,121 lbs. The current design is 91,578 lbs. It should be

pointed out that the optimum design predicted above is the optimum of the

approximate model given by equation 54. The true optimum of the design

space may be slightly lower than the dry weight predicted above. If the

designer is interested in a more accurate optimum, gradient-based MDO

methods could be employed. In fact, since the linear RSM had already been

proved to be an adequate approximate model, a gradient-based technique like

system sensitivity analysis could have been used in place of the current CCD

application for the next step in the analysis.

While the quadratic model formed from a central composite design

showed only a small improvement over the linear RSM model for this

particular design, the potential of the method for aerospace applications is

significant. Advanced aerospace design problems are typically non-linear, and

an approximate model of the entire design space is a valuable design aid for

an engineer. Once the model is formed, endless "what-if" questions can be

answered about the design. Although the method cannot handle discrete

variables (the Taguchi method can), CCD with RSM equation fitting is a

highly recommended technique for use in conceptual aerospace design.

Final Vehicle Configuration

The final, "best" vehicle configuration is the minimum weight result of

the 39 point design CCD with RSM analysis (see figure 28). The vehicle

characteristics did not change significantly from the configuration selected

following the initial L27 screening array (figure 25). In fact, most of the

changes in dry weight and gross weight are due to the change in the mass

estimating relationships from the L27 array to the subsequent analyses.
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The final selectedRBCC SSTOhasa dry weightof 91,578lbs anda
grossweight of 463,943lbs (seeAppendixE for afull weightstatementon the
final vehicle).Thevehicle lifts-off verticallyandglidesto a horizontallanding
(theenginehasno supercharger).Theinitial T/Wo is 1.27at lift-off, but it has
beenshownthat a T/Wo of 1.2will makethevehiclelesssensitiveto engine
weight growth. After flying alonga constantdynamicpressureboundaryof
2000psf from Mach3 to Mach 14.6,thevehicletransitionsto rocketmodefor
the final accelerationto orbit. The conehalf angleis 5° , and the cowl wrap

around angle is 180 °. As discussed above, the "true" optimum for cowl wrap

angle (_) probably lies below 180.

RBCC enginu

LOX tank n__

OMS engi

crew cabin i_aylo_l bay Dry wgt = 91.6 Klb

Gross wgt = 464 Klb

LH2 wgt/LOX wgt = .508

Mass Ratio = 4.072

Figure 28 - Final Vehicle Configuration

The conical RBCC SSTO is designed to deliver a 10,000 lb payload to

a 100 Nmi. x 100 Nmi. polar orbit from a fictitious launch site at Vandenberg

Air Force Base in California. The same vehicle is capable of delivering

slightly over 20,000 lbs to a 100 Nmi. x 100 Nmi. x 28.5 ° orbit from Kennedy

Space Center in Florida. The vehicle is fully reusable, carries a crew of two

for two days, and could begin operations in the 2005 - 2010 time frame.
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Summary

In this research, several techniques from the parametric class of

multidisciplinary design optimization methods were applied to the

optimization of an advanced rocket-based combined-cycle SSTO launch

vehicle. It was a primary goal of this work to provide some insight into the use

of these methods for aerospace vehicle conceptual design, and to contribute to

the experience base in the field of MDO. The parametric methods studied

included Taguchi methods (both three-level and two-level), Taguchi's method

of robust design, central composite design (CCD), and first and second order

response surface methods (RSM).

Taguchi methods proved to be very useful for characterizing the

design space, for determining the effects of the individual variables, and for

locating a near-optimum region of the design space. Taguchi's use of

orthogonal arrays (with proper attention to interaction terms) makes the

method very easy to apply and the results easy to analyze. Of the methods

tested, only Taguchi methods are capable of handling truly discrete variables.

However, as evident in the application of an L27 array to the RBCC SSTO

design, the method's inability to deal with infeasible or unconverged designs

is a serious weakness of the method. Since all of the required point designs are

determined prior to the start of a parametric method, the designer is required

to know enough about the design space ahead of time so that the variable

ranges can be chosen accordingly. Unfortunately, such knowledge is not

always available.

One of the primary strengths of the Taguchi method is its ability to

perform robust design. Using signal-to-noise ratio analysis, the design

variables can be selected so that the vehicle is least sensitive to uncontrollable,

and potentially negative, influences on the design. For the RBCC SSTO

vehicle, two of the three design variable settings were found to be different
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whendesigningthevehicle to bemostrobustversusdesigningthevehiclefor
the lowestdry weight.However,thepenaltyassociatedwith therobustdesign
is very small. Taguchi's methodof robustdesigndoesnot allow thedesigner
to determinetheindividual effects of each noise factor, but instead provides a

smeared effect of all of the noises on the design.

The use of central composite design techniques (and associated second

order response surfaces) on the RBCC SSTO design was not expected to

provide much improvement in the optimum dry weight because the linear

model was shown to be fairly accurate for the selected design variables. In the

end, the 39 experiment CCD analysis provided less than a 2% reduction in dry

weight over the near-optimum solution produced by the eight run L8 Taguchi

array. In practice, a designer would probably not have chosen to perform the

additional 31 experiments (based on the center point check), and this

particular application was more of an attempt to understand the method than

to improve the dry weight. In general, a linear model cannot be expected to be

adequate in all cases.

First and second order RSM provides the designer with very useful

information about the design space and the variables. The mathematical model

of the response (the response surface) can be used to ask "what-if' type

questions about the design and quickly determine the results. The coefficients

of the model provide information about the effects of the main variables and

their interactions. The model can be optimized to help locate a point inside the

design space that might be optimum. However, response surfaces are only

approximations to the actual design space. Just because the model is quadratic

does not mean that the true design space is quadratic or that the optimums are

at the same place. At some point, it becomes more prudent to change to a

gradient-based optimization of the true design space rather than to add

additional point designs to the RSM model. This "point of diminishing

returns" is very problem dependent, but for the RBCC SSTO design, the

improvements in dry weight from the addition of extra CCD runs was

negligible.
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The parametric MDO methods researched in this work all have their

strengths and weaknesses. They each can be very helpful to the conceptual

vehicle designer if used in the correct situation. The methods used here are not

the only MDO methods useful for this type of design, but they form an initial

set to which new methods can be added. It is hoped that the demonstrated

applicability of these MDO methods will contribute to the growing literature

in the field and provide a basis from which additional research can begin.

RBCC SSTO Vehicle Specific Conclusions

The optimization of the rocket-based combined-cycle vehicle was a

highly multidisciplinary process that would have been difficult, if not

impossible, without the aid of multidisciplinary design optimization. It served

as an excellent test case for evaluating the potential of the methods.

For the reference mission, the minimum dry weight for the RBCC

SSTO vehicle is around 91,600 lbs. Vertical take-off produces a lower dry

weight than horizontal take-off primarily due to the extra gear and wing

weight associated with the HTO option. Based solely on performance, the

extra weight of the supercharging fan is not worth the additional weight of the

engine. The 5 ° cone half angle reduces drag and heating, and therefore saves

weight. The highest tested dynamic pressure boundary on ascent (2000 psf)

produces the most beneficial amount of thrust during the airbreathing portions

of the trajectory. The (one foot sphere) stagnation point heating limit was set

to the maximum feasible 350 BTU/ft2-s in order to allow the airbreathing

portion of the trajectory to stay on a maximum dynamic pressure boundary as

long as possible.

The RBCC SSTO dry weight is very insensitive to changes in the lift-

off thrust-to-weight ratio. There are competing effects as the T/Wo is varied

from low to high. A high T/Wo ratio will require a larger engine, but the

vehicle will accelerate to ramjet speeds (Mach 3) faster and therefore have

reduced requirements for on-board oxygen and lower lift-off thrust
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requirements.Theseeffects essentiallycanceleachother. A final value for

T/Wo of 1.27 was selected to minimize dry weight by using a quadratic

response surface model.

The airbreathing to rocket mode transition Mach number (Mtr) should

be set at near 15 (14.6 by quadratic RSM) in order to minimize the vehicle dry

weight. Mtr of 15 allows a larger percentage of the fuel to be lightweight LH2

(due to the longer use of airbreathing propulsion). At higher transition Mach

numbers, the scramjet engine thrust and fuel efficiency are reduced.

The most significant design variable is the cowl wrap around angle, _.

In all cases except the initial L27 array (which was influenced by several "no-

closure" designs), • of 180 ° proved to provide the lowest vehicle dry weight,

and • was always the most influential design variable. Varying _ from 180 °

to 360 ° can add as much as 36,000 lbs to the dry weight of the vehicle. Since

(I:}was always limited by the lower part of the allowable range, it is likely that

the "true" optimum for cowl wrap around angle lies below 180 °. Additional

work is recommended to extend the range of • from 180 ° down to 90 °. Since

the original two-variable interaction between the dynamic pressure boundary,

q, and • was performed under the influence of several no-closure runs (the

L27 array), an additional investigation of that interaction is also recommended.

