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Preface

This report presents the methodology for evaluating flight readiness developed by
the Jet Propulsion Laboratory (JPL) under NASA RTOP 553-02-01 sponsored by the
Office of Space Flight (OSF), NASA Headquarters. This methodology was developed

as a part of the Certification Process Assessment task initiated by OSF due to concern
about criteria for certifying flight readiness of the Space Shuttle propulsion system.

An early phase of this work included an extensive review of certification and failure
risk assessment approaches used by the aerospace industry and government
agencies. Based on the findings of this review, 1further work was focused on defining,

developing, and demonstrating an improved technical approach for failure risk
assessment that can incorporate information from both test experience and engineer-

ing analysis to obtain a quantitative failure risk estimate. This approach, called
Probabilistic Failure Assessment (PFA), is of particular value when information

relevant to failure prediction, including test experience and knowledge of parameters

used in engineering analyses of failure phenomena, is expensive or difficult to acquire.
Under such constraints, a quantitative evaluation of failure risk based on the informa-
tion available from both engineering analysis and operating experience is needed to
make effective risk management decisions and utilize financial resources efficiently.

The PFA methodology is applicable to failure modes that can be characterized by

analytical or empirical modeling of failure phenomena and is especially useful when
models or information used in analysis are uncertain or approximate. PFA can be

applied at any time in the design, development, or operational phases of a program
to quantitatively estimate failure risk based on the information available at the time of
the risk assessment and can be used to evaluate and rank alternative measures to
control risk, thereby enabling the more effective allocation of limited financial

resources.

The work documented in this report was carried out by a multidisciplinary team of

JPL technical personnel, which was managed by N. R. Moore. This team was
composed of individuals with expertise in statistics, systems modeling, and engineer-
ing analysis. D. H. Ebbeler formulated and structured the statistical methodology and
directed its implementation. L. E. Newlin formulated and implemented probabilistic
engineering models and implemented the statistical methodology. S. Sutharshana

1 See [3] of Section/.Oreferences.
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formulated probabilistic engineering analysis methods and models. M. Creager 2
made major contributions to defining and formulating the probabilistic modeling
approach and engineering analysis procedures used in this work. Present or former
JPL personnel who made substantial contributions in early phases of this work include
D. L. Schwartz, W. E. Edmiston, and L. J. Grondaiski. D. Goode and J. Ramsay

typeset the manuscript, including graphics, using computerized desktop publishing
methods, and E. Reinig edited the manuscript.

In developing the PFA methodology, the JPL team interacted with aerospace
system manufacturers, the Marshall Space Flight Center, and the Lewis Research
Center. Individuals of these organizations generously shared information and spent

significant amounts of time with the JPL team. In particular, Rocketdyne, Canoga
Park, California, and Pratt & Whitney, West Palm Beach, Rorida, collaborated in

performing the application examples given herein. In addition, technical comments
on certification approaches and failure modeling were provided by the above-listed
organizations and by General Electric, Cincinnati, Ohio; the Federal Aviation Ad-
ministration; and the Wright-Patterson Air Force Base.

The PFA methodology, examples of its application to spaceflight components, and
computer software used to implement PFA are documented in the three volumes of
this report. Volume I documents the PFA methodology and the application examples,
including the rationale for PFA and the analysis procedures used in the examples.
Volume II contains user's guides and flowcharts for the computer software used to

implement PFA in the application examples. Volume III presents the structure and
listings of the computer programs.

2 Currently of Structural Integrity Engineering, Chatsworth, CA.
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Abstract

An improved methodology for quantitatively evaluating failure risk of spaceflight
systems to assess flight readiness and identify risk control measures is presented.
This methodology, called Probabilistic Failure Assessment (PFA), combines operating

experience from tests and flights with engineering analysis to estimate failure risk.
The PFA methodology is of particular value when information on which to base an
assessment of failure risk, including test experience and knowledge of parameters
used in engineering analyses of failure phenomena, is expensive or difficult to acquire.

