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ABSTRACT

We present a new collocation method for the numerical solution of partial differential

equations. This method uses the Chebyshev collocation points, but because of the way tile

boundary conditions are inlplemented, has all the advantages of the Legendre methods. In

particular L.2 estimates can be obtained easily for hyperbolic and parabolic problems.
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1 Introduction

Polynomial pseudospectral (or collocation) methods have been extensively used in the nu-

merical solutions of partial differential equations. The underlying idea in those methods is

to approximate the unknown function by an interpolation polynomial at some pre-described

(collocation) points. The polynomial is then required to satisfy the PDE at the collocation

points. This procedure yields a system of ordinary differential equation to be solved.

Historically, (see [10]) the first such points to be used were the Chcbyshev collocation

points

O<_j<_N.

Those points were chosen because they allowed the use of Fast-Fourier-Transforms in the

computations. It was only later (see [7]) that those points were identified with the nodes

of the Gauss-Lobatto-Chebyshev (G-L-C) quadrature formula. This observation is the key

in the stability analysis of the pseudospectral Chebyshev methods. The G-L-C quadrature

formula led to the weighted L_ norm

[ 1 dx

]-, v5 -

However, it has been noted in [8] that this is not a natural norm for hyperbolic equations.

In fact the differential equation is not well posed in this norm. Also it complicated the

stability analysis even for parabolic equations. The theory (and therefore the confidence in

applying those methods) is not complete.

Once the connection between the collocation points and the Gauss Lobatto points is

established, it is natural to use the nodes of the (lauss-Lobatto-Legendre (G-L-L) quadrature

formula. We refer the reader to [2] for review of those methods. Recently [1] an O(N log N)

method was proposed for the Legendre points. The main problem with those points are that

they are not given explicitly, and their evaluation for large N is not robust due to roundoff

errors.

In this paper we present a method (and name it The Che.byshev-Legendre Mcthod) that

has the advantages of both the Chebyshev and Legendre methods. The method utilizes the

Chebyshev collocation points allowing the use of fast Fourier algorithms and avoiding the

roundoff error associated with computing the Legendre grid points. The boundary conditions

are imposed via a new penalty technique in such a way that tile method is stable in tile usual

L2 norm (rather than the weighted L2 norm). Hence the Chebyshev-Legendre method enjoys

t Sthe advantages of the Cheby.'hev method as well as those of the Legendre method.



The implementation of the boundary conditions is done by a penalty method. A penalty

term is added to tile PDE at all grid points in such a way that, in tile limit of number of

grid points tend to infinity, the boundary conditions are satisfied. This procedure seems to

be better than the direct imposition of the boundary conditions, and in our case has the

extra advantage of yielding tile Legendre method at the Chebyshev points.

A similar idea had been tried by Reyna [11]. The difference between his approach and

ours is in the imposition of the boundary conditions. Instead of transforming from the

C'hebyshev basis to the Legendre one as in [11], we impose the boundary conditions via

penalty method and through that automatically switch to the Legendre basis without using

it in the differentiation procedure.

The paper is organized as follows:

In Section 2 we quote the essential formulas for the use of C'hebyshev and Legendre

methods.

In Section 3 we present the Chebyshev-Legendre method for hyperbolic equations. In

subsection 3.1 we describe the method and prove (in Theorem (3.1.1)) an energy estimate

to show stability. In Theorem (3.1.2) we bring another version of this energy estimate.

In subsection 3.2 we consider the relationship of the new method to the Legendre penalty

method and show that the differentiation matrices of the two methods are related via a

similarity transformation. This fact is proved in Theorem 3.2.2

In Section 4 we discuss and prove the stability of Chebyshev-Legendre method for the

heat equation with Robin boundary conditions.

Section 5 concludes the paper with some numerical experimel_tations with the new

method.

In future work we will report on the convergence results of the new method for nonlinear

hyperbolic equations.