Some of the most useful information about the design was provided by

the Taguchi robust design analysis. If the engine weight is likely to increase,

the body structure and thermal protection system weights are likely to

increase, and the airbreathing engine Isp is likely to decrease, then the vehicle

should be designed to be least sensitive to those "noises". A lift-off T/Wo of

1.2 will reduce the engine weight sensitivity, and a Mtr of 12 will reduce the

sensitivity to tank weight growth and scramjet Isp degradation. • remains at

180 ° . The baseline design dry weight penalty for this robust design option is

very small compared to the minimum dry weight design. Given the

uncertainty in high speed airbreathing engine development, it would be wise

to choose the design variable settings that maximize vehicle robustness.
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RECOMMENDATIONS FOR FURTHER WORK

The current research characterized key aspects of the RBCC SSTO

design space, but there are several areas in the design that would benefit from

additional research.

1) As pointed out after the initial L27 set of experiments, there is a likely three

variable interaction between the dynamic pressure (q), the transition Mach

number (Mtr), and the cowl wrap angle (_). The two variable interaction

between Mtr and • was investigated in subsequent research, but the q-Mtr and

the q-_ interactions have yet to be adequately studied. It is highly likely that

these interactions exist and have a significant impact on the design.

2) The cowl wrap angle consistently optimized to the lower end of its

preestablished range (i.e. 180°). Given the fact that • is the most dominant

variable in the design in terms of dry weight, additional research should be

conducted to locate the optimum setting for _. It is almost certain that a • of

less than 180 ° will produce a lower dry weight than the best reported here.

Use of a method that will capture the curvature effect of • is recommended.

3) The use of noise variables in the robust design and L32 RSM experiments

provided an excellent insight into the overall design space and the sensitivity

of the RBCC to expected negative influences. Future research should include

additional noise variables. Dry weight margin growth, payload growth, and

boundary layer transition criteria (for heating) are candidate noises.

While the current research focused only on the application of methods

from the parametric class, gradient-based MDO methods are also applicable to

conceptual vehicle design - particularly after the near-optimum region of

interest has been so well identified by the current research.
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4) Systemsensitivityanalysistechniquesshouldbeappliedto theoptimization
of RBCC SSTOdesignvariableslike cowl wrap angleand transition Mach
number.Unlike theresponsesurfacemethodusedin thisresearch,SSAcanbe
usedto locateanoptimumof thetruedesignspaceratherthanjust aquadratic
approximationof thetruedesignspace.

5) As shownin theL27 study, Taguchi methods have difficulty dealing with

infeasible points in the design space. Additional research is recommended in

order to determine the best options for addressing this deficiency.

6) MDO methods from both classes should continue to be applied to

conceptual aerospace vehicle design problems of various types. Additional

applications will provide insight into the methods and contribute to the

growing experience base in this emerging field.
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RBCC SSTO Mass Estimating Relationships

These mass estimating relationships have been compiled from various

sources (some not yet published), and are intended for use on specific

advanced vehicle configurations. They are listed by categories used on the

standard RBCC weight statement (Appendices C, D, E). These MER's are not

to be used for general weight estimation for broad classes and technology

levels of advanced spacecraft. Much of the supporting data (developed

partially from NASA LaRC in-house work) has been omitted here.

1.0 Wing Group

(1 + taper_ratio)lO'4
Exposed Wing =.82954* (t 1

*I safety- fact°r * max- wing- n°rmal- f°rce ]"481000

,_.67_exp* ARexp'64, (1 - technology_ factor)

where:

safety factor = 1.5
"exp" refers to exposed wing (rather than theoretical wing)

max_wing_normal force varies depending on ascent trajectory and loads
tic = .04 (airfoil thickness to chord ratio)

taper_ratio = 0 (delta wing)
S = wing planform area

AR -- wing aspect ratio (b2/S)
technology_factor= .40 (from Aluminum skin/stringer to Ti3A1 Beta 21S

w/SiC)

notes:

equation derived from military aircraft wings (Lepsch)
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Wing Carry Through :.00636 *[(1 + taper_ratio)AR,xp]"

• r safety_ factor * max_ wing_ normal_ force ]
I

L I000 _J
• bs,r_,,_ * body_ width

• (1 - technology_ factor)
root_ chord_ thickness ,,_

where:

safety _factor = 1.5

bstr exp refers to the total exposed span along the chord centerlines
max-_wing_normal_force varies depending on ascent trajectory and loads
technology_factor= .40 (from Aluminum carry-through to Ti3A1 Beta 21S

w/SiC)

notes:

equation derived from military aircraft wings (Lepsch)

2.0 Tail Group

Vertical tail = 5.0 * -v¢rt,_l°9, (1 - technology_factor)

where:

Svert = 2*.025*Sref wing (planform area of both vertical surfaces)
technology_factor =- .2(estimate from Aluminum to Ti3A1 Beta 21S)

notes:

original equation based on standard Aluminum construction (Lepsch)

3.0 Body Group

Nosecone = structural unit weight*surface area

where:

structural_unit_weight = 2.21 lb/ft 2 (est. Ti3AI Beta 21S materials from
AIAA 91-0540)

Crew Cabin (structure) = 1455*(number crew) 0.5

notes:
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pressurizedvolume(andthereforecabinweight)is relatedto thenumber
of crew

PayloadBay (structure) = structure (excluding doors) + P/L bay
doors + P/L accommodations

1) structure (excluding doors) =structural__unitweight*
surface_area(excluding doors)

where:

structural_unit_weight = 2.21 lb/ft 2 (Ti3A1 Beta 21S materials)

2) P/L bay doors = structural_unitweight*surface_area_doors

where:

structural_unitweight = 3.5 lb/ft 2 (20% less than STS honeycomb doors,
includes fittings, mechanisms, etc.)

3) P/L accommodations =. 15 * payload

where:

P/L accommodations include extra longerons, fittings, mounts, etc. to hold
payload

LH2 tank = LH2 tank structure + LH2 tank cryo. insulation

1) LH2 tank structure = volume_unit_weight*total_LH2_tank_volume

where:

volume_unitweight = .255 lb/ft 3 (Gr/PEEK, wound, integral,
axisymmetric tank, Olds)

notes:

LH2 tank ullage of 4.25% used on volume

2) LH2 tank cryo. insulation = insulation_unitweight*
total_LH2_tank_surface_area

where:

insulationunit_weight = .26 lb/ft 2 (based on Rohacell insulation)

LOX tank = LOX tank structure + LOX tank cryo. insulation
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1)LOX tankstructure= volume_unitweight*total_LOX_tank_volume

where:

volume unitweight = .33 Ib/ft 3 (advanced A1-Li, non-integral, Stanley)

notes:

LOX tank ullage of 4.25% used on volume

2) LOX tank cryo. insulation = insulation_unitweight*
total_LOX_tank_surface_area

where:

insulation_unit_weight = .20 lb/ft 2 (based on Rohacell insulation)

Aft Body = Tail cone(frustrum) + Base

1) Tail cone = structural_unit__weight*surface_area

where:

structural_unitweight = 2.21 lb/ft 2 (Ti3AI Beta 21S materials)

1) Base = structural_unit_weight*surface_area

where:

structural_unit_weight = 1.99 lb/ft 2 (secondary struct., 10% lower than
baseline)

Cowl = Cowl rin_ + Cowl struts

1) Cowl ring = non_inlet_structunitweight*non_inletsurface_area+
2 inletstructunit_weight _inletsurfacearea

where:
,non_inletstruct_unitweight = 2.21 lb/ft 2 (Ti3AI Beta 21S materials)

inletstruct_unit_weight*= 2.75 lb/ft 2 (advanced materials, 150 psi,
top&bottom req'd)

1) Cowl struts = structural_unit_weight inletheight
inlet_leng th*number_struts

where:

structural_unit_weight = 2.21 lb/ft 2 (baseline structural unit weight)
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4.0 Thermal Protection

I Active Cooling = Nosecap + Cowl leading edge + Wing leading edges [+ Engine nozzle exit I

1) Nosecap = 150 lb

notes:

fixed weight including cooling panels, heat pipes, supports, pumps, etc

2) Cowl leading edge = cowl_leading_edge_length*
active_cooling__perlength

where:

active_cooling__perlength = 2.70 lb/ft (based on 5 ° cone, Wilhite)

3) Wing leading edges = wing_exposed_leading_edges*
active_cooling_.perlength

where:

active_cooling__perlength = 2.70 lb/ft (based on 5 ° cone, Wilhite)

4) Engine nozzle exit = engine nozzle exitcooled_area*
active_cooling__perarea

where:

active_cooling_per_area = 3.50 Ib/ft 2 (based on 5 ° cone, Wilhite)

