
NASA
Reference
Publication
1315

1993

//v--,,:7

/fP

NASA Airborne Satellite

Instrumentation Calibrator

(NASIC) Technical Reference

John L. Ward and Gerry McIntire

(NASA-RP-1315) NASA AIRBORNE
SATELLITE INSTRUMENTATION

CALIBRATOR (NASIC) TECHNICAL

REFERENCE (NASA) 49 p

N94-13713

Unclas

Hi/19 0185506

https://ntrs.nasa.gov/search.jsp?R=19940009240 2020-06-16T21:32:52+00:00Z



IV



NASA
Reference
Publication
1315

1993

National Aeronautics and
Space Administration

Scientific and Technical
Information Branch

NASA Airborne Satellite

Instrumentation Calibrator

(NASIC) Technical Reference

John L. Ward

Wallops Flight Facility

Wallops Island, Virginia

Gerry McIntire

Computer Sciences Corporation

Wallops Island, Virginia





TABLE OF CONTENTS

i. Introduction

2. History of the NASIC Instrument ...................... 1

1
3. Theory of Operation (Hardware) .......................

4. Theory of Operation (Software) ....................... 5

• Data Analysis

6. Conclusions

7. References

8. Appendix A - Software Listings ........................ 17

9. Appendix B - Hardware Schematics ..................... 36

,.o

U!

PllEi_EDiNG PAGE BLANK NOT FILMED





I. INTRODUCTION

This publication describes the design, operation and function of an
Ebert-Fastie monochronomator, which by means of a moveable

diffraction grating, becomes a visible and near-infrared

spectrometer used to calibrate satellite-borne instruments by high

altitude underflights in the NASA ER-2.

The goal is to provide the reader with enough information to

operate, repair and modify the spectrometer and associated

subsystems hereinafter referred to as NASIC, an acronym for NASA
Airborne Satellite Instrument Calibration (Project). Included are

all hardware schematics, software source listings, and a cursory

analysis of test data taken from viewing a calibration sphere

before turning the instrument over to Code 925 at the NASA Goddard

Space Flight Center in March of 1993.

2. HISTORY OF THE NASIC INSTRUMENT

The precursor to the NASIC was called the Ocean Color Scanner

(OCS). The OCS Instrument was built in the early 1980's by NOAA
and transferred to NASA in 1988. The instrument was flown aboard

the NASA/Lewis Lear jet and subsequently on the NASA ER-2 based at
AMES Research Center at Moffett Field, California. The name of the

instrument was changed to NASIC shortly after it was transferred to

NASA.

The OCS data system consisted of an HP 9825B computer. Program code

and data were stored on a magnetic tape cartridge. All I/O and A/D

conversion was accomplished by modules which plugged into the back

of the 9825B. All code was written in BASIC.

In 1991, a decision was made to modernize all of the NASIC

electronics and data system but to leave the grating, optics, and
drive mechanisms intact. It was hoped that replacing the HP

computer with a PC-compatible computer would increase the system

reliability, performance, and adaptability.

System reliability and adaptability have certainly improved, but we

have discovered that the system performance is driven by mechanical

considerations (jitter in the chain driven grating) that can not be
fixed with new electronics and software. This issue will be

discussed further in the data analysis section.

3. THEORY OF OPERATION (HARDWARE)

The NASIC instrument measures light between 400 and 1035

nanometers. The spectral resolution is determined by the width of
the entrance and intermediate slit together with the lines/mm of

the grating. The instrument will fly with slits yielding either a
7 nm or 14 nm resolution.



NASIC is comprised of three major subsystems, the spectrometer, the
turret assembly, and the data system. The spectrometer is a
cylindrical tube about 16 inches long which contains a telescope
and associated optics, a monochromator, a chain driven diffraction

grating, and the A/D circuitry. The spectrometer is mounted in the

turret assembly which is nothing more than a motorized cradle which

allows the telescope and the entrance slit of the spectrometer to

be pointed at any desired azimuth and elevation. Finally, the data

system is a rack-mounted STD bus containing a PC compatible
computer. The computer controls the movement of the turret

assembly, the acquisition of spectral and other ancillary data, and
the recording of all the data onto a solid state hard drive.

All schematics are included in the appendix.

3.1Desiqn Considerations

The NASIC is designed to fly

onboard a NASA ER-2 at 70,000
feet. Any instrument that flies
on the ER-2 must be able to

operate without human

intervention and at pressure

altitudes exceeding 30,000 feet.
Given that the NASIC is a

passive instrument, designing it
to work without human

intervention is a relatively

simple matter. One s imply
creates a command file which is

called by the "autoexec. bat"
file at boot time.

The considerations for operating

at high altitudes present

greater challenges. The NASIC

data rate is very low. Each
spectral scan takes

approximately 5 seconds and the

data system records a maximum of

only 2000 bytes of information

per scan. Given the low data

rate, recording on a hard drive

is the logical choice. The Figure i. NASIC Spectrometer

problem is that the heads of a mounted in the turret.

hard drive are designed to have

aerodynamic lift. Hard drive heads typically do not have sufficient

lift at pressure altitudes greater than 15,000 feet. In the past,
pressure boxes were built to house pressure sensitive devices such

as hard drives and tape drives. Fortunately, recent advances in

EEPROM technology have allowed us to opt for a solid state IDE hard

drive, thereby eliminating the need for a pressure box of any kind.

2



There are a host of Qther potential problems when operating at high
altitudes that we hav_ had the good fortune of not having to learn
about, hence they will not be discussed. Engineers from Lockheed
and NASA Ames review all instrument designs before being allowed to
fly on the ER-2.

3.2 Spectrometer

3.1.1Ebert-Fastie Double Monochronomator

Shown below is a simplified diagram of the monochronomator. Light

enters the entrance slit at the top left and bounces off the

concave mirror and onto the grating. The light is then dispersed

and reflected by the grating. The light then bounces off the mirror

once again and is focused onto the exit slit. As the grating is

rotated, the wavelength of light that is focused at the exit slit
varies.

EXIT SLIT

Figure 2. Diagram of Ebert-Fastie Monochronomater.

The diffraction grating is driven by a chain gear which in turn is

driven by a 28 Volt stepper motor. It has been found that the chain

drive introduces a mechanical jitter which translates into an

uncertainty or noise in the determination of the wavelength of the

light being measured. This mechanical jitter is in fact the

dominant source of error in the instrument and this jitter in

effect determines the instrument signal to noise.

3.1.2 Photo-Diode and Analog to Digital Conversion Circuitry

Monochromatic light falls upon a silicon photodiode (HUV4000B).

This detector has a built-in FET amplifier, and a gain-bandwidth

product of i00 KHz. The output of the photodiode is filtered and



split into two channels, a high gain channel and a low gain
channel. The high gain channel has twice the gain of the low gain
channel. These two channels then feed two of eight inputs of an
analog multiplexer (MUX). Other MUX inputs are a reference zener
diode, two thermistors, supply voltages, and ground. Each of these
inputs is digitized with a 16-bit converter with serial output. The
serial data stream exits the rear of the spectrometer as buffered
TTL and is converted to RS232 on a board on the turret assembly
before being sent to the data system.

A Peltier device is thermally bonded to the back of the photodiode
to maintain a constant temperature of roughly 15 degrees Celsius.

The Peltier device is controlled by a third party controller which

is mounted in the rack along with the data system.

3.3 Turret Assembly

The spectrometer is mounted in the turret assembly which allows the

telescope to be pointed in the desired direction. One DC motor

drives a ring gear which controls the azimuthal position of the
telescope while another DC motor drives a threaded rod which

controls the elevation of the telescope. Both DC motors are driven

by the computer and use optical shaft angle encoders as feedback to
determine the proper positions. The turret assembly also houses a

board to buffer data and address lines going to and from the data

system and spectrometer.

3.4 Data System

The data

following:
system is a rack mount STD bus which contains the

-> AT Compatible Motherboard (2 cards)

-> VGA Display Controller Card
-> Solid State (EEPROM based) IDE Hard Drive

-> Stepper Motor Controller
-> Custom Interface Card

The custom interface card has circuitry for the following:

-> Control the spectrometer MUX and A/D.
-> Read the A/D serial data stream.

-> Control the turret azimuth and elevation motors.

-> Read the azimuth and elevation encoders.

3.5 Hardware Chanqes/Enhancements

Listed below is a summary of hardware changes and enhancements made
to the instrument.

