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1. Introduction

The Algorithm To Architecture Mapping Model (ATAMM) is a Petri net based model

capable of describing the periodic execution of large-grained, data-independent algorithm graphs

on multiprocessor architectures. ATAMM provides a description of the data flow and control

flow necessary to provide for the predictable execution of an algorithm in real-time.

The objective of this research is to develop a software simulator capable of simulating the

execution of a graph on a given system under the ATAMM rules. The purpose of the simulator is

to enable a study of the behavior and performance of both heterogeneous and homogeneous

multicomputer dataflow systems prior to the availability of hardware prototypes. This simulator

is able to assist with the development of ATAMM-based architectures and the investigation of

theories concerning the ATAMM model. This simulator is user-friendly and flexible to permit

examining different attributes of a generic system. The simulator also provides the means to

identify an architecture by specifying different parameters of the system in order to evaluate the

periodic execution of an algorithm on a given hardware system. Evaluation of the simulator is

conducted through several case studies.

Section 2 of this report is an overview of ATAMM. Performance measures are also

defined in Section 2. The implementation issues of this new simulator, which will hereafter be

referred to as the Heterogeneous ATAMM Simulator or simply as the Simulator, are discussed in

Section 3. The design and development of the Simulator are presented in Section 4. Case studies

and simulation results of example algorithm graphs are presented in Section 5. This report.

concludes, Section 6, with a discussion of ongoing and future research to expand the model to a

broader class of multiprocessor architectures.

The use of brand names is forcompleteness and does not imply NASA endorsement.



2. Overview of ATAMM

2.1 Model Components

...... AT-AMM kS_desfgned _t0 model _c _on_rol: schedu_g: _d communication issues for

computational algorithmsacceptingperiodicinputdataand generatingperiodicoutput data [I].

ATAMM models data-drivenreal-timealgorithmswhich may be representedby data-independent

directedgraphs.The nodes of thegraph arc assumed to be of sufficientcomputationalcomplexity

to warrant parallelexecution. The targethardware system has previouslyconsistedof a set of

hornogcncous processors. This Simulator,however, is intended to support the extension of

ATAMM toheterogeneous processors.

The model consistsof a set of Petrinet marked graphs [2, 3, 4] which combine the

functi0nsof an algorithm with the necessarycomputing activities.The Algorithm Marked Graph

(AMG), the Node Marked Graph (NMG), and the Computational Marked Graph (CMG)

constitutethe three components of the ATAMM. The Algorithm Marked Graph (AMG)

representsa specificdecomposition of the functionalcomputation requirements. The AMG, as

illustratedby the example in Figure I, uses nodes (circles)to representblocks of code or

processes which arc to be executed and edges (directedline segments) to represent data

dependencies between the nodes. Each AMG node is executed to completion before another

node may be scheduled on the same processor. A token (soliddot) on an edge representsthe

presence of a single data packet. All edges may have a pool of buffers and can accommodate

more than one token at a time. A node consumes one token from each of its input edges when it

fires (begins execution) and deposits one token on each of its output edges when it completes

execution. Source and sink transitions for input and output signals are represented as rectangles.

The Node Marked Graph (NMG), illustrated in Figure 2, is a representation of th_

execution of an AMG node by a processor. Three primary activities associated with execution of

an AMG node, reading of input data (R), processing of input data to generate output data (P),
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Figure I. An example Algorithm Marked Graph.
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Figure 2. An example Node Marked Graph.

and writing of output data OAr), are incorporated in the NMG. A recent enhancement of the

model [4, 5] allows m tokens on the Process Ready edge, which permits m simultaneous

instantiations of the node to be executed in parallel on different processors with different data

packets. The n tokens on the Output Empty edge indicate that the predecessor AMG node can be

instantiated up to n times before an output is consumed by the successor node. The value of n is

always greater than or equal to m. The values of n and m are determined by a graph analysis



procedure and are typically different for each AMG node. Tokens on the Output Available edge

indicate the presence of data on the edge.

The Computational Marked Graph (CMG), illustrated in Figure 3 (for the AMG of Figure

I and for the simple case of m = 1 for all nodes) is constructed by replacing each AMG node with

its NMG and replacing each AMG edge with an edge pair , consisting of a forward directed edge

representing data/low and a backward directed edge representing control flow. As both a

graphical and mathematical model, the CMG is useful for determining the performance bounds as

well as the data and control flow required for a hardware implementation.

Two types of concurrency are possible when executing an algorithm decomposition as

specified by the CMG. First, several nodes of the dataflow graph without data interdependency

may be simultaneously performed on the same data packet. This is referred to as parallel

concurrency because it is the result of inherent parallelism in the-graph [6]. The amount of

parallel concurrency depends on the number of parallel paths in the algorithm decomposition as

well as the number of available resources. Second, several nodes of the dataflow graph may be

simultaneously performed on different data packets. This happens when new data packets ar_

accepted for execution before the completion of computation of previous data packets. This

simultaneous processing of different data packets is referred to as pipeline concurrency [6]. This

type of concurrency has a direct effect on throughput. The amount of pipeline concurrency

depends on the number of available reS0urces_ weli_the Structure of the AMG,

2.2 Performance Measures and Bounds

The two primary pe-rform_e-me_s=for a graph _-_d_c s_i_-state Time Bct_veen--

Outputs (TBO) and the Tune Bcrweeninput an_dcorresponding Output (TBIO). TBO is the

elapsed computing dmc between successivealgd-rithmOutputs. Therefore,the inverseof

steady-statevalue of TBO isa measure of throughput in dam :paCketsper unit_. The _)

lower bound, TBOlb, and hence theupper b0undon_oughput, isdeterminedby_cai_gorithm -

4
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graphandthenumberof availableresources.Thealgorithm imposed TBOIb is determined by the

largest time per token of all directed circuits in the CMG [6]. In graphs with recurrent circuits,

TBOIb is determined by the time per token of the largest recurrent circuit in the CMG. The

second bound on TBO is imposed by the availability of resources [6] and is given by the ratio of

TCE over R where TCE (Total Computing Effort) is the summation of all the node latencies of a

CMG and is the time required for all graph nodes to execute a single data packet. R is the

number of resources. For instance, the TBO of the AMG of Figure 1, which has no recurrent

circuit, is limited only by the number of available resources. TBIO is defined as graph latency,

which is the time for a single data packet to progress from source to sink. The algorithm-imposed

lower bound, TBIOIb, is determined by the critical path from source to sink. However, the TBIO

is a function of TBO and is determined by analyzing the algorithm graph and considering the

number of resources.

To achieve a desired TBO for a given algorithm graph, ATAMM requires that the input

data to the algorithm graph be supplied at the steady-state TBO rate. Therefore, the injection

rate, defined as the Time Between successive Inputs (TBr), and TBO are synonymous at the

steady-state and are used interchangeably.

Other performance measures are speedup and resource utilization. Speedup for a

homogeneous processor system is defined as the ratio of TCE over TBO. Resource utilization for

a homogeneous processor system [6], U, is defined by

TCE
U -

TBO*R

where R is the number of available resources, and

TBO _>TCE/R, for 0<U<I.