The PFA methodology is a prescribed statistical structure in which engineering
analysis models that characterize failure phenomena are used conjointly with uncer-
tainties about analysis parameters and/or modeling accuracy to estimate failure

probability distributions for specific failure modes. These distributions can then be
modified, by means of statistical procedures of the PFA methodology, to reflect any
test or flight experience. Conventional engineering analysis models currently

employed for design or failure prediction are used in this methodology.

The PFA methodology can be applied at any time in the design, development, or
operational phases of a program to quantitatively estimate failure risk based on the
information available at the time failure risk is assessed. Sensitivity analyses con-

ducted as a part of PFA can be used to evaluate and rank such alternative measures
to control risk as design changes, testing, or inspections, thereby enabling limited

program resources to be allocated more effectively.

PFA is generally applicable to failure modes that can be characterized by analytical

or empirical models of failure phenomena and is especially useful when models or
information used in analysis are uncertain or approximate. Such failure modes
include, but are not limited to, fatigue, flaw propagation, rupture, degradation and

wear, and malfunction of mechanical or electrical systems.

It is often not feasible to acquire enough test experience to establish high reliability

at high confidence for spaceflight systems. Moreover, the results of conventionally
performed engineering analyses of failure modes can be subject to serious
misinterpretation when uncertain or approximate information is used to establish
analysis parameters and calibrate the accuracy of analysis models. Under these
conditions, a quantitative evaluation of failure risk based on the information available

from both test or flight experience and engineering analysis is needed to make
effective risk management decisions.

vi



This report describes the PFAmethodology and presents examples of its applica-
tion. Conventional approaches to failure risk evaluation for spaceflight systems are
discussed, and the rationale for the approach taken in the PFA methodology is

presented. The statistical methods, engineering models, and computer software
used in fatigue failure mode applications are thoroughly documented.
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Section 4.1

Materials Characterization Software

4.1.1 Introduction

This section presents a description of the computer program which implements the
materials characterization model discussed in Section 2.1.2. MATCHR, the code for

simulating the cyclic fatigue behavior of a material, is described here. This code
contains both the stress and strain formulations of the materials characterization

model in a stand-alone form. 1 Its purpose is to facilitate the characterization of a
materials data set for a component before performing the probabilistic failure model-

ing. The overall layout of the program is described using a master flowchart that refers
to other flowcharts which describe the subprograms in greater detail. The random

variate generators are described in Section 4.4. The relevant user's guide for running
this code is given in Section 6.3, and a list of subprograms, a definition of key variables,
and the complete source listing are given in Section 7.3. A glossary of standard
flowchart symbols is given for the reader's benefit in Appendix 5.A.

4.1.2 MATCHR Program

The materials characterization model is implemented as the FORTRAN program
MATCHR. The flowchart for the MATCHR program is given in Figure 4-1. The program
starts by opening the following input and output files:

NAME TYPE CONTENTS
SPECFD Input Simulationparametersand specificmaterialdata
SPECFO Output {Input data echo
DUMP Output IResuesof simulation
IOUTPR Output JRuninformationand intermediatecalculations

The simulation parameters which specify the run options are read from the SPECFD
file. An echo of these parameters is written to IOUTPR. The required number of trials
is set according to the type of variation specified. If the truncated Normal variation
and its corresponding empirical median curve are specified, then the number of
MATCHR iterations can be setto 2000;2 for all other cases only one MATCHR iteration
is needed. The formulation of the materials characterization model is then determined.

1 The materials characterization models contained within the Probabilistic Failure
Models are subsets of MATCHR.

2 The value of 2000 is more than adequate for a simulation size of 200, .000 trials to obtain
an accurate median value of the materials curve shape parameter. This value can be
considerably smaller, depending on the accuracy desired for that median value.
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(_ START ._
l

OPEN RLES ISPECFD AND SPECFO

INPUT /
RUN OPTIONS

I NTRIAL=I I

INPUT STRESS /

i
INFAGG

YES

NTRIAL =2O0O

STRAIN

INFORMATION AGGREGATION

(See Section 4.1.3)

