@ https://ntrs.nasa.gov/search.jsp?R=19940009240 2020-06-16T21:32:52+00:00Z

, e
S /5555
NASA
- Reference 71?7”
Publication
1315
T 1093

NASA Airborne Satellite
Instrumentation Calibrator
(NASIC) Technical Reference

John L. Ward and Gerry Mclntire

(NASA-RP-1315) NASA AIRBORNE N94-13713
SATELLITE INSTRUMENTATION

CALIBRATOR (NASIC) TECHNICAL

REFERENCE (NASA) 49 p Unclas

H1/19 0185506

NASA
Reference
Publication
1315

1993

National Aeronautics and
Space Administration

Scientific and Technical
Information Branch

NASA Airborne Satellite
Instrumentation Calibrator
(NASIC) Technical Reference

John L. Ward
Wallops Flight Facility
Wallops Island, Virginia

Gerry Mclntire
Computer Sciences Corporation
Wallops Island, Virginia

TABLE OF CONTENTS

IntrodUuctionl .ccesccsscaccssosnscs

History of the NASIC Instrument

Theory of Operation (Hardware)

Theory of Operation (Software)

Data Analysis ..ceccecccssscsss

CONClUSIiONS .ceevesssssscscesccs

RefereNCeS ssssvecccscsssanscsss

Appendix A - Software Listings .

Appendix B - Hardware Schematics

iii

P §
P |
R |
cecsessessssnsssssssese D
I B £
teecesecssssnsessensevss 13
cecessssssssssessnssnss 15
cecvssssssasesesesscses 17

"> 5 6 5 05 5 5 60T OO0 36

PRECEDING PAGE BLANK NOT FILMED

e

1. INTRODUCTION

This publication describes the design, operation and function of an
Ebert-Fastie monochronomator, which by means of a moveable
diffraction grating, becomes a visible and near-infrared
spectrometer used to calibrate satellite-borne instruments by high
altitude underflights in the NASA ER-2.

The goal is to provide the reader with enough information to
operate, repair and modify the spectrometer and associated
subsystems hereinafter referred to as NASIC, an acronym for NASA
Airborne Satellite Instrument Calibration (Project). Included are
all hardware schematics, software source listings, and a cursory
analysis of test data taken from viewing a calibration sphere
before turning the instrument over to Code 925 at the NASA Goddard
Space Flight Center in March of 1993.

2. HISTORY OF THE NASIC INSTRUMENT

The precursor to the NASIC was called the Ocean Color Scanner
(0CS). The OCS Instrument was built in the early 1980’s by NOAA
and transferred to NASA in 1988. The instrument was flown aboard
the NASA/Lewis Lear jet and subsequently on the NASA ER-2 based at
AMES Research Center at Moffett Field, California. The name of the
instrument was changed to NASIC shortly after it was transferred to
NASA.

The OCS data system consisted of an HP 9825B computer. Program code
and data were stored on a magnetic tape cartridge. All I/0 and A/D
conversion was accomplished by modules which plugged into the back
of the 9825B. All code was written in BASIC.

In 1991, a decision was made to modernize all of the NASIC
electronics and data system but to leave the grating, optics, and
drive mechanisms intact. It was hoped that replacing the HP
computer with a PC-compatible computer would increase the system
reliability, performance, and adaptability.

System reliability and adaptability have certainly improved, but we
have discovered that the system performance is driven by mechanical
considerations (jitter in the chain driven grating) that can not be
fixed with new electronics and software. This issue will be
discussed further in the data analysis section.

3. THEORY OF OPERATION (HARDWARE)

The NASIC instrument measures light between 400 and 1035
nanometers. The spectral resolution is determined by the width of
the entrance and intermediate slit together with the lines/mm of
the grating. The instrument will fly with slits yielding either a
7 nm or 14 nm resolution.

NASIC is comprised of three major subsystems, the spectrometer, the
turret assembly, and the data system. The spectrometer is a
cylindrical tube about 16 inches long which contains a telescope
and associated optics, a monochromator, a chain driven diffraction
grating, and the A/D circuitry. The spectrometer is mounted in the
turret assembly which is nothing more than a motorized cradle which
allows the telescope and the entrance slit of the spectrometer to
be pointed at any desired azimuth and elevation. Finally, the data
system is a rack-mounted STD bus containing a PC compatible
computer. The computer controls the movement of the turret
assembly, the acquisition of spectral and other ancillary data, and
the recording of all the data onto a solid state hard drive.

All schematics are included in the appendix.

3.1 Design Considerations

The NASIC is designed to fly
onboard a NASA ER-2 at 70,000
feet. Any instrument that flies
on the ER-2 must be able to
operate without human
intervention and at pressure
altitudes exceeding 30,000 feet.
Given that the ©NASIC 1is a
passive instrument, designing it
to work without human
intervention is a relatively
simple matter. One simply
creates a command file which is -
called by the "autoexec.bat"
file at boot time.

The considerations for operating
at high altitudes present
greater challenges. The NASIC
data rate is very low. Each
spectral scan takes
approximately 5 seconds and the
data system records a maximum of
only 2000 bytes of information
per scan. Given the 1low data
rate, recording on a hard drive .
is the 1logical choice. The Figure .1. NASIC Spectrometer
problem is that the heads of a Mounted in the turret.

hard drive are designed to have

aerodynamic 1ift. Hard drive heads typically do not have sufficient
lift at pressure altitudes greater than 15,000 feet. In the past,
pressure boxes were built to house pressure sensitive devices such
as hard drives and tape drives. Fortunately, recent advances in
EEPROM technology have allowed us to opt for a solid state IDE hard
drive, thereby eliminating the need for a pressure box of any kind.

There are a host of other potential problems when operating at high
altitudes that we havé had the good fortune of not having to learn
about, hence they will not be discussed. Engineers from Lockheed
and NASA Ames review all instrument designs before being allowed to
fly on the ER-2.

3.2 Spectrometer

3.1.1 Ebert-Fastie Double Monochronomator

Shown below is a simplified diagram of the monochronomator. Light
enters the entrance slit at the top left and bounces off the
concave mirror and onto the grating. The light is then dispersed
and reflected by the grating. The light then bounces off the mirror
once again and is focused onto the exit slit. As the grating is
rotated, the wavelength of light that is focused at the exit slit
varies.

EXIT SLIT
Figure 2. Diagram of Ebert-Fastie Monochronomater.

The diffraction grating is driven by a chain gear which in turn is
driven by a 28 Volt stepper motor. It has been found that the chain
drive introduces a mechanical jitter which translates into an
uncertainty or noise in the determination of the wavelength of the
light being measured. This mechanical jitter is in fact the
dominant source of error in the instrument and this jitter in
effect determines the instrument signal to noise.

3.1.2 Photo-Diode and Analog to Digital Conversion Circuitry
Monochromatic light falls upon a silicon photodiode (HUV4000B).

This detector has a built-in FET amplifier, and a gain-bandwidth
product of 100 KHz. The output of the photodiode is filtered and

split into two channels, a high gain channel and a low gain
channel. The high gain channel has twice the gain of the low gain
channel. These two channels then feed two of eight inputs of an
analog multiplexer (MUX). Other MUX inputs are a reference zener
diode, two thermistors, supply voltages, and ground. Each of these
inputs is digitized with a 16-bit converter with serial output. The
serial data stream exits the rear of the spectrometer as buffered
TTL and is converted to RS232 on a board on the turret assembly
before being sent to the data system.

A Peltier device is thermally bonded to the back of the photodiode
to maintain a constant temperature of roughly 15 degrees Celsius.
The Peltier device is controlled by a third party controller which
is mounted in the rack along with the data system.

3.3 Turret Assembly

The spectrometer is mounted in the turret assembly which allows the
telescope to be pointed in the desired direction. One DC motor
drives a ring gear which controls the azimuthal position of the
telescope while another DC motor drives a threaded rod which
controls the elevation of the telescope. Both DC motors are driven
by the computer and use optical shaft angle encoders as feedback to
determine the proper positions. The turret assembly also houses a
board to buffer data and address lines going to and from the data
system and spectrometer.

3.4 Data System

The data system is a rack mount STD bus which contains the
following:

-> AT Compatible Motherboard (2 cards)

-> VGA Display Controller Card

-> Solid State (EEPROM based) IDE Hard Drive

-> Stepper Motor Controller

~> Custom Interface Card

The custom interface card has circuitry for the following:

-> Control the spectrometer MUX and A/D.

-> Read the A/D serial data stream.

-=> Control the turret azimuth and elevation motors.
-> Read the azimuth and elevation encoders.

3.5 Hardware Changes/Enhancements

Listed below is a summary of hardware changes and enhancements made
to the instrument.

Analog to Digital Circuitry - The old system used a 12-bit A/D. The
A/D was in a module on the back of the HP computer so that analog
signals had to be sent over some length of cable before being

digitized. The pre-amp circuitry in the spectrometer was hand-wired
on perforation board. The new A/D is 16 bit and is on a 4-layer
printed circuit board inside the spectrometer. By digitizing the
output of a reference zener diode we find that the A/D has an
effective resolution of 14.5 bits at DC. The spectrometer now sends
a digital data stream to the data system for recording instead of
sending analog signals to the data system for conversion and
storing.

Photodiode Channels - The old system had two photodiode channels,
a low gain channel and a high gain channel, but only one channel
could be recorded on any given flight. The new system also has two
channels but both channels are always recorded.

Azimuth/Elevation Circuitry - The old system had potentiometers
coupled to the azimuth gear and elevation screw. Azimuth and
elevation were determined by digitizing the voltage drop across the
potentiometers. This seemed unnecessarily complicated. The
potentiometers were replaced with optical shaft angle encoders.
Basic trigonometric rules were used to derive a relation between
encoder counts and azimuth/elevation angles. The Principal
Investigator has suggested using a straight line approximation
relate encoder counts to azimuth/elevation angles.

Computer - The old system used an HP 9823B computer. The new system
uses a rack mount STD bus system with a PC compatible computer
card.

Mass Storage - The old system used tape for both program memory and
for storing the instrument data. The new system uses solid state
non-volatile memory for both program memory and for storing
instrument data.

Peltier Control - The old system used a hand-wired board to control
the Peltier device. There was no way to easily change any of the
controller parameters. The new system uses a commercial controller
with the ability to set the temperature and feedback loop
parameters arbitrarily.