2 Preliminaries

This Section is devoted to the definitions of the pseudospectral methods to be used later. We

will discuss Chebyshev and Legendre methods which are based on the Chebyshev polynomials

TN(X) = cos(N cos-' x) (2.1)

and the Legendre polynomials

1 d N

Piv(x) - 2N N! d--xN-(X 2 -- l) N (2.2)

respectively. Associated with these two polynomials are several Gauss-type quadrature for-

mulas. We will consider, in this paper, the Gauss Lobalto type fornm]as.
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We start by defining tile Chebyshev Collocation points xj by

xj = cos(N ) 0 _< j _< N (2.3)

These points are the zeroes of the polynomial (1 - x2)T_r(x) and associated with it, we have

The Gauss Lobatto Chebyshev Quadrature Formula:

Let f(x) be a polynomial of degree 2N - 1, then

N ? _'2 l (2.4)_f(xj)cj= lf(_)(1- )-_d(
j=0

where the weight cj are given by

7r

cj - -_

7r

C0 _ C N --
2N

1 <j< N-I (2.5)

Similarly, tile Legendre Collocation points yj are defined as tile roots of the polynomial

(1 - x2)P_v(x). For these points we have

The Gauss Lobatto Legendre Quadrature Formula:

Let f(x) be a polynomial of degree 2N - 1, then

N 1

__, f(y._)wj = f, f(()d( (2.6)
j=0

where the Gauss Lobatto weights wj are given by

2

02J = -N + 1 [PN(yj)PN-1(yj)]-I

2
02 0 _ CON --

N(N+ 1)

1 <j <N-1 (2.7)

Unlike the Chebyshev points that are known explicitly, there is no explicit formula for tile

Legendre points yi, they have to be computed numerically. It is interesting though that there

is a simple formula, easily and robustly computed, for the values of the Legendre polynomials

and their derivative at the Chebyshev points. In fact we have the following explicit fornmla

for P_(xj), (taken from [4], page 180)

3 3
N-I (_)m(_)N-l-m

t ¢;
p' (co O)= E cos(N-

71_=0

(2.8)



Pseudospectral (or Collocation) methods are based on interpolations at the points xj or

1 S"y./. Comlder tile polynonfials

QL(.C) (1 2 ,= - * )r'N(x)

Q(-(:,:) : (1 -.')T;_(.),

and define the Legendre-Lagrange polynomials by

hi(.) = 0L(.)
(*- v,)Ok(v,) '

and tlle Chebyshev-Lagrange polynomials by

Q.(x)
9,(x) = (._ *,)Qb(*,) "

Then, the Legendre interpolation operator IL is defined by

N

(ILf)(x) = _],f(yj)h3(x)
j=0

whereas the Chebyshev interpolation operator Iv is defined by

N

(Icf)(x) = __,f(xj)gj(x).
5=0

By definition, we have

(2.9)

(2.10)

(2.11)

(2.12)

(ILf)(yj) = f(yj)

(Icf)(xj) = f(xj).

From the definition of the interpolation operators 1L and Ic we get the spectral differen-

tiation matrices T_L and T_c as follows:

The Pseudospectral Legendre Differentiation Matrix "DL, is defined by

('DL)j,k = h'k(yj). (2.13)

Tile Pseudospectral Chebyshev Differentiation Matrix De, is defined by

(_c)j,k = g'k(xj). (2.14)

(see [3] for explicit expressions for the matrices)



3 Hyperbolic Equations

3.1 Scalar Hyperbolic Equation

In this Section we consider the scalar initial-boundary value hyperbolic equation

U, = U_ - 1 __ x __ 1 t > 0 (3.1)

with the initial condition

U(x,0)-- f(x) (3.2)

and tile boundary condition

U(1,t)=g(t) (3.3)

The Chebyshev-Collocation (Pseudospectral) method involves seeking all Nth degree

x-polynomial uN(x, t) that satisfies

Ouu(x,t) OuN(x,t) at x = xj 1 < j < N (3.4)
Ot Ox

with the boundary condition

UN(1,t)=UN(Xo,t)=g(t) (:3.5)

where x, are determined in (2.3) (x0 = 1).