6



The sp_:dup and r_sourcc utilization may similarly be c_fined for the hcterogcncous processor

configurations. _

2.3 Control Edges

A con=ol _gc is an AMG _gc Which_mposcs an ax_c_l dam dcpcndcncybetween two

AMG nodes [6]. The con=o; edges are used to cid;cr alter node schedulesto eliminate needless

concurrencyorto_provercsou_cu_za_on.



3. Simulator Implementation Issues

3.1 Target Hardware Architecture

The generic heterogeneous architecture considered is displayed in Figure 4. This generic

heterogeneous architecture consists of a number of processor groups that in turn are composed of

a number of resources or functional units (FU), which arc the actual processing units, and a

number of local networks. Although the functional units and the local networks within each

processor group are assumed to be homogeneous, the different processor groups are not required

to have similar characteristics. In other words, a heterogeneous system is realized by groups of

processors with different characteristics that communicate with each other over the global

network.

The Advanced Development Model (ADM) [7, 8] and the Generic VHSIC Spacebome

Computer (GVSC) [8] are typical architectures which have been the primary targets of ATAMM

implementations. These systems consist of four identical MIL-STD-1750A functional units that

communicate over a Parallel Interprocessor bus (PI-bus), as shown in Figure 5, and a MIL-STD-

1553B communication module that is also connected to the PI-bus and serves as the front-end of

the system. The 1553B is essentiaUy a 1750A with less memory and the 1553B interface. These

are examples of heterogeneous systems with two groups of processors where one group has four

resources (four 1750As) while the other has only one resource (one 1553B) and they

communicate over a global network, the PI-bus. However, previous ATAMM implementations

on these hardware systems modeled only the behavior of the homogeneous set [9] of 1750A

processors. The new simulator described herein could support the modeling of the more general

heterogeneous architecture.
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Figure 5. Layout of the ADM and GVSC systems.

3.2 Implementing ATAMM

Systems implementing the ATAMM consist of four logical components: the graph

manager, the global memory, a set of functional units, and the communication bus [9]. The graph

manager _spons[b]e for ensuring that the overall system operates according to the ATAMM

rules. The functional unit is the logical component that executes all three node marked graph

(NMG) transitions of each algorithm operation. When a read transition of the CMG graph is

enabled, the graph manager assigns a functional unit from the fist of available functional units to

execute the corresponding _lgorithm node. If there are additional enabled nodes, the graph

manager assigns them, according to priority, to the subsequent resources in the available list. The

IO
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graph manager updates the marking of the CMG using status information reported by the

functional units. The input and output data corresponding to each AMG node are stored in the

global memory. In the context of ATAMM, the memory is considered to be logically global to all

functional units. However, in a real system, the global memory may be either centralized or

distributed. The functional unit communicates with the graph manager to update the status of the

CMG, and with the global memory to read and write data. The communications between the

graph manager, the global memory, and functional units are asynchronous and are carried out by

means of a communication bus. To synchronize movement of tokens in the CMG and to arbitrate

among different functional units, it is assumed that only one functional unit communicates with

the graph manager at any one time. This is accomplished by the means of a semaphore.

Therefore, the functional unit that possesses the semaphore has control of the communication bus

and can communicate with the graph manager and update the status of the CMG. In this regard,

the communication bus and semaphore are often used interchangeably.

Thus far, ATAMM implementations have only considered systems with a single

semaphore and a single communication bus. One of the purposes of this Simulator is to explore

systems with multiple semaphores. In order to ensure that all functional units have an identical

copy of the graph data structure, a functional unit grabs the semaphore before changing the graph

data structure. In a distributed system, the updated graph data structure is wansmitted to all

functional units by a broadcast, and only then does the functional unit release the semaphore for

other communications.

The graph manager and global memory may be distributed among all the functional units.

This distribution of activities has the advantage of increasing the number of functional units in the

system and at the same time improving the potential for achieving a higher degree of fault

tolerance to processor failure. Also, a distributed global memory eliminates the need for shared

memory among functional units.

The integration of the graph manager with the operating system constitutes the ATAMM

Multicomputer Operating System (AMOS). The resottrce list, global memory, and the algorithm

11



marked graph provide the necessary support to AMOS. An AMOS controlled architcc_

consisting of personal computers has been developed arid"tesmd:_o_valldate _e AT_ rules

[10, 11]. In this testbed, a centralized graph_manager and centralized global memory are Utili_d_

Other testbeds with increased functionality, the ADM and the GVSC, utilize a distributed graph

manager and distributed global memory.

3.3 Generic State Diagram of the AMOS

The generic state diagram of the AMOS is shown in Figure 6. The AMOS is composed of

six states: Idle, Reading, Processing, Writing, Grab-Semaphore, and Graph-Manager. Other

implementations of ATAMM have included other states such as Testing [7, 8]. Initially, all

functional units start in the Idle State. A functional unit remains in this state until either its

identification number (ID) appears at the top of the resource list, which is a F'trst-In-First-Out list

of available functional units, or it receives a message indicating that a node has been assigned to it

by another functional unit acting as graph manager. When idle with its ID at the top of the

resource list, the functional unit monitors the status of the CMG until a read transition of an

algorithm node becomes enabled. Once an enabled read node is identified, the functional unit

attempts to acquire the semaphore which makes it the active graph manager of the system. It then

assigns a node to itself, consumes one token from each input edge of the algorithm node, updates

the CMG marking, and removes itself from the available list. _,, _....

Before progressing to the next state, Reading, the functional unit examines the algorithm

graph and assigns other enabled nodes to the subsequent functional units in the available list. It

notifies other functional units via fire-messages, updates the CMG accordingly, broadcasts the

updated graph data structure, and then releases the semaphore. This broadcast is termed a "Fire"

broadcast. Assigning other enabled nodes to idle functional units while holding the semaphore, is

an enhancement to the GVSC AMOS that reduces the communication overhead. .......

12
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The "F'trc"broadcastcontainstheupdatedversionof theCMG, theupdatedresourcelist,

and theID ofthefunctionalunitsprocessingtheAMG nodes.Thisbroadcast,aswellas theother
. r + _

broadcastdiscussednext,providethe statusinformationncccssaryfor the graph manager to

maintaintheshams of theCMG. When thegraphmanager isdistributed,thiscommunicationis
+ ..... _ __ _ .........-_ ............

cspecialiyimportanttoensurethatallindividualgraphmanagerscontainthesame CMG marking.

Upon detectinga firemessageintheIdicstate,thefunctionalunittransitsto theReading

Statewhcm itroadstheinputdatainpreparationfornode execution.The functionalunitthen

migratesto theProcessingStatewhere itperformsthctaskrepresentedby thealgorithmnode.

The functionalunitremainsintheProcessingStateuntilthenode operationiscomplete. Then,

13



the functional unit attempts to undergo another state transition to the Writing State by grabbing

the semaphore. In the Writing State it updates the CMG, writes the output data, and broadcasts

the updated information to other functional units. This broadcast, termed a "Data" broadcast,

provides the updated CMG and the output data of the node to the other functional units. The

functional unit then goes to the Graph-Manager State. Now that _e functional unit holds the

semaphore and is the active graph manager, it attempts to fire as many nodes as possible prior to

releasing the semaphore. Since the operation of the system is asynchronous, the graph manager

must generally be interrupt driven.