Relays - The old system used classic coil and contact relays. The
new system uses potted solid state relays.

4.0 THEORY OF OPERATION (SOFTWARE)

All flight software was written in "C" using Borland compilers. All
software is contained in one source file which includes the main
routine, all subroutines, and all header information. The name of
the source file was called "run.c" when it was shipped to
Greenbelt. Given that it was the intention of the Principal
Investigator to modify the software to suit his needs, one should
not assume that the current software is exactly as described in
this document. In addition to the flight code, "run.c", a general

purpose diagnostic program was written, the executable of which is
called "nasic.exe". This program is used principally for testing
the spectrometer. Any MUX channel can be selected and the data
viewed in graphical form. In“dddition, the operation of the turret
motors and encoders can be checked with this program.

The program "dcode.c" is included to demonstrate how to decode the
NASIC data recorded on ER-2 satellite underflights.

4.1 Command File Structure

The NASIC data system must operate without human intervention.
Shortly after takeoff the ER-2 pilot applies power to NASIC. At
that time the NASIC data system boots and the flight executable is
called by the "autoexec.bat" file. The flight code reads a file
called "nasic.cmd" which tells the instrument how to operate. The
file "nasic.cmd" is an ascii text file which contains up to six
command entries. This means that on any given flight the instrument
can fly up to six flight lines. On each flight line the command
file tells the instrument the azimuth and elevation in degrees to
orient the telescope, the time to begin taking data, and the number
of scans to record. The last two entries in the command file set
the number of bins per scan and the number of pitch and roll
samples per scan for all the flight 1lines. At this time the
instrument is not configured to read the aircraft pitch and roll
gyros, so the number of pitch and roll samples per scan entry is
ignored.

A command file can be created using any text editor and must be
called "nasic.cmd". Shown below is an example command file. Labels
could be added to each entry of the command file to make it easier
to read or modify if someone takes the time to modify the
subroutine "ReadCmdFile()" to strip out the label information
during run time.

Example nas.cmd File

10:00:00
55

15

38
10:30:00
20

10

38
10:48:50
13

13

38
12:45:05
120

20

18
13:05:00

90

30

18
13:30:00
110

10

18

200

20

The first line (10:00:00) tells the instrument in hours, minutes,
and seconds when to begin the first flight line. The second line
specifies the telescope azimuth (55 degrees) and the third
specifies the instrument elevation(15 degrees). The fourth line
specifies the number of spectral scans to record (38). This
sequence repeats itself six times; then there is one entry for the
number of bins per scan (200 in the above example), and finally the
last entry is the number of pitch and roll entries per scan (20 in
the above example).

The first entry of the command file tells the instrument to record
38 scans. The first scan will be a "blocked beam" scan. The
calibration sphere is rotated into the place for the first scan of
each flight line (command file entry). Data from the "dark”

scan is used to calculate the RMS noise which in turn is used to
calculate the system signal-to-noise ratio. The second scan should
be discarded as the calibration sphere is being rotated out of the
optical path during this scan. Therefore only 36 of 38 scans will
contain valid spectral data.

The PC Real Time Clock is used as the source of time to determine
when to begin a flight line. Please note that the PC Real Time
Clock time is different than the PC tick time which DOS normally
uses. The PC tick time interrupt is used by the flight software to
determine when, during a scan, to sample the spectral data and so
in no way corresponds to the PC Real Time Clock time. Normally when
a DOS machine boots, the BIOS reads the (battery backed up) Real
Time Clock time and converts this time into ticks since midnight
(one tick is equal to 54.9 milliseconds). This value is loaded into
memory location 0:46C. The 8253 timer interrupts the CPU at the
54.9 millisecond rate and the interrupt service routine increments
the value stored at location 0:46C. The DOS "TIME" command reads
this memory location when it displays or sets the time. The NASIC
flight software commandeers this interrupt service routine and
changes the interrupt rate of the 8253 so that DOS time becomes
useless. The NASIC software always reads the PC Real Time Clock
whenever "real” time is needed. What all this means is that when
setting the system time on the NASIC instrument using the DOS
"TIME" command, make sure that the NASIC flight code has not run on
the system since the last boot. A utility should be added to the
flight software to restore the proper number of timer ticks into
memory location 0:46C before returning to DOS.

4.2 Data Format

Data taken by NASIC is written to the solid state IDE hard drive
into a file called "nasX.dat" where X is the number of the flight
line. In other words, data from the first flight line is written to
a file called nas0.dat, the second flight line data is written to
the file "nasl.dat” and so on up to "nas5.dat" if there are a total
of six flight lines.

Data is written to the file in 2K byte binary blocks. One block is
assembled for each five second scan of the instrument. The number
of spectral bins per scan is programmable but the nominal value is
200 bins per scan. Given the 200 bins/scan value, each block will
contain 200 low gain spectral data points, 200 high gain spectral
data points, 1 data point from each of the other six MUX inputs,
and real time.

Each block is assembled as a linked list. The first integer of each
block identifies a data type. The second integer of each block
identifies the length in integers of that data type. The beginning
of the next data type can be found by adding the length of the
current data type to the address of the current data type label. A
program called "dcode.c", included in the appendix, is a utility
which demonstrates how this is done.

Type of Data Type Identifier Length Identifier
MUX Channel 0 (Spare) 0x0000 0x000f
Ground 0x0001 0x000f
Zener Diode (6.95 V) 0x0002 0x000f
Frame Temperature 0x0003 0x000f
Negative Supply 0x0004 0x000f
Detector Temperature 0x0007 0x000f
Real Time 0x0010 0x000f
LowGainSpectral (No Filter) 0x0020 BinCount
LowGainSpectral (Filter) 0x0021 BinCount
HighGainSpectral (No Filter) 0x0030 BinCount
HighGainSpectral (Filter) 0x0031 BinCount
LowGainDarkData 0x0040 BinCount
HighGainDarkData 0x0041 BinCount
End of Data 0x0069 0

There are two different versions of the flight software that affect
the data format. The NASIC Principal Investigator has not made a
decision as to which version to use. The first version has a blue
filter drop into the optical path just behind the telescope on
alternate scans. In this scenario, one 2K block would have data
types 0x0020 and 0x0021 and the next would have data types 0x0030
and 0x0031. The purpose of the filter is to prevent second order
effects from the blue end of the spectrum from contaminating the
red end of the spectrum. Therefore the filter is really only needed
at wavelengths longer than 700 nm. In the alternate software

version the filter is switched into the optical path midway through
each scan. In this case, data types 0x0020 and 0x0030 are identical
(both being low gain data) and data types 0x0021 and 0x0031 are
identical (both being high gain data).

This first version where the filter drops into the optical path on
alternate scans requires that half of all data be trashed before
analysis. (Only half the spectral data of any given scan would be
valid.) This was the way the old system worked. The second version
results in the acquisition of nearly twice as much data and
simplifies data analysis but has the disadvantage of losing two or
three spectral bins in the middle of each scan. This may or may not
be a problem depending on the goals of a particular flight mission.

Included in the appendix is the source code for a program called
"dcode.c". This program serves as an example of how to decode the
flight data.

4.3 Flight Software Operation

When the pilot applies power to NASIC FLIGHT SOFTWARE FLOWCHART,
NASIC, the PC compatible

computer boots and executes the
"autoexec.bat" file. The last
entry in the autoexec should be
the name of the executable
flight code. When the instrument
was shipped to Greenbelt the
executable was called "run". The
first order of business for the
flight software is to read the
command file called "nas.cmd".
This text file should be in the
same directory as the "run"
program. After successfully
reading the command file the
system will wait until the
computer real time clock matches
the first time entry in the
command file. At this time the
turret will be moved to the
proper azimuth and elevation,
and the stepper motor that
drives the grating will be
initialized and set into motion. Figure 3. Flight Software
The instrument will now rotate

the calibration sphere into the

optical path and take a dark

scan. The dark scan data will later be used to determine the system
electronic noise. After the dark scan data has been acquired and
written, the calibration sphere is rotated out of the optical path
and the programmed number of data scans are recorded.

Each scan is made up of a programmable number of spectral bins.
Normally this will be set to 200 bins. It is known that it takes
the stepper motor 4.9 seconds to complete a scan. The beginning and
end of scan are marked by polling an optical position sensor which
detects a notch in a disk coupled to the stepper motor. The flight
code divides 4.9 seconds by the number of bins per scan to
determine the time interval between each spectral bin. This value
is loaded into registers within the 8254 programmable interval
timer. The Terminal Count output of the 8254 Timer is tied to the
IRQ0 line of the computer. This is the highest priority interrupt
so that there is virtually no chance of there being any significant
skew in the triggering of this interrupt. (Only a block mode DMA
transfer could supersede an interrupt and there are no block mode
DMA transfers performed during acquisition time.) The interrupt
service routine sets a flag which is monitored in a tight polling
loop. Once the flag is set, the photo-diode channels are sampled
and the interrupt flag is reset. Once the programmed number of bins
are sampled, the program waits until the position sensor determines
the beginning of the next scan. There is a dead time during which
the grating returns to its home position. During this interval
time, temperature and other ancillary data are taken and recorded.

Once the flight lines have been completed, i.e. the programmed
number of scans have been completed, the entire set of data from
the flight 1line is transferred from memory buffers on the PC
motherboard to the solid state hard drive. The program then waits
until it is time to begin the next flight line or, if the command
file indicates that all flight lines are complete, then the program
terminates.

4.4 Software Enhancements

Listed below is a summary of software enhancements made to the
instrument.

Spectral Bins - The old system had a fixed number of spectral bins
per scan. The new system allows one to set the number of spectral
bins per scan in the command file.

Number of Scans per Flight Line - The old system was set so only 20
scans per flight line were allowed. The new system has a limit of
about 150 scans per flight line assuming 200 bins per scan. The
size of the buffers can be changed if necessary to make this much
larger.

Real Time Averaging - The old system took one sample per spectral
bin and recorded it. The new system can take up to 8 samples per
spectral bin and average them before recording.

Operation of Blue Filter - The old system switched in the filter on

alternate scans thereby wasting half of all data collected. The new
system provides for the option of switching in the filter mid-way

10

through a scan.