Note that the equation is satisfied at all the grid points except at the boundary point

x = 1 where the boundary condition is satisfied.

In general, the term _uu(x, t) is evaluated at all the grid points, with tile use of either

FFT or matrix-vector multiplication using the matrix De. Equation (3.4) is then advanced

at all the grid points. The value of the solution at the boundary is then updated using (3.5).

Ill [5] a penalty type method was introduced. In that approach we still use equation

(3.4) for the inner points xj, 1 <_ j < N, however instead of using (3.5) for the boundary,

the following equation is satisfied

duN(1,t)

dt

t)
Ox l_=l - v(u_,(1, t) - g(t)) (3.6)

where r is determined from stability considerations. In particular it had been found that

stability follows if

N 2
T_'--.

- 2



Equations (3.4) and (3.6) can be combined into a single equation by noting that tile

collocation points xj defined in (2.3) are the zeroes of the polynomial (1 - x2)T_c(x). Thus

the penalty method [5] can be written now as

o  (xj, t)
Ot - Ox t)Ix= , -

for j = 0,...,N.

(1 + xj)T[v(xj), u "1 t) g(t)) (3.7)
7 2T_(1) ( u( , -

The main difference between the penalty method (3.7) and the usual Chebyshev method

given in (3.4) and (3.5) is that the numerical solution us(x, t) does not satisfy the boundary

condition exactly, but only in the limit as N ---) oz. The boundary condition is now part of

the equation.

Another penalty method, based on the Lcgendre points yj is presented in [6]. Similar to

(2.6) we write this method as

ou ,(yj,t)
Ot Ox

forj = 0,...,N.

]_,=uj - (1 + Yj)P[v(Yj) (UN(! t) -- g(t)) (3.8)
T 2P_(1)

Tile parameter r is determined by the stability requirement. Thus tile differential equa-

tion is satisfied at the points yj,j = 1,..., N. At the boundary x0 = 1 one uses a combination

of the boundary condition and the differential equation.

An obvious disadvantage of the method in (3.8) is that it utilizes the Legendre points.

However comparing (3.7) and (3.8) shows us how to utilize the Legendre penalty method

(3.8) at the Chebyshev points.

The Chebyshev-Legendre (C-L) Method

Let PN(x) be the Legendre polynomial of degree N.

polynomial of degree N in x that satisfies

OUN(Xi,t ) OUN(X,t) (1 + xj)P_(x.i). " t) g(t))
Ot = " Ox Ix=_, - r 2P_(1) -

for j = 0,...,N.

In the C-L method we seek a

(3.9)

(1+_i),'k (_)
Note that the penalty term 2r;.(1) is different from zero for all the Chebyshev grid

points xj. Note also that applying (3.9) entails the use of the differentiation matrix Dc at the

Chebyshev points. In fact, given uN(xj, t) one finds the derivative based on the Chebyshev

points, and then add the penalty term with different weights at every grid point. The term

P[v(xj) is evaluated using the explicit formula (2.8). This is done once and for all for any

grid size N.
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"1 "t ,qTile surprising fact is that the C-L method, though computed at the Cheby_hev points,

is stable in the uslla] L2 norm, rather than the weighted L2 norm. In fact one can state

Theorem 3.1.1 : The L2 Stability of the C-L Method.

let UN(X, t) be the solution of (3.9). Let wj be the weights of the Gauss Lobatto Legendre

quadrature formula and yj the nodes of the same quadrature fornmla. Let g(t) = 0 in (3.3)

and (3.9), then for

1
r> --= N(N + I)

-- 2020

tile (_-L method is stable in the L2 llorm. More specifically,

N N

U'ZN(yj,t)_j = _ u_(yj,O)_j - (3.10)
j=0 j=0

fo 2 (-l't)] dt"
t[u'_(1,t)(2Wor- I) 4- uN

Proof:

It follows from (3.9) that

o_,N(x, t ) o_,,_(x, t )
Ot Ox

_(: + x)P_(x)
2P_(1) (uu(1,t)-g(t)). (3.11)

This is because both sides of (3.9) are polynomials of degree N that agree at N + 1 points,

namely at the Chebyshev collocation points xj, 0 <_ j <_ N.