Analog to Digital Circuitry- The old system used a 12-bit A/D. The

A/D was in a module on the back of the HP computer so that analog

signals had to be sent over some length of cable before being



digitized. The pre-a_p_circuitry in the spectrometer was hand-wired

on perforation board. The new A/D is 16 bit and is on a 4-1ayer

printed circuit board inside the spectrometer. By digitizing the

output of a reference zener diode we find that the A/D has an
effective resolution of 14.5 bits at DC. The spectrometer now sends

a digital data stream to the data system for recording instead of

sending analog signals to the data system for conversion and

storing.

Photodiode Channels - The old system had two photodiode channels,

a low gain channel and a high gain channel, but only one channel

could be recorded on any given flight. The new system also has two
channels but both channels are always recorded.

Azimuth/Elevation Circuitry - The old system had potentiometers

coupled to the azimuth gear and elevation screw. Azimuth and

elevation were determined by digitizing the voltage drop across the

potentiometers. This seemed unnecessarily complicated. The

potentiometers were replaced with optical shaft angle encoders.
Basic trigonometric rules were used to derive a relation between
encoder counts and azimuth/elevation angles. The Principal

Investigator has suggested using a straight line approximation
relate encoder counts to azimuth/elevation angles.

Computer - The old system used an HP 9823B computer. The new system
uses a rack mount STD bus system with a PC compatible computer

card.

Mass Storage - The old system used tape for both program memory and

for storing the instrument data. The new system uses solid state
non-volatile memory for both program memory and for storing

instrument data.

Peltier Control - The old system used a hand-wired board to control

the Peltier device. There was no way to easily change any of the

controller parameters. The new system uses a commercial controller

with the ability to set the temperature and feedback loop

parameters arbitrarily.

Relays - The old system used classic coil and contact relays. The

new system uses potted solid state relays.

4.0 THEORY OF OPERATION (SOFTWARE)

All flight software was written in "C" using Borland compilers. All
software is contained in one source file which includes the main

routine, all subroutines, and all header information. The name of
the source file was called "run.c" when it was shipped to

Greenbelt. Given that it was the intention of the Principal

Investigator to modify the software to suit his needs, one should
not assume that the current software is exactly as described in

this document. In addition to the flight code, "run.c", a general



purpose diagnostic program was written, the executable of which is
called "nasic.exe". This program is used principally for testing
the spectrometer. Any MUX channel can be selected and the data
viewed in graphical form. In_ddition, the operation of the turret
motors and encoders can be checked with this program.
The program "dcode.c" is included to demonstrate how to decode the
NASIC data recorded on ER-2 satellite underflights.

4.1 Command File Structure

The NASIC data system must operate without human intervention.

Shortly after takeoff the ER-2 pilot applies power to NASIC. At

that time the NASIC data system boots and the flight executable is

called by the "autoexec.bat" file. The flight code reads a file

called "nasic.cmd" which tells the instrument how to operate. The
file "nasic.cmd" is an ascii text file which contains up to six

command entries. This means that on any given flight the instrument

can fly up to six flight lines. On each flight line the command

file tells the instrument the azimuth and elevation in degrees to

orient the telescope, the time to begin taking data, and the number
of scans to record. The last two entries in the command file set

the number of bins per scan and the number of pitch and roll

samples per scan for all the flight lines. At this time the

instrument is not configured to read the aircraft pitch and roll

gyros, so the number of pitch and roll samples per scan entry is
ignored.

A command file can be created using any text editor and must be

called "nasic.cmd". Shown below is an example command file. Labels
could be added to each entry of the command file to make it easier

to read or modify if someone takes the time to modify the
subroutine "ReadCmdFile()" to strip out the label information
during run time.
ExamDle nas.cmd File

I0:00:00

55

15

38

10:30:00
20

i0

38

10:48:50
13

13

38
12:45:05
120

2O
18
13:05:00

6



90

30

18

13:30=00

110

10

18

200

20

The first line (I0:00:00) tells the instrument in hours, minutes,

and seconds when to begin the first flight line. The second line

specifies the telescope azimuth (55 degrees) and the third

specifies the instrument elevation(15 degrees). The fourth line

specifies the number of spectral scans to record (38). This

sequence repeats itself six times; then there is one entry for the
number of bins per scan (200 in the above example), and finally the

last entry is the number of pitch and roll entries per scan (20 in

the above example).

The first entry of the command file tells the instrument to record
38 scans. The first scan will be a "blocked beam" scan. The

calibration sphere is rotated into the place for the first scan of

each flight line (command file entry). Data from the "dark"
scan is used to calculate the RMS noise which in turn is used to

calculate the system signal-to-noise ratio. The second scan should

be discarded as the calibration sphere is being rotated out of the

optical path during this scan. Therefore only 36 of 38 scans will

contain valid spectral data.

The PC Real Time Clock is used as the source of time to determine

when to begin a flight line. Please note that the PC Real Time
Clock time is different than the PC tick time which DOS normally

uses. The PC tick time interrupt is used by the flight software to

determine when, during a scan, to sample the spectral data and so

in no way corresponds to the PC Real Time Clock time. Normally when

a DOS machine boots, the BIOS reads the (battery backed up) Real
Time Clock time and converts this time into ticks since midnight

(one tick is equal to 54.9 milliseconds). This value is loaded into

memory location 0:46C. The 8253 timer interrupts the CPU at the
54.9 millisecond rate and the interrupt service routine increments

the value stored at location 0:46C. The DOS "TIME" command reads

this memory location when it displays or sets the time. The NASIC

flight software commandeers this interrupt service routine and

changes the interrupt rate of the 8253 so that DOS time becomes
useless. The NASIC software always reads the PC Real Time Clock

whenever "real" time is needed. What all this means is that when

setting the system time on the NASIC instrument using the DOS
"TIME" command, make sure that the NASIC flight code has not run on

the system since the last boot. A utility should be added to the

flight software to restore the proper number of timer ticks into

memory location 0:46C before returning to DOS.



4.2 Data Format

Data taken by NASIC is written to the solid state IDE hard drive

into a file called "nasX.dat" where X is the number of the flight

line. In other words, data from the first flight line is written to

a file called nas0.dat, the second flight line data is written to

the file "nasl.dat" and so on up to "nas5.dat" if there are a total
of six flight lines.

Data is written to the file in 2K byte binary blocks. One block is
assembled for each five second scan of the instrument. The number

of spectral bins per scan is programmable but the nominal value is

200 bins per scan. Given the 200 bins/scan value, each block will

contain 200 low gain spectral data points, 200 high gain spectral

data points, 1 data point from each of the other six MUX inputs,
and real time.

Each block is assembled as a linked list. The first integer of each

block identifies a data type. The second integer of each block

identifies the length in integers of that data type. The beginning
of the next data type can be found by adding the length of the

current data type to the address of the current data type label. A

program called "dcode.c", included in the appendix, is a utility
which demonstrates how this is done.

Type of Data Type Identifier Lenqth Identifier

MUX Channel 0 (Spare)
Ground

Zener Diode (6.95 V)

Frame Temperature

Negative Supply

Detector Temperature
Real Time

LowGainSpectral (No Filter)
LowGainSpectral (Filter)

HighGainSpectral (No Filter)
HighGainSpectra! (Filter)
LowGainDarkData

HighGainDarkData
End of Data

OxO000 OxOOOf
OxO001 OxOOOf

OxO002 OxOOOf

OxO003 OxOOOf

OxO004 OxOOOf
0x0007 0x000f

0x0010 0x000f

0x0020 BinCount

0x0021 BinCount

0x0030 BinCount

0x0031 BinCount

0x0040 BinCount

0x0041 BinCount

0x0069 0

There are two different versions of the flight software that affect

the data format. The NASIC Principal Investigator has not made a
decision as to which version to use. The first version has a blue

filter drop into the optical path just behind the telescope on
alternate scans. In this scenario, one 2K block would have data

types 0x0020 and 0x0021 and the next would have data types 0x0030
and 0x0031. The purpose of the filter is to prevent second order

effects from the blue end of the spectrum from contaminating the

red end of the spectrum. Therefore the filter is really only needed
at wavelengths longer than 700 nm. In the alternate software

8



version the filter is switched into the optical path midway through
each scan. In this case, data types 0x0020 and 0x0030 are identical

(both being low gain data) and data types 0x0021 and 0x0031 are

identical (both being high gain data).