Diagnostics - The old system had no real time diagnostic facility.
The new system has the program "nasic.exe" to quickly check most
system functions.

5.0 DATA ANALYSIS x10¢ Xcaca Lamp md He-Ne Laser

39

A calibration sphere traceable
to NIST was used as a source in.
the lab to perform some basic
calibration and performance
analysis of the instrument. All
analysis was done on a PC using
Matlab, a math package published
by The Math Works, Inc..

3.8})
Rl

. 3.6t

Amplitude

3.5k

5.1 Wavelength Registration 3r l

The first order of business Mw o s ™ W0 mo s 100 1100

after the instrument became Wavelcagh in Nsnometers
operational was to assign a Fjgure 4. Helium and Xenon Data
wavelength to each data bin. We

did this by using a helium-neon

laser, a xenon lamp, and a mercury lamp. First we used the laser
and the xenon lamp simultaneously as a source. The He-Ne line is
known to be at 632.8 nm. Using this as a starting point we were
able to identify the xenon peaks from a handboock containing
spectral emission data. The same routine was repeated using a
mercury source and the He-Ne laser. Figures 4 and 5 show the
results of using these sources. The amplitude of all the plots is
in terms of A/D counts.

x104 Mercury Lamp and He-Ne Laser

5.2 Signal to Noise Analysis “ " ' ‘ '

4.2}
After determining our wavelength a1} |
axis we next set out to o
determine the performance of the 1l
instrument in terms of signal to [~
noise. There is a calibration E”'
sphere on the instrument which ar
can be rotated in front of the 3.6}
telescope to cut out all light. s
This "dark scan" data shows us 14 {
the noise floor of the TA N A]
instrument. Figure 6 shows a W0 S0 &0 70 8% S0 10w 1w
plot of the high and low gain Waveleagth in Nenometers

scans of dark data. Notice that Fjigure 5. Helium and Mercury Data
there is a high degree of

correlation between the high and
low gain noise. This indicates
that the system is not quantizer limited; in other words, the A/D

11

is accurately measuring noise which appears at its input. If there
is little or no correlation between the high and low gain dark
scans then one could reasonably say that the system is quantizer
limited or that the system noise is lower than the resolution of

the A/D.

PﬁgnndlmGunDlrkSms

The standard deviation of the s

low gain dark scan data is | 334} .
usually around 8 counts whereas | ,,.l N]
the standard deviation of -the

high gain dark data is about 16 | 7

counts. The high gain channel
has twice the gain of the low [,
gain channel, so the fact that
the standard deviation of one | ** 1
channel is twice that of the | s ;
other is reassuring and is yet | ,,,,| |
another indication that the

system is not quantizer limited. S R R R R N T VR T U R T
Sample Number

The system as it was before 1992 Fjigure 6. Dark Scan Noise Data
yielded a dark scan standard

deviation of about 1 count on

the 1low gain channel. That

system used a 12-bit quantizer so that the standard deviation for
comparison’s sake would have to be multiplied by 16 (in order to
compare noise from a 12-bit quantizer versus a 16-bit quantizer).
After the adjustment, the old system has a low gain dark scan noise
standard deviation of about 16 counts where the current system has
a low gain dark scan standard deviation of about 8 counts. We
therefore conclude that system noise in the new NASIC has been
reduced by a factor of two.

itude
W
t"
&

{n-1)
SNR=——u2

Eq l.n=bits

(—1_)2+02 o=RMS noise
Viz

All signal to noise (SNR) calculations are made

using the calibration sphere with one lamp. The SNR is first
calculated for a single scan and then computed again for a set of
averaged scans. Equation 1 shows how we calculate signal to noise.

Using equation 1 and plugging in the values of noise and number of

quantization levels from the old system and new, we find that the
maximum possible SNR of the new system is 2570 (about 11.5 bits)

12

and the best possible SNR of the x104 —Celibration Sphere - 1 Lamp
old system was 1245 (about 10 53 ' '
bits). This assumes that the
full dynamic range of the A/D is s}
being used.

ast

Ideally one would expect the SNR
to 1increase as the number of

Amplitude

scans averaged together i
increased. Unfortunately, that
assumes that one has a stable ast

wavelength registration. In this
instrument the chain drive on

the diffraction grating causes o0 e W6 &0 90 100 100
a jitter which degrades one'’s Waveicagh in Nasometers

ability to accurately determine Fjgure 7. Sphere Data
wavelength, and this translates

into a diminution in SNR when

multiple scans are averaged. Figure 7 shows a typical waveform
generated by plotting one scan of data obtained by viewing the
calibration sphere. The sharp drop at 700 nm is the location where
the blue filter is switched in. As one expects, the SNR curve is
exactly the same as the actual sphere data curve. Figure 8 shows a
single scan SNR curve and the SNR curve when 10 scans are averaged.
The multiple scan SNR is calculated by using the averaged waveform
as the signal and calculating the point by point standard deviation
of all 10 waveforms and then plugging these values into Equation 1.
A visual inspection of the two curves indicates that the multiple
scan SNR is related to the inverse of the derivative of the single
scan SNR curve. Notice that where the slope of the spectral data is
greatest, the the SNR is lowest. This relationship is exactly what
one predicts would happen if there is jitter in the motion of the
diffraction grating.

These curves indicate that it is very problematic to specify the
SNR performance of this instrument. The SNR will always depend on
the spectral profile of the source. It may be possible to fix the
data in software by deducing the effect of the jitter and then
removing it, but the algorithms to do this might be more costly to
develop than simply reworking the drive mechanism of the instrument
to eliminate the jitter.

6.0 CONCLUSIONS

The primary purpose of reworking the instrument was to bring the
technology of the system up to date and in so doing hopefully
increase the perfomance of the instrument to such a degree that it
could be used to calibrate SeaWifs and MODIS.

New and up to date technology has been applied to the data system

and control functions of the instrument in such a way as to
increase reliability, maintainability, and flexibility.

13

Unfortunately, the quality of
the final data product has not
been improved at all due to the
mechanical problems associated
with the diffraction grating.

The jitter of the grating in the
NASIC instrument causes such a
severe degradation in the SNR
that, unless extensive software
development is undertaken to
correct the data post flight,
serious consideration should be

given to reworking the
diffraction grating drive
mechanism.

Single aud Multiple Scan Signal to Noise
2500 — - - -—
2000+
1500+
2
1000}
o0t
) N I 4 1 B _
400 500 600 700 800 900 1000 1100 -
Wavclength in Nssometers

Figure 8. Solid Line is Single
Scan SNR. Dashed Line is Multiple
Scan SHNR.

14

REFERENCES

1. Abel, P., Galimore, R., and Cooper, J., "Calibration results for
NOAA-11 AVHRR Channels 1 and 2 from congruent aircraft data", in
internal review (1992b).

2. Smith, G.R., Levin, R.H., Abel, P., and Jacobowitz, H.,
"Calibration of the solar channels of the NOAA-9 AVHRR using hihg
altitude aircraft measurements”" J.Atm and Ocean Tech.,5: p. 631-
639, (1988).

3. Che, N., Grant, B.G., Flittner, D.E., Slater, P.N. Biggar, S.F.
"Results of calibrations of the NOAA-11 AVHRR made by reference to
calibrated SPOT imagery at White Sands, N.M., SPIE, 1493: p. 182~
194 (1991).

4. Abel, P., "Clouds as calibration targets for AVHRR reflected-
solar channels - Results from a two-year study at NOAA/NESDIS",
Calibration of passive remote observing optical and microwave
instrumentation; Proceedings from the Meeting, Orlando, Fl. Apr. 3-
5, 1991. Society of Photo-Optical Instrumentation Engineers, p.
195-206, (1991).

15

8. APPENDIX A - NASIC SOFTWARE LISTINGS

/* This program decodes the NASIC flight data */

#include<stdio.h>
#include<io.h>
#include<fcntl.h>
#include<sys\stat.h>
#include<alloc.h>

unsigned int i, j,k,TypeCount,TargetType,SkipFirst;

unsigned char c¢,d,e,done,ScanCount=0;
unsigned char *cr;

FILE *fp,*fpl,*fp2,*fp3,*fp4,*£fp5,*fp6,*fp7;
unsigned int *buffer,*buff,*BufferBase;
unsigned int DataType,DataLength;

struct stat FileInfo;

unsigned long FileSize;

char DataFileName[20],StringName[80];

char ValidbataFilesAvailable=1,True=1,False=0;
float AvgDiode[255];

float diode [8] [255];

void main(){ ,

c=0x2f;
*cr=0x0d;
buffer=malloc(0x800); /* bufffer for standard 2K data block
*/
BufferBase=buffer; /* initialize pointers */
while(ValidDataFilesAvailable){
ScanCount=0;
c++;
sprintf (DataFileName, "nas%c.dat",c);
fclose(fp);
fp=fopen(DataFileName, "rb");
if (fp==NULL) {
printf("\n error opening nas%c.dat”,c);
ValidDataFilesAvailable=False;
exit(0);

}

sprintf (DataFileName, "diode%c.20",c);
fclose(fpl);
fpl=fopen(DataFileName, "wb");
if(fpl==NULL) printf("\n error opening file");
sprintf(DataFileName, "diode%c.21",c);
fclose(fp2);
fp2=fopen(DataFileName, "wb");
sprintf(DataFileName, "diode%c.30",c);
fclose(fp3);
fp3=fopen(DataFileName, "wb");