Advanced Carbon/Carbon TPS = Body/cowl + wing/tails

1) Body/cowl = (body_passive_area + cowl_area)*body/cowl % A CC*
A CC_unitweight

where:

body�cowl % ACC = percent of body/cowl area covered by ACC

(Teq>1800 ° F)
ACC_unit_weight = 2.0 lb/ft 2 (based on advanced NASP TPS, Shideler)

2) Wing/tails = (wing_wetted_area+tail_.wetted_area)*
wing�tail % ACC*ACC_unitweight

where:

wing�tail % ACC = percent of wing/tail wetted area covered by ACC
(T>1800 ° F)
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ACC_unit_weight = 2.0 lb/ft 2 (based on advanced NASP TPS, Shideler)

Superalloy standoff TPS = Body/cowl + win_/tails

1) Body/cowl = (body_passive_area+ cowl__area)*body/cowl % superaly*
superaly_unit_weig ht

where:

body�cowl % superaly= percent of body/cowl area covered by superalloy
(Teq> 1200 ° F)

superaly_unit_weight = 1.06 lb/ft 2 (based on advanced metallic NASP
TPS, Shideler)

2) Wing/tails = (wing_wetted_area+tail wetted area)*
wing�tail % superaly*superaly__unitweight

where:

wing�tail % superaly= percent of wing/tail wetted area covered by
superaly (T> 1200 ° F)

superaly_unitweight = 1.06 Ib/ft 2 (based on advanced metallic NASP
TPS, Shideler)

Titanium standoff TPS = Forebody

1) Forebody = (body_passive_area)*forebody. % ti*ti_unitweight

where:

forebody. % ti= percent of forebody area covered by titanium TPS

(Teq< 1200 ° F)
ti_unit_weight = .508 lb/ft 2 (based on advanced metallic NASP TPS,

Shideler)

notes:

cowl, tailcone, base, vertical tail, and wing areas made from Ti3A1 Beta
21S and with temperatures below 1500 °F do not require external
TPS because the material is capable of sustaining that temperature
already. However, all forebody (crew cabin and LH2 tank) areas will
require TPS reqardless of temperature. For example, titanium
standoff TPS is required on the tank because they are constructed of
lower temperature capability materials and sometimes contain
cryogenic fluids.
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5.0 Landing Gear

I Landin_j Gear = Nose _ear + Main Gear

1) Nose gear = .15 * .026 * landing_weight

2) Main gear = .85 * .026 * landing_weight

notes:
total advanced landing gear is 2.6% of landing weight (or takeoff weight if

horizontal take-off)
nose gear/main gear ratio is 15%/85% (MacConochie')

6.0 Main Propulsion (less cowl)

RBCC Engines = gross weight * -W v,_ct,_t_,o_

-W engi___u_inat,,I l

where:

engine uninstalled T/W is a function of the engine selected (#10, #12, etc.)
and is calculated based on formulas in Appendix B. Uninstalled
weight includes pumps, cooling, diffuser, combustor, fan (if
applicable), short nozzle, rocket ejectors, and gas generator. Only the
inlet weight (cowl) is excluded. Cowl weight is included in the body
weight.

notes:

engine weight is subdivided to component level according to data
available in Astronautics Corp. report for rocket primaries,
airbreathing components, and supercharging fan.

Pressurization and feed systems = 1.616 * gross_ weight *
]sPsea I_wl

notes:
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pressurizationandpropellantfeedsystemsbasedonpropellantmassflow
rate

Pur_e System= (.05*VLH2 + .075*VLOx)*(1-technology factor)

where:

technology_factor = 0.6 (advanced AMLS data, Lepsch)

notes:

for purging lines and tanks with He

7.0 RCS Propulsion

Forward RCS = Thrusters + Propellant tanks + Press. tank +
Pressurants + Lines, Manifolds, etc

1) Thrusters = number_ vernier_ thrusters * Treq

where:

number thrusters = 15 (3 verniers in each direction plus forward)
Treq = [entry_weight*body_length/l(147141 lbs*143 ft)]* 50 Ibs per

thruster

(T/W)vernier = 9.4 (includes mounts, supports, ignitors, etc)

notes:

thrusters are pressure fed LH2/LOX based on Rockwell IHOT study
required thrust calculation based on reference AMLS weight and length

2) Propellant tanks = .01295*Pdesign*Vtank

where:

Pdesign = 195 psia for both LH2 and LOX tanks

notes:

propellant tanks weight based on AL 2219 tanks sized for yield stress at
140% of design pressure with a 1.75 factor for extra items (fittings,
dewer constr.).

RCS propellant tanks include 5% ullage factor on volume

3) Pressurant tank(He) = .0143 Pdesign VHe (I-technology_factor)
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where:
Pdesign = 3000 psia for He pressurant tank
techn-ology_factor = .25 (composite wound tanks reduction)
VHe = .24*(VLox + VLH2) (based on 3000 psia and 195 psia tanks)

notes:

pressurant tank based on Ti-6A1-4V sized for yield stress at 400% of
design pressure with a 1.25 factor for extra items

4) Pressurant weight (He) = .67 I*(VLOX + VLH2)

notes:

based on 400 ° R storage temperature

5) Lines, Manifolds, Valves, etc -- .74*thruster_weight

notes:

based on Rockwell IHOT study for LOX/LH2 RCS

Aft RCS = Thrusters + Propellant tanks + Pressurant tank +
Pressurants + Lines, Manifolds, etc

1) Thrusters -

num vernier thrusters*
Treq_vernier

l_)vernier

+ hum_ prim_ thrusters * Treq-primary

-W primary

where:

num vernier thrusters = 12 (2 verniers in each direction plus 4 aft)

Treq-vernier Z[entry_weight*body_length[/(147141 lbs* 143 ft)]* 50 lbs
per thruster

(T/W)vernier = 9.4 (includes mounts, supports, ignitors, etc)
num__prim_thrusters = 10 (2 primaries in each direction plus 2 aft)

Treq..primary= [entry weight*body length��(147141 lbs*143 ft)]* 870 lbs
per thruster -

(Z/W)primary = 39.5 (includes mounts, supports, ignitors, etc)

notes:

thrusters are pressure fed LH2/LOX based on Rockwell IHOT study
required thrust calculation based on reference AMLS weight and length

2) Propellant tanks = .01295*Pdesign*Vtank

where:

Pdesign = 195 psia for both LH2 and LOX tanks
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notes:
propellanttankssizingbasedonAL 2219tanksdesignedfor yield stressat

140%of designpressurewith a 1.75factorfor extraitems(fittings,
dewerconstr.)

RCSpropellanttanksinclude5% ullagefactoronvolume

3) Pressuranttank(He)= .0143*Pdesign*VHe*(1-technology_factor)

where:

Pdesien = 3000 psia for He pressurant tank
techffology_factor = .25 (composite wound tanks reduction)
VHe = .24*(VLOX + VLH2) (based on 3000 psia and 195 psia tanks)

notes:

pressurant tank based on Ti-6A1-4V sized for yield stress at 400% of
design pressure with a 1.25 factor for extra items

4) Pressurant weight (He) = .671*(VLOX + VLH2)

notes:

based on 400 ° R storage temperature

5) Lines, Manifolds, Valves, etc = .74*thrusterweight

notes:

based on Rockwell IHOT study for LOX/LH2 RCS

8.00MS Propulsion

Engines =

where:

Treq OMS = entry weight�16 (1/16 g acceleration/deceleration)
(T/W')OMS_engineZ= 22 (includes mounts, supports, ignitors, etc)

Propellant tanks = .01295*Pdesign* Vtank

where:
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Pdesign = 25 psia for both LH2 and LOX tanks (low pressure for pump fed
sys.)

notes:

propellant tanks based on AL 2219 tanks designed for yield stress at 140%
of design pressure with a 1.75 factor for extra items(fittings, dewer
constr.) OMS propellant tanks include 5% ullage factor on volume

Pressurant tank (He) = .0143*Pdesign* VHe*(1-technology factor)

where:

Pdesien = 3000 psia for He pressurant tank
techffology_factor -- .25 (composite wound tanks reduction)
VHe = .06*(VLOX + VLH2) (based on 3000 psia and 25 psia tanks)

notes:

pressurant tank based on Ti-6AI-4V sized for yield stress at 400% of
design pressure with a 1.25 factor for extra items

Pressurant weight (He) =. 167*(VLOX + VLH2)

notes:

based on 400 ° R storage temperature

Lines, Manifolds, Valves, ere = .76*thruster weight

notes:

based on Rockwell IHOT study for LOX/LH2 RCS

9.0 Primary Power

Fuel Cells = 396 lbs

notes:

based on NASP technology AMLS (Stanley)