This first version where the filter drops into the optical path on

alternate scans requires that half of all data be trashed before

analysis. (Only half the spectral data of any given scan would be

valid.) This was the way the old system worked. The second version

results in the acquisition of nearly twice as much data and

simplifies data analysis but has the disadvantage of losing two or

three spectral bins in the middle of each scan. This may or may not

be a problem depending on the goals of a particular flight mission.

Included in the appendix is the source code for a program called

"dcode.c". This program serves as an example of how to decode the
flight data.

4.3 Fliqht Software Operation

When the pilot applies power to

NASIC, the PC compatible
computer boots and executes the
"autoexec.bat" file. The last

entry in the autoexec should be
the name of the executable

flight code. When the instrument

was shipped to Greenbelt the
executable was called "run". The

first order of business for the

flight software is to read the
command file called "nas.cmd".

This text file should be in the

same directory as the "run"

program. After successfully
reading the command file the
system will wait until the

computer real time clock matches

the first time entry in the
command file. At this time the

turret will be moved to the

proper azimuth and elevation,

and the stepper motor that

drives the grating will be
initialized and set into motion.

The instrument will now rotate

the calibration sphere into the

optical path and take a dark

_ NASIC FUGHT SOFTWARE FLOWCHART

YES L

Figure 3. Flight Software

scan. The dark scan data will later be used to determine the system
electronic noise. After the dark scan data has been acquired and

written, the calibration sphere is rotated out of the optical path
and the programmed number of data scans are recorded.



Each scan is made up of a programmable number of spectral bins.
Normally this will be set to 200 bins. It is known that it takes
the stepper motor 4.9 seconds to complete a scan. The beginning and
end of scan are marked by polling an optical position sensor which
detects a notch in a disk coupled to the stepper motor. The flight
code divides 4.9 seconds by the number of bins per scan to
determine the time interval between each spectral bin. This value
is loaded into registers within the 8254 programmable interval
timer. The Terminal Count output of the 8254 Timer is tied to the

IRQ0 line of the computer. This is the highest priority interrupt

so that there is virtually no chance of there being any significant

skew in the triggering of this interrupt. (Only a block mode DMA

transfer could supersede an interrupt and there are no block mode

DMA transfers performed during acquisition time.) The interrupt

service routine sets a flag which is monitored in a tight polling

loop. Once the flag is set, the photo-diode channels are sampled

and the interrupt flag is reset. Once the programmed number of bins

are sampled, the program waits until the position sensor determines

the beginning of the next scan. There is a dead time during which

the grating returns to its home position. During this interval

time, temperature and other ancillary data are taken and recorded.

Once the flight lines have been completed, i.e. the programmed

number of scans have been completed, the entire set of data from

the flight line is transferred from memory buffers on the PC
motherboard to the solid state hard drive. The program then waits

until it is time to begin the next flight line or, if the command

file indicates that all flight lines are complete, then the program
terminates.

4.4 Software Enhancements

Listed below is a summary of software enhancements made to the

instrument.

Spectral Bins - The old system had a fixed number of spectral bins

per scan. The new system allows one to set the number of spectral

bins per scan in the command file.

Number of Scans per Flight Line - The old system was set so only 20

scans per flight line were allowed. The new system has a limit of

about 150 scans per flight line assuming 200 bins per scan. The
size of the buffers can be changed if necessary to make this much

larger.

Real Time Averaging - The old system took one sample per spectral

bin and recorded it. The new system can take up to 8 samples per

spectral bin and average them before recording.

Operation of Blue Filter - The old system switched in the filter on

alternate scans thereby wasting half of all data collected. The new

system provides for the option of switching in the filter mid-way

i0



through a scan.

Diagnostics - The old system had no real time diagnostic facility.
The new system has the program "nasic.exe" to quickly check most
system functions.

5.0 DATA ANALYSIS

A calibration sphere traceable
to NIST was used as a source in
the lab to perform some basic
calibration and performance
analysis of the instrument. All
analysis was done on a PC using
Matlab, a math package published
by The Math Works, Inc..

5.1Wavelenqth Reqistration

The first order of business
after the instrument became

operational was to assign a

wavelength to each data bin. We

did this by using a helium-neon

3.9

3.8

3.7

3.6I

3.5

3.4L.

el0' Xeacm Lm_ md He-Ne La.¢_

gO(} 900 100D 1100

W_,d e_gthinNmomes_s

Figure 4. Helium and Xenon Data

laser, a xenon lamp, and a mercury lamp. First we used the laser

and the xenon lamp simultaneously as a source. The He-Ne line is

known to be at 632.8 nm. Using this as a starting point we were

able to identify the xenon peaks from a handbook containing

spectral emission data. The same routine was repeated using a

mercury source and the He-Ne laser. Figures 4 and 5 show the

results of using these sources. The amplitude of all the plots is
in terms of A/D counts.

5.2 Siqnal to Noise Analysis

After determining our wavelength
axis we next set out to

determine the performance of the
instrument in terms of signal to
noise. There is a calibration

sphere on the instrument which
can be rotated in front of the

telescope to cut out all light.
This "dark scan" data shows us

the noise floor of the

instrument. Figure 6 shows a

plot of the high and low gain
scans of dark data. Notice that

there is a high degree of

correlation between the high and

low gain noise. This indicates

xlO4
4.3

4.2

4.1

4

3.9

3.8

3.7

3.6

3.5

3.4

Meemm7 lamp _ H_Ne tJ_--

L
|

700 _0 900 1(300 1100

Wavelength in N_omcun's

Figure 5. Helium and Mercury Data

that the system is not quantizer limited; in other words, the A/D

II



is accurately measuring noise which appears at its input. If there
is little or no correlation between the high and low gain dark
scans then one could reasonably say that the system is quantizer
limited or that the system noise is lower than the resolution of
the A/D.

The standard deviation of the
low gain dark scan data is
usually around 8 counts whereas
the standard deviation of the
high gain dark data is about 16
counts. The high gain channel
has twice the gain of the low
gain channel, so the fact that
the standard deviation of one
channel is twice that of the
other is reassuring and is yet
another indication that the
system is not quantizer limited.

The system as it was before 1992
yielded a dark scan standard
deviation of about 1 count on
the low gain channel. That

Figure 6. Dark Scan Noise Data

system used a 12-bit quantizer so that the standard deviation for
comparison's sake would have to be multiplied by 16 (in order to
compare noise from a 12-bit quantizer versus a 16-bit quantizer).
After the adjustment, the old system has a low gain dark scan noise
standard deviation of about 16 counts where the current system has
a low gain dark scan standard deviation of about 8 counts. We
therefore conclude that system noise in the new NASIC has been
reduced by a factor of two.

SNR= 2(a-i)
Eq l.n=bits

1 )2 o=RMS noise+02

All signal to noise (SNR) calculations are made

using the calibration sphere with one lamp. The SNR is first
calculated for a single scan and then computed again for a set of

averaged scans. Equation 1 shows how we calculate signal to noise.

Using equation 1 and plugging in the values of noise and number of

quantization levels from the old system and new, we find that the

maximum possible SNR of the new system is 2570 (about 11.5 bits)

12



and the best possible SNR of the
old system was 1245 (about I0
bits). This assumes that the
full dynamic range of the A/D is
being used.

Ideally one would expect the SNR
to increase as the number of
scans averaged together
increased. Unfortunately, that
assumes that one has a stable
wavelength registration. In this
instrument the chain drive on
the diffraction grating causes
a jitter which degrades one's
ability to accurately determine
wavelength, and this translates
into a diminution in SNR when

4_

4

35

xl04 _ C_il_llee Sl_ -1

5.5,

I

30 500 6_0 700 8J00 90O 1000 II00

W_rveleogthisNmomc_rs

Figure 7. Sphere Data

multiple scans are averaged. Figure 7 shows a typical waveform

generated by plotting one scan of data obtained by viewing the

calibration sphere. The sharp drop at 700 nm is the location where
the blue filter is switched in. As one expects, the SNR curve is

exactly the same as the actual sphere data curve. Figure 8 shows a

single scan SNR curve and the SNR curve when 10 scans are averaged.

The multiple scan SNR is calculated by using the averaged waveform

as the signal and calculating the point by point standard deviation

of all i0 waveforms and then plugging these values into Equation i.