The CMG and resource iist in the global memory of a functional unit cart be updated while

in any state by "Fire" or "Data" broadcasts from other functional units. The "Fire" and "Data"

broadcasts not only provide the communication necessary for the integrity of overall system

operation, but also the means to analyze the system performance. By labeling, time tagging, and

storing information about each broadcast, such as the event (Fire and Data), the node number,

and functional unit ID, the token movement within the CMG, as well as functional unit activity

can be reconstructed. Other measurements such as TBIO, TBO, and functional unit utilization and

concurrency may also be extracted.

3.4 Event-Driven

The previous ATAMM simulator [9] was clock-driven in the sense that the system-clock

of the simulator was incremented by one tick at a time. Simulation of algorithm graphs proved to

be slow and time consuming. To speed up the simulation process, the system-clock of the
_ _ __ == E __ __

Simulator must be incremented by more than one tick without violating the liming constraints of

the system. Since the Simulator has the full knowledge of the overall system, it can determine the

exact time of occurrence of the next event and thus increment the system-clock accordingly, In

this regard, the Simulator defined herein is event-driven. Since, in general, the _xt event will

take place in the time interval of greater than or equal to one system-clock tick, the event-driven

Simulator is expected to be considerably faster.

14
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3.5 Simulation of Graphs with Variable Node Latencles

The previous ATAMM simulator [9] simulated graphs with fixed node latencies. Since

algorithm graphs representing real applications may not have fixed latencies, :it-is desirable to be

ableto simulategraphs with variablenode latencies.This is accomplished by representingthe

dininglatencyof AMG nodes by statisticalfunctions.The Simulatorthen determines the actual

latency of an AMG node during the simulation process, for every input data packet, by executing

the appropriate statistical function representing the AMG node. When the AMG nodes have

variable latencies and upon multiple instantiations of nodes, it is possible that the data packets

produced by the nodes may arrive out of order. To enforce firing of AMG nodes at the proper

time with the appropriate data packet, the data packets are tagged to guarantee correctness of the

CMG marking.

Specific statistical functions are included in the Simulator and additional functions may be

inserted. The Delta function represents the fixed node latency and is assumed to be a positive

value. Using the Delta function, the Simulator defaults to the fixed node latency case. The

Uniform Distribution function requires a lower bound and an upper bound. The Gaussian

=_ *

function requires a mean and a standard deviation. The Discrete function requires an input file

where the discrete values for each input data packet are stored. The Exponential function

requires a mean value. .......

3.6 Simulation of Graphs with Static Node to Processor Assignments

The previous implementations of the ATAMM targeted homogeneous architectures [3, 7,

8] where all nodes of the algorithm graphs are mapped to and executed on all identical functional

units of a system. However, it may not be practical or necessary to always have a fully redundant

system. In some real systems, memory c0n_trahat is a iirnifing factor. In other' systems, functional

..... 7

units may have different characteristics from one processor group to another. By partitioning the

algorithm graph into groups of nodes and assigning each group to a different processor group, the

15



sameperformanceasthe fully redundantsystem(a single processor group) may be achieved. A

proper partitioning of the graph can m/n/mizc interprocessor communication overhead and

increase throughput.

Analysis of the AMG reveals that it is often possible to group some of the nodes into

separate sets and statically preassign each set to different processor groups to get equivalent

performance. In the static assignment of nodes to processor groups, execution of the sets are

assumed to be confined to the functional units to which they are assigned. However, in a fully

redundant system where all nodes are assigned to all functional units of a single processor group,

these sets may appear as patterns that migrate from processor to processor.

To accommodate for the static assignment of nodes to processor groups, this Simulator is

designed so that each processor group is independent of other groups. The assigned nodes arc

encapsulated within each processor group and arc internally managed by the group.

3.7 Simulation of Multiple Graphs

While simulating multiple independent graphs, it is often necessary to phase the graphs

with respect to one another and to simulate them in a predefined sequence. The phasing and

sequencing of algorithm graphs requires certain dependencies among them. These dependencies

arc imposed by the introduction of control edges that connect the sources of different graphs

together. However, due to the nature of the phasing and sequencing problems, these control

edges must be dealt with separately in the Simulator. To handle these control edges, the

Simulator starts the phasing process of a source as soon as an input control edge becomes active.

This corresponds to performing an OR operation on the control edges. The Simulator then fires

the source after the specified delay interval.

3.8 Graph Entry, Simulator, Analysis, and AlE Tools

The relationship of the Simulator with_thc other ATAMM tools is shown in Figure 7. As

shown in the figure, the input to the Simulator is a graph (GRF) file; graph files have ".grf"

16



extensions. The Simulator output is a Fim/Datafrime (FDT) file; FDT files have ".fdt"

extensions.The GRF filecontainsthe algorithmrnarkcdgraph and the setup informationabout

the Simulator,e.g.,the number of groups of processorsand number of functionalunitsin each

group type. The FDT fileis a collectionof time-tagged events which provide a means of

evaluatingtheresultsof algorithmgraph execution. Basic informationinthe FDT fileincludethe

time of occurrence of each event,name of the event,node identifier,node color,and functional

unitidentifier.The format of the GRF and FDT filesarcdiscussedinSection4.10. The GRF falc

isthe output of the Graph Entry software tooldeveloped to draw a graph and defineattributesof

the nodes and the edges. The FDT fileservesas the input to the Analysis Tool [12] which

graphicallydisplaysalgorithmand resource activitiesand provides automaticand user-interactive

performance assessment. To smooth out the transition of the Graph Entry output into the

Simulator and the Simulator output into the Analysis Tool, an ATAMM Integrated Environment

(AIE) was proposed to integrate these ATAMM tools.

Analysis

Figure 7. Flow of information among the ATAMM tools.
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4. Simulator Design and Development

The development of the Simulator is presented in this section. This Simulator allows the

study of the behavior of algorithms in heterogeneous dataflow architectures operating in real-time

based on ATAMM. The Simulator permits an architecture-independent study of behavior and

performance of a system prior to the availability of a hardware prototype.

4.1 Object-Oriented Programming

Object-oriented programming lends itself to modeling different parts of a complex entity

and the relationship among its parts. The objects can be defined and developed separately to

ensure privacy of data, reusability, and readability. This also makes maintenance and debugging

more manageable and systematic." Further discussions of OOP are provided in Appendix F and in

Reference [9].

4.2 Programming Environment and Language

The implementation of the Simulator requires a powerful programming language and

software environment. The Simulator is written in the C++ programming language. The main

reasons are: 1) it is an object-oriented language with multiple inheritance and thus is a good

system programming language; 2)it provides good data structures, control flow primitives, and a

rich set of operators; and 3) it is compatible with Microsoft WindowsL The Simulator is

developed in the Microsoft Windows environment because of its object-oriented programming

capabilities including message passing and a vast library of graphics routines, especially the

windowing capabilities. Other Microsoft Windows environment features include the capability to

run more than one application in parallel, permitting the user to run more than one instance of the

Simulator at the same time. This provides a means to simulate and compare two or more

Microsoft Windows is a trade mark of Microsoft Corporation.
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simulations simultaneously. As another example, the Simulator, the Graph Entry, and the

Analysis tools can be running concurrently allowing an easier a'ansition between them.