Reactant Dewers(wet) = 176.9*(mission duration+l)

where:

mission_duration = 2 days
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Batteries= .05166*(surfacecontrol actuators weight)

notes:

surface_control_actuator weight is proportional to power requirements

10.0 Electrical Conversion & Distribution

Power conversion and distribution = 1875 lb

notes:

based on NASP technology AMLS (Stanley)

EMA controllers = .324*(surface control actuators weight)

notes:

controller weight proportional to actuator weight

Circuitry and wiring =

shape.factor* 8.56" (vehicle length+vehicle width+vehicle height)

where:

shape_factor = 0.6 for RBCC SSTO due to proximity of P/L bay and crew
cabin

EMA Cabling =

.O0043*(vehicle length+wingspan)*(surface control actuators weight)

notes:

cabling weight proportional to power requirements and run length

11.0 Hydraulic Systems

Hydraulic systems = 0

notes:

hydraulics replaced with EMAs for advanced vehicles
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12.0 Surface Control Actuators

Elevon EMAs =

.01613*elevon control_surface percent*entry weight

where:

elevon_control_surface_.percent = .25 (fraction of exposed wing that is
control surface)

Verticals EMAs =

.O0428*verticals_control surfacepercent*entry_weight

where:

verticals_control_surface_percent = .20 (fraction of exposed tails that is
control surface)

13.0 Avionics

Avionics = 3300 lbs

notes:

fixed weight from NASP technology AMLS SSTO (Stanley)

14.0 Environmental Control

Personnel Systems = 141 lbs

notes:

based on AMLS SSTO (Stanley)

[ Equipment Cooling = 729 lbs

notes:

based on AMLS SSTO (Stanley)
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Heat transport loop =
shape factor*6.79*(vehicle length+vehicle width+vehicle height)

where:

shape_factor = .6 (radiators located in P/L bay doors for RBCC SSTO)

Heat re_ection system = Radiators + Flash Evaporators

1) Radiators = 512 lbs

notes:
based on AMLS SSTO (Stanley)

2) Flash Evaporators = 163 lbs

notes:

based on AMLS SSTO (Stanley)

15.0 Personnel Equipment

[ Food(galley), water, waste management systems= 502 lbs

notes:
based on NASP technology AMLS (Stanley)

Seats, etc = 150*number crew

where:
number crew = 2

notes:

seat weight based on historical seat weight data (Talay)

16.0 Dry Weight Margin

Dry weight margin =. 10*dry_weight
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notes:
usea 10%dry weightmarginto accountfor growthanduncertainties

(Stanley)

Wei ht

16

Dry Weight = _ w,.
i=l
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17.0 Crew and Gear

Crew and Gear = 1176 + (311+23*mission duration)*number crew ]

where:

mission duration = 2 days
number-crew = 2

notes:

includes crew consumables (food), personal items, crew, and suits (Talay)

18.0 Payload Provisions

Payload provisions = 0

notes:

payload specific items (special power supplies, umbilicals, etc) are
charged to the payload

19.0 Cargo (up and down)

[ Payload = 10,000 lb [

notes:

baseline mission is 10,000 lb delivery to polar orbit from VAFB

20.0 Residual Propellants

[ OMS/RCS residuals = .05*OMS/RCS usable propellant [

notes:

residuals trapped in tanks and lines is 5% of usable (not including
reserves) for OMS/RCS

I Main Propellant residuals = .O05*usable .mainpropellant
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notes:
residualstrappedin tanksandlinesis 0.5%of usable(not including

reserves)for main

21.00MS/RCS Reserve Propellants

[ OMS/RCS reserves = .lO*OMS/RCS_usable.propellant

notes:

OMS/RCS reserves are 10% of usable (not including reserves or residuals)
propellants

OMS/RCS reserves are returned to the landing site

[Landed Weight

Landed Weight = _-'w i
i=1
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22.0 RCS Entry Propellants

AVRt_-"s'_ 1RCS Entry Propellants = landed_weight * [e _ - 1

where:

AVRcs entry = 25 fps
IspRcs-- 420 secs

gc = 32.2 fps 2

notes:

RCS thruster Isp based on pressure-fed cryogenic thrusters from Rockwell
IttOT work

LOX/LH2 proportions calculated using RCS thruster mixture ratio of
OFF=4

distribution between fore and aft RCS calculated based on same ratio as
on-orbit AV's

gEntry Weight

Entry Weight = w,
i=l
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23.0 RCS/OMS Propellants (on-orbit)

AVxcs-f_'_ IForward RCS Propellants = entry_ weight * [e t.p_.z, _ 1

where:

AVRCS forward= 15 fps
IspRcs = 420 sees

gc = 32.2 fps 2

notes:

RCS thruster Isp based on pressure-fed cryogenic thrusters from Rockwell
IHOT work

LOX/LH2 proportions calculated using RCS thruster mixture ratio of
0/1==4

f AVRcs-_ /

Aft RCS Propellants = entry_ weight * e lsp"_'_" - 1

k

where:

ZlVRcS__a t= 35 fps
IsPRCS = 420 secs

gc = 32.2 fps 2

notes:
RCS thruster Isp based on pressure-fed cryogenic thrusters from Rockwell

IHOT work

LOX/LH2 proportions calculated using RCS thruster mixture ratio of
O/F=4

l 1AVoMs

OMS Propellants = entry_weight* e tsp_'*" - 1

where:

zaVOMS = varies depending on ascent trajectory (range 500 - 800 fps).
Includes 50 fps on-orbit and 200 fps deorbit AV.

IspRcs = 462 secs

gc = 32.2 fps 2
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notes:
OMSengineIspbasedonpump-fedcryogenicenginefrom Rockwell

IHOT work
LOX/LH2 proportionscalculatedusingOMS mixtureratioof O/F=6
OMS AV includes both circularization and deorbit burns

24.0 Cargo Discharged

I Cargo discharged = 0

notes:

ascent cargo is also returned

25.0 Ascent Propellant Reserves

Main propellant reserves = .O05*usable main propellants

notes:

main propellant reserves are 0.5% of ascent (not residuals or reserves)
propellants

main propellant reserves are vented on orbit or transferred to SSF (not
returned to landing)

26.0 Inflight Losses and Vents

lnflight losses and vents = .lO*entry weight

notes:
vents and losses include waste, purge gases, excess fuel cell reactants, etc

IInsertion Weight

I 26
Insertion Weight = _ w_

i=l
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27.0 Ascent Propellants

LH2 ascent propellant =
t"

prop_ fraction * gross_ weight * _1LH2_
\ massl-_ratiol

where:

LH2__prop_fraction = LH2 ascent prop�total prop. (varies depending on
engine and ascent)

mass ratio = (gross weight�insertion weight)required (determined by ascent
-trajectory)

notes:

during the sizing process, the volume of the LH2 tank (and therefore the
ascent prop. mass) is varied in order to match the actual vehicle mass
ratio to the required mass ratio determined from the trajectory
optimization program.

LH2 density = 4.43 lb/ft 3

LOX ascent propellant =

LH2 ascent propellent*( 1 11- - LH2_ prop_ fraction

notes:

LOX ascent prop. mass (and therefore volume) is sized from LH2 ascent
propellant

ht

27

Gross Weight = y w i
i=l
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28.0 Startup Losses

Startup propellants = 2 * gross_ weight * -_ _,_ct,_ur_tr

Isps,,. _t,,,,,,t

notes:

4 second ramp-up from 0% to 100% throttle during hold down.
main propellant tanks also sized to hold start-up propellants (ratio of O/F

determined by engine sea level mixture ratio)

[Maximum Pre-launch Weight

28

Maximum Pre-launeh Weight = _ w i
i=l
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Appendix B

Engine Mass Estimating Relationships
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Engine 10 Weight Equations (less inlet)

(No Supercharging Fan)

Assume: Rocket components scale with rocket prop. mass flow rate
Assume: Airbreathing components scale with mixer cross sectional area
Reference engine 10 (from reference NAS7-377, page 57):

Thrust = 250 klb, mp = 563 Ibm/s, Amixer = 32 ft 2

Weight Adjustments (weights in lbs)

Component NAS7-377 Technology New weight
w_t. fact.*

Fan Assembly N/A N/A
Gas Generator N/A N/A
Struct. & Actuat. N/A N/A
Fan Cover Struct. N/A N/A

Primary Rockets 677 .81 548
Turbopumps 706 .81 572
Rocket structure 1254 .90 1129

Mixer** 852 .875 746
Diffuser** 432 .875 378
Combuster** 712 .875 623

Exit/Nozzle** 2172 .875*** 1901

Total 6805 5897

Note: percentage weight margin added at vehicle level
* - from ref. AFAL-TR-88-004 page 88 (1985 reductions* 1995 reductions)
** - increase by 15% to scale from 100 psi to 150 psi duct pressure

(based on engine 9 & engine 10 comparison)
*** - includes reduction to eliminate ref. engine centerbody