We now read (3.11) at the Lcgcndrc points yj to get

x x ,, Ou_(yj, t)
d __, u_(yj,t)wj = 2 __, uu(yj,t) -_z .toj - 2rWoU'2u(1,t)
dt j=o j=o

Since the Gauss-Lobatto-Legendre quadrature formula is exact for polynomials of degree

2N- 1 it follows that

N . OuN(yj, t)%'2_ _(yj, _,) _
j=O

= j'_ (u_(_,t)hd_
1

2 (-1,t)= u_(1,t)- u s

and thus the stability estimate (3.10) follows. Tile Theorem is thus proven.

Note that unlike tile Legendre-Penalty method (3.8), in which one needs to use the

Legendre points yj in the computations, these points do not appear in the computations in

7



tile ('-L method. They arejust introduced for tile sakeof the proof. Tile actual computations

are doneusing tile C'hebyshevgrid points xj.

An energy estimate based on tile Chebyshev points xj can be derived by using (2.11) and

(2.12) a_s follows:

Theorem 3.1.2 :

Let

with

N N

lluN(.,t)ll_= _ _ Hi,,uN(x,,t)u_(xj, t) (3.12)
j=O I=0

N

Hi,,= _ gj(y,,)9,(y,),,k.
k=O

where tile Chebyshev-Lagr£nge polynomials gj(x) are defined in (2.10).

Then u_(., t) satisfies the energy estimate

/0'Ilu,,(.,t)ll' = IN_(.,0)II_ - {U_(1,t)(2WOT- 1) + u_(-1,t)}dt (3.13)

Proof :

Equation (3.13) is really a restatement of (3.10). Since uN(x, t) is a polynomial of degree

N in x, it can be represented exactly by

N

_,,(x,t) = I_,, = F_,_,,,(x,,_)9,(_).
l=0

Thus

N

uN(yj,t) = _uN(x,,t)gt(yi). (3.14)
/=0

The estimate (3.13) follows from (3.10) upon substituting (3.14) for the values of uN(yi, t).

Tile theorem is proven.

The C'-L method can be viewed from many different points of view. Theorem (3.1.1)

shows that this method, in the constant coefficient case, is equivalent to the Legendre -

penalty method introduced in [5].

Thus the C-L method is the realization of the Legendre method at the Cheby-

shev points.

We close this section by pointing out that the estimate (3.13) enables one to pass to

systems easily. Actually it had been done in [5]. One has to follow the same steps. It shows

the C-L method is stable for constant coefficients systems of hyperbolic equations.



3.2 The Differentiation Matrices

Perhaps more insight can be gained if one compares the differentiation matrix induced by

the C-L method DCL with the differentiation matrices induced by the Chebyshev penalty

method (:3.7) _Dc, and tile Legendre penalty method (3.8) _')L.

We start by noting that the differentiation matrices O5 and Dr: defined in (2.1:3) and

(2.14) do not take into account any boundary conditions. The differentiation matrices in-

duced by (3.7), (3.8) and (3.9) are variations of the basic matrices ZgL and 7?c, differing only

in tile method of imposing boundary condition.

Not surprisingly, T_L and Dc are similar, after all both differentiate cxactly polynomials

of degree N. Since for these polynomials, the operators IL and Iv are the same, the matrices

D5 and Dr: represent the same operation in a different basis. This implies a similarity

relationship. More specifically, this relationship can be written explicitly:

Theorem 3.2.1 :

Let S be the matrix whose elements Sj,k are given by

S],k = h_(xk) (3.15)

where hj(x) are the Legendre-Lagrange polynomials defined in (2.9).

C'hebyshev points.

Let T be the matrix whose elements Tj,k are given by

Again xj are the

Tj,k = gj(Yk) (3.16)

where gj(x) tlle Chebyshev-Lagrange polynomials are defined in (2.10). yk are the Legendre

collocation points.