A visual inspection of the two curves indicates that the multiple
scan SNR is related to the inverse of the derivative of the single

scan SNR curve. Notice that where the slope of the spectral data is

greatest, the the SNR is lowest. This relationship is exactly what

one predicts would happen if there is jitter in the motion of the

diffraction grating.

These curves indicate that it is very problematic to specify the

SNR performance of this instrument. The SNR will always depend on

the spectral profile of the source. It may be possible to fix the

data in software by deducing the effect of the jitter and then

removing it, but the algorithms to do this might be more costly to

develop than simply reworking the drive mechanism of the instrument

to eliminate the jitter.

6.0 CONCLUSIONS

The primary purpose of reworking the instrument was to bring the

technology of the system up to date and in so doing hopefully
increase the perfomance of the instrument to such a degree that it
could be used to calibrate SeaWifs and MODIS.

New and up to date technology has been applied to the data system
and control functions of the instrument in such a way as to

increase reliability, maintainability, and flexibility.

13



Unfortunately, the quality of

the final data product has not

been improved at all due to the

mechanical problems associated

with the diffraction grating.

The jitter of the grating in the
NASIC instrument causes such a

severe degradation in the SNR

that, unless extensive software

development is undertaken to

correct the data post flight,

serious consideration should be

given to reworking the

diffraction grating drive

mechanism.

Si_l_ m_lM,dfi#c Saw Sig,ml toNoir_

2OOO

I000

i

01
4410 508 6OO

Figure 8. Solid Line is single

scan SNR. Dashed Line is Multiple

Scan SNR.

14



REFERENCES

I. Abel, P., Galimore, R., and Cooper, J., "Calibration results for
NOAA-II AVHRR Channels 1 and 2 from congruent aircraft data", in

internal review (1992b).

2. Smith, G.R., Levin, R.H., Abel, P., and Jacobowitz, H.,
"Calibration of the solar channels of the NOAA-9 AVHRR using hihg

altitude aircraft measurements" J.Atm and Ocean Tech.,5: p. 631-

639, (1988).

3. Che, N., Grant, B.G., Flittner, D.E., Slater, P.N. Biggar, S.F.
"Results of calibrations of the NOAA-II AVHRR made by reference to

calibrated SPOT imagery at White Sands, N.M., SPIE, 1493: p. 182-

194 (1991).

4. Abel, P., "Clouds as calibration targets for AVHRR reflected-
solar channels - Results from a two-year study at NOAA/NESDIS",

Calibration of passive remote observing optical and microwave

instrumentation; Proceedings from the Meeting, Orlando, FI. Apr. 3-

5, 1991. Society of Photo-Optical Instrumentation Engineers, p.

195-206, (1991).

15





8. APPENDIX A - NASIC SOFTWARE LISTINGS

/* This program decodes the NASIC flight data */

#include<stdio.h>

#include<io.h>

#include<fcntl.h>

#include<sys\stat.h>
#include<alloc.h>

unsigned int i,j,k,TypeCount,TargetType,SkipFirst;

unsigned char c,d,e,done,ScanCount=0;

unsigned char *cr;

FILE *fp,*fpl,*fp2,*fp3,*fp4,*fp5,*fp6,*fp7;

unsigned int *buffer,*buff,*BufferBase;

unsigned int DataType,DataLength;
struct stat FileInfo;

unsigned long FileSize;
char DataFileName[20],StringName[80];
char ValidDataFilesAvailable=l,True=l,False=0;

float AvgDiode[255];

float diode [8] [255];

void main(){

./

c=0x2f;
*cr=0x0d;

buffer=malloc(0xS00); /* bufffer for standard 2K data block

BufferBase=buffer; /* initialize pointers

while(ValidDataFilesAvailable){

ScanCount=0;

c++;

sprintf(DataFileName,"nas%c.dat",c);

fclose(fp);
fp=fopen(DataFileName,"rb");

if(fp==NULL){

printf("kn error opening nas%c.dat",c);
ValidDataFilesAvailable=False;

exit(0);

}
sprintf(DataFileName,"diode%c.20",c);

fclose(fpl);

fpl=fopen(DataFileName,"wb");

if(fpl==NULL) printf("kn error opening file");

sprintf(DataFileName,"diode%c.21",c);

fclose(fp2);

fp2=fopen(DataFileName,"wb");
sprintf(DataFileName,"diode%c.30",c);

fclose(fp3);

fp3=fopen(DataFileName,"wb");

*/

17

Pi;tE_G PAGE BLANK NOT FII..MF-.D



sprintf(DataFileName,"diode%c.31",c);

fciose(fp4);

fp4=fopen(DataFileName,"wb");

sprintf(DataFileName,"LDark%c.dat",c);
fclose(fp5);

fp5=fopen(DataFileName,"wb");

sprintf(DataFileName,"HDark%c.dat",c);
fclose(fp6);

fp6=fopen(DataFileName,"wb");

sprintf(DataFileName,"misc%c.dat",c);
fclose(fp7);

fp7=fopen(DataFileName,"wb");

fstat(fileno(fp),&FileInfo);

FileSize=FileInfo.st_size;
*/

/* printf("\n
%x",buffer); */

/* FileSize in Bytes

initial buffer is

while((float)ScanCount*0xS00<(float)FileSize){
printf("\nFile Size is %6.0f and Pointer

%6.0f",(float)FileSize,(float)ScanCount*0xS00);

fread(buffer,sizeof(int),0x400,fp);

DataType=0;

while(((buffer-BufferBase)<0x800)&(DataTypeL=0x69)){
DataType=*buffer;

DataLength=*(++buffer);

printf("\n Data Type is %x and Length
%x",DataType,DataLength);

switch(DataType){

case 0x20: WriteLowGainNoFiiterData(); break;

case 0x21: WriteLowGainWithFilerData(); break;
case 0x30: WriteHighGainNoFilterData(); break;

case 0x31: WriteHighGainWithFilterData(); break;

case 0x40: WriteLowGainDarkData(); break;

case 0x41: WriteHighGainDarkData(); break;

case 0x00: WriteChan0Data(); break;

case 0x01: WriteChanlData(); break;

case 0x02: WriteChan2Data(); break;

case 0x03: WriteChan3Data(); break;

case 0x04: WriteChan4Data(); break;

case 0x07: WriteChan7Data(); break;
case 0x10: WriteTypel0Data(); break;

case 0x69: break;

default: printf("kn probable error"); break;
)
buffer+=DataLength+l;

if(DataType==0x69) buffer=BufferBase;

}
ScanCount++;

}
}

is

is

18



}
WriteLowGainNoFilterData(){

buff=buffer;

buff++;

for(i=0;i<DataLength;i++){

fprintf(fpl,"%f\n",(float)*buff++);

}
fprintf(fpl,"\n");

return(0);

}
WriteLowGainWithFilerData(){

buff=buffer;

buff++;

for(i=0;i<DataLength;i++){

fprintf(fp2,"%f\n",(float)*buff++);

}
fprintf(fpl,"\n");

return(0);

}
WriteHighGainNoFilterData(){

buff=buffer;

buff++;

for(i=0;i<DataLength;i++){

fprintf(fp3,"%fkn",(float)*buff++);

}
fprintf(fpl,"kn");

return(0);

)
WriteHighGainWithFilterData(){

buff=buffer;

buff++;

for(i=0;i<DataLength;i++){

fprintf(fp4,"%f\n",(float)*buff++);

}
fprintf(fpl,"\n");

return(0);

}
WriteLowGainDarkData(){

buff=buffer;

buff++;

for(i=0;i<DataLength;i++){

fprintf(fp5,"%f\n",(float)*buff++);

)
fprintf(fpl,"\n");

return(0);

}
WriteHighGainDarkData(){

buff=buffer;
buff++;

for(i=0;i<DataLength;i++){

fprintf(fp6,"%fkn",(float)*buff++);

}

19



fprintf(fpl,"\n");
return(0);

}
WriteChan0Data(){

buff=buffer;

buff++;

"%s" "\nChannel 0-");fprintf(fp7, ,

for(i=0;i<DataLength;i++){

fprintf(fp7,"\n%f",(float)*buff++);

}
return(0);

}
WriteChanlData(){

buff=buffer;

buff++;

.... "\nChannel I:");fprintf(fp7, %s ,

for(i=0;i<DataLength;i++){

fprintf(fp7,"\n%f",(float)*buff++);

)
return(0);

)
WriteChan2Data(){

buff=buffer;

buff++;