Rocket components

A/B components

= (primary rockets+turbopumps+rock, structure)
= 2249 lbs

= 2249/563 = 3.99 lb/lbm/s rocket prop. flow
= (other weights)
= 3648 lbs

= 3648/32 = 114 Ibm/ft 2 mixer area

[ Engine 10 Wgt. = 3.99 lb/lbm/s rocket prop flow + 114 lb/ft2 mixer area ]
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Engine 12 Weight Equations (less inlet)

(with Supercharging Fan)

Assume: Rocket components scale with rocket prop. mass flow rate
Assume: Airbreathing components scale with mixer cross sectional area
Reference engine 12 (from reference NAS7-377, page 96):

Thrust = 250 klb, mp = 501 Ibm/s, Amixer = 32 ft 2

Weight Adjustments (weights in lbs)

Component NAS7-377 Technology New weight
w_t. fact.*

Fan Assembly 1009 .88 888
Gas Generator 895 .88 788
Struct. & Actuat. 665 .88 585
Fan Cover Struct. 350 .88 308

Primary Rockets 602 .81 488
Turbopumps 661 .81 535
Rocket structure 1114 .90 1003

Mixer** 1081 .875 946
Diffuser** 432 .875 378
Combuster** 712 .875 623

Exit/Nozzle** 2172 .875"** 1901

Total 9693 8443

Note: percentage weight margin added at vehicle level
* - from ref. AFAL-TR-88-004 page 88 (1985 reductions* 1995 reductions)
** - increase by 15% to scale from 100 psi to 150 psi duct pressure

(based on engine 9 & engine 10 comparison)
*** - includes reduction to eliminate ref. engine centerbody

Rocket components

A/B components

=(primary rockets+turbopumps+rock, structure)
= 2046 lbs

= 2046/501 = 4.04 lb/lbm/s rocket prop. flow
= (other weights)
= 6417 lbs

= 6417/32 = 200.5 lbm/ft 2 mixer area

[ Engine 12 W_t. = 4.04 lb/lbm/s rocket prop flow + 200.5 Ib/ft2 mixer area [
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Appendix C

Initial L27 Vehicle Datasheets
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1.0 Win e Group

2.0 Tii[ Group

3.0 Body C_oup
4.0 Theqmal I_oleclon

5.0 Umd_g Gew
6.0 Main Propul-J_ (leu cowl)

7.0 RCS Propulwon

8.00MS Ptopui-;on
9.0 Primary power

10.0 Flectrk_li Convecmon & D_st.

11.0 Hye_iug© lysWml
12.0 Surtlce Conlro4 Actua0on

13.0 Avionics
14.0 Envkranmemtal con_o4

15.0 Pectormel Eq_pment

16.0 Dry Weight Margin (10%)

Dry Weigh t

17.0 Crew and Gear

18.0 Plytoad PrcNil_onl

19.0 Cargo (up and 0own)

20.0 Re,dual _opellents
21.00MS/RCS Reserve I_e_len_

Landed Weight

22.0 RCS Enlly Propellen_ (AV - 25 I1_)

Entry Wel�ht

23.0 RCS/OMS _opellenm (_-omil)

24.0 Cargo Disd_afged
25.0 Ascent Reu*ve Propelents

26.0 Inllght LOSNS and Vin_

Ineectlon Weight

27.0 Ascent PropeHeetl

Groml Uftot/ Wel0ht

20.0 S ta_luf)

Mlxlmum Pre-leunch WiIght

Vehicle Weight Stalemlm(

8 degree cone, v'ro RBCC $STO with wtglne it10
q . 2000 plf r Mb .151 itaq. heal rate - 350 BTU_qlt-u¢

LtmL.1
3,912

750
26.604

11,740

2.855
16,776 ib

965

1.062
952

3,276
0

481

3,300

2,494
802

8.409

84,088

1,800
0

10,000
1,798

494

98,269

182

99,450

4,761
0

1,551
988

105,748

310,267

416,015

2.745

418,769

130, 59 99152

0.00
0.00

0.00 0
0.00 0

0.00

0,00
0,00 0

0.00 0
0,00 0

0.00 0

21,43 70717
000

0,00

Dry w_ght e.g. (exd margin)
115.02 ft 61.01%

28.09 53096
0.00 0

55.34 553412

0.00
0.00

Landing weight e.g. [P/L in)
107.75 #t 57.18%

Landing "_,lxght e.g. (P_. out)
114.32 It 60.83%

Erdty wmgh| c.g. (P/t. in)
107.80 ft 57.18%

_l_'y weight c.g. (P_. out)
114.35 11 60.55%

55,34 0
0,00

94,27 92810

tnsecbon w_ght cg. (P/t. in}
111.77 It 59.28%

0.00

Gro_ w_¢ _..g. (P_ in)

145.71 ft 77.26%
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1.0 V_qng Group

Gmwy lhm_)_

2.0 Tall Group

3.0 8(xly Group

ve_cle w_t SW_mlent

5 degceo carom, _ RBCC _ with engine #10

q . 2000 _d: Ml .as, sMg. heat rate - 350 BTU/_fl-sec

3,233
679

Hmax:r,m

Caew C._b_

Paykld Say SVvc_o
Stfuctule

P& Bay Dome
p/1. A,_nmodalons

LH2 Tank
Tank SVuclme

TIN¢ I_l_a_on

LOX Tank
Talk Slruclure
Tank Inldalk3n

Body
Tll cone

eal

Cod

Cow1 nn 9
llrUtl

4.0 ThwmJ Pvolecaon

Co_ _ng _e

Wd_9 edges
Erbgme n_zJe o_t

_lvl_a_ Car_Ca-_an

Body/cowl
Wing/tails

Super Jloy mndoH

Body/caed
Wtngltlils

TIlar, ium SUmdoff

Body/co_
Wing/tails

S.O Laod_ Gel

Main g _'

6.0 Main Propud_n (less r.m_)
RaCC S',,Qm_

Ejector rockets (Ind. purelY,)
Difl./Comb.JHoz. |_ co.rig

Fire/911/ 9er*eralor/stor a9 •
P_oIIaI_i and _ Wlltems

7.0 _ I_I_lan

Theus_l_r$ (15 pedicure led)

Prop. lank_emply(Ig5 p_ll

He p*e_nL mn_3000 p_a)

He p¢l_l_r Int

AI_ PK_

TT,_uat_'l (22 ;xe_ure fed)

Prop. tanks/emply(lg5 l_da)

He _eunL tank(300O p4ml)

He plmll_ranl

LJ_(m,ffllnifold s,valvel.elc+

6.0 Ok4'3 Prop_4sion
E_gin_l {4 pump led)

pro 0. Umks/@mpty(25 p_s)

HI preiwlL tank(30O0 p_a)
He pr_ant (lot low prmmLXe tank_)

Lines,m lnilold i.v a4v_, e_o+

9.0 Pdmary Poww
Fuji cells
P_ICCI_I dw+_ts

81ttedes

I0,0 El@cllrlcll Cor+ml_ & I_SL

Power _wINlon Ind dlisl_ibuUorl

EMA co_r_ie+ a

Cbcuilly & wiring
E_ cal_,ng

11 +0 Hy_rlUl_¢ I_t+illml
12.0 _rt_e C,ontz_4 Actuation

Et_s

227

2,058
4.618

1,489
1,829

1,500
9,140

6,693

1,448
1,1 60

984
177

4,279

4,087

192
6,122

5,960
142

1,057
150

124

332
400

6,469

5,880

589
4+183

4,183
0

0

0

0

383

2,172

13,944

5.717

8,227
0

2.218
6as

244

70

25
56

7

52
720

251
66

201

17
185

250
76

454

39

213

395
531

25

t .875
15&

1,196
49

397

3+912

759

25,604

It,740

2,SS5

18,776 Ib

965

1,062

952

3,276

0

451

140.55 454368

140.55 95447
130.59 99152

0+00
4.92 tt_9

29.67 61492

0.00
56.55 54220

5635 92093
55.54 83012

0.00

118.86 795470
118.86 172065

0,00

174.51 171629
174.51 30819

0.00

169.11 691178
168.54 38163

0.00

137+49 822122
13749 19575

0.00

0.00
0.50 75

121.42 15099

130.59 43409
154.58 74284

0.00 0

55434172203

0.00 0

473212 0

0.00 0

°o
0.00 0

55.34 21209

147.13 319531

0.00 0

0.00 0

132.13 755383
137.49 1131082

132.13 0
141.40 357934

162.90 100158

0.00

0.00
4.92 346

9+84 277

7.38 636
7.38 55

4.92 255

0800

185.54 48498

181.54 11938
181.$4 38494

181.54 5171

18154 33688
0.00

185.54 52733

179.80 13697

179.80 51613
179.80 7050

179.80 38218

0.00 0
69.26 27428

69.26 36757

162.90 4050
0.00 0

162.90 305428

157+45 24552

62.85 75165
t60.17 7853

0.00 0

0.00 0

157.45 62510

I"
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Verticals EMAs
t 3.0 Aviomca

14.0 EnvironmentmJ conUol

Pernonnel syl_mm s

Equipment cooling

Heat IranNxwt loop
Heat rqeclion system

Radialo_a

Fin Itt evnpaalan
15.0 Personnel EqtRpment

Food. watst_ waive marmg.
Seats. eec.