17

PRECEDING PAGE BLANK NOT FILMED

sprintf(DataFileName, "diode%c.31",c);
fclose(fp4);
fp4=fopen(DataFileName, "wb");
sprintf(DataFileName, "LDark%c.dat",c);
fclose(£fp5);
fp5=fopen(DataFileName, "wb");
sprintf(DataFileName, "HDark%c.dat",c);
fclose(fp6);
fp6=fopen(DataFileName, "wb");
sprintf(DataFileName, "misc%c.dat"”",c);
fclose(fp7);
fp7=fopen(DataFileName, "wb");

fstat(fileno(fp),&FileInfo);
FileSize=FilelInfo.st_size; /* FileSize in Bytes
*/
/* printf("\n initial buffer is
$x" ,buffer); */

while((float)ScanCount*0x800<(float)FileSize){
printf("\nFile Size is $6.0f and Pointer is
$6.0f", (float)FileSize, (float)ScanCount*0x800);
fread(buffer,sizeof(int),0x400,fp);
DataType=0;
while(((buffer-BufferBase)<0x800)&(DataType!=0x69)){
DataType=*buffer;
DataLength=*(++buffer);
printf("\n Data Type is $x and Length is
¥x" ,DataType,DataLength);
switch(DataType) {
case 0x20: WriteLowGainNoFilterData(); break;
case 0x21: WriteLowGainWithFilerData(); break;
case 0x30: WriteHighGainNoFilterData(); break;
case 0x31: WriteHighGainWithFilterData(); break;
case 0x40: WriteLowGainDarkData(); break;
case 0x41: WriteHighGainDarkData(); break;
case 0x00: WriteChanOData(); break;
case 0x01l: WriteChanlbData(); break;
case 0x02: WriteChan2Data(); break;
case 0x03: WriteChan3Data(); break;
case 0x04: WriteChand4Data(); break;
case 0x07: WriteChan7Data(); break;
case 0x10: WriteTypelOData(); break;
case 0x69: break;
default: printf("\n probable error"); break;

}
buffer+=DataLength+1l;

if (DataType==0x69) buffer=BufferBase;
}

ScanCount++;

18

(T

} ,
WriteLowGainNoFilterData(){

buff=buffer;
buff++; ,
for(i=0;i<DataLength;i++){

fprintf (fpl,"%£f\n", (float)*buff++);

}
fprintf(fpl,"\n");
return(0);

WriteLowGainWithFilerData(){
buff=buffer;
buff++;
for(i=0;i<DataLength;i++){
fprintf(fp2,"$f\n", (float)*buff++);

}
fprintf(£fpl,"\n");
return(0);

}
WriteHighGainNoFilterData() {
buff=buffer;
buff++;
for(i=0;i<DataLength;i++){
fprintf(£fp3,"%$f\n", (float)*buff++);

}
fprintf(£fpl,“"\n");
return(0);

}
WriteHighGainwWithFilterData(){
buff=buffer;
buff++;
for(i=0;i<DataLength;i++){
fprintf(fp4,"$f\n", (float)*buff++);

}
fprintf(£fpl,"\n");
return(0);

WriteLowGainDarkData(){
buff=buffer;
buff++;
for(i=0;i<DataLength;i++){
fprintf (fp5,"%f\n", (float)*buff++);

}
fprintf(£fpl,"\n");
return(0);

}
WriteHBighGainDarkData() {
buff=buffer;
buff++;
for (i=0;i<DataLength;i++){
fprintf (£fp6,"%f\n", (float)*buff++);

19

}

fprintf(£fpl,"\n");
return(0);

WriteChanOData()({

buff=buffer;

buff++;

fprintf(fp7,"%s","\nChannel 0:");

for(i=0;i<DataLength;i++){
fprintf(£fp7,"\n%f", (float)*buff++);

return(0);

}
WriteChanlData() {

}

buff=buffer;

buff++;

fprintf(fp7,"%s","\nChannel 1:");

for(i=0;i<DataLength;i++){
fprintf(£fp7,"\n%f", (float)*buff++);

return(0);

WriteChan2Data(){

buff=buffer;

buff++;

fprintf(fp7,"%s","\nChannel 2:");

for(i=0;i<DatalLength;i++){
fprintf(£fp7,"\n%f", (float)*buff++);

return(0);

}
WriteChan3Data()

buff=buffer;

buff++;

fprintf(£fp7,"%s","\nChannel 3:");

for(i=0;i<DataLength;i++) {
fprintf(£fp7,"\n%f", (float)*buff++);

return(0);

}
WriteChan4Data(){

buff=buffer;

buff++;

fprintf(fp7,"%s","\nChannel 4:");

for(i=0;i<DataLength;i++){
fprintf(£fp7,"\n%f", (float)*buff++);

return(0);

}
WriteChan7Data(){

buff=buffer;
buff++;
fprintf(fp7,"%s","\nChannel 7:");

20

|

for(i=0;i<DataLength;i++) {
fprintf(£fp7,"\n%f", (float)*buff++);

return(0);

}
WriteTypelOData()
buff=buffer;
buff++;
fprintf(fp7,"%s","\nData Type 10, Time:");
for(i=0;i<DatalLength;i++) {
fprintf(£fp7,"\n%x",*buff++);

return(0);

}

/* This is the flight code for the NASIC instrument
*/

/* */
#include<stdio.h>

#include<conio.h>

#include<alloc.h>
#include<dos.h>
#include<math.h>
#include<mem.h>

#define HeaderDataLength 56 /* Remember to change this if adding
data */

unsigned char Filter,FlightLine;

unsigned int *LGNoFilter,*LGNoFilterBase,LGNoFilterIndex;
unsigned int *HGNoFilter,*HGNoFilterBase,HGNoFilterIndex;
unsigned int *LGWithFilter, *LGWithFilterBase,LGWithFilterIndex;
unsigned int *HGWithFilter, *HGWithFilterBase,HGWithFilterIndex;
unsigned int *MiscData, *MiscDataBase,MiscDataIndex,MiscScanIndex;
unsigned int LowGainNoFilter([512];

unsigned int LowGainWithFilter[512];

unsigned int HighGainNoFilter[512};

unsigned int HighGainWithFilter{512];

unsigned int HighGainDarkData[512];
unsigned int LowGainDarkData[512];
unsigned char DarkDataFlag;

float InterruptRate,TimervValue,ScanTime=4.9,freq=1193180.0;
unsigned TimerIntValue;

unsigned char TimerLow,TimerHigh;

char LastGratingDiodeStatus;

char CurrentGratingDiodeStatus;

char BeginScanTime;

unsigned int DetectorTemp,FrameTemp,LowGain,HighGain;

21

unsigned char LowGainLowByte,LowGainHighByte;
unsigned char HighGainLowByte,HighGainHighByte;
unsigned char SecondsRegister=0,ClockSeconds;
unsigned char MinutesRegister=2,ClockMinutes;
unsigned char HoursRegister=4,ClockHours;
unsigned long temp([8],htemp[8],ltemp[8];

unsigned char SphereOpenFlag,CurrentSphereStatus,PrevSphereStatus;

float *fptr,fvalue;

unsigned int NumOfBins;

unsigned long SystemSeconds,ActivateSeconds;
unsigned int i, j,k,1l,DataByteCnt;

unsigned int SpectralDataByteCount,*SpectralDatalengthPtr;
unsigned char c,d,e;

unsigned char ConvertTime,ScanCount,FileCount;
unsigned int FinalBinCount,BinCount;

unsigned int FinalIntCount,IntCount;

char *DataFileNamePtr;

char DataFileName[80];

char MiscFileName[80];

unsigned char CmdEntryCount,CurrentCmdActive;

FILE *fpl,*fp2,*fp3;

void interrupt NasIsr(); /* main interrupt service routine */
void interrupt (*rest)(); /* vector to restore original routine */
struct command{ /* this structure is 15 bytes long */

unsigned char hours; /* Hours to start Scan */

unsigned char minutes; /* Minutes to start Scan
*/

unsigned char seconds; /* Seconds to start Scan
*/

float azimuth; /* Azimuth in Degrees
*/

float elevation; /* Elevation in Degrees
*/

unsigned char NumOfScans; /* Number of Scans */

unsigned int BinsPerScan; /* Number of Spectral
Bins/Scan */

unsigned char PitchRollPerScan; /* Num of Pitch/Roll Samples
per Scan*/
} CmdEntry[6];

void ReadCmdFile(){
fptr=&fvalue; /* this forces compiler to link floating point
formats */
fpl=fopen("nasic.cmd","r");
if (fpl==NULL) printf("\n Command File is not available”);
for(i=0;i<6;i++){
fscanf(fpl, "%d%c",&CmdEntry[i].hours, &c);
fscanf(fpl, "%d%c",&CmdEntry[i].minutes,&c);
fscanf(fpl,"%d",&CmdEntry[i].seconds);

22

fscanf (fpl, "$f",&CmdEntry[i].azimuth);
fscanf (fpl, "$f",&CmdEntry[i].elevation);
fscanf(fpl,"%d",&CmdEntry[i].NumOfScans);

}
fscanf (fpl,"%d",&CmdEntry[0].BinsPerScan);

/* fscanf(fpl,"%d",&CmdEntry[0].PitchRollPerScan); */
for(j=1;3j<6;j++){
Cdentry[i].BinsPerScan=Cdentry[O].BinsPerScan;

/* Cdentry[i].PitchRol1PerScan=Cdentry[0].PitchRollPerScan; *x/

}

NumOfBins=(unsigned)CmdEntry[0].BinsPerScan;

}
void WaitTillProperTime(){

ActivateSeconds=(long)CmdEntry[CmdEntryCount].hours*3600+(long)Cm
dEntry[CmdEntryCount].minutes*60+(long)CmdEntry[CmdEntryCount].se
conds;
printf("\n CmdEntryCount is %d",CmdEntryCount);
printf("\n hours are %d\n",CmdEntry[CmdEntryCount].hours);
while((ActivateSeconds!=SystemSeconds)&!kbhit()) {
outportb(0x70,SecondsRegister);
ClockSeconds=inportb(0x71);
outportb(0x70,MinutesRegister);
ClockMinutes=inportb(0x71);
outportb(0x70,HoursRegister);
ClockHours=inportb(0x71);
SystemSeconds=(ClockHours>>4)*36000+(ClockHours&0x0£f)*3600;

SystemSeconds=SystémSeconds+(ClockMinutes>>4)*600+(ClockMinutes&0
x0f£)*60;

SystemSeconds=SystemSeconds+(ClockSeconds>>4)*10+(ClockSeconds&0x
0f);
printf("\r $%$lu %lu",ActivateSeconds,SystemSeconds);
delay(500);
printf("\r "3;
}

}

void MoveGimbal () {

#define AzCW 0x08

#define AzCCW 0x04

#define E1CW 0x01

#define EI1CCW 0x02

#define MaxAzCnt 2510;

#define MaxElCnt 1354;

unsigned int count=0;

int AzHitCnt=0,ElHitCnt=0,FinalAzEncoderCnt=0,FinalElEncoderCnt=0;
char AzHit,ElHit,match=0,sw,quit=0,CalStatus=0;