Then

S = T-' (3.17)

and

Z')c = SZ)LT (3.18)

Proof :

Since gj(x) is a polynomial of degree N it is given by

N

ej( ) = (3.10)
/=0

9



Substituting xk and making use of the fact that gj(xk) = 5i,k, we get

N

/=0

proving that

2-= ST.

Differentiating (3.19) we get

N

9_(_)= F_,.qj(u,)h',(x)
/=0

However hl(x ) is itself a polynomial of degree N and therefore it can be expressed as

N

h',(_)= E h',(y,,,)hm(x),
_q'_----O

which leads to

N N

g_(xk) = __, __, gj(yt)h't(y,,,)h,,,(xk)
1=0 m=O

The theorem is thus proved.

We will show now that tile differentiation matrix induced by tile C-L method "DCL is

similar to the differentiation matrix Dcp induced by the Legendre penalty method (3.8).

This will demonstrate the fact that the C-L method is the realization of the Legendre method

on the Chebyshev grid.

Theorem 2.2.2:

Let _)CL be the differentiation matrix induced by the Chebyshev Legendre method (3.9)

and DLp tile differentiation method induced by tile Legendre penalty method (3.8) then

DcL = S79LFT (3.20)

where the matrices S, T defined in (3.15), (3.16) are tile transformation matrices between

the Chebyshev points and the Legendre points.

Proof •

Note that the differentiation matrix DLp is essentially the matrix "_")L introduced in (2.13),

modified to take into account the boundary conditions, imposed via penalty in (3.8). Thus

(vLr,)j,_= (vL)j,_- Tt;o,_,Sj,o. (a.21)

10



In tlw samemanner wecan write explicitly

(1+ xk)p_(x_)_j0. (3.22)
(Z_,=L)j,k= (Z_c)j,k- T 2r_(1) '

Equation (3.22) is a direct consequence of (3.9). Note that the full first column of Dc is

modified, and not only the first element as in (3.21).

We proceed by writing explicitly the elements of the matrix S'DLr, T. In fact

N N

/=0 m=O

Thus using (3.18) we get

(sv_pT")j,_= (z_c)j,_- W_(yo)ho(xk) (3.23)

From (2.9)

ho(X_)= (1+ x_)pk(x_)
2P_,(_)

and since y0 = x0 = 1 gj(yo) = _j,0 so the right hand side of (3.23) is exactly the salne as

this of (3.22).

Thus (3.20) is established. The proof is completed.

4 Parabolic Equations

In this Section we present the Chebyshev-Legendre method for the parabolic equation

0//, 02U

0---[-- Ox "2 -- 1 < x < 1,t > 0 (4.1)

with Robin boundary condition

au(1, t) + flu_:(1,t) = g+(t)

7u(-1,t)+3u_(-1,t) =g-(t). (4.2)

We will assume that a,/3, 3' are non-negative and 3 is non-positive. This assures the time

decay (or non-growth) of u(x,t).

We note that by now there is a very limited stability ti_eory for the Chebyshev method.

In fact stability had been proved first for the Dirichlet case/3 = 0, ,6 = 0, (see [7]) and then

for Neumann case a = 3' = 0. [9]. Here we present the C-L method and prove stability for

the approximation to (4.1), (4.2) for the general Robin case.

ll



Denote by "PN the finite dimensional space of polynomial of degree at most N. We define

the operator A

A : PN _ PN

by

where

.4v(x,t) = °2v(x't)- Ox2 + R(x, t) (4.:1)

with

R(x,t) = ,oQ+(x)[B+(_)- 9+(t)]+ ,-,,Q-(x)[P-(t) - 9-(t)] (4.4)

(1 + _)p_(x) B+(t) =
Q+(x) = 2P_v(1) '

(1-x)P;v(x) B-(¢) =
Q-(x) = 2p_(1) '

av(1,t) + flvx(1,t)

",/v(-1,t) + Sv_:(-1,t).