16.0 Dry Wmght Margin [10%)

Dry Weight

17.0 Caw md Geu

18.0 Pmylolld Provi-ions

19.0 Cargo (up and doHn)

20.0 J:tsa_duill 13tOp_lik'ttl
OM S_ICS redduala

Fore LH2 RCS relldulds

Fore LOX RCS rll_uals

Air LH2 RCS reiduals
Aft LOX RCS reidu/s

LH20MS rlmiduJs

LOX OMS readu/s

Main Pro_lent re=duals
LH2 r It/duals

LOX rmOduai=

21.00MS/RCS Rome Prop_lents
_CS r_s

Fore LH2 restores

Fore LOX r_s
Aft LH2 reserves

AN LOX re_p,e_'ea
OMS reoer_,s

LH2 reserves

LOX :e0en,ml

Landed Weight

22.0 RCS EnUy Propellents (+V - 25 tps)

Forward RCS PropMlonts
LH2

LCK

Aft RCS Prope4ents
LH2

LC=(

Enlcy Weight

23.0 RCS/OMS Prop_lents (on-orbit)

Forward RCS FmpMlonts

LH2

LCK

Aft RCS Propellents
LH2

LC_

OMS Pt op,_lents

LH2
LCK

24,0 Calgo D_ld_rged

23,0 As_nl Reserve PropeUqmts
LH2 reserves

LOX r eawvea

26.0 Inlight L(Im arid Vlmts

Insertion Weight

27.0 Ascent Propellents
LH2 uCenl

LOX Meant

Groin Uttoff Weight

28.0 Sbmrlup Losses

LH2 ltarbJp

LOX r4arlup

Mlxlmum Pr_l-Ilunch Welghl

512

163

2
7

4

15
31

188

549

1,002

3

13
8

31

63

377

11

44

25
102

22

87

Sl

204

628

3.769

64

3,300
2,494

141

729
949

675

8O2
502

300

247

1.551

55

440

55

127

109

255

4.397

549

1,002

109,835
200.433

392

2.353

8,409

84.086

1.890
0

10,000

1,798

494

98,269

182

98,450

4 +761

0

1,551

985

1 05.745

310,267

416,013

2,745

416,780

157.45 13269
21.43 70717

0.00

28.09 3961
28.09 20480

41.42 39296
0.00 0

55,34 28335
55.34 9021

0.00

28.09 14103
23.65 7095

Dry_ght c,g.(exd, margin)
115.02 t1 81.01%

28.09 53096

0.00 O

55.34 553412
0.00

0+00

9.84 1 6
9.84 64

181.54 694

181.54 2777
179.90 5647

179.60 33881

0+00
123.25 67686

174,51 174884

0,00

0.00
9.84 32

9.84 129
18154 1388

18154 5553

0,00 0
179.80 11294

179.80 67762

Landing woight c.g, (P_ in)
107.75 ft 57+15%

Lan_n 9 w_ght _g. (P_ ou_
114.32 it 60.63%

0.00

9.84 107

9.84 429

0,00 0

131,54 4620
181.54 18480

Entry w_ght c.g. (P_ _)
107,80 ft 57.18%

Enty x*_ght _g. (P_ o_
114.35 11 60.6 5%

0.00
9.84 215

9.84 860

0.00 0

181.54 9263
181.54 37052

O+O0 O

179.80 112937
17g.80 677622

55.34 0

O.O0
123.25 67686

174.51 174884

94.27 92810

Inler_onwl_ghtc.g.(P¢ in)
111.77 11 89.28%

0.00

123.25 13537101

174.31 34976832

Groltl w4mghl ¢.g. (P/L in)
145.71 11 77.28%
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1.0 Wing Group
2.0 TIMI Group

3.0 Bo_y Group
4.0 Thormlll Protecbon

5.0 landing Gear

$.O Msk_ Propulsion (less co_)
7.0 RCS Pr(_ou_don

80 OMS Prop_on

9.0 PNmuy Pow_"
10.0 Etec_¢Id Conv_on & C_st.

11.0 Hydrauilc systems
12.0 S_"hlee ConWol Ac_mbon

13.0 A_4onicll

14,0 EnvKorumlmtal control

15.0 P_sonnel Equipment

16.0 Dry weight Mirgm (10%)

Dry Weigh t

17.0 Crew and Gem,

10.0 PllylOaCl Prows_ofls

111.0 Cargo(up a_l down)
20.0 Re.dual I=ropelients

21.00MS/RCS Rel.an_e Prop_kmm

landed Weight

22.0 RCS Entry Prop_len_ (&V - 25 1p4)

Entry Wlight

23.0 RCS/OMS Propeilonls {On-o_hit)

24.0 Cargo DisOnarg_KI
25.0 Ascent Reserve Propellent=

26.0 Inltght LOM4_ md Vonti

InlN_r lion Weight

27.0 Ascent Pro_lle, nbl

Groee Ufloff Weillht

28.0 SlarlUp Losses

Max#mum Pfe-Ilunch Weight

Vetlide Wagflt Stalement
3 degree tirol, v'ro RBCC SgTO wl_ engine #10

q . 2000 P_l M_ -12, _taq. heat ;ate - 350 e.TU/_.-se¢

4,715
934

32,136
1 t ,297

2,765
17,809 Ib

1,0112

1,120
954

3,347
0

525

3,300

2,534
802

9,230

92,498

1,590
0

10,000

2,214
516

107,110

108

107,317

4,054
0

1,956
1,073

115,311

391,265

506.5711

2,081

508.457

137.35 114562
0.00

0,00

0.00 0
0.00 0

0.00
0.00

0,00 0

0.00 0

0.00 0
0,00 0

21.43 70717

0,00
000

D_y wetght c.g. (exd mlrgin)
1111.73 ft 511.47%

28.09 530116

0.00 o

63.75 637768
0.00

0.00

landing wmght ¢,g. (P/l_ inl
113.71 11 57.411%

landng w_ght e.g. _PA. o_t)
119.39 ft 60.27%

Entry w_ght e.g. (P/L in)
113.75 ft 57.43%

Entry we*ght cg. (P/1. ou_
110.43 ft 911.29%

63.78 0

0.o0

911.04 106289

Inserl_o_ w_ghi e.g. (P,q. in)
117.84 ft 59.411%

0.00

C-_014; w_i_ht C.11. (Pit. dl)
156.10 ft 70.811%

159



1.0 Wing Group

f_,po,_,w_
Cm'ry mro_Jgh

2.0 T"Jl G_roup

3.0 Soc*y Om,p

v,i'i_e W_ghl Slamme,nl I
5 detFree cone, VTO RICe $8TO with eet91rm 1110 {

g . 2000 p_ Mlr -12, slag. heat ram * 350 8"l'U/lqlt-11eo

_ LLmLI
4.715

3.894
821

Nosemnl
Ormv C,ab_

Pay_ced 8at SinCere
Suu¢tur¢l

P,'l, Say Doors
p& Aocommodalonl

LH2 Tank
Tank 81rucixe

TI_ In-" =orion

LOX TIl_k
Tsnk SW_¢t_i

Tank Inlulibon

A# Bo_y
Tail eone

Cod

Co_ rln9
Oowt _,_1l

4.0 Thermad Proteclon
A=live Cooing

No,lap
CO_ leading edge

Wng Im_ _g_
Engine nozzte emt

/bavmcld Ga_txxvCada(_

8odylcowl

Wing/title

SupJwdoy _off
Body/cOw_

WIn0/ilill
"ritJnium SLImCloff

_odytco_
Wingltlill

5.O Lining _

Main 9mr

6.0 Mldn Prop_l_n (14111 cowl)
J_.c in.,am

_4_|_ {_11l _i111_.puqT1pl)
DIHJCombJNoX. (w/ coach9

FI_II 91nef a(Q(tlb_(l_l
LDrllllUlIZal_Oil irl_ _ $ylt41flll

F_ge Sysmms

7.0 RCS Propulsion
Forlward

Tlvuste_s (16 Wes4aJl* led)

Prop. lankllemply(195 p_a)

Ho _l, ilmL _(_O00 p_a)
He pref41uronl

U ncNI,m aJ_lo4d il ,vii vial, oIc.
NtRC_

Thruaters (22 prese4_e t_l}

Prof). tankl,'ornply(196 I_a)

He W_*,nC tK_k(3000 p_a)

He pree#uranl
U nel.m _ml|ol0 s,vmlveS.etc.