23

[%k Kk k The first task is to Calibrate the Gimbal
kkkkkkkk [
/**
% % %k k * /

outportb(0x109,0); /* this turns off all motors,solenoids
etc.*/

delay(100);

outportb(0x109,AzCW+ELCW); /* Swing the Gimbal Azimuth
Clockwise */

delay(1000); /* Raise the Gimbal Elevation Clkwise */

while(!quit){

AzHit=inportb(0x10a); /*read Azimuth shaft angle encoder

*/
AzHit=(AzHit>>7)&1; /* mask out all other bits
*/
/* printf("\n AzHit=%x match=%x",AzHit,match); /* */
if (AzHit==match) { /* has encoder state changed?
*/
AzHitCnt++;
count=0; /* reset the counter
*/
match=(AzHitCnt+2)%2; /* invert match
*/
}
delay(1l);
count++;
if(count==1000) quit=1; /* if Gimbal is on stops we’ll know
*/
}
quit=0;
count=0;

while(!quit){
ElHit=inportb(0x10a);
ElHit=(ElHit>>3)&1;
if (ElHit==match) {
ElHitCnt++;
count=0;
match=(ElHitCnt+2)%2;
}
delay(1l);
count++;
if(count==1000) quit=1;

}

outportb(0x109,0);

AzHitCnt=ElHitCnt=0;

printf("\n the gimbal is now calibrated ");

[**kkkkkkkkkkkkxkk*x The Gimbal is now Calibrated ***xxxxxkk%*/
[hhddkhkkhkdhhhhkhhhdhhhhhkhkhkhhkhhhkkhkkkkhkkkhhhkkkkkkkhkhkhkhkkkdkr /

24

[kkkkkkkekkkkkx**%* Now Move Gimbal to Proper Azimuth Kk kkkkk [
/***/

FinalAzEncoderCnt=(int)(Cdentry[CdentryCount].azimuth/200.0*250
9.0);
printf("\n AzEncoder Count is $d\n" ,FinalAzEncoderCnt);
if (AzHitCnt<FinalAzEncoderCnt) outportb(0x109,AzCCW) ;
else outportb(0x109,AzCW);
while(AzHitCnt!=FinalAzEncoderCnt) {
AzHit=inportb(0x10a); /*read Azimuth shaft angle encoder */

AzHit=(AzHit>>7)&1; /* mask out all other bits */
if (AzHit==match)({ /* has encoder state changed? */
count=0; /* reset the counter *x/

if (AzHitCnt>FinalAzEncoderCnt) AzHitCnt--;
else AzHitCnt++;
match=(AzHitCnt+2)%2; /* invert match */

}

delay(1l);

count++;

if (count==100) quit=1; /* is Gimbal is on stops? */
} printf("\n the final az count is $d" ,AzHitCnt);
outportb(0x109,0);

J**x*x*x*%*x Gimbal Now at Proper Azimuth (We Hope) ****x¥kx¥xx/
/***/

[**xkxkxxkxx* Now Move Gimbal to Proper Elevation *x*xxkkkkkix/
/**/

FinalElEncoderCnt=(int) (CmdEntry[CmdEntryCount].elevation/50.0*13
54.0);

FinalElEncoderCnt=(int) (sin(CmdEntry[CmdEntryCount].elevation/2.0
/360.0%2*3,1415)*1354.0*%1.9);

FinalElEncoderCnt = (int) (1480.0 * sqrt(1.84 *
(1-cos (CmdEntry[CmdEntryCount].elevation*.01745))));

/* FinalElEncoderCnt+=75; /* */

printf("\n Final EL Encoder Count is %d",FinalElEncoderCnt);

if (E1HitCnt<FinalElEncoderCnt) outportb(0x109,EI1CCW);

else outportb(0x109,E1CW);

while(ElHitCnt!=FinalElEncoderCnt){

ElHit=inportb(0x1l0a); /*read Azimuth shaft angle encoder */

ElHit=(E1Hit>>3)&1; /* mask out all other bits x/
if (ElHit==match){ /* has encoder state changed? */
count=0; /* reset the counter *x/

if (ElHitCnt>FinalElEncoderCnt) ElHitCnt--;
else E1HitCnt++;
match=(E1HitCnt+2)%2; /* invert match */

}
delay(1);
count++;

25

if(count==100) quit=1; /* is Gimbal is on stops ? */
} printf("\nthe final el count is %d", ElHitCnt);
outportb(0x109,0);

[***kxkkkx Gimbal is now at Proper Elevation ***kxkkxskkk*xkkkkk/

}
void StartStepper(){

#define base 0x150
#define data base+0
#define stat base+l /* when reading it is status */
#define command base+l /* when writing it is command */
#define aux base+2

#define stop 0x40

/**xkxkxkxk*x Status Register Format **xkkkkhkkkkkhhhhkkrkkkhkhkhxkkx /

/* */
/* Output Buffer Full - Bit 0. must be 1 to read data */
/* Input Buffer Full - Bit 1. must be 0 to write commands */
/* Motor Busy - Bit 2. Flag is 1 during motor operation */
/* */

/***/

char busy;

void StepperStatus();
[rrkkkdkkkkhkkkkkkkdr Tnitialization **xxkdkkkdkkhkkrhhhkhkhkkkhhn /

outportb(aux,0xff); /* D7=1 will reset the card */
delay(10); /* this delay is necessary */
outportb(aux,0x40); /* D6=0 activates card, so not yet */
StepperStatus();

outportb(command,0x01); /*positive logic,3 phase,2 phase step */

StepperStatus();

outportb(data,0x60); /* RA max */
StepperStatus();

outportb(data,0x20); /* RA min */
StepperStatus();

outportb(data,0x40); /* accel LSB */
StepperStatus();

outportb(data,01); /* accel MSB */
StepperStatus();

outportb(aux,0); /* activate phases */

StepperStatus();

[kkkdkk ok ok ok ok ok ok kkokkokok Kk End of Initialization
**************************/

[x*kkkkkkkkkkx Find Begin of Scan **kkkkkkkkkkkkhkkhkhkkkkhkkkkhhkd /

26

outportb(command, 0x4c);

Stepperstatus();
outportb(data,0x25); /* 0x25 is the rate */

St

epperStatus();

outportb(data,0xcf); /* number of steps LSByte */

St
ou
St
ou

void
char

st
wh

void

void

void

void
S
C

epperStatus();

tportb(data,7); /* middle byte */
epperStatus(); »

tportb(data,0xff); /* MSByte */

StepperStatus () {
StepperByte;

epperByte=1;
ile(StepperByte){
StepperByte=inportb(0x151);
StepperByte=StepperByte&0x02;

FirstTimeInterruptInit()

disable();
InterruptRate=(float)NumOfBins/ScanTime;
TimerValue=freq/InterruptRate;
TimerIntValue=(unsigned)TimervValue;

TimerLow = (char)(TimerIntValue&Oxff);
TimerHigh = (char)((TimerIntValue>>8)&0xff);
outportb(0x43,0x36); /* set up the timer chip */
outportb(0x40,TimerLow) ;
outportb(0x40,TimerHigh);

rest=getvect (0xlc);

setvect(0xlc,NasIsr);

outportb(0x21,0);

disable();

InitializeInterrupts(){

disable();

outportb(0x43,0x36); /* set up the timer chip */
outportb(0x40,TimerLow);
outportb(0x40,TimerHigh);

enable();

interrupt NasIsr(){
ConvertTime=1;

OpenSphere() {
phereOpenFlag=0;
urrentSphereStatus=PrevSphereStatus=0;

while(! SphereOpenFlag){

outportb(0x109,0x20); /* start the cal sphere motor */
PrevSphereStatus=CurrentSphereStatus;

/* constant speed operation command */

27

CurrentSphereStatus=inportb(0x10a);
CurrentSphereStatus=(CurrentSphereStatus&0x04)>>2;
if((CurrentSphereStatus==1)&&(PrevSphereStatus==0)){

SphereOpenFlag=1;
outportb(0x109,0);

}
void CloseSphere(){

outportb(0x109,0x20);
delay(1500);
outportb(0x109,0);

}

void StopStepper ()
outportb(0x151,0x40);
}

void CleanUp(){
disable();
setvect (0xlc,rest);
outportb(0x43,36);
outportb(0x40,0xff);
outportb(0x40,0xff);
enable();

}
void AssembleBlock() {

/* Channels 0,1,2,3,4,7 are to be collected and stored & time */

BinCount=0;
outportb(0x109,0x0);
for(i=0;i<5;i++){

/* flip the filter out */

outportb(0x108,0x08+1);

delay(1l);
outportb(0x108,i);
delay(1l);

/* high gain conversion */
/* wait till conversion is complete

MiscDataIndex=MiscScanIndex+1i*8;

* (MiscData+MiscDataIndex)= (unsigned int)i;

MiscDataIndex++;

* (MiscData+MiscDataIndex)= 6;

MiscDataIndex++:;

* (MiscbData+MiscbDataIndezx)

(255-inportb(0x108))+(255-

(inportb(0x109)<<8));

outportb(0x108,0x08+7);

delay(1l);
outportb(0x108,7);
delay(1l);

/* conversion */
/* wait till conversion is complete

/* data type

/* data length

*/
28

MiscDataIndex=MiscScanIndex+5#*8;

* (MiscData+MiscDataIndex++)=0x0007; /* data type 7 for
channel 7 */

* (MiscData+MiscDataIndex++)=6; /* length */

* (MiscData+MiscbDatalIndex++)=

(255-inportb(0x108))+(255-(inportb(0x109)<<8));

* (MiscData+MiscDataIndex)=FinalIntCount;

MiscDataIndex=MiscScanIndex+6*8;

* (MiscData+MiscDataIndex++)=0x0010; /* Type Ten for Time */

* (MiscData+MiscDataIndex++)=6;

outportb(0x70,HoursRegister);

* (MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);

outportb(0x70,MinutesRegister);

* (MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);

outportb(0x70,SecondsRegister);

* (MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);