The objectsare defined and develol_d Separately to ensure privacy of data, reusability,

and readability. This makes maintenance and debugging more manageable and systematic [9].

Every object that directly interacts with the user has its own independent window which allows

the display of different windows to be viewed at the same time.

4.3 Objects and their Relationships

The main logical components or objects of the Simulator arc, in part, a result of the

ATAMM. Since the ATAMM is a set of rules by which an algorithm graph can be mapped to an

architecture, the three main classes of objects are Graph-Manager, Graph, and Processor-Group.
=

The Processor-Group object consists of a set of functional units and, hence, the F'd-List object

and the Functional Unit object (within the b'U-List object) arc introduced. Any system has some

means of communication among its components; thus the Network object evolved. A

management mechanism for arbitration among these objects is provided by the Simulat0r-Kernel

object [9]. Interconnection among these and other entities is portrayed in Figure 8.

4.4 Simulator-Kernel

The Simulator-KemeI provides, manages, and simulates the multitasking environment

where the functional units can operate without conflict. This object is the operating system for

the Simulator and the heart of this software. The arbitration among different objects is enforced

in a non-preemptive manner, where every object is given enough time to accomplish its task. This

is easily realized by employing object-oriented programming methodology [9].
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Figure 8. Interconnection of objects.
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The Simulator-Kernelobjecthas a number of chiid'objects including Processor_Group,

Network, Algorithm Graph, and a System-Clock object. The Simulator-Kernel passes full control

over the sysmm to a constituent, specifically to a Processor or to a Network object, and by doing

so, suspends itself. Upon completion of its task, the target object returns control back to the

Simulator-Kernel along with the anticipated time of the next event in that object. Transfer of

control is accomplished through the message passing capability of object-oriented programming.

Upon execution of all objects, the Simulator-Kernel updates the System-Clock appropriately to

indicate the time of occurrence of the next eventin the entire system. Since the Simulator has the
: : = : -2 ..........

.

full knowledge of the systefia, it is aware of the timing and nature of the next event. If, however,

the time of occurrence of the next event is beyond the upper bound of all events, the Simulator

stops the simulation process and provides an error message with indications of the probable

causes. This process continues for all objects, in an orderly fashion, until simulation of the graph

is complete.

The order in which the objects are invoked is as follows. First, the Processor-Group

object, described in the following section, is invoked. It then passes control to the Graph

Manager and, subsequently, to the Functional Units via the FU-Lists object. Second, the
: = :,

Network object is invoked to carry out its communication task. The Network object, described in

Section 4.7, in turn, passes control to its child objects. The Processor-Group and the Network

objects have the same behavior as the Simulator-Kernel toward their constituents. F'mally, the

System-Clock is appropriately updated. . The hi'erarchy of passing control to the lowest level

objects, child objects, is also portrayed in Figure 8.

Thus far, the functionality of the Simulator-Kernel from an internal information viewpoint

was described. Another functional aspect of this object is its central role with respect to user

interactions. The Simulator-Kernel object and all other objects that require user interactions have

their own independent windows through which information may be passed and displayed. For

these objects, the mrms object and window are used interchangeably.
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Figure 9. Simulator-Kernel.

For user interactions, the Simulator-Kernel provides a set of push buttons in its window,

Figure 9. Some of these push buttons contain a sublayer of selections. The top level selections

arc for informative purposes while the sublayer selections perform an operation. For example, the

second layer of the "Processors" and "Networks" push buttons are the "+" and "-" push buttons

that allow the user to increase and decrease the number of these objects, respectively. The speed

of the simulation can be adjusted through the "Speed" button to turbo, fast, medium, or slow.

The "Open..." button allows the user to open a GRF file and to load the algorithm marked graphs

for sinaul-atlon. The "Discard..." button lets the User specify the number of initial da-ta packets that

are to be _scarded. The riu_ber of discarded data packets corresponds to the data'packets prior

to reaching the steady state. This number is important in calculating the TBO, TBIO, ensemble

TBO, and ensemble TBIO points where the ensemble values are defined as the average values.

The duration of the simulation process, the "Duration..." button, can be defined by specifying the

number of data packets._vI'he-"_O/TBIO '' and "Ensemble"'toggie key'let the user set up_e

simulator for calculating the TBO and TBIO points or the ensemble TBO and ensemble TBIO

points. The "Run" and "Stop" toggle buttons allow the user to initiate and terminate the

simulation process. When calculating "TBO/TBIO" points, the Simulator prompts for an output

FDT file name. When calcula_g "Ensemble" TBO and TBIO points, the Simulator prompts for

the number of ensemble points desired. The "Pause" and "Resume" toggle buttons pause and

resume the simulation process, reSl_ctively. All windows have a help option w_ere the '_elp"

buttons invoke the appropriate help files for specific guidance concerning window functions. The
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"About" button invokesthe signatureanddisplaysthegeneralinformationaboutthe Simulator.

ThisSimulatoronly operatesin thesimplexmode.

The Simulatorkeepsu'ackof clock ticks,numberof events,andnumberof datapackets

into and out of the graph. It also reports the current status of these activities for user's

information upon receiving control of the systemvia the "System"window. The speedof

simulation may be adjustedto turbo, fast, medium,or slow at any time. This provision is

providedfor animationpurposeswherethe simulationof the graphis carriedout at the desired

pace. Sincethis window is theheartof thissoftware,existenceof otherwindowsdependon its

existence,i.e.,closingthiswindow resultsin terminationof theSimulator.

4.5 Algorithm Graphs

The Algorithm Graph object of the Simulator is a set of objects that arc connected

together by a set of linked lists. The objects that constitute the Algorithm Graph objects are the

nodes and the edges. The node object has three variations and represent the nodes, the sources,

or the sinks of the algorithm graphs. The edge object has two variations and represent the data or

the control edges of the algorithm graphs. These objects and their interrelations represent the

algorithm marked graphs. The input algorithm marked graph files provided by the Graph Entry

tool, discussed in Section 4.10, conveys the necessary information about these objects.

When loading an input file, the Algorithm Graph object scans the input file and upon

detecting a node or an edge, creates a new instance of the appropriate object and sends a message

to the object to read its own data and initialize itself. The Algorithm Graph object then inserts the

object into the proper linked lists. The linked lists that represent the algorithm graph arc a linked

list of node and a linked list of edge objects. Each node object has, in turn, two linked lists of

edge objects, one for the input edges and the other for the output edges. Each edge object has

two linked lists of edge objects, one for the output edges of its initial node and the other for the

input edges of its terminal node. The source object has two additional linked lists of edges, one

for the input control edges and the other for the output control edges of the source. These

23



control edges that connect the sources of the algorithm graphs together are for phasing and

sequencing purposes and require special treatment by the Simulator. The data structure of the

algorithm graphs, as portrayed by the Algorithm Graph object, is depicted in Figure 10.