"%s" "\nChannel 2-");fprintf(fp7, ,

for(i=0;i<DataLength;i++){

fprintf(fp7,"\n%f",(float)*buff++);
}
return(0);

}
WriteChan3Data(){

buff=buffer;

buff++;

fprintf(fp7,"%s ....,\nChannel 3:");

for(i=0;i<DataLength;i++){

fprintf(fp7,"\n%f",(float)*buff++);

}
return(0);

}
WriteChan4Data(){

buff=buffer;

buff++;

"%s ....\nChannel 4-");fprintf(fp7, ,

for(i=0;i<DataLength;i++){

fprintf(fp7,"kn%f",(float)*buff++);

}
return(0);

}
WriteChan7Data(){

buff=buffer;

buff++;

"%s" "\nChannel 7:");fprintf(fp7,

2O



for(i=0;i<DataLength;i++){
fprintf(fp7,"\n%f",(float)*buff++);

}
return(0);

}
WriteType10Data(){

buff=buffer;

buff++;

fprintf(fp7,"%s","\nData Type i0, Time:");

for(i=0;i<DataLength;i++){

fprintf(fp7,"\n%x",*buff++);

}
return(0);

/*

*/
/*
#include<stdio.h>

#include<conio.h>

#include<alloc.h>

#include<dos.h>

#include<math.h>

#include<mem.h>

This is the flight code for the NASIC instrument

*/

#define HeaderDataLength 56
data */

/* Remember to change this if adding

unsigned char Filter,FlightLine;

unsigned int *LGNoFilter,*LGNoFilterBase,LGNoFilterIndex;

unslgned int *HGNoFilter,*HGNoFilterBase,HGNoFilterIndex;

unslgned int *LGWithFilter,*LGWithFilterBase,LGWithFilterIndex;

unslgned int *HGWithFilter,*HGWithFilterBase,HGWithFilterIndex;

unslgned int *MiscData,*MiscDataBase,MiscDataIndex,MiscScanIndex;

unslgned int LowGainNoFilter[512];

unsigned int LowGainWithFilter[512];

unsigned int HighGainNoFilter[512];

unslgned int HighGainWithFilter[512];

unsigned int HighGainDarkData[512];

unsigned int LowGainDarkData[512];

unsigned char DarkDataFlag;

float InterruptRate,TimerValue,ScanTime=4.9,freq=l193180.0;

unsigned TimerIntValue;

unsigned char TimerLow,TimerHigh;

char LastGratingDiodeStatus;

char CurrentGratingDiodeStatus;

char BeginScanTime;

unsigned int DetectorTemp,FrameTemp,LowGain,HighGain;

21



unsigned char LowGainLowByte,LowGainHighByte;

unsigned char HighGainLowByte,HighGainHighByte;

unsigned char SecondsRegister=0,ClockSeconds;

unsigned char MinutesRegister=2,ClockMinutes;

unsigned char HoursRegister=4,ClockHours;

unsigned long temp[8],htemp[8],ltemp[8];

unsigned char SphereOpenFlag,CurrentSphereStatus,PrevSphereStatus;

float *fptr,fvalue;

unsigned int NumOfBins;

unslgned long SystemSeconds,ActivateSeconds;

unslgned int i,j,k,l,DataByteCnt;

unslgned int SpectralDataByteCount,*SpectralDataLengthPtr;

unslgned char c,d,e;

unslgned char ConvertTime,ScanCount,FileCount;

unslgned int FinalBinCount,BinCount;

unslgned int FinalIntCount,IntCount;
char *DataFileNamePtr;

char DataFileName[80];

char MiscFileName[80];

unsigned char CmdEntryCount,CurrentCmdActive;

FILE *fpl,*fp2,*fp3;
void interrupt NasIsr(); /* main interrupt service routine */

void interrupt (*rest)(); /* vector to restore original routine */

struct command{ /* this structure is 15 bytes long */

unsigned char hours; /* Hours to start Scan */

unsigned char minutes; /* Minutes to start Scan
*/

*/
unsigned char seconds;

float azimuth;

/* Seconds to start Scan

*/
float elevation;

*/
unsigned char NumOfScans;

unsigned int BinsPerScan;
Bins/Scan */

/* Azimuth in Degrees

/* Elevation in Degrees

/* Number of Scans */

/* Number of Spectral

unsigned char PitchRollPerScan; /* Num of Pitch/Roll Samples

per Scan*/

} CmdEntry[6];

void ReadCmdFile(){

fptr=&fvalue; /* this forces compiler to link floating point
formats */

fpl=fopen("nasic.cmd","r");

if(fpl==NULL) printf("\n Command File is not available");

for(i=0;i<6;i++){

fscanf(fpl,"%d%c",&CmdEntry[i].hours,&c);

fscanf(fpl,"%d%c",&CmdEntry[i].minutes,&c);

fscanf(fpl,"%d",&CmdEntry[i].seconds);

=

22



*

/*

fscanf(fpl,"%f",&CmdEntry[i].azimuth);

fscanf(fpl,"%f",&CmdEntry[i].elevation);

fscanf(fpl,"%d",&CmdEntry[i].NumOfScans);

}
fscanf(fpl,"%d",&CmdEntry[0].BinsPerScan);

fscanf(fpl,"%d",&CmdEntry[0].PitchRollPerScan); */

for(j=l;j<6;j++){

CmdEntry[i].BinsPerScan=CmdEntry[0].BinsPerScan;

CmdEntry[i].PitchRollPerScan=CmdEntry[0].PitchRollPerScan;

}

,/

NumOfBins=(unsigned)CmdEntry[0].BinsPerScan;

void WaitTillProperTime(){

ActivateSeconds=(long)CmdEntry[CmdEntryCount].hours*3600+(long)Cm

dEntry[CmdEntryCount].minutes*60+(long)CmdEntry[CmdEntryCount].se

conds;

printf("\n CmdEntryCount is %d",CmdEntryCount);

printf("\n hours are %dkn",CmdEntry[CmdEntryCount].hours);
while((ActivateSecondsl=SystemSeconds)&Ikbhit()){

outportb(0x70,SecondsRegister);

ClockSeconds=inportb(0x71);

outportb(0x70,MinutesRegister);
ClockMinutes=inportb(0x71);

outportb(0x70,HoursRegister);

ClockHours=inportb(0x71);

SystemSeconds=(ClockHours>>4)*36000+(ClockHours&0x0f)*3600;

SystemSeconds=SystemSeconds+(ClockMinutes>>4)*600+(ClockMinutes&0

x0f)*60;

SystemSeconds=SystemSeconds+(ClockSeconds>>4)*10+(ClockSeconds&0x

0f);
printf("\r %lu %lu",ActivateSeconds,SystemSeconds);

delay(500);

printf("kr ");

}

}
void MoveGimbal(){
#define AzCW 0x08

#define AzCCW 0x04

#define EICW 0x01

#define EICCW 0x02

#define MaxAzCnt 2510;

#define MaxElCnt 1354;

unsigned int count=0;
int AzHitCnt=0,EiHitCnt=0,FinalAzEncoderCnt=0,FinalEIEncoderCnt=0;

char AzHit,EiHit,match=0,sw,quit=0,CalStatus=0;

23



/***** The first task is to Calibrate the Gimbal

********/

******/

outportb(0xl09,0); /* this turns off all motors,solenoids
etc.*/

delay(100);

outportb(0xl09,AzCW+ElCW); /* Swing the Gimbal Azimuth
Clockwise */

delay(1000); /* Raise the Gimbal Elevation Clkwise */

while(lquit){

AzHit=inportb(0xl0a); /*read Azimuth shaft angle encoder
*/

*/
/*

*/

AzHit=(AzHit>>7)&l; /* mask out all other bits

printf("\n AzHit=%x match=%x",AzHit,match); /* */

if(AzHit==match){ /* has encoder state changed?