MiscScanIndex=MiscScanIndex+7*8;

if(!Filter){

movmem(HighGainNoFilter, HGNoFilter+HGNoFilterIndex, (unsigned)NumO
fBins*2);]
HGNoFilterIndex+=(unsigned)NumOfBins;

movmem (LowGainNoFilter ,LGNoFilter+LGNoFilterIndex, (unsigned)NumOf
Bins*2);
LGNoFilterIndex+=(unsigned)NumOfBins;
} else{

movmem(HighGainWithFilter ,HGWithFilter+HGWithFilterIndeXx, (unsigne
d)NumOfBins*2);
HGWithFilterIndex+=(unsigned)NumOfBins;

movmem (LowGainWithFilter,LGWithFilter+LGWithFilterIndex, (unsigned
YNumOfBins*2);

LGWithFilterIndex+=(unsigned)NumOfBins;

}

}
void AssembleDarkBlock(){

/* Channels 0,1,2,3,4,7 are to be collected and stored & time */

for(i=0;i<5;i++){
outportb(0x108,0x08+1);
delay(1l);
outportb(0x108,i); /* high gain conversion */
delay(1); /* wait till conversion is complete */
MiscDataIndex=MiscScanIndex+i*8;
* (MiscData+MiscDataIndex++)= (unsigned int)i; /*data type */
* (MiscData+MiscDataIndex++)= 6; /* data length */

29

* (MiscbhData+MiscDataIndex)
(255-inportb(0x108))+(255-(inportb(0x109)<<8));
}

outportb(0x108,0x08+7);
delay(1):;
outportb(0x108,7); /* high gain conversion */
delay(1); /* wait till conversion is complete */
MiscDataIndex=MiscScanlIndex+5*8;
* (MiscData+MiscDataIndex++)=0x0007;/* type 7 for chan 7 */
* (MiscData+MiscDataIndex++)=6; /* length */

* (MiscData+MiscDataIndex)-=

(255-inportb(0x108))+(255-(inportb(0x109)<<8));

MiscDataIndex=MiscScanIndex+ 6*8;
* (MiscData+MiscDataIndex++)=0x0010; /* Type Ten for Time */
* (MiscData+MiscDataIndex++)=6;
outportb(0x70,HoursRegister);
* (MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);
outportb(0x70,MinutesRegister);
* (MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);
outportb(0x70,SecondsRegister);
* (MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);
MiscScanIndex=MiscScanIndex+7*8;

}

void WriteToFile(){
unsigned lgdtype=0x40;
unsigned hgdtype=0x41;
unsigned lgnftype=0x20;
unsigned hgnftype=0x21;
unsigned lgwftype=0x30;
unsigned hgwftype=0x31;
unsigned eodtype=0x69;
unsigned bins=(unsigned)NumOfBins;
unsigned zeros[2048];
unsigned Scount=0;
long CurrentPos;

for(i=0;i<2048;i++) zeros[i]=0;
CurrentPos=ftell(fp2);
printf("\n the current position is %1d",CurrentPos);
for(i=0;i<CmdEntry[(CmdEntryCount)].NumOfScans;i++){
fwrite(zeros,sizeof(int),1024,£fp2);
} /* * /

fseek(fp2,0,SEEK_SET); [* */ i
fwrite(MiscData,sizeof (int), HeaderDataLength, fp2);
MiscData+=HeaderDataLength;
fwrite(&lgdtype,sizeof(int),1,£fp2);
fwrite(&bins,sizeof(int),1,£fp2);
fwrite(LowGainDarkData, sizeof (int), (unsigned)NumOfBins, fp2);

fwrite(&hgdtype,sizeof(int),1,£fp2);
30

fwrite(&bins,sizeof(int),1,£fp2);

fwrite(HighGainDarkData,sizeof (int), (unsigned)NumOfBins, fp2);

fwrite(&eodtype,sizeof(int),1,£fp2);

for (i=0;i<CmdEntry[(CmdEntryCount)] .NumOfScans;i++) {

fseek(fp2, (long) ((i+1)*2048),SEEK_SET); /* */

fwrite(MiscData,sizeof(int),HeaderDataLength,fp2});

MiscDatat+=HeaderDataLength;

if (Scount%2==0) {
fwrite(&lgnftype,sizeof(int),1,£fp2);
fwrite(&bins,sizeof(int),1,£fp2);
fwrite(LGNoFilter,sizeof(int), (unsigned)NumOfBins,fp2);
LGNoFilter+=(unsigned)NumOfBins;
fwrite(&hgnftype,sizeof(int),1,£fp2);
fwrite(&bins,sizeof(int),1,£fp2);
fwrite(HGNoFilter,sizeof(int), (unsigned)NumOfBins, fp2);

fwrite(&eodtype,sizeof(int),1,£fp2);

HGNoFilter+=(unsigned)NumOfBins;

} else {

fwrite(&lgwftype,sizeof(int),1,£fp2);
fwrite(&bins,sizeof(int),1,£fp2);
fwrite(LGWithFilter,sizeof(int), (unsigned)NumOfBins, fp2);
LGWithFilter+=(unsigned)NumOfBins;
fwrite(&hgwftype,sizeof(int),1,£fp2);
fwrite(&bins,sizeof(int),1,£fp2);
fwrite(HGWithFilter,sizeof(int), (unsigned)NumOfBins, fp2);
HGWithFilter+=(unsigned)NumOfBins;
fwrite(&eodtype,sizeof(int),1,£fp2);

Scount++;

}
}

void main()({

outportb(0x109,0); /* disable all motors, solenoids etc. */

outportb(0x10a,0); /* enable latch to control motors, solenoids,
etc. */

StopStepper();

printf(”"\n At the beginning of main\n");

LGNoFilter=LGNoFilterBase=malloc(0xf£00);
HGNoFilter=HGNoFilterBase=malloc(0xff00);
LGWithFilter=LGWithFilterBase=malloc(0xff00);
HGWithFilter=HGWithFilterBase=malloc (0x£f£f00);
MiscData=MiscDataBase=malloc(0x£f£f00);
ReadCmdFile();

printf("\n have just read the Command File\n ");
FirstTimeInterruptInit();

enable();

31

Vil

for(FlightLine=0;FlightLine<6;FlightLine++){
if((CmdEntry[CmdEntryCount].NumOfScans)!=0){

DarkDataFlag=0;
LGNoFilter=LGNoFilterBase;
LGNoFilterIndex=0;
HGNoFilter=HGNoFilterBase;
HGNoFilterIndex=0;
LGWithFilter=LGWithFilterBase;
LGWithFilterIndex=0;
HGWithFilter=HGWithFilterBase;
HGWithFilterIndex=0;
MiscData=MiscDataBase;
MiscDataIndex=0; MiscScanlndex=0;
for(i=0;i<0x£f£f00/2;i++){
* (LGNoFilter+i)=0;
* (HGNoFilter+i)=0;
*(LGWithFilter+i)=0;
* (HGWithFilter+i)=0;
* (MiscData+i)=0;
}
WaitTillProperTime();
printf(”"\n just made it out of WaitTillProperTime\n");
MoveGimbal();
printf("\n have finished moving the gimbal into position");
fclose(fp2);
sprintf(DataFileName, "NAS%d.dat",FileCount++);
fp2=fopen(DataFileName, "wb");
if (£p2==NULL) printf("\n could not open the data file");
StartStepper();
printf("\n have finished starting the stepper”);
CloseSphere();
J=0;
outportb(0x108,0x8+6);
delay(25);
outportb(0x108,6);
InitializeInterrupts();
while(DarkDataFlag==0){

if (ConvertTime) {

for(i=0;i<8;i++){

outportb(0x108,0x8+6);

k++;k--; /* stall for a little time */
outportb(0x108,6); /* low gain conversion */
delay(1); R

ltemp[i]=(unsigned) (255-inportb(0x108))+(255-(inportb(0x109)<<8));
outportb(0x108,0x8+5);
k++;k=--; /* stall for a little time */
outportb(0x108,5); /* high gain conversion */

32

delay(l); /* */

htemp[i]=(unsigned)(255-inportb(0x108))+(255-(inportb(0x109)<<8));
} ,

HighGainDarkData[j]=(unsigned)((htemp[O]+htemp[1]+htemp[2]+htemp[
3]+htemp[4]+htemp[5]+htemp[6]+htemp[7])>>3);

LowGainDarkData[j]=(unsigned) ((ltemp[0]+ltemp[l]+ltemp[2]+1ltemp[3
]+ltemp[4]+1ltemp[5]+1temp[6]+1ltemp[7])>>3);

J++;

if(j==NumOfBins) {

DarkDataFlag=1l;

}

ConvertTime=0;

}
AssembleDarkBlock(); /* */
OpenSphere();

CurrentCmdActive=1;
LastGratingDiodeStatus=CurrentGratingDiodeStatus;
CurrentGratingDiodeStatus=(inportb(0x10a)&l);

if((LastGratingDiodeStatus==0)&(CurrentGratingDiodeStatus==1)){
BeginScanTime=1;

while(CurrentCmdActive){ /* loop until sequence is over*/
LastGratingDiodeStatus=CurrentGratingDiodeStatus;
CurrentGratingDiodeStatus=(inportb(0x10a)&l);

if ((LastGratingDiodeStatus==0)&(CurrentGratingDiodeStatus==1)){
InitializeInterrupts(); /* */
AssembleBlock();
ScanCount++;
if(ScanCount==CmdEntry[CmdEntryCount].NumOfScans) {
CurrentCmdActive=0;
ScanCount=0;

}
if (ScanCount%$2==0) {
/* outportb(0x109,0); /* filter out */
Filter=0;
}
if(ScanCount$2==1){
/* outportb(0x109,0x80); /* filter in */
Filter=1;
}

if (ConvertTime) {

33

if (CurrentGratingDiodeStatus==0) {

for(i=0;i<8;i++){
outportb(0x108,0x18+6); :

k++;k=-; /* stall for a little time */
outportb(0x108,0x10+6); /* low gain conversion */
delay(1l);

ltemp[i]=(255-inportb(0x108))+(255-(inportb(0x109)<<8));

outportb(0x108,0x18+5);
k++;k--; /* stall for a little time */

outportb(0x108,0x10+45); /* high gain conversion */
delay(1l);

htemp[i]=(255-inportb(0x108))+(255-(inportb(0x109)<<8));
}

if(!Filter){

LowGainNoFilter[BinCount]s=
(unsigned) ((ltemp[0]+1ltemp[l]+ltemp[2]+1temp[3]+1ltemp[4]+1ltemp[5]
+ltemp[6]+1ltemp[7])>>3);