The numbers r0, rN will be determine later to assure stability. We define also the following

scalar product

N

(V, W)N _-- E v(yj)w(yj)_j (4.5)

j=0

where yj,wj are the Legendre points and weights respectively.

The Chebyshev-Legendre Method for Parabolic Equations

We seek the polynomial of degree N in x, v(x, t) that satisfies

0 _< j _< N (4.6)
Ov(_j,t) 02V(X_

Ox_t)lx=_'- R(_, t)Ot

where xj are Chebyshev collocation points.

Note that again, the work is done on the Chebyshev points xj, the penalty values

Q+(xj),Q-(x3) are computed by (2.8) and are nonzero for any xj.

To prove the stability of (4.6), we set g+(t) = g-(t) = 0. In the following lemma, we will

find conditions on r0 and rN such that the operator A to be semi bounded.

Lemma 4.1 :

12



Let v C 'PN and

r+ 1
_,b - wob[(1 + 2n)+ 2v/-_-_+ a 21

1

rg b - wob[(1 + 2t;)- 2v/-_ + a21

with _ = woa/b.

Let tile operator A be defined in (4.3). Then

N-1

(Av, v)N >_ Y_ v_(yj)w i (4.7)
j=l

provided

r_,o <to < + (4.8)_ _ rg,a

r_lsi _<rN _<r+ N. (4.9)

Proof :

Since the Gauss Lobatto Quadrature formula (2.6) is exact for polynomials of degree

2N - I and since v(x,t)isa polynomial of degree N, we have

N 1

v(vj)v.x(vs) oj= f_
j=O 1

= v(l)v.(1)-v(-l)v.(-1)-/_ll

using the standard integration by parts technique.

Using again the Gauss Lobatto formula, one would get

. x),Cx

N N

- _ v(yj)v_x(yj)wj = _v_(yj)wj - v(1)vx(1) + v(-1)v_(-1)
j=o j=o

N-I

= +
j----I

v_(1)_o + V_(--I)wN- v(1)v_(1)+ v(-l)v_(-1)

Thus making use of (4.10) we Call write

N-I

(Av,v)N = F(1,.,fl, O)+ F(-1, 7,151, N) + _ v_(yj)%-
j=l

(4.10)

(4.11)

13



where

F(., _,_,k,)= .(._l,_ - I)_(_)_.(.) + ._a_'_(*) + _v_(_). (4.12)

In order for A to be positive we need to choose w0 and rN such that F(l,oqfl, 0) and

r(-l,-y, i,l, N)are non-negative.For P(1,,_,/3,0)to be positive,we,_eed

(_o/3_0-i)__<4_'0_

or

2 2 2 2c_COo) 1_%3 _°0 - 2Zo_O0(/3 + + 0

Thus ro has to lie between the roots of the parabola described in the left hand side,

namely r_,_ and r+_.

The same kind of consideration hohts for ru. Thus F(1, ce,/3, 0) and F(- 1,7,161, N) are

non-negative for the range of r0 and rN given in (4.8) and (4.9), respectively. (4.7) follows

from (4.11).

Remarks

1. The Dirichlet boundary condition for x = 1 is obtained from (4.2) by setting a =

1,/3 = 0. In this case

r_ = oc
1

%- 4wg'

which yields the condition for the penalty amplitude

ro 7> I N4( N + 1) 4

2. The Neumann boundary condition for z = 1 corresponds to the case a = 0, fl = 1. In

this case ro+a = wo71yielding the condition

1 N(N+ 1)

_o0 2

We are now ready to state the stability theorem for the C-L method when applied to

parabolic equations with Robin boundary conditions :

Theorem 4.1 :

14



Let 7-oand rt, satisfy (4.8) and (4.9) respectively.Let v(x, t) E T'N be tile C-L approxi-

,nation to u(x,t), obtained by (4.6). Assuming that g+(t) = .q-(t) = 0, v(x,t)satisfies the

energy estimate

(v(x,t), v(x,t))N _<(v(x,0),v(x, 0))N- 2ff
N-1

v_(vj,t)dt (4.13)
j=l

where the scalar product (f,g)N is defined in (:3.5).