:=

4.6 Processor-Group

To model and simulate a heterogeneous architecture, the Processor-Group object is

designed to represent a genetic system where different attributes of the system can be r_ored to

match a particular architecture. Since every Processor-Group object represents a homogeneous

system, two or more of these objects characterize a heterogeneous system. In a heterogeneous

system, different Processor-Groups may have different characteristics, e.g., number of functional

units, test time, and speeds; but all functional units within a Processor-Group object share similar

characteristics. The Functional Unit object is designed so that it can undertake any or all tasks

represented by the input AMG. In this regard, the sources, the sinks, and the nodes of the AMG

are treated equally. In this Simulator, the number of Processor-Groups, Functional Units, and

Networks are not limited by any upper bound, but by the availability of memory.

The objects that constitute the Processor-Group object and their relationships are

portrayed in Figure 8. The Processor-Group object treats its constituents in the same manner as

its parent object, the Simulator-Kernel. The Processor-Group passes control to the Graph-

Manager object which, in turn, passes control to the Functional Units (within FU lists) to carry

out the execution of the AMG nodes assigned to this Processor-Group.

Through Processor-Group's window, the number of Functional Units can be sIx_ified to

match a particular architecture such as that shown in Figure 11. The submenu of the "FU" menu

selection increases or decreases the number of Funtional Units by selecting "+" or "-",

respectively. The upper bound on the number of Functional Units within a Processor-Group

object can be specified via the "FU Limit" push button. The upper bound of the number of

Functional Units is the maximum number of resources during the simulation process. If the total
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number of Functional Units in a Processor-Group object is less than the upper bounC the

Simulator creates, during the run time, as many Functional Units as necessary to carry out its

operation without violating the upper bound restriction. The relative speed of a Processor-Group

object compared to other Processor-Groups can be specified by the "Speed" submenu. The

relative speed of a Processor-Group object can be decreased by "+" and increased by "-". The

"Help" button invokes the appropriate help file where specific guidance for the Processor-Group

window is provided. A push button is provided for a future selectable "Test Time" to simulate

self-testing by the Functional Units. However, the specific use of self-test is not yet implemented.

"IDLE _

Node ....
Packet ..

FU4 FU3 FU2

Graph Hanager Iv_

1

Nodes iNS
6

8inks ISin k lEVI1

Hax Resources 4

Idle FU= Bu=yFU=

: _ ..... _ ..................... _____L___; = _? ,. ........... __..................

Figure 11. Processor Group.

4.6.1 Graph-Manager

The graph manager is responsible for ensuring that the overall system operates according

to the ATAMM rules_ The Graph-Manager object, representing the graph manager of ATAMM,

updates and monitors the status of the CMG. When a read transition of this graph is enabled, the

Graph-Manager assigns a Functional Unit from the list of available Functional Units to perform

the corresponding algorithm node according to priority if more than one node is enabled. If there

arc additional enabled nodes, the Graph-Manager assigns them to the subsequent Functional Units
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in the available llst. The Graph-Manager updates the marking of the CMG ushag status

information reported by the Functional Units.

Since the Graph-Manager object is part of the Processor-Group object, it only keeps track

of the AMG nodes that are assigned t0 the Processor-Group object by a linked list of source,

node, and sinkobjects.Although the source and the sink objectshave a lotincommon with the

node objects,theyalsohave some differences.For instance,the sourceobjectsmust dealwith the

specialsource controledges and the sink objectsmust keep track of the output data packets.

Therefore,the sourceand thesinkobjectsare storedin separatelinkedlistsfrom the node objects

to kccp theiroperationsseparateand to speed up the simulationprocess. The data structureof

thealgorithmgraphs,asportrayedby theGraph-Manager object,isdepictedinFigure12.

Upon updating the CMG, if necessary, the Graph-Manager broadcasts the updated

informationto other Graph-Managers. The necessityof broadcastingpartor allof the updated

CMG depends on the partitioning of the nodes Of the AMG. If dependencies exist among the

AMG nodes of the Graph-Managers or if an AMG node is assigned to multiple Graph-Managers,

then whenever one G_ph-Manager is updated, part or all of the updated information ought to be

shared with other Graph-Managersl Since the Graph-Manager object has knowledge of the

system, it is also responsible for creating Functional Units at run time, based on need without

violating the upper bound limitation of the Processor-Group object.

The Graph-Manager object displays information about the graph and the status of the

Functional Units in the Processor-Group object. This information mainly consists of the count

and names of the sources, nodes, and sinks that are assigned to the Processor-Group object, and

the content of the idle and busy Functional Unit lists of the Processor-Group object.

4.6.2 Functional Units

The Function_Unitobject is designed to carry out the tasks represented by the AMG

nodes. The Functional Unit object, therefore, does not distinguish between the sources, the sinks,
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Figure 12. An example graph and the node data structure for one group of nodes ....

and thenodesoftheAMG. To carryoutexecutionofan AMG node of any kind,theFunctional

Unitmust be assigneda nodetoexecute.The assignmentofan AMG node totheFunctionalUnit

isaccomplishedby theFunctionalUnitthatcurrentlyholdsthesernaphorcand istheactivegraph

managerofthesystem.The activegraphmanager,a FunctionalUnit,canassignan AM(} node to

itselforanotherFunctionalUnit.A FunctionalUnitbecomes Theactivegraphmanager when itis
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in the Writing State or when it is both in the Idle State and at the top of the list of available

Functional Units. The active graph manager possesses the semaphore and is the only Functional

Unit that can talk over the Network while other Functional Units listen. To grab the semaphore,

the Functional Unit may have to compete with others. The semaphore is granted based on the

specified protocol of the defined architectm'e. Sections 4.6.5 and 4.7 discuss the communication

network protocols.

To complete execution of the AMG node, the attached Functional Unit goes through a

sequence of states as depicted in Figure 6 for the AMOS. These states define the operating

system characteristics of the ATAMM Multicomputer Operating System (AMOS) and, thus, the

state diagram of the Functional Units. This state diagram is described in the next Section.

Through its window, the Functional Unit object displays information about its current status such

as current state, the name of the assigned AMG node, and the number of the current data packet.

4.6.3 Functional Unit State Diagram Description

Idle
z

When idle, the Functional Unit awaits a fire-message indicating an AMG node is assigned

to it for execution. It also continuously scans the Idle-List of available Functional Units to

determine..... whether it is at the top of the list. When it finds itself at the top of the list and still idle,

it scans the CMG for enabled read nodes. A CMG read node is enabled when every one of its

input edges have a token with the appropriate tag and all of its output edges have an empty

buffer. If there axe enabled CMG read nodes, it attempts to grab the semaphore to become the

active graph manager. Upon receiving a fire-message, the Functional Unit migrates to the

Reading State.

Grab Semaphore 1

In this state the Functional Unit attempts to establish a communication link with other

Functional Units. After establishing a communication link and grabbing a semaphore, the
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FunctionalUnit becomesthe active graph manager of the system and moves to the Graph

Manager State. Otherwise, it goes to the Idle State.

Graph Manager

Being the active graph manager, the Functional Unit assigns the CMG read nodes to the

idle Functional Units in the Idle-List. It sends fire-messages to the appropriate Functional Units,

possibly including itself; moves the assigned Functional Units from the Idle-List to the Busy-List

of Functional Units; updates the CMG and broadcasts the updated information to others. After

the "Fire" broadcast, it releases the semaphore,

State.

The Functional Unit then migrates to the Idle

Reading :.