HighGainNoFilter[BinCount]=(unsigned) ((htemp[0]+htemp[1l]+htemp[2]
+htemp[3]+htemp[4]+htemp[5]+htemp[6]+htemp[7])>>3);

} else {
LowGainWithFilter[BinCount]s=

(unsigned) ((ltemp[0]+1ltemp[l]+ltemp[2]+1ltemp[3]+1ltemp[4]+1temp[5]
+htemp[6]+htemp[7])>>3);

HighGainWithFilter[BinCount]=(unsigned) ((htemp[0]+htemp[1]+htemp[
2]+htemp[3]+htemp[4]+htemp[5]+htemp[6]+htemp[7])>>3);
' }

if(BinCount== 83) outportb(0x109,0x80);/* */
BinCount++;

}
ConvertTime=0;
/* outportb(0x108,0); /* */

}

printf("\n have finished assembling the data block");
disable();

StopStepper();

WriteToFile();

CmdEntryCount++;

ScanCount=0;

34

It

enable();

}

}

fclose(£fp2);

fclose(fp3);

CleanUp();

printf("\n two numbers of
tu",temp[0],temp[1]);

outportb(0x109,0); »

printf("\n That’s All Folks!");

interest

might

be

$u

35

Wdn b

b

9. APPENDIX B - HARDWARE SCHEMATICS

36

37

a [0 | g | Y
I J0 | 19eus LOSHNLDSN @weuald
SBND AQ umeliJ €661 L ‘@34 eieqd
Ms2Y
. 00
a V' 00} v = E
| ned 19q WNN 021
SLINOHIO 13HYNL JISYN o 2uzv 4 104
[-1% PNL ZAL
ENbd ~dOSU~tbiE b wrd OS5
ALITIOVA LHOINH SJOTIYM AVSYN s e eed o wess
HONvHg JON3I0S A O
£
— WNOLLYAH3SEO . 3 |¥
= o
wzv *rad / ——3 |uns
WW L/ < r 1UAND
3 [3
% : > linouss
QCAZ! » D0ALL * €r -104d
m -
—
9
<)
14
L
t o
R }— ABZ
2] 2r 104
i
zal
wezga
s <
N v ¢
€ [
1#2d ~dOSL OO HdlS
PRLLx ” £vzd -dOSTL 4y [ovas
[} [X] z ’a oT r. “u Mnuv
E TwZd -dosL 1S lewas
a4 vy
= € y#2d -dOSL - : S [vuas
= R [S # : 3 |l
L#2d -d40S1L <N lyw¥D —C O d [] [
EHEQ -dDSIL <N IiS —ot—0 O—p o2 0] OCAZL* .)
D4WEd ~dOSIL < N D 0o . LaL -
LWEd -dDSIL< N BIS =1 100 N1 = T >
$HEd ~dOSTL < 10 LWAND —5—0O _ o r
§#Ed -dOSTL <100 Y —7 3 ¢ | owo 10
Mi £33 2v [X] o - 1#Ld -SO NO HiIN 80
b NSO gyey -dDSTL<1ND 1Y im0 O—r oAy A
2 SWNEd =081l <1N0 OV T 3 y e £ WO MO 2¢
O0AS § 7 2% Tow 4 Y fuomod
1dd8 m y YOO T
1 HO MO0 N3
s tr ad
a _ 0 { g v

a

4]

t JO ¢ Jeeyg

108 IHIHLOSN

|
@ Weuey

cen o AQ UMBIQ

€66\ 't gad @ieg

g

A8y

V'VOlL A

legwnN 0218

ONIHOLWS H3AIHG HOLOW

oL

WSADOA

.
o
[]
o

(2]
e
440 LNdte

708 Yid no-

N—e

-

B B

Ra)

WEAQOATN

Y ‘A%
e
NO 1NdN!

0 Wi 4no

NO 3Y3HdS WO

WSADOA

01 A¢
'

ANdNt

—unoochcul

IVVVVVVVJ\

3

HIAHHASTVO

NOUVINIS3HJIaY 03HNdWNIS v S1 SIHL ‘3LON

o

—unv‘[

LY

MOI0SYLS

"LINJYID IHL 4O

=

—NH-T

S

WSAQCATE

07 AS

s
INdNi
1no -

MO Zv

-1

MODT0SHLNS

<
[4
3

+d

WSAQOATH

O AS

X
1NdNt
ino

MDD 2V

se
[oF4 4

YINZY

—uan

£y

WBAGOATH

073 A§

G-
ANdN:
M2 13 o+

2

WSAQDA Y

01 -AC
¢
INdin

MO0 13 no

ABZ*+

13

14

E:

2413

HiIN13

—NavT

17

a

38

1 e

d | 3 | g v
L 10 | 1eéys 10S°118008N @weuad 1690
OBND AQ ume.q €664 | 'g34 eieQ —_
G
a V'901 v —
p|_Aed 190G WNN ezig 0
%
378vD 378vD 30V4UIALNI 3JOOS3NAL /ALIYHUNL DISVYN ’
olnL - $ oo
1 -28L NOd <« T S rse
ALITIOVH 1HOIMA SAOTIVM AVSYN T
Iomz,mu_m mozmmﬂom o
- . IAVNOLLYAH3SAE0 s
€r 0d " “
7 : 440 54
2 = GND 10d < ——> |oremm
>
o 3 7 [(4 NO S3
| v > [[<
ov| : T 4
Ju7ts aND 7ad 3 r onNe
el w| T 2 -18l /1Gd < J Avz
w10 3 rd -dOSTL
mowas| & :
d Wega
_ o0 T HIES WS 180
A% 90 BJwM T HT
M 10 WO T 0 STE LB st h
N lvwel 81 v+ 144 LT e ¥ [
80057 ig a0A Ti <
— 0 O 4 1) <
"o S 0F s Hjno
, wuf{ T 0 O s = 3> |wo
1o BT T 77N voo \ 24l Nad LI > AS 0N
nol3 €2] N |2v [] £
© o v < o
N 500 2V Ve €D joo | - OND 0d > |ow
ir 104 05 7 00— foo = 3
oo " NS v 2 |
¥a M30 13 |————— 1 @ o[z S ¢ 4 > |ov
Z ¥O M9 92 p—————> | -ZMS13 41 1T 60 T N (A £ S 1WAND
B0 M3D 2V . < >9 -zql HE 3t T o ' 5
ua MO IV C - S -edl idud GND 10d $ “v oND
NO €4 3 3 T) 10 b5
440 §4 3 3 €d -d0gL
Noum 3| € <
awo ad 3 3 ONS 0d
y s
= unwmo
—~— e ——
[Ve S
100 10 85 £ —_—
110 20 59 4H “”]
v Hdls : -]
16 I s - I
8 Hdls) [.Ilull
nsoof € =T T < |rowuo
L Sume] & oe . mm.,__,o\.._dno_m_ 5 01 v
: = - ‘||.||||W AS* tvD
WOD BdiS " = _ M $ |vyas
. 1 = < |ouas
3 ¥ 3 S |9 uas
57 . { _ Jroouas
wezaa zd d0sSTL
g D g | v

39

W

a

_

L 40 L 198ys

L0S 2EZOSN

o weuelly

DenO Aq umeiq

€661 | ‘834 6180

o)

AsY

V'SOl

J19qWNN

v

azis

ayvog 4Y344Nng 13gynl

LR

ALINIOVA LHOIT4 SJOTTVM NSVYN

HONvHE8 3FON3I0S

gopt '
7§ (o D § z
D 08
| g ::owood
1 5} ".mnlj
N0 20 o 1} o.«..m ou v NI 600 2V)
= = = [ot € 1nC SCD
ao Yy’ W 200 €1 . N [3 EIE=ERED
[})
sl \ N Ly nv N -
4N Le EL 4n ¢ 4N 4n L 4 > tn -
20 $0 ¥ [>] 20 1o}
SOAS DAATL DONEL A
i
/ lugn OOAS
P4 [§
. vt - “"um ool -
Qi |ﬂ o I\ o -0 oz.uL S
e J T w%c M..- ¢ ir N0 IVHD 81 0s o -ght A
1S 0N " | TN 8 Lo i -zaf—ti00 X0 ou) sy
T M n_ T __ON o R Q10D e el——1 }
NP LAt 1 wB.ac T v NvN Ly 1IN0 1V1S 1 20 0 vt NI W10/ N
g 19" ouu Tho ov 5 S [ciows
(TETTIE M BNL £ (O A
, Yo /) F v N OV F \ ' F
N NI 20 WO S} ¥1 100 2C VD ., ¢
S0A [oA L CEL LI
(2 & Y ISEL WO AR \|||.|.|I|— OGAE L+ oans in OOAZ L + N oaAZL
4 WERTHT e Z1 1ND 10 W A
4 N * XL
NN B AN i A
4 NI lvigs ¢l 00 01 A
4 N1 XD 02 g € 110 Y12 /1
4 N o0 $100 H38
N, iNO ANCD 22 bt LN ANCDY
N___ 10 2v 2 00 aN 2y A
NSCOZYIE o o EIO S0 7Y/
20 o tind 50073 -
110 1w §2 0 CNi v T
ooas | N0 Ov LT o o TN OV H_‘.
B o0Ag 6T [X)
By
\ y. v

40

4 _ 3 a !) i g {
U TGS TTRE G S5IgvN e we a3

SEAN D AQ umelig €651 '§2 €33 90 A CheraB INOA 57 . B el B3 BSN A

g

»

D <.mo F 0 o yivl i —NU"

Aay equny | exig

5

o

QHvO QLS OISVYN P

J

L K _Jl'u LK 3

e
Glels

i

L ping B p (e
— » *
N 29
<= L—dn o - T = hir"y
e 3 g TR
oam e SN I a2 ¥ wr
[i 2 Tm 4 3 > [T
- KT T b o) >
a o 1 O e vl
— Camn BN e
"er
e ve])
3 G Wi T
ki 20 o] oo ey T 1
= ™
E g iy -
WY RIZ]
- x 29
O M v 3w

v
¥

‘"E"E";;EE'EEEEIE:EE“*:i::'.:"

G aDe

5
g

]