Proof :

Since (4.6) holds for j = 0, ..., N and since v, vx_ and R are polynomials of degree at most

N, we conclude that both sides of (4.6) are equal not only at the grid points but also for

every x.

Ov(x,t) O'%(x, _,
Ot Ox "2

n(x, t) - 1 <_z <_1

where R(x,t)is defined in (4.4).

Noting the definition of A in (4.3), we get

_V
-- ,,4?3,

Ot

Thus

_v

(v,_)N = (_,¢t,)N

Using Lemma 4.1 yields

1 d N-l
- vx(vj,t)_j2dt(V,,)_ _< _

j=l

and integration yields the stability result (4.13).

We stress again that the Legendre collocation points yj are "ghost points", which are

never used in the computations but only in tile proof of the stability. Actually we could

restate the proof in terms of tile Chebyshev collocation points xj as in Theorem 3.1.2.

5 Numerical Results

Case 1: Linear scalar PDE
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In this Section,we will considersomenmnerical examplesthat verify our claims stated

in previousSections.Considertile scalarlinear initial-boundary valuehyl)erbolic PDE

l.Tt = U_ - 1 < x < 1,t > 0 (5.1)

with initial condition

U(x,0) = sin(2,_k.)

and boundary condition at x = 1

u(1,t) = .q(t)= sin(>_k(1+ t))

We seek an N degree.z-polynomial v(x, t) that satisfies

_v(._,Od = D,,(xj,t) - .O(.,)(v(m, t) - .q(t)) (5.2)

at Chebyshev collocation point xj = cos(rrj/N), j = 0,..., N and D is tile differentiation

operator (matrix).

For different construction of tile Nth degree polynomial Q(x), one could have different

type of boundary treatments. For examples,

1 if Q(x) = _ D = Dc and x = xj are tile (;auss-Lobatto-C'hebyshev points,
• 2]"_/(1) '

then we have the Chebyshev-Legendre method (C-L).

0+x)T}(_) ' I s
2. if Q(x) = 2T,NO) ,D = Dc and x = xj are the (,auss-Lobatto-(heby:hev points,

then we have the Chebyshev penalty method (C-P).

(l+_)t:'_v(_) D = DL and x = Ya are tile C,auss-Lobatto-Legendre points, then3. if Q(.)- ',F_o) ,
we have the Legendre penalty method (L-P).

Let denote v_'_) = v(xj,t,,) and At be the time step increment, then for j = 0,..., N,

we would advance the system of ODE (5.2) in time by the third order Heun Runge Kutta

scheme that has the following form :

. (o)= .q(0)For j = 0, 1,...,N, and vj

v! ') = v_ '') + -_(Dv_ '') - vQ(xj)(v_ '0- g(t,,)))

At 't
2AtDr!l) rQ(xj)(v5 ') g(t,_)-Tg(,,,)))= +T( -

(,,+1) _ lv(, 0 3. O)
v, - -_ j + _,,j +

3At At ' t 2At2g"(t,,)))
4 (DvS'2)-rQ(xj)(v52)-g(t")-73 g(''') 9

(5.a)

16



where g'(t,,) and g"(t,_) are the derivatives of the time-dependent l>oundary condithms in

time at t = t,,.

It has been observed before that if one imposes boundary condition at each intermediate

stages of the Runge Kutta scheme, a larger time-step (CFL number) can be used. Otherwise,

CFL number has to be reduced by as much as four time for stability. In this study, we define

At = (TFL/N 2.

The traditional way of the imposing exact boundary condition at, = 1 can be described

as following :

Vorj = 0,..., N, a,_d_5°)=U(x,0)

- &+j --

_o(')= v(_,,+--)

2At Dv(')

2At.

_) = j(t,_+ -T-)

4'+__+l!'')3(,) __L_2D_]:)vJ"+l) =

I)O(n+l) = g(t n -_- At)

(5.4)

However, as shown in Table I that this procedure would lead to reduction of accuracy in

time as N increases.