AzHitCnt++;

count=0; /* reset the counter

match=(AzHitCnt+2)%2; /* invert match

*/

}
delay(l);

count++;

if(count==1000) quit=l; /* if Gimbal is on stops we'll know

}
quit=0;

count=0;

while(lquit){

EiHit=inportb(0xl0a);

EiHit=(EiHit>>3)&l;

if(EiHit==match){

EiHitCnt++;

count=0;

match=(EiHitCnt+2)%2;
}
delay(l);

count++;

if(count==1000) quit=l;

}
outportb(0xl09,0);

AzHitCnt=EiHitCnt=0;

printf("kn the gimbal is now calibrated ");

/****************** The Gimbal is now Calibrated ************/

***************************************************************

24



/*****************_ Now Move Gimbal to Proper Azimuth *******/

FinalAzEncoderCnt=(int)(CmdEntry[CmdEntryCount].azimuth/200-0*250

9.0);
printf("\n AzEncoder Count is %d\n",FinalAzEncoderCnt);

if(AzHitCnt<FinalAzEncoderCnt) outportb(0xl09,AzCCW);

else outportb(0xl09,AzCW);

while(AzHitCntl=FinalAzEncoderCnt){
AzHit=inportb(0xl0a); /*read Azimuth shaft angle encoder */

AzHit=(AzHit>>7)&l; /* mask out all other bits */

if(AzHit==match){ /* has encoder state changed? */
count=0; /* reset the counter */

if(AzHitCnt>FinalAzEncoderCnt) AzHitCnt--;

else AzHitCnt++;

match=(AzHitCnt+2)%2; /* invert match */

}
delay(l);
count++;

if(count==100) quit=l; /* is Gimbal is on stops? */

} printf("kn the final az count is %d",AzHitCnt);

outportb(0xl09,0);

/********** Gimbal Now at Proper Azimuth (We Hope) ***********/

*****************************************************************

/************ Now Move Gimbal to Proper Elevation *************/

****************************************************************

FinalEIEncoderCnt=(int)(CmdEntry[CmdEntryCount].elevation/50-0*13

54.o);

FinalEiEncoderCnt=(int)(sin(CmdEntry[CmdEntryCount]-elevation/2-0

/360.0-2-3.1415)'1354.0"1.9);
FinalEIEncoderCnt = (int)(1480.0 * sqrt(l.84 *

(l-cos(CmdEntry[CmdEntryCount].elevation*.01745))));
/* FinalEiEncoderCnt+=75; /* */

printf("kn Final EL Encoder Count is %d",FinalEiEncoderCnt);

if(EiHitCnt<FinalEiEncoderCnt) outportb(0xl09,EiCCW);

else outportb(0xl09,ElCW);

while(EiHitCntl=FinalEiEncoderCnt){
EiHit=inportb(0xl0a); /*read Azimuth shaft angle encoder */

EiHit=(EiHit>>3)&l; /* mask out all other bits */

if(EiHit=--match){ /* has encoder state changed? */
count=0; /* reset the counter */

if(EiHitCnt>FinalEiEncoderCnt) EiHitCnt--;
else EiHitCnt++;

match=(EIHitCnt+2)%2; /* invert match */

}
delay(l);

count++;

25



if(count==100) quit=l; /* is Gimbal is on stops

} printf("\nthe final el count is %d", EiHitCnt);

outportb(0xl09,0);

? */

/********* Gimbal is now at Proper Elevation ******************/

}

void StartStepper(){

#define base 0x150

#define data base+0

#define stat base+l /* when reading it is status */
#define command base+l /* when writing it is command */
#define aux base+2

#define stop 0x40

/********* Status Register Format *********************************
I* *l
/* Output Buffer Full - Bit 0. must be i to read data */

/* Input Buffer Full - Bit I. must be 0 to write commands */

/* Motor Busy - Bit 2. Flag is 1 during motor operation */
/* */
*******************************************************************

char busy;

void StepperStatus();
/****************** Initialization

outportb(aux,0xff); /* D7=I will reset the card */

delay(10); /* this delay is necessary */

outportb(aux,0x40); /* D6=0 activates card, so not yet */
StepperStatus();

outportb(command,0x01); /*positive logic,3 phase,2 phase step */

StepperStatus();

outportb(data,0x60);

StepperStatus();
outportb(data,0x20);

StepperStatus();

outportb(data,0x40);

StepperStatus();

outportb(data,01);

StepperStatus();

outportb(aux,0);

StepperStatus();

/* RAmax */

/* RAmin */

/* accel LSB */

/* accel MSB */

activate phases */

End of Initialization

26



outportb(command,0x4c);

StepperStatus();

outportb(data,0x25);

StepperStatus();

outportb(data,0xcf);

StepperStatus();

outportb(data,7);

StepperStatus();
outportb(data,0xff);

)
void StepperStatus(){

char StepperByte;

StepperByte=l;

while(StepperByte){

StepperByte=inportb(0xl51);

StepperByte=StepperByte&0x02;

}
}
void FirstTimeInterruptInit(){

disable();

/* constant speed operation command */

/* 0x25 is the rate */

/* number of steps LSByte */

/* middle byte */

/* MSByte */

InterruptRate=(float)NumOfBins/ScanTime;

TimerValue=freq/InterruptRate;

TimerIntValue=(unsigned)TimerValue;

TimerLow = (char)(TimerIntValue&0xff);

Timer_igh = (char)((TimerIntValue>>8)&0xff);

outportb(0x43,0x36); /* set up the timer chip */

outportb(0x40,TimerLow);

outportb(0x40,TimerHigh);

rest=getvect(0xlc);

setvect(0xlc,NasIsr);

outportb(0x21,0);

disable();

}
void InitializeInterrupts(){

disable();

outportb(0x43,0x36); /* set up the timer chip */

outportb(0x40,TimerLow);

outportb(0x40,TimerHigh);

enable();

}
void interrupt NasIsr(){

ConvertTime=l;

void OpenSphere(){

SphereOpenFlag=0;

CurrentSphereStatus=PrevSphereStatus=0;

while(!SphereOpenFlag){

outportb(0xl09,0x20); /* start the cal sphere motor

PrevSphereStatus=CurrentSphereStatus;

*/

27



CurrentSphereStatus=inportb(0xl0a);

CurrentSphereStatus=(CurrentSphereStatus&0x04)>>2;

if((CurrentSphereStatus==l)&&(PrevSphereStatus==0)){

SphereOpenFlag=l;

outportb(0xl09,0);

}

void CloseSphere(){

outportb(0xl09,0x20);

delay(1500);

outportb(0xl09,0);

void StopStepper(){

outportb(0xl51,0x40);

}

void CleanUp(){

disable();

setvect(0xlc,rest);

outportb(0x43,36);

outportb(0x40,0xff);

outportb(0x40,0xff);

enable();

void AssembleBlock(){

/* Channels 0,1,2,3,4,7 are to be collected and stored & time */

BinCount=0 ;

outportb(0xl09,0x0); /* flip the filter out */

for (i=0 ;i<5 ;i++) {

outportb (0xl 08,0x08+i );

delay (1);

outportb(0xl08,i); /* high gain conversion */

delay(l) ; /* wait till conversion is complete */

MiscDataIndex=MiscScanIndex+i * 8 ;

• (MiscData+MiscDataIndex)= (unsigned int)i; /* data type */

MiscDataIndex++;

• (MiscData+MiscDataIndex)= 6; /* data length */

MiscDataIndex++;

• (MiscData+MiscDataIndex) =

(255- inportb (0x108 ))+ (255- (inportb (0x 109 )<< 8 )) ;

}
outportb (0x108,0x08+7 );

delay( 1);

outportb (0x108,7 ); /* conversion */

delay(1); /* wait till conversion is complete */

28

ii



MiscDataIndex=MiscScanIndex+5*8;

*(MiscData+MiscDataIndex++)=0x0007; /* data type 7 for
channel 7 */

.(MiscData+MiscDataIndex++)=6; /* length */

* (MiscData+Mis cDat aIndex++ ) =

(255-inportb(0x108))+(255-(inportb(0x109)<<8));
*(MiscData+MiscDataIndex)=FinalIntCount;
MiscDataIndex=MiscScanIndex+6*8;

*(MiscData+MiscDataIndex++)=0x0010; /* Type Ten for Time */

*(MiscData+MiscDataIndex++)=6;

outportb(0x70,HoursRegister);
.(MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);

outportb(0x70,MinutesRegister);

*(MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);

outportb(0x70,SecondsRegister);

*(MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);
MiscScanIndex=MiscScanIndex+7*8;

if(IFilter){

movmem(HighGainNoFilter,HGNoFilter+HGNoFilterIndex,(unsigned)NumO

fBins*2);
HGNoFilterIndex+=(unsigned)NumOfBins;

movmem(LowGainNoFilter,LGNoFilter+LGNoFilterIndex,(unsigned)NumOf

Bins*2);
LGNoFilterIndex+=(unsigned)NumOfBins;