6.00M$ Prop,u_s_on
Eng_n** (4 pump hid)
Prc_. fankliJempty(25 pl_a)

He p_N.vd, lahk(3000 I_1)

He prell_J(l_t (h)r I_w pressme rinkS)
I in_.m anifo_d s.v_ v_.llc.

9.0 Pdrnlry p_vw
Full ceils
Relctl_ d_l

_l|llritl

10.0 Becl_cal Co_wl_mon 8 Dill
Power ¢ollv_io_ 1_0 (liliibl)6oh

EMA controller i

CI;_Jilry i _r_
E)_ cal_ng

1 1.0 HyUra_© _wns
12.0 S4._ls¢e C_Iro[ _ctu_

E]emon EMAS

534

32,138
227

2,058
7,055

2,575

2.980

1.500
7,513

8.225

1,258
1,653

1,414

239
5,154

4.960
194

8,475
6,373

2.102
11,297

1.113

150
133

346
405

6,835

9,205
630

3,350

3,350
0

0

0
0

2,785
418

2.367

17,809 m

14,863

5.&99

9,364
0

2,326

618
1.082

273

81

31

94
8

6o

809

287
72

219

19

212
1,12B

305

79

471

41
232

954

396

531

27

3,347

1,875
170

1.246
"16

0

525

433

147,69 $75113

147,89 121304

137.35 114562
0.00

4.92 1119
29.87 61462

0.00

66.40 170984
98.40 197861

63.76 95665
0,00

128.65 786439

126.45 165150
0.00

179.64 254101

179.66 42891
0.00

174.56 665760

198.08 38490

0,00
136.97 885654

138.97 292187

0.00
0.00

0.50 75
122.21 16223

137.35 47419
156.74 75065

0.00 0

61458881103

0.0O 0

39,0,:
O.OO 0

o0
O.00 0

63.78 26644

149.03 352808
0.00 0

0.00 0
133_38 733516

138.97 1301291

133.38 0

163.62 380934
165.12 101983

0.00

0.00

4.92 397
9.84 302

7.38 693

7.38 60
4.02 204

0.00

195.08 55991

189.62 13591
189.62 41549

189.62 3610
189.62 40272

0.00

196.08 60392
18750 14837

18750 88403

157,50 7647

167.50 43445

0.00 0
86.13 34109

66.13 45711
165.12 4475

0.00 0

165.12 309605

165,37 28109

68.03 82299
165.24 9267

0.00 0
0.00 0

165.37 71563
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Vwlicals EMAs
13.0 Avionics

14.0 Envb'otlmlmtei conUo_

Pwsonnei sysaem s

Equipment coo_in9

Heat Irans_or! loop
Heel rqecllon system

Radiator i

Ral_ evaporatcf $

15.0 Pwsonn_d Equ_pmen!

Food. walter, wesae manag.
Saets, etc.

16.0 Dry Weight Margin (10%)

Dry Weight

17.0 Crew and Gem

16.0 Payload Provisions

19.0 Csrgo (up and do,,qm)

20.0 Remcluei PropoCents
OMS/RCS readuals

Fore LH2 RCS tel_duats
Foro LOX RCS ;'qladuals

Aft LH2 RCS refaduals

All LOX RCS weUdusis
LH20MS fe4Jdueis

LOX OMS re_dtMds

Main Pro_eilent residuals
LH2 r elMduals
LOX residuals

21.00MS/RCS P.4_m_e Propellents
RC3 reserves

Fore LH2 reservee
Fore LOX reserves

Aft LH2 reserves

Art LOX _.erves
OMS relas_r,

LH2 reHw/e$

LOX ;ese_es

Landod Weight

22.0 RCS EnZry Propsilents (6V - 25 I1_)
Fof_td RCS Propellents

LH2
LOK

Xh RCS ProlxNlonts
LH2
LaX

Entry Weight

23.0 RCS;OMS Prope_lenls (on-orbitl
Folward FICS Propsilents

LH2

LCK

Air RCS P'rop_ler, l=
LH2

LOX

OMS PrOl>_lents
LH2

LCIX

24.0 Cargo [_ged

25.0 Asoont Flesetve Prof_MIints

LH2 r ef_rves
LOX re_e,rvaNz

26.0 inlighl L04SeS and Vqmls

Inset llon Welghl

270 Ascent Propellen_l
LH2 ascent
LOX mclnq

Grooe Ufloff Weight

28.0 Stsriup Loom

LH2 $t_mJp
LOX =U=rtu?

Maximum Pre-llunch Weight

512

t83

2
7

4
17

33

198

511

1,448

4

14

8

33

65

391

12
48

25
111

24

95

56

222

652

3,915

92

141
729

989
675

502
300

258

1.956

60

457

59

139

119

276

4.587

511

1,446

102. t 20

289,145

412

2,470

3,300

2.534

502

9.250

92.499

1.690
0

10,000
2,214

516

107,119

195

107,317

4,984

0

1,956

1,073

115,311

391,265

398,376

2,681

509.467

165.37 15191

21.43 70717

0.00
28.09 3961

28_09 20480
41.42 40953
0.00 0

63,78 32654
6378 10396

0,00
26.09 14103

23.85 7095

Dry welghl ¢'g" (exd. ma_'gin)
118.78 f1 60.47%

28.09 53096
0.00 0

53.78 637768

0,00
0.00

9,84 18

9.84 70
189.62 790

189.62 3161

187.50 6117
187.50 36700

0.00
129.14 65941

17966 259733

0.00
0.00

9.84 35

9.84 141

189.62 1561
189.62 6322

0,00 0
187.50 12233

18750 73400

Landin 9 w_ghl e.g. {P/L inl
113.71 It $7.40%

Landdn9 w_ght C.9, (P/L _tl
119.39 tt 80.27%

0.00

9.84 117
9,84 468

0.00 0
189.62 5250

189.62 21040

Entry wWghl ¢-9" (Pfl. m)
113.73 It 57.43%

Ent'y _l_9ht C.9, (P/L out)
119.43 It 60.29%

0.00
9.84 234

9.84 938

0.00 0

189.62 10546
189.62 42185

0.00 0
187.50 122333

18750 733996

63.78 0
0,00

129.14 65941

179.86 259733

99.04 106289

Inserl:o¢1weight C.9. (P/l. in)
117.84 ft 69.40%

0.00
129,14 13186t47

179.68 51946879

G¢o/li weight c.g. (P/t. in)
188.10 ft 711.80%
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Appendix E

CCD (w/RSM) Vehicle Datasheets
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1.0 Wing Group

2.0 Tail _roup
3.0 Body G*oup
4.0 Thermal PToteclon

S.0 L_nd_l Gem
6.0 M|M Pro_Jildon (lees co_)

7.0 RCS Propu_on

6.00MS Pro_,_on
g.O Primary Power

10.0 E]ec_Icei Conveqwon & Dist.

11.0 Hydr|_in systems
12.0 Surface Conm.di Aclual)on
13.0 Avionics

14.0 Erlvwormllmtal conuod

15.0 Pscsonnei Equipment

16.0 Dry Weight M_rgin (10%)

Dry Weight

17.0 Crow a_d Gear

16.0 Payload PTov_s/ons

1 g. 0 Cargo (up and clown)

20.0 Re_doaJ Prog_llmis

21.00MS_CS Reserve l=top_l_Ita

L_nded Welght

22.0 RCS Enlry Proflelenta (&V - 25 fps)

Entry Weight

23_0 RCS/OMS ProT_Nlenta (on-o(bii)

24.0 C_gO _ged
25.0 Al_ont Reserve Pvo_lonm

26.0 In|ighl L_Ims and Venta

Inlmrflon Weighl

27.0 Ascent Prop_lents

Groell Uftoff Weigh(

26.0 Starlup Loire

Maximum Pre-lmunch Welghl

Vehicle Weight $_itamlnt

5 degree cone. VTO RBCC SSTO with engine #10

cI . 2000 psf, MW -1461 stag. he_ rate . 350 BTU/i_l-ssc

LIJClL= _
4,402

825

32,564

tl.764
2.766

16.447 Ib

1,071

1,121
954

3.354
0

519

3,300
2.$41

6O2

6,158

61,5711

1,690
0

10,000
2,007

516

105,960

I66

106,185

4.949
0

1,760

1,062

113.946

346.996

483,643

2,761

466.724

137.49 11 3360

0.00
0.00

0.00 0
0.00 0

0.00

0.00

0_00 0
0.00 0

0.00 0
0.00 0

21.43 7O717

0.00
0.00

Dry weight ¢.g. (exc4. mxrgin)
121.60 ft OI.40%

28.06 53096

0.00 O

63.78 637766

0.00
0.00

Lllndlng vlqllght e.g. {P4. in)
116.10 ft 58.12%

Landing weight c.g. (P/L car}
121.01 tt 61.10%

Entry wmght c.g. (P/L in)
115.14 fl 58.14%

Enlry wlgght c.g. (P/L out)
121.04 It 61.12%

63.78 0
0.00

99.02 106140

Inseqtion w_gh! =.g. (P/l. in)
119.13 ft 60.15%

0,o0

G_ol w_ght c.g. [P4. in)
155.68 fl 78.61%
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1.0 Wing Group