Figure 4-1 Main Rowchart for the Materials Characterization
Model Program MATCHR
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f Do,,-, \

l
PAREST

PARAMETER ESTIMATION

(See Section 4.1.5)

OBTAIN LOGNORMAL Z VALUE

NORMGN

SELECT NORMAL VARIATE

(See Section 4.4.3)

NO

®

WEIBGN

SELECT p VALUE
(See Section 4.4.6)

Figure 4-1 Main Rowchart for the Materials Characterization
Model Program MATCHR (Cont'd)
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? o

KOMO

CALCULATE mo & Ko

(See Section 4.1.6)

NO

GTUFE

CALCULATE UFE

(See Section 4.1.8)

SORTM

NO

SORT m's FOR EACH REGION

(See Section 4.1.10)

EXPCTD

CALCULATE PARAMETER VALUES FOR
EMPIRICAL MEDIAN S/N CURVE

(See Section 4.1.3.12)

(STOP)

Figure 4-1 Main Rowchart for the Materials Characterization
Model Program MATCHR (Cont'd)
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DECOMP

STRAIN DECOMPOSITION
INFORMATION AGGREGATION

(See Section 4.1.4)

°°,,- '
'_TO NTRIAL BY

PAREST

PARAMETER ESTIMATION
FOR PLASTIC COMPONENTS

(See Section 4.1.5)

ADJSTM

ENSURE mp < mE AFTER
SELECTION OF mp

(See Section 4.1.7)

PAREST

PARAMETER ESTIMATION
FOR ELASTIC COMPONENTS

(See Section 4.1.5)

Figure 4-1 Main Rowchart for the Materials Characterization
Model Program MATCHR (Cont'd)
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WEIBGN

SELECT fP VALUE

(See Sect�on 4.4.6)

OBTAIN LOGNORMAL Z VALUE

NO

NORMGN

SELECT NORMAL VARIATE

(See Section 4.4.3)

GTUF2

SOLVE FOR UFE

(See Sect�on 4.1.9)

NO

Figure 4-1 Main Rowchart for the Materials Characterization
Model Program MATCHR (Cont'd)
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SORTM

SORT mp'S AND mE'S
(See Sec#on 4.1.10)

EXPCTD

CALCULATE EMPIRICAL
MEDIAN SIN CURVE

FOR PLASTIC COMPONENTS

(See Section 4.1.3.12)

l
EXPCTD

CALCULATE EMPIRICAL
MEDIAN SIN CURVE

FOR ELASTIC COMPONENTS

(See Section 4.1.3.12)

Figure 4-1 Main Rowchart for the Materials Characterization
Model Program MATCHR (Cont'd)
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4.1.2.1 Stress Formulation
The stress/life characterization of fatigue failure of materials begins by reading the

value of stress for which a fatigue life is desired. The material data input and

information aggregation calculations are performed by subprogram INFAGG
described in Section 4.1.3. 3 INFAGG also calculates the median S/N curve when

Uniform variation of the shape parameters is specified.

A DO loop is required to obtain a median S/N curve when truncated Normal variation
of the shape parameters is specified. The PAREST routine controls the calculations
for estimating the parameters for the SIN model. Routine PAREST is described in
Section 4.1.5. 4 Materials process variation can be included by calling the NORMGN
routine and then transforming the resulting Normal variate to the Lognormal variate

Z in Equation 2-48. A call to WEIBGN provides materials intrinsic variability _p.The
random variate routines NORMGN and WEIBGN are described in Sections 4.4.3 and

4.4.6.

When all the S/N model parameters have been selected for the regions with SIN
data, the S/N curve can be tied to a tensile point So by routine KOMOY The value of
stress read from file SPECFD earlier is used by subprogram GTLIFE to calculate a

fatigue life using the randomly selected S/N curve. Subprograms KOMO and GTLIFE
are described in Sections 4.1.6 and 4.1.8.

If the truncated Normal distribution was used for the materials shape parameter m,
the empirical median SIN curve will be calculated upon user request." The routine
SORTM is called to sort the values of m and the routine EXPCTD calculates the median

SIN curve. Sections 4.1.10 and 4.1.3.12 describe the routines SORTM and EXPCTD.