} else{

movmem(HighGainWithFilter,HGWithFilter+HGWithFilterIndex,(unsigne

d)NumOfBins*2);
HGWithFilterIndex+=(unsigned)NumOfBins;

movmem(LowGainWithFilter,LGWithFilter+LGWithFilterIndex,(unsigned

)NumOfBins*2);
LGWithFilterIndex+=(unsigned)NumOfBins;

}

void AssembleDarkBlock( ){

/* Channels 0,1,2,3,4,7 are to be collected and stored & time */

for(i=0;i<5;i++){
outportb(0xl08,0x08+i);

delay(l);

outportb(0xl08,i); /* high gain conversion */

delay(1); /* wait till conversion is complete */

MiscDataIndex=MiscScanIndex+i*8;

*(MiscData+MiscDataIndex++)= (unsigned int)i; /*data type */

*(MiscData+MiscDataIndex++)= 6; /* data length */

29



* (MiscData+MiscDataIndex)
(255-inportb(0x108))+(255- (inportb(0x109)<<8)) ;

}
outportb(0xl08,0x08+7);

delay(l);
outportb(0xl08,7); /* high gain conversion */

delay(l); /* wait till conversion is complete */

MiscDataIndex=MiscScanIndex+5*8;

*(MiscData+MiscDataIndex++)=0x0007;/* type 7 for chan 7 */

*(MiscData+MiscDataIndex++)=6; /* length */

* ( Mi s c D a t a+Mi s c D a t a I n dex ) =

(255-inportb(0x108))+(255-(inportb(0x109)<<8));
MiscDataIndex=MiscScanIndex+ 6*8;

*(MiscData+MiscDataIndex++)=0x0010; /* Type Ten for Time

*(MiscData+MiscDataIndex++)=6;

outportb(0x70,HoursRegister);

*(MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);

outportb(0x70,MinutesRegister);

*(MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);

outportb(0x70,SecondsRegister);

*(MiscData+MiscDataIndex++)=(unsigned int)inportb(0x71);
MiscScanIndex=MiscScanIndex+7*8;

}

void WriteToFile(){

unslgned igdtype=0x40;
unslgned hgdtype=0x41;

unsigned ignftype=0x20;

unsigned hgnftype=0x21;

unsigned igwftype=0x30;

unslgned hgwftype=0x31;

unslgned eodtype=0x69;

unslgned bins=(unsigned)NumOfBins;

unslgned zeros[2048];

unslgned Scount=0;

long CurrentPos;

./

for(i=0;i<2048;i++) zeros[i]=0;

CurrentPos=ftell(fp2);

printf("\n the current position is %Id",CurrentPos);
for(i=0;i<CmdEntry[(CmdEntryCount)].NumOfScans;i++){

fwrite(zeros,sizeof(int),1024,fp2);

} 1" */

fseek(fp2,0,SEEK_SET); /* */
fwrite(MiscData,sizeof(int),HeaderDataLength,fp2);

MiscData+=HeaderDataLength;

fwrite(&igdtype,sizeof(int),l,fp2);

fwrite(&bins,sizeof(int),l,fp2);

fwrite(LowGainDarkData,sizeof(int),(unsigned)NumOfBins,fp2);

fwrite(&hgdtype,sizeof(int),l,fp2);

3O



fwrite(&bins,sizeof(int),l,fp2);
fwrite(HighGainDarkData,sizeof(int),(unsigned)NumOfBins,fp2);
fwrite(&eodtype,sizeof(int),l,fp2);
for(i=0;i<CmdEntry[(CmdEntryCount)]_umOfScans;i++){
fseek(fp2,(long)((i+l)*2048),SEEK_SET); /* */

fwrite(MiscData,sizeof(int),HeaderDataLength,fp2);

MiscData+=HeaderDataLength;

if(Scount%2==0){

fwrite(&ignftype,sizeof(int),l,fp2);

fwrite(&bins,sizeof(int),l,fp2);

fwrite(LGNoFilter,sizeof(int),(unsigned)NumOfBins,fp2);

LGNoFilter+=(unsigned)NumOfBins;

fwrite(&hgnftype,sizeof(int),l,fp2);

fwrite(&bins,sizeof(int),l,fp2);

fwrite(HGNoFilter,sizeof(int),(unsigned)NumOfBins,fp2);

fwrite(&eodtype,sizeof(int),l,fp2);

HGNoFilter+=(unsigned)NumOfBins;

} else {

fwrite(&igwftype,sizeof(int),l,fp2);

fwrite(&bins,sizeof(int),l,fp2);

fwrite(LGWithFilter,sizeof(int),(unsigned)NumOfBins,fp2);

LGWithFilter+=(unsigned)NumOfBins;

fwrite(&hgwftype,sizeof(int),l,fp2);

fwrite(&bins,sizeof(int),l,fp2);

fwrite(HGWithFilter,sizeof(int),(unsigned)NumOfBins,fp2);

HGWithFilter+=(unsigned)NumOfBins;

fwrite(&eodtype,sizeof(int),l,fp2);
}

Scount++;

}

void main(){

outportb(0xl09,0); /* disable all motors, solenoids

outportb(0xl0a,0); /* enable latch to control motors,
etc. */

StopStepper();

printf("\n At the beginning of main\n");

etc. */

solenoids,

LGNoFilter=LGNoFilterBase=malloc(0xff00);
HGNoFilter=HGNoFilterBase--malloc(0xff00);

LGWithFilter=LGWithFilterBase--malloc(0xff00);

HGWithFilter=HGWithFilterBase--malloc(0xff00);

MiscData=MiscDataBase=malloc(0xff00);

ReadCmdFile();

printf("\n have just read the Command File\n

FirstTimeInterruptInit();

enable();

");

31



for(FlightLine=0;FlightLine<6;FlightLine++){
if((CmdEntry[CmdEntryCount].NumOfScans)i=0){

DarkDataFlag=0;
LGNoFilter=LGNoFilterBase;
LGNoFilterIndex=0;
HGNoFilter=HGNoFilterBase;

HGNoFilterIndex=0;
LGWithFilter=LGWithFilterBase;

LGWithFilterIndex=0;
HGWithFilter=HGWithFilterBase;

HGWithFilterIndex=0;

MiscData=MiscDataBase;

MiscDataIndex=0; MiscScanIndex=0;

for(i=0;i<0xff00/2;i++){

*(LGNoFilter+i)=0;

*(HGNoFilter+i)=0;

*(LGWithFilter+i)=0;

*(HGWithFilter+i)=0;

*(MiscData+i)=0;

}
WaitTillProperTime();

printf("\n just made it out of WaitTillProperTime\n");
MoveGimbal();

printf("kn have finished moving the gimbal into position");

fclose(fp2);

sprintf(DataFileName,"NAS%d.dat",FileCount++);

fp2=fopen(DataFileName,"wb");
if(fp2==NULL) printf("\n could not open the data file");

StartStepper();

printf("\n have finished starting the stepper");

CloseSphere();

j=0;
outportb(0xl08,0xS+6);

delay(25);

outportb(0xl08,6);
InitializeInterrupts();

while(DarkDataFlag==0){

if(ConvertTime){

for(i=0;i<8;i++){

outportb(0xl08,0xS+6);

k++;k--; /* stall for a little time */

outportb(0xl08,6); /* low gain conversion

delay(l);

*/

Itemp[i]=(unsigned)(255-inportb(0x108))+(255-(inportb(0x109)<<8));

outportb(0xl08,0xS+5);
k++;k--; /* stall for a little time */

outportb(0xl08,5); /* high gain conversion */

32



delay(l); /* */

htemp[i]=(unsigned)(255-inportb(0x108))+(255-(inportb(0x109)<<8));

}

HighGainDarkData[j]=(unsigned)((htemp[0]+htemp[l]+htemp[2]+htemp[

3]+htemp[4]+htemp[5]+htemp[6]+htemp[7])>>3);

LowGainDarkData[j]=(unsigned)((itemp[0]+itemp[l]+itemp[2]+itemp[3

]+itemp[4]+itemp[5]+Itemp[6]+itemp[7])>>3);

j++;

if(j==NumOfBins) {

DarkDataFlag=l;

}
ConvertTime=0;

}
AssembleDarkBlock();

OpenSphere();

I* *I

CurrentCmdActive=l;

LastGratingDiodeStatus=CurrentGratingDiodeStatus;