2.0 Tal4 Group

3,0 8_y Group

[xpo*N _

Garry mrough

V_e WekJhi StsWnenl
5 4egrlm cane, VTO RBCC slrro wl_ engine 410

q . 2000 pld, Ull .146, $ts�. he_ rs_ - 350 8TU/_iet_e¢

tk0Nmne

Crew Cabin

F'xytold Bay Sls_,csxe
Structure 2.S78

PA. Bay Doors 2.980
PA. Ac¢ommodaions 1,500

LH2 Tank
Ta_K $1ruclute 7.166

Tank fdmlulatJcrl 1.437

LOX Tu,K
Tsflk _lruC_lrl 1,137

Tank InacdalJcn 195

Nt Body
Tail _ 4,446

211

Cow/ ring 8.693
Cowl struts 1.920

4.0 Thermli Proteclkm

Aclk_ C,_eing
150

CoM tsmdmKj edge 132

W_ng iGe_In9 edgee 341

Engine nazzJe exit 504
Advanoed Ca_CNC_

5ody/co,d 6,437

Wlngllail$ 607

Superalksy mn¢lolt
BodylCOWt 3,503

Wing/tails 0
Tttsnun Standoff

8ody/_,,d o

Wing/lails 0

5.0 LBxlin9 Gea"

Mare 8_
6.0 Main Pv_ (kMW cm_)

nsccE_m=
Ejector rockets (ind. IX_l_)
DlffJComb.INoz. (w/ coaling

Fan/gas 9en_at_lltmage

P_mL_Zat_',, and bed syltsmll

Purge Sysiems

70 RCS Propukl_n
Forw*ar¢ RCS

Thrusws (15 pressure led)

pl;Op, tlmk.s/em_t{195 plr.ill)

He Wel.l_lt. Iink(30(X) plMI)
He _l_lMIItl 1

U nil, mI_ IotdS .vii V_I. IHC.

NtRCS
Ttw_s_s _22 p_essufe _)

Prop. lanAs/emply($95 p_4)

He pr_SnL tank(3000 p_l)

HO pre_mwamt
Ijne_.mlm_loid s,va_ves._Rc.

8.00MS F'ro_ek:n

F..n�/nu (4 pump ted)
pro_. tsnke_mply(2_ peia)

He I_et_mt. tsnk,13000 pe_a)
He Wum_ant (kx tow Weesute _kel

U mm,m udtokls,val vN.,e_.

9.0 Pdma_y Poww
Fu_ celts

Reactm_ ¢l_,vers

Batteries

tO.O Ele¢ldcal Cc_vlm_on 40tst
Pow_ ¢onver_i(m and d_slr_ulmn

EMA ¢or_ol_s

CL'_Jttry & w_rl_g

11,0 HI_Vlullc sysNns
12_0 Smtsce Conlr(d A¢luallan

5,278

8.255
0

80

30

93

8
59

264
71

217

19

210

La_J
4,402

3.568
818

82S

32.584
227

2,058
7,055

8,623

1,332

4,657

8,613

11.764

1,127

7,045

3.593

0

2,756

413

2,342
16,447 Sb

13,533

2,247
668

! .071

270

801

1.121

302

79
470

41

229
954

396

$31

27

3.364

1,875
166

1.256
53

0
819

428

147.71 529708
147.71 120481

137.49 113350

0.00
4,92 1119

29.87 61462
0.00

86.40 170984
66.40 197861

83.78 95665

0.00

130.25 935924
130.25 187172

0.00

183,83 208758
183.43 35761

0.00
177.86 790832

198.03 41795

0.00

144.87 968300
144.$7 277700

0.00

0,00
0.50 75

127.39 16794

137.49 46922
162.76 82052

0.00 0

637408761 84

0.00 0

426880 0

O.O0 0
0o

0.00 0
63.78 26363

154.82 362684

0.00 0
0.00 0

138.98 733473

144.67 1194239
136.96 0

168.97 381962

171.47 114469

000
0.00

4.92 392

9.84 299
7.38 688

7_36 80

4.92 290

0.00
195.03 55370

190.78 13530

190.78 41362
190.78 3594

190.79 40080

0.00
198.03 59739

188.96 14917

188.98 88879

186,08 7689

168.90 43322

0.00 0
86.13 34109

86.13 45711

171.47 4598
0.00 0

171,47 321512

145.15 27776
66.01 82897

168.31 9327

O.00 0
0.00 0

165.13 70716
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Vllrlclil EMAs

13.0 A_o_CS
14,0 En_tonmenlll ¢onud

P_sonn_ llylillm li

Equqimlnt cooltrlg
Hllll Iranllport loop

Hollt tlllc_on lyltem
RIdilli_rl

Flail1 llvapor at_ $

15.0 PIrionnll Equlpmlml

Food, willl, willie manig.
Sw/,

16.0 Dry Wllght Margin (10% I

Dry Weight

17.0 Clew Imd Gur

18.0 Plyload Provilion$

19.0 Carte (up inil dizen)
20.0 Reldull Proll_llmil

OMSJFICS relidlill i

Fore LH2 RCS rtlid_lll

Fore LOX RC$ ruldulll
All LH2 RC$ relldllll

All LOX RCS rlli_kllli

LH2 OMS rilidultl
LOX OMS lilidulll

Main Propellonl rellduals
LH2 relldualll
LOX rHidual$

21.00MSJRC$ Rolli_e Propllkmll
RCS rellli_qll

Fore I.H2 reslllvel

Fore LOX rellrvel

Art LH2 rolltnle$
All LOX r_ei

OMS rl.lllrvo$

LH2 r eiel'v ell
LOX reiervil

IJndOd Weight

22.0 RCS Enily Prol_lhmis (AV - 25 fps)

Folwird RCS Plopllillmlll
LH2

All RCS Flolltlenlll
LH2

Entry Wel0ht

23.0 RCS/OM$ Pio_entl [_l-omiil

Foi_lltd RCS Propitlenis
LH2

All RCS I_opelentil
I.H2

LCK

OMS I_ olllil_ II
LH2

24.0 Cmgo D_ch_ged

25.0 As_mll ReHnse Prol_llenls
LH2 r_wves

L0X rH_'k'N

26.0 Inllighf Losae= and Vlm_

Inler tlon Weight

270 AScent I_ot=etlenll
LH2 Nc_nl
LOX Mcent

Grolll Ultoff Weight

28.0 Stmri'p Lo_,es

LH2 _aq_

L0X slWtlup

611111imum Pfe-Jlunch Weight

512

163

2
7

4

16

33
195

590

1.160

4

14

8
33

05
391

12

47

27

110

24
94

55

220

651

3.905

91

141

729

996
675

502
300

257

1,750

59

456

59

137

115

275

4.556

Sg0

1.t60

117.949
232.048

397

2,384

3.300

2,541

802

9.156

91,378

1.890
0

10,000

2,007

515

105,989

196

106,185

4,949

0

1.750

1.062

113,946

349,996

483,843

2.781

455,724

165.15 15011

21.43 70717
0.00

28,09 3961

28.09 20480
41.42 41261

0,00 0

63.78 32654
63.78 10396

0.00

28.09 14103
23.65 7095

_ywe_ghlc.g.(exd. margin)
121.58 ft 61.40%

28.09 53096

0,00 0

63.78 637766
0.00

0.00
9.84 17

9.84 70

190.78 787
190.78 3147

188.96 6150

188.96 36898

0.00
133.17 78538

183.63 213054

0.00
O,O0

9.84 35

9.84 139
190,76 1574

190.78 6294

0.00 0
188.96 12299

188.98 73795

Landing _ght e.g. (P_ _)
113.10 ft 58.12%

Line'rig weight _g. (P_ o_
121,01 ft 61.10%

0.00

9.54 116
9.84 463

0.00 0

190.76 5236
190.78 20945

E_Uy weight c.g. (P& _)
116.14 ft 58.14%

Enly w_lhi =g. (P& ou_
121.04 ft 61.12%

0.00
9.84 232

9.84 928

0.00 0
190.78 10499

190.76 41996

0.00 0

158.96 122992
188.96 737954

63.78 0

0,00
133.17 78538

183.63 213054

99.02 105140

_llerloll _ghl c.g. (P_ in)
119.13 1t 60.15%

0,00
133.17 15707563

183.63 42610770

G_om we_lht cO. (P_ _)
155.68 ft 78.81%
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