The Reading State represents the activity of reading the input data. The reading of input
Z 2 :

data is a,'complished by consuming one token from each input edge with the appropriate token

tag. After reading the node's input data, the Functional Unit progresses to the Processing State.

Processing

In this state, the Functional Unit executes the task represented by the node. The duration

of this state is represented by the process time of the node. However, when simulating graphs

with variable node times, the duration of this Smte=_ - c6mputed on the fly by caning the

appropriate statistical function that represents the node. Upon completion, it p_sses to the

Grab Semaphore State.

Grab Semaphore 2

To writ(: the generated output data on the output edges, the Functional Unit must grab the

semaphore and become the active graph manager 0fthe system. It reds ha this state and

competes for the semaphore until it is granted.
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w Writing

After becoming the active graph manager, the Functional Unit migrates from the Busy-List

to the Idle-List of Functional Units. It then writes the output data on the output edges of the

nodes and updates the CMG accordingly. The writing of output data is accomplished by inserting

one token on each output edge registering the tag associated with it. The updated information is

broadcast to other Functional Units via the "Data" broadcast. Before releasing the semaphore, it

goes to the Graph Manager State.

4.6.4 FU Lists

The FU-Lists object manages the Functional Units and the Idle-List and Busy-List of

Functional Units within a Processor-Group object. It creates and destroys Functional Units and

moves them between the Idle-List and Busy-List upon receiving appropriate messages from the

Graph-Manager object. It also keeps track of the number of Functional Units in the Processor-

Group object. This object was created to facilitate the management of the Functional Units

objects.

4.6.5 Local-Networks

The Local'Netw0rk object is envisioned to manage the arbitration of local semaphores

among the Functional Units and to provide a means of establishing communication with the

Global-Network object. Although all implementations of ATAMM have considered only a single
== = === :

semaphore, the Local-Network and Global-Network objects are intended to explore systems with

multiple semaphores and a hierarchy of semaphores. In this regard, the I.._cal-Network is a child

of the Global-Network.

Nonetheless, this Simulator assists in the development of theories regarding the ATAMM

under ideal conditions. Networks do not exist under ideal conditions. Due to lack of time, the

Local-Network object is not yet implemented. In this regard, the communication latency is zero
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and the simulation is performed under the ideal condition. However, the system is still limited to

a single semaphore to ensure the integrity of the CMG markings.

4.7 Global-Networks

The Global-Network object is envisioned to manage the arbitration of global semaphores

among the different Processor-Group objects and tO provide a means of establishing

communication with the Local-Network objects. For the reasons stated in Section 4.6.5, the

Global-Network object is not yet _plemented. The communication latency among the

Processor-Group objects are also zero and the simulation is performed under the ideal condition.

The single semaphore mentioned earlier is global throughout the system and ensures the integrity

of the CMG markings.

4.8 TBO/'I'BIO and Ensemble TBO/TBIO

The Ensemble object is designed to calculate the TBO, TBIO, ensemble TBO, and

ensemble TBIO points. During the simulation process, the time when a data packet is injected

into an algorithm graph and the time when the same data packet exits the algorithm graph are

recorded. This information is then used to calculate the TBO and TBIO points for all data

packets. Through the Ensemble's window, the TBO and the TBIO points are plotted as shown in

Figure 13. This process continues until the TBO and TBIO points of all data packets are

determined. However, if ensemble TBO and ensemble TBIO points are desired after each

s_nulation of the algorithm graphs, the TBO and the TBIO points are averaged for each

simulation to calculate the ensemble (or average) TBO and ensemble (or average) TBIO points,

respectively, and only these averages are recorded and plotted. This process continues until all

ensemble points are determined.

s
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Figure 13. The TBO and TBIO plots.

L

Through the menu options of the Ensemble window, the calculated TBO and TBIO points

along with their averages can be stored in an ensemble (ENS) file for future references by the

"Save..." option. Ensemble files have ".ens" extensions and are described in Section 4.I0. It is

also possible to print the plotted points as depicted by this window. The "Average" option gives

the averages of the points and the "Grid" option draws a grid along the x-axis and the y-axis for

better visualization of the plotted diagrams. The "Scale Down" option allows resizing of the

plotted diagram to the desired scale.

4.9 System

The System object is created to display the status of the system. While the simulation is in

progress, the System-Clock and name of the output FDT f'fle are displayed. Continuous display of

the System-Clock gives an indication of the speed and duration of the simulation process.
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4.10 The Input and Output File Formats

The input algorithm marked graph files provided by the Graph Entry tool are a set of node

and edge objects and the information about the relationships among them. The format of the

input graph (GRF) file generated by the Graph Entry tool is given Appendix A.

The format of the output FDT f'de as generated by the Simulator is defined in Appendix B.

Fordens onthemeaningand gr cance ofeachelon n pleaserefertod .mentsprovided

with the ATAMM Analysis tool [12]. An example of an FDT is provided in Appendix C.

The computed TBO, TBI, ensemble TBO, ensemble TBIO points, and their averages are

stored in the output ensemble tENs) files. Two examples of the ENS files are provided in

Appendices D and E. Appendix D represents the TBO and TBIO points for a single simulation

and Appendix E fists the ensemble TBO and ensemble TBIO points for each of 12 simulations and

the ensemble (average) for all simulations.'

4.11 HoW to Use the Simulator

To simulate an algorithm graph, the algorithm graph must first be generated by use of file-

Graph Entry tool. The graph must be drawn and its attributes such as read, process, and write

times of the nodes; node function (for variable node Iatencies); node assignment to groups of

processors; buffer sizes and initial tokens of the edges; and injection time and sequencing of the

s0_ces must be defined. The algorithm graphs can then be loaded into the Simulator. The

Simulator extracts the necessary information from the GRF file and sets up the system

accordingly. It is also possible to specify the system attributes through the Simulator's objects.

The procedure to simulate an algorithm graph is shown in Table 1 as well as in the help_ fll_ :_

provided by the Simulator software. _ .... - ...............
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iJ"

I. "Open...*an existinggraph,

2. create as many "Processor-Group" objects as necessary and Design these

objects to fityour specifications(thisinformation could also be provided

_ bY a GRF file),

3. "Discard...*as many data packets as necessary,

4. select *TBO/'rBIO*or "Ensemble",

5. specify *Duration...*of the simulation process (thisinformation is also

provided by a GRF fileand as a sinkaffribute),

6. setthe *Speed" of the simulation process, and

7. "Run* the Simulator. When finished,the Simulator willprompt accordingly.

8. To exitthe Simulator,either double clickon the system menu button of the

Simulator'swindow or choose the exitoption initssystem menu.

Table 1. Simulator Execution Procedures.

i,

ii i,
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5. Case Studies and Experimental Results

In this section, two case studies arc presented as a demonstration of the appLication

capabilities of the Simulator in studying the behavior of algorithm graphs imdcf the ATAMM

rules. These case studies arc conducted and presented in a manner that typically would take the

user of the Simulator through the procedural steps for creating algorithm graphs and evaluating

the desired systerrL An example graph referred to as Intermediate 1 (Interl.grf) and depicted in

Figure 14 is considered for all case studies. The first case study is a homogeneous simulation of

the Interl.grfgraph. The second case study is a heterogeneous simulation of the Interl.grf graph

that demonstrates capabilities and features of the Simulator in static assignment of nodes to

different groups of processors.