E

41

]

FeIILANL

AN

e
FFA
I

§
[

&
&

!.s

il

¥
o

Lﬂ’li’liﬁ:

)

3

Yot — (.
=t =T
=4 T
e ity
e 2
O l-r
Al 7 Y,

-l
3¢ T
=3
=)
)
N
PHR

o

Sl

3

[] | I c (NN

g

) [t] v

42

V19 eews| 208 $30
ormp rAnrg] €881 :¥ qug
. &5
3 g4 01t
Any equny #g
80d 0 &V "HOLO3L3A DISYN 4y T N an | e
¥ = b
T PR 3 E
£ . *o 0o
0.
PR e
. [T a
B i -
4 £.3 5 HE3E S g
oot " v S o =
n . o
Al 2. k.
- PRI gy L x4 " >
+ inod =S b .—.
= » L) ;25
- o - ‘.nc;..\ T __ ._ [+
18 no -
o renm : bz ¥ u T 13
P i o PT TN N r AN : 3 s, 3°
3
SRRt » N (] "
LT = 4 B GIUDY AT
ﬂ T >0 o \— .
" T o s RAJ H $
Ll ” Tuf— ((r > A
E 3 lnlnl:uu.! EEN el uov; A —
o .n - - 5 v .
= e 2w
'ﬂ.ﬂl;dﬂ- v —)
[T L 0 T -
E2a8 U T =,
’
' 1]
v s T T ieYat - M b]
3 'S R ALy o
HRE B kS z 9..4 ! e ' } xt ¢
R N .
Y]
v . R A Tl N B T T P 1 Y
(230 sEn w__ s * X "
et gy PR it : 2t
Xaaa ! 83353
LU O —
[4 -
TR
DL R
HHE B
1 vea* AR
: rersang E S
2 vud
Eal
— u—. il LYy
R HU DL e N e
0 N v
| OO >
Eray
3 o
A+
s r2
s
T EE
a | 2 |] |

a | i I v
1o weys z0g AWgn GWeuaily
oo AQ umelq €66t 8 DNV @18Q
9 21 <
Aoy 1eq WnN ez!g b
30VIHILNG WIMOL AVE O /SISVN oniL
ALITIOVA LHOIM4 SdOTIVM AYSYN
HONvHE 3FON3I0S
TVNOILYAH3S a0 -
o o
[N 8 | v 8L
HITIORLNOD - 09 WEWID O0A 82
ETS hoe 01 - 4BL Y18
H H e
M3INSA &2 J HOVH AVE O HZddN NO HALWIANI NO G31v001 Ld ANI € S
B “NOVH AVS "D HaddN 40 31vid NO 03LvO01 JEL "2
AVE D T ‘W3 NIHLW GYSHYING L3¥ NO 03LvO01 td '} 'S3LON
o 2
[28
§311ddNS AZL - ¥ ¢+ ZH 09
[A1V
™
Hl lonoow
3| janoow
01 . 1d ANI el [awn 4
z 6L 9 oL m & al |zv cor
g o= 8|]oon ez
o B3LNINOO oo o2 2 g v| Jawo no
. . Q 4] |one
n H P 4 2] [NO }
td
Q | | v

43

a | | g { v
v jo [WECES 10S13GDISYN @ WeRUo|Y
wso AG umesqg £e6i 't 834 O}eQg
g V201 v
Aoy 1eq WNhN 8zig
378v0 ‘D4LNI HOL03130 DISVYN
oL
08 BOLD3L3A0 H3ANN W S2 8a
aQv3H NO @3inNnow ¢l
se ve -2d
NMOH8
e QION3T0S8
€¢ €2 -2d a3d H3atald
Lno ¥l 22
\2
ev| 02
aNo O N 6L id e
vy 8} zil |2y
ov| L) b4 | tL{ANOD
91 O _‘ ol “IN3L 3KVYHd
5t 6 6 {LNO 1vis
dW3L 3WvHd | b i P 3 lane
£ L L | LnO Jeg
ct 9 9 | 1no 1>
(|} S S
ANDD | O e v 12y
6
I clano o N
1ino 1vis| 8 \ {3ZULI0I10
ans |2 c clw 2 XdW
! L jov HO103130
ino ieg| 9
]
14
5 HO | >WH3IHL
2 a3y ALITIDVYL LHODINd SdOTTVM NSYN
: A78 | >y3I3d HONvHA 3ON3I0S
a3d TVNOILVYAHISE0

8 | 17

a] o) |

m
<

L jo L 19ays 10S'YNLOLDD e weud|y
Dewn Aq umelg €661 '1'834 ejeQ
a vV'80} \"4
AsY 19 WNN 8zig
F78vD IOV4HIALNI L3BYUNL / 3DvD GdvD DISvN
oL

ALITIOVA LHOITd SdOTIVM ASVYN
HONvHE 3ON3I0S
IVNOLLYAH3SE0

€d0d wesa
M“IN.l Iolu
3
wl > 7 - v
v S
[4 ® 8 [4 v
ov
wme| S £ £ 3 v
sl 2 - 5 vis
AN <
e 5 < 1HAND
o S
wouas) S & z o
2 T : > Jino uas
4680 2400
1d10d Wws2a0
13 5T
v Ve
WOD MdLS 1 L 3 i
Quusl 2 =3 37 3 [rioouais
sl & = = LY
zv 50D <
< BE 5% v 599
13 500 <
Q = = 13 500
8 Ha1s <
D e = - 9 Halg
10 o L] C
vudais] S L o s Sars
e = = v wdls
0 ~o 4
wwa| S 5 S S %o
N < [T r ia wo
) [<
] 7 ¢
T 11 <
[o ,
s 3
oo vad| B < : ¥ |owo0d
Nown S| > n z NO M 80
440 84 h
- e 5 3 r Ol
el D s = ND S3
womo v > > + 2 oo
wamoo vl > = < 2 powoz
wwo MO u_u & = s 2 [romem
mooal S - - > juamoo 3
45280 1d00

a
O
-;J-
<

45

J (I W
a |) g | Y
t JO 4 19eys 19§ 18000 @Weusily
oww o AQ umeig €661 s2 @34 ©18Qd 2ol
d VY'601 < Q6 01§ NO QIUYOO0T AW
AsY 189G WNN ozIg
ke idio .v
378v0 3OVO QHVO DISYN ., s
ALITNOVA LHODIN4d SdOT1TIVM AMSYN €00
HONvHE JON3I0S oz (S >] w
IVNOUYAH3SH0 Ll 08 HIAILO HI44aLS -
NO H3L4 (€)sTH hez 0 DI AvE
BQ YN WO < " IR ABZ*
Y0 440 W = WOD Wd1S
HQ NO BT —
MOL /S HOMOI YT T 3 O ¥dls m
gamoo oy 9 Na2§
26800 W0 M g ” v bdis
) NO YIN v (E)2W vd
ﬂw/._/m 440 B3 (€)oY
[$5fale] MO 2v (E)v
MOD 2v (e)ewd
MmO 13 (e)zwy
MO 13 (E) W = 1 o
anNo fF)LH NuRL {(#)17d OF -1 <+
— Q8 30VAEIIN
1100 w5290
- ') &
waweEl ¢ ! b ¢ (2 2v 869
<] L 4 13 "3 OO
o mod 2vf o 5 <5 10 lvid C
MO MD 2Zv * 2 9 89
HO 8d M “ M 23 13 80
sl > 5 WM v NO HIn 59
NO BiN 52 440 $4
< ¢ [<
OND Y0d v m r NO 84
— - . MO TV L
0l o . MDD 2v WL
BT o - M9 93
31 = ; MWL]
wso| S I N
20 5 S— 3
< (1) £ e [} <
st B¢ D ¢ 3 N _ oY r
suas] S Lt m« <. L +——3 b ¢ L] < w«
13 302 M n" wl S : * °] C o
zsoo| > = ws| S : 4 D 4 L s vis
oudis wwo| S y » < A 3
pd i < 3 3 < AN
WOO YdlS Tt b3l A T r r »12
T NI viva ¥38). T T r YivQ W3s
| *Z 2o 4883 [<
52 T
4¢280 \daLs
a 0 2] v

ERTETE T TUTL Y T

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collaction of information is esti
and maintaining the data needed, and cormpleting and reviewi
information, including suggestions for reducing this burden, to

. AGENCY USE ONLY (Leave blank} | 2. REPORT DATE

mated to average 1 hour per response, inciuding the time for reviewing instructions, searching existing dala sources, gathering
ing the coflection of information. Send comments regarding this burden estimate ar any other aspect of this coliection of
Washington Headguanters Services, Difectorate for Information Operations and Reports, 1215 Jetferson Davis Highway. Suite
1204, Ardington, VA 22202-4302, and to the Office of Managemem and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503,

3. REPORT TYPE AND DATES COVERED

John L. Ward and Gerry McIntire

July 1993 Reference Publication
4. TITLE AND SUBTITLE
NASA Airborne Satellite Instrumentation Calibrator (NASIC)
Technical Reference
6. AUTHOR(S)

5. FUNDING NUMBERS

Code 972

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Wallops Flight Facility
Wallops Island, Virginia 23337

8. PERFORMING ORGANIZATION
REPORT NUMBER

93B00107

. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

1

Unclassified-Unlimited
Subject Category 19

Report available from the NASA Center for AeroSpace Information, 800 Elkridge
Landing Road, Linthicum Heights, MD 21090; (301) 621-0390.

Washington, D.C. 205460001 NASA RP-1315
11. SUPPLEMENTARY NOTES
Gerry McIntire: Computer Sciences Corporation, Wallops Island, Virginia, 23337,
2a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

1

3. ABSTRACT (Maximum 200 words}

The NASA Satellite Instrumentation Calibrator (NASIC) is a visible and near-infrared spectrometer used to calibrate
various satellite instruments by underflying those instruments in a NASA ER-2 aircraft. This report documents the

calibration instrument’s hardware and software.

1

4. SUBJECT TERMS

Satellite Instrumentation, NASIC, Instrument Calibration, ER-2

15. NUMBER OF PAGES
47

16. PRICE CODE

17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE
Unclassified Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassifted

20. LIMITATION OF ABSTRACT

Unlimited

N

SN7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std, 239-18,298-102

L

eons A

r

e