CurrentGratingDiodeStatus=(inportb(0xl0a)&l);

if((LastGratingDiodeStatus==0)&(CurrentGratingDiodeStatus==l)){

BeginScanTime=l;

)
while(CurrentCmdActive){ /* loop until sequence is over*/

LastGratingDiodeStatus=CurrentGratingDiodeStatus;

CurrentGratingDiodeStatus=(inportb(0xl0a)&l);

if((LastGratingDiodeStatus==0)&(CurrentGratingDiodeStatus==l)){

InitializeInterrupts(); /* */

AssembleBlock();

ScanCount++;

if(ScanCount==CmdEntry[CmdEntryCount].NumOfScans){

CurrentCmdActive=0;

ScanCount=0;

}
if(ScanCount%2==0) {

outportb(0xl09,0); /*

Filter=0;

}
if(ScanCount%2==l){

/* outportb(0xl09,0xS0); /* filter in */

Filter=l;

}

/* filter out */

)
if (ConvertTime ){

33



if(CurrentGratingDiodeStatus==0){

for(i=0;i<8;i++){
outportb(0xl08,0xlS+6);
k++;k--; /* stall for a little time */

outportb(0xl08,0xl0+6); /* low gain conversion
delay(l);

*/

itemp[i]=(255-inportb(0x108))+(255-(inportb(0x109)<<8));

outportb(0xl08,0xlS+5);

k++;k--; /* stall for a little time

outportb(0xl08,0xl0+5); /* high gain conversion
delay(l);

htemp[i]=(255-inportb(0x108))+(255-(inportb(0x109)<<8));

}

if(IFilter){

LowGainNoFilter [ BinCount ] =

(unsigned ) ((itemp [0 ]+itemp [1 ]+itemp [2 ]+itemp [3 ]+itemp [4 ]+itemp [5 ]

+Itemp [6 ]+itemp [7 ])>>3 );

HighGainNoFilter[BinCount]=(unsigned)((htemp[0]+htemp[l]+htemp[2]

+htemp[3]+htemp[4]+htemp[5]+htemp[6]+htemp[7])>>3);

} else {

LowGainWithFilter [ BinCount ] =

(unsigned )((Itemp [0 ]+itemp [1 ]+Itemp [2 ]+itemp [3 ]+itemp [4 ]+itemp [5 ]
+htemp [6]+htemp [7 ])>>3 );

HighGainWithFilter[BinCount]=(unsigned)((htemp[0]+htemp[l]+htemp[
2]+htemp[3]+htemp[4]+htemp[5]+htemp[6]+htemp[7])>>3);

}

if( BinCount== 83) outportb(0xl09,0xS0);/* */
BinCount++;

}
ConvertTime=0;

/* outportb(0xl08,0); /* */

printf("\n have finished assembling the data block");
disable();

StopStepper();

WriteToFile();

CmdEntryCount++;
ScanCount=0;

34



enable();
}

}
fclose(fp2);

fclose(fp3);

CleanUp();

printf("\n two

%u",temp[0],temp[l]);

outportb(0xl09,0);

printf("kn That's All Folksl");

numbers of interest might be %u

35



9. APPENDIX B - HARDWARE SCHEMATICS

36



0

L--II,

I

0

Or)

0

0

m

<

37

0")



C_I CO

0

0

133

o
o o

Lu 111

,w-

-------_,V,_----_ I,

i

i a:

. F----_7_ _.I,_,7_
_15_ _Ig _Is_ ',Ig

L%_ L___qI_

,' i- '[

1
i

_-_,

i

38

z_j.-
"r" i--

m
W
:> _
rr_
a '¢

0
rr ,-
0 _

i

17
j,

C

0

0

--

7

01

0

_:_t_,J

II,

i

Z

o
i:=

Z

UJ

g}

o
Z

0



(3

0

00

_._ _ o_°_
Bo -,coo o _,,_ii_ _--_

LL

T

...J

-Fu-

L!
V

I
I

-I

L

a

¢0

39

0

m



rn

cd

_1

__,, _
" _ o_:-

.... 0

I
4O

cO ',d"

0



LL

ILl

13

0

i"°1

!<1

:.aa_

1

"--":'_.1

_l-i?l I:.l.

i)_!.,

• i.,4.4.1oi,

iOi. _"
I --io

i z '=_.._
r,' I_'0

/

°i

I_I®_ i

°_ "°{

zi !

41



ii

$

_ r

d

u

; i _
u

t

42



0

0

_0

I

l_]"
CD

£

O.

g

_" F-

"l

i

I
I

m

I

!

,, IL
G.

u_

23

i>

4-

i

, j

g_J

..J

§ -r__ _

z_
_l_ i__S_l

O_Z

4)

1

L) ""

°.
.0

C

43

z
E



,-- O,I ¢O

Oi

_ ;1olol-

O

O

rr" m rr O

v v

I._ n"

J

i
]

5 @

5gS
J

w Q
_ _ z
O wO

i
i

i
I
I i

>
z
0
o

i
!
1
i

i
i

I
L

_1_1_1_1_1o1_1_1o

Iolzl:l__
Iol-I_

"- I "" 1"-

I

I n. rr
i£_"'
IO N

z
O O O O

O

5
-r

z_
o Q

_ Z 121
0 _ Z

J _
o

111

o'1 ,_

& &
!

i

i

_,_ o_!

O00Z
, .... , ,, , !

,,- OJ 09 1

t"7 >m -

rr ---- ; o

!

rr o _,

0 _ =:o..

= N __
_.Z_ o_

C

m

44



m

<i
I

c_J

.._-.- _ _ or_._

° i

i :i
!

I I

i !, I

i

I

S

!

I

I

I
i
J

t

i

°I
i °

"l-

<z
Z<
On"

m

w_
mo

U _ 0

_ "' o
1.1- u-

-J_ _

S I O !'_:0

_ E
o z m_

u-i El

C

_m

_C

45



C3

tO!
i

i
I

o3

-. _ =_ o_

o

!i--

._ !, __,II,
I

! i _

i

i
i

_l

_O00U

OJN_

-- 0 _-}_ 11.

!

il
i
i

z
0

__ rr _ "

CO _-
IJ_ _ c-

eI-- O' ,_®

7-u_ 0 c_

<Z_ rr ",-

Z<o, < _,_
on- 0 _

> =_ .
rr z ,_o

WwZ z
rnO -_ ,_'_ ®

i ,,,

q t _q '

I

I
i

i

!

!

i !
I

[

i
I

II,

! i

' I

rn

46

L



_ 7



Form Approved
REPORT DOCUMENTATION PAGE OMSNo.o7o4-o1_

l_Jb_ic're_orting burden for this collection of irfformation is estimated to average 1 hour per response, including the time lot reviewing instruclions, searching existing dc'_a sources, ga=her'l_g

and maintaining the data needed, and comp_ming and reviewing the collection of information. Send comments regarding this burden estimete or any other aspecl of this colk_ction of

informetion, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate for Information Operations and Reports. 1215 Jefferson Davis Highway, Suite

1204, Arlington, VA 22202-4302, and to the Office of Mana_emer_ and 9ud_let, Paperwork ReduCliOn Pro_ect (07,04-0188 I. Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
July 1993 Reference Publication

4. TITLE AND SUBTITLI: 5. FUNDING NUMBERS
NASA Airborne Satellite Instrumentation Calibrator (NASIC)

Technical Reference Code 972

6. AUTHOR(S)

John L. Ward and Gerry McIntire

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Wallops Flight Facility

Wallops Island, Virginia 23337

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546--0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

93B00107

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA RP-1315

11. SUPPLEMENTARY NOTES

Gerry Mclntire: Computer Sciences Corporation, Wallops Island, Virginia, 23337.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 19

Report available from the NASA Center for AeroSpace Information, 800 Elkridge

Landing Road, Linthicum Heights, MD 21090; (301) 621-0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Max_num 200 words)

The NASA Satellite Instrumentation Calibrator (NASIC) is a visible and near-infrared spectrometer used to calibrate

various satellite instruments by underflying those instruments in a NASA ER-2 aircraft. This report documents the

calibration instrument's hardware and software.

!14. SUBJECT TERMS

Satellite Instrumentation, NASIC, Instrument Calibration, ER-2

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN7540-01-280-5500

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

47
16. PRICE CODE

20. LIMITATION OF ABSTRACT

Unlimited

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std, 239-18,298-102