40 Node Name

Node Time

I Source Sink I

Figure 14. The Interl.grf graph.

5.1 Case Study 1

This case study is primarily conducted for validating the results of the simulation with the

theoretical predictions and compliance with a previous simulator [9]. All nodes exeeum on a

single Processor-Group. The timing latencies of the nodes in Interl.grf arc shown in Figure 14.

For this case study the read time and write time of the nodes are assumed to be zero time units for
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the ideal simulation of the graph. The Single Graph Play (SGP) and the Total Graph Play (TGP),

[5, 6], for four resources of this graph are shown in Hgure 15. The TGP of Hgure 15 is the

modified TGP of the graph after adding a control edge from node N3 to node N4.

After loading the lnterl.grffile, the Simulator-Kernel window's caption bar _is updated and

reflects the name of the file loaded, as shown in Figure 9. The Processor-Group windows are also

updated to reflect the specified system, Figure 11. Results of the simtdati0n of the graph are then

analyzed by the Analysis Tool [12] and are shown in Figure 16. Analysis of the results of the

simulation of the graph reveal compliance with the theoretical prediction where TBO equals 25,

as depicted in Figure 15.

5.2 Case Study 2

The static assignment of nodes and heterogeneous capabilities of the Simulator are studied

here. In this case study, the nodes N1 and N2 and the Source arc assigned to one Processor-

Group with two functional units. Nodes N3, N4, N5, and the Sink are assigned to another

Processor-Group with two functional units. This partition of nodes among Processor-Groups is

consistent with the modified TGP of Figure 15 and should result in the same TBO and TBIO

performance as forCase Study I. Analysisof the resultsrevealthatthe same performance as the

previous case study are achieved. Figure 17 isthe task and resource activitydisplayand the

cursorsmark a time intervalcorrespondingtotheTGP of the graph.

,r
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6. SUMMARY

A Simulator is developed to simulate the execution of algorithm marked graphs in

accordance with the ATAMIVI rules. Whereas previous ATAI_ simulatorsassume that all

algorithmgraph nodes are executed on a horuogcnc0us setof functionalunits,thisnew Simulator

enablesgroups of graph nodes to execute on differentprocessor groups, where each processor

group may representa differenttype of functionalunit.Thus, a heterogeneous architecturemay

be simulated. The Simulator isbased on objectorientedprogranmting and is event-drivento

acceleratesim_ation speed. It provides the simulationfunctionsin an ATAIVIIVI Integrated

Environment, which also includes a Graph Entry tool for describinggraphs for simulation,a

Design Tool for analyzing and alteringa graph to obtaindesiredperformance,and an Analysis

Tool for playingback the resultsof a simulation.Test cases show that the simulatoraccurately

executes the ATAMM rules for both a heterogeneous architectureand a homogeneous

architecture,which isa specialcase foronly one processorgroup.

.
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Appendix A

Format of Graph Description in Graph-Entry Output File

Note 1. _AL/'Cs underline are for information

Note 2. Only/7"AL/C is for a choice or decision

Note 3. AII Times are Positive Long Integer Values

Note 4. All Locations 'X Y' are range 1..100

Version 2.0.13

System_Max_CPUs

Current_Number_CPUs

Max_Index

Current.Index

Max_Number_Groups

Max_Nodes

Max_Arcs

Max_Sources

Max_Sinks

Self_TesLTime

Display_CPU_Number

Display_Index_Number

Selected_Group

Show_All_Objects

Ori .v
Right_Bottom.X

Right_Bottom.Y

Grid_Status

Heterogeneous

Number_CPUS_Group

Object_Type
LOOP

if ObjectType = NODE then

Node_Graph_Number

Block_Index

Node_Number

Node_Name

Node_Mode

Node_User .File_Name

Node_Priority

-- Number of CPUs allowed in the system range 1..32

- Initial number of CPUs range 1..System Max_OPUs

- Max Indexes for the Operating Point Table range 1..10

- Initial Index for the run range 1..Max_Index

- Number of Heterogeneous Groups

- Max Number of Nodes in all Graphs

- Max Number of Arcs in all Graphs.
- Max Number of Sources.

- Max Number of Sinks.

- Used to Display a certain configuration of a Graph

- Display which index configuration

Display for Enabled or Disabled Control Arcs

Used to size of the Graph Window

Used to size of the Graph Window

Used to size of the Graph Window

- Used to size of the Graph Window

- Grid Display ON or OFF

- True / False Flag for Heterogeneous System Simulations

-- (Array[Max_Number groups.. 1] of Integers)

-- (NODE, SOURCE, SINK, ARC)

- unique for all blocks in all graphs

-- (SIMPLEX, DUPLEX, TMR)

Node_Instantiation s(1..S ystem_Max_CPUs, 1..Max_Index)

Node_Read_Time
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Node_ProcessTime
Node_Write_Time
Node_Color
Node_Number_Inputs
N0de.Number_Outputs
Node_Random_Function
Node_LowerProcessTimeBound
Node_UpperProcessTimeBound

- (Mean Value of Process Time)

-- (A,B,C, etc.)

- (Smallest Possible Bound on Process Time)

- (Largest Possible Bound on Process Time)

Node_ProcessTypc - (Boolean an'ay[1..Max_Number_Groups] Heterogeneous)

Node_SubGraph_File_Name - Ifnode has a subgraph.

Node_Location --(X Y) Coordinates

end if

IfObjec_Type = SOURCE then

Source_Graph_Number

Block_Index

Source_Number .

Source_Name

Source_Mode

Source_Priority - Graph Priority(?)

Source_TBI(1..System_Max_CPUs,1..Max_Index)

, . - Time Between Inputs (TBI)

Source_Number_DataPackets - Number of Data Packets for each Source Edge
Source_Write_Time

Source_ProcessType - (Boolean array[1..Max_Number_Groups] Heterogeneous)

Source_Location -- (X Y) Location of the Source

end if

if ObjectType = SINK then

Sink_Graph_Number

Block_Index

Sink_Number

Sink_Name

Sink_Mode

Sink_Read_Time

Sink_Number_DataPackets -- Number of Data Packets Received at Sink

Sink_ProcessType - (Boolean array[1..Max_Number_Groups] Heterogeneous)

Sink_Location -- (X Y) Location of the Source

end if

if ObjectType = ARC then

Edge_Number

Edge_Type

Edge_Initial_Type

Edge_initial

Edge_Initial_String

Edge_Initial_Block_Index

Edge_Initial_Parm_Number

- (CONTROL, DATA)

--(SOURCE_TYPE, NODETYPE, SINKTYPE)
- Number of Initial

- Name of the Node, Source, Sink

- Block Index of the Initial Block

- Position in procedure call(0 if CONTROL)
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Edge_Terminal_Type

Edge_Terminal

Edge_Terminal_String

Edge_Terminal_Block Index

Edge_Terminal_Parm_Number

if Edge_Type = DATA then

Edge_Data_Type

Edge_Size

Edge_Tagging_Rule
e/se

-- (SOURCETYPE, NODE_TYPE, SIAq<_TYPE)

- Name of the Node, Source, Sink

- Block Index of the Terminal Block

- Position in procedure call (0 if CONTROL)

- TBD Either a File_Name or Dam_Type Name

- TBD Whether or not to include.