Table I

L2 Error and order of accuracy for (5.4) with k = 1

N

16

32

64

128

CFL

Error Rate Error Rate Error Rate

0.82E-03

0.15E-04 2.89

0.42E-06 2.57

0.17E-07 2.31

O. 10E-03

0.18E-05

0.49E-07

0.19E-08

4

2.91

2.61

2.33

0.29E-05

0.28E-07 3.35

0.72E-09 2.64

0.28E-10 2.34

Hence, the above procedure is modified as following (Detailed discussion and analysis

will appear in a future paper) :

For j = 0, 1,..., N, and vS°)= U(x,O)

_t (n)

17



At l- -

v_'_ = _(t,,) + T9 _t,,)

_2) (,0 1)v = vj + . Dv

2At ,. . 2At 2 ,,. .
o(o_) = .q(t,,)+ T.q (t,,) + --g-g (t,,)

vj,,+,)-4_ +_,+4-1,!,03vo) aAt_v!_)

(,_+1) g(t,,+l)V 0 =

,).,. }

We shall denote this procedure as (XBC). Table I indicated that the order of time accuracy

for this procedure is third order for all N.

Table II

L2 Error and order of accuracy for (5.5) with k = 1

N Error
16

32
64

128

CFL 8

Next, using tile C-L method,

Table II.

Rate Error Rate Error Rate

0.77E-03

0.12E-04 3.00

0.19E-06 3.00

0.30E-08 3.00

0.98E-04

0.15E-05 3.00

0.24E-07 3.00

0.37E-09 3.00

0.28E-05

0.24E-07 :3.44

0.37E-09 :3.00

0.58E- 11 2.99

4 1

one get tile L2 error and the order of accuracy as listed in

Table III

L2 Error and order of accuracy for C-L method with k = 1, r = 4w0

N

16

32

64

128

CFL

Error Rate Error Rate Error Rate

0.47E-03

0.74E-05 2.99

0.12E-06 3.00

0.18E-08 3.00

0.60EI04

0.93E-06 3.01

0.15E-07 3.00

0.23E-09 3.00

0.28E-05

0.15E-07 3.81

0.23E-09 3.00

0.36E-11 2.99

8 4 1

Table IV

L2 Error of C-L method for different choices of r = 2w0c_ with k = 1, CFL = 1

N

16

32

64

128

ce=8

0.31E-05

0.t5E-07

0.23E-09

0.36E-11

c_=2

0.15E-07

0.23E-09

0.36E- 11

ee=l

0.65E-05

0.15E-07

0.23E-09

0.36E- 11

c_ = 0.9

0.83E-05

0.15E-07

0.23E-06

unstable

c_ =0.5

0.37.E-03

0.18E-01

unstable

unstable
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FronaTable IV, we can seethat for w < 2w0, C-L becomes unstable while for -r >_ 2w0,

the convergent of the s(:lwme confirms the theoretical prediction.

Case 2: Nonlinear scalar PDE

Consider the scalar nonlinear initial bom_dary value hyl)erbolic equation

Ut = l/_ -2_rkcos(27ck(x + t))(1 + sin(27rk(x + t)))

-l_<x_<l, t>0

with initial condition

U(x, 0) = 2 + sin(2_rkx)

and boundary condition at x = 1

U(1,t) = g(t) = 2 + sin(27rk(1 + t)).

This PDE has an exact solution given as U(x,t)= 2 + sin(27rk(x + t)).

Table V

L2 Error of C-L method for different choices of

N

16 0.86E-02

32 0.40E-07

64 0.68E-09

128 0.11E-10

_- = 2Woa with k = 1,cfl = I

a=8 c_=4 a=3 a=2.5 Exact BC

0.10E-01

0.40E-07

0.68E-09

0.lIE-10

0.18E-01

0.40E-07

0.68E-09

0.11E-10

0.27E-01

0.11E-04

unstable

unstable

0.72E-02

0.39E-07

0.67E-09

0.11E-10

Different values of k are also tested, similar results are obtained.
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