- Data Packet Distance

Edge_Tagging_Rule(1..System_Max_CPUs,1..Max_Index)

if Edge_Terminal_Type = SOURCETYPE then

Edge_Delay(1..System_Max_CPUs, 1..Max_index)

- F'tring Delay for Terminal

Edge_Selector(1..System_Max_CPUs,1..Max_Index)

- Output edge selection for token

end if

end if

Edge_Inital_Tokens(1 ..System_Max_CPUs, 1..Max_Index)

- Seperated by <CR>

Edge_Tokens_Limit(1..System_Max_CPUs, i..MaxIndex)

- Arc not enabled if size = 0

Edge_Max_Buffers

Edge_Number_J'oints .....

Edge_1oint (1..Max_Number_Joints) - X Y coordinates

end if

REPEAT UNTIL <EOF>

/
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Appendix B

Format of the FDT File Generated by the Simulator

/[I'he FIELDS to be read from an FDT event

Fields = 5

TIME "%lu"

EVENT "%s"

TASK "%s"

COLOR "%d"

RESOURCE "%s"

//The possible EVENTS that can be found in the FDT file

//{FIRE, DATA, RUN, HALT, EVENT}

Events = 10

NodeRead >FIRE

NodeProcess

NodeWfite

NodeIdle >DATA

FU_Test >FIRE

FU_EndTest >DATA

SourceWrite >FIRE

Sourceldle >DATA

SinkRead >FIRE

SinkIdle >DATA

//The possible
Activities = 4

Process

ReadWrite

Test

Idle

ACTIVITIES that can be found in the FDT file

>NodeProcess

>SourceWrite,SinkRead, NodeRead,NodeWrite

>FU_Test

>Nodeldle,Sourceldle,Sinkldle,FU_EndTest

//The clock resolution of time tags in clock ticks per second

//Clock = 1000000
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Appendix C

FDT File Example

//Simulator Version 3.0, Output FDT File

//Graph file name: E:_SIM3kinterl.grf
25 SourceWrite Source 1 Procl-4

25 SourceIdle Source 1 Procl-4

25 NodeRead N1 1 Procl-3

25 NodeProcess N1 1 ProcI-3

35 NodeWrite NI 1 Procl-3

35 Nodeldle N1 1 Procl-3

35 NodeRead N4 1 Procl-2

35 NodeProcess N4 1 Proc 1-2

35 NodeRead N3 1 Proc 1-1

35 NodeProcess N3 1 Procl-1

35 NodeRead N2 1 Procl-4

35 NodeProcess N2 1 Proc 1-4

45 NodeWrite N3 1 Procl-1

45 NodeIdle N3 1 Proc 1-1

50 SourceWrite Source 1 Procl-3

50 Sourceldle Source 1 Procl-3

50 NodeRead N 1 1 Proc 1-1

50 NodeProcess N1 1 Procl-I

60 NodeWrite N1 1 Procl-1

60 NodeIdle N1 1 Procl-1

60 NodeRead N4 1 Proc 1-3

60 NodeProcess N4 1 Proc 1-3

60 NodeRead N3 1 Proc 1- I

60 NodeProcess N3 1 Procl-1

65 NodeWrite N4 1 Procl-2

65 NodeIdle N4 1 Procl-2

65 NodeRead N2 1 Procl-2

65 NodeProcess N2 1 Proc 1-2

70 NodeWrite N3 1 Procl-1

70 NodeIdle N3 1 Proc 1-1

75 NodeWrite N2 1 Procl-4

75 Nodeldle N2 1 Proc 1-4

75 NodeRead N5 1 Procl-1

75 NodeProcess N5 1 Procl-I

75 SourceWrite Source I Procl-4

75 Sourceldle Source I Procl-4

75 NodeRead N1 1 Procl-4

75 NodeProcess N1 1 Proel-4

85 NodeWrite N5 1 Procl-1

85 Nodeldle N5 1 Pmcl-I
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Appendix D

ENS File Example for TBO & TBIO for 12 Data

Packets of a Single Simulation

H Simulator Version 3.0, TBO/TBIO Points

//Graph fifle name: E:_SIM3kinterI.grf

Number of TBO/TBIO points at Sink: 12

TBO TBIO

85.00 60.00

30.00 65.00

25.00 65.00

25.00 65.00

25.00 65.00

25.00 65.00

25.OO 65.00

25.OO 65.00

25.OO 65.00

25.00 65.00

25.00 65.00

25.00 65.00

TBO/TBIO Averages:
30.42 64.58
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Appendix E

ENS File Example of Ensemble TBO and Ensemble TBIO
Points for 12 Simulations

//Simulator Version 3.0, TBO/TBIO Ensemble Points

//Graph file name: E:_SIM3_interl.grf

Number of TBO/TBIO Ensembles at Sink: 12

TBO TBIO

30.00 64.00

30.00 64.00

30.00 64.00

30.00 64.00

30.00 64.00

30.00 64.00

30.00 64.00

30.00 64.00

30.00 64.00

30.00 64.00

30.00 64.00

30.00 64.00

TBO/TBIO Ensemble Averages:
30.00 64.00
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Appendix F

Object-Oriented Programming

The following is quoted from [9] because of its importance in the development of this

Simulator.

"Structured programming flourished because it was efficient in terms of human resources.

Building and testing programs in discrete pieces enabled large applications to be developed in less

time with fewer bugs than their non-structured counterparts. In addition, the ran-time impact of

structunng becomes less evident as a program grows in size. Object-0riented programming

extends structured programming by encapsulating both data and their associated functions.

In traditional procedural languages like C or Pascal, the programmer defines data

structures and writes functions and procedures to operate on the data. Although normally a

correspondence exists between which functions operate on which types of data, most procedural

languages offer no formal support for this correspondence; it is entirely the programmer's

responsibility to manage such an abstraction.

In an object-oriented approach, both data and operations that work with that data are

combined into a single logical unit known as an object. Dividing a program into objects

encompassing both data and operations makes the program more closely represent the logical

design that is being implemented. As a result, object-oriented programs are generally easier to

understand and maintain than procedural programs.

Object-oriented programming is merely the art of breaking a program down and

organizing it. In the case of structured programs, the primary concern is what the program is

doing. A structured program is based on operations. When writing object-oriented programs, the

program is organized around data types and their associated operations. It is a significant change

in perspective; instead of functional hierarchies, there are data hierarchies. Programming in an

object-oriented language involves creating objects and sending them commands or messages to do

things.

51



Object-orientedprogramsare based0-_--n-_our concepts: classes, objects, methods, and

inheritance. A class is similar to a Pascal RECORD. It describes an overall structure for any

number of types based upon it. The main difference between a class and a record is that a class

combines data fields (called instance variables) and procedures and functions (called methods)

that act upon the data.

An object is a variable of a class_ All objects derived fi'om a class are considered members

of that class and share si_lar characteriStics 0fthat class.

Methods are procedures and functions encapsulated in a class or object, Calling a method

is referred to as passing a message to an object. Object-oriented programs do most of their

works by sending messages to objects.
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