4.1.2.2 Strain Formulation
The strain/life characterization of fatigue failure of materials begins by reading the

value of strain for which a fatigue life is desired. The material data input, strain

decomposition and information aggregationocalculations are performed by sub-

program DECOMP described in Section 4.1.4. ° DECOMP also calculates the median
S/N curve when Uniform variation of the shape parameters is specified.

A DO loop is required to obtain a median S/N curve when truncated Normal variation
of the shape parameters is specified. The PAREST routine controls the calculations

3 The information aggregation calculations are discussed on Pages 2-6 through 2-14.

4 The parameter estimation calculations are discussed on Pages 2-15 through 2-18.

s Extension of the S/N curve to the left is discussed on Page 2-17.

6 The median S/N curve for the truncated Normal case is discussed on Page 2-15.
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for estimating the parameters for the S/N model' 7 PAREST is called twice, first for the
plastic strain components and then for the elastic strain components. In between the
calls to PAREST, routine ADJSTM ensures rnp < mE. Materials process variation can

be included by calling the NORMGN routine and then transforming the resulting
Normal variate to the Lognormal variate Z in Equation 2-50. A call to WEIBGN provides
p based on/_o defined as the average of those derived from the plastic and elastic

strain component analyses. The materials characterization routines PAREST and
ADJSTM are described in Sections 4.1.5 and 4.1.7. The random variate routines
NORMGN and WEIBGN are described in Sections 4.4.3 and 4.4.6.

When both of the S/N model parameters have been selected for the plastic and
elastic S/N data, the value of strain read from file SPECFD earlier is used by

subprogram GTLIF2 to calculate a fatigue life using the randomly selected S/N curve.
Subprogram GTLIF2 is described in Section 4.1.9.

If the truncated Normal distribution was specified for the materials shape

parameters mp and m E, the empirical median S/N Curve will be calculated upon user
request. 8 The routine SORTM is called to sort the values of mp and mEand the routine

EXPCTD calculates the component median curves. Sections 4.1.10 and 4.1.3.12
describe the routines SORTM and EXPCTD.

4.1.3 INFAGG Routine

The flowchart for the INFAGG routine is given in Figure 4-2. The routine controls
the calls to the data input and information aggregation calculation routines. INFAGG

starts by opening the following input and output files:

NAME TYPE Ico rE S
RELATD Input [Relatedmaterial data input
RELATO Output IRelated material data echo

The arrays are then set to their default or initial values by routine INIT. Routine RCE
reads the data from files SPECFD and RELATD, transforms (or converts) the stresses

to an equivalent stress ratio of R = - 1.0, and echoes the data to files SPECFO and
RELATO. Routines INIT and RCE are described in Sections 4.1.3.1 and 4.1.3.2.

The information aggregation begins with linear regression calculations performed

by routine SW2SU2 on the combined specific and related data. Then the constraints

on the shape parameters {mj} implied by the user-provided Co constraint are calcu-
lated by FINDMC. SW2SU2 and FINDMC are described in Sections 4.1.3.4 and

7 The parameter estimation calculations are discussed on Pages 2-15 through 2-18.

8 The median S/N curve for the truncated Normal case is discussed on Page 2-15.
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START

I OPEN FILESRELATD AND RELATO

l
INIT

INITIAUZE ARRAYS

(See Section 4.1.3.1)

.F.,OF,O,SPECFD/I .CE
SPECIFIC S/N DATA _ READ DATA

Co' ( --_/'ml ) / I CONVRT

1 ITRANSFORM STRESS DATA

WRITETOSPECFO/I I (SeeSection4.1.3.3)
SPECIFIC S/N DATA _ ECHO DATA

Co' ( --_/'_i ) / I PARTITION DATA

| (See Section 4.1.3.2)

SW2SU2

REGRESS In S ON In N
REGRESS In N ON In S

(See Section 4.1.3.4)

FINDMC

TRANSFORM C CONSTRAINT
TO m CONSTRAINTS

(See Section 4.1.3.5)

_ /_READ FROM RELATD /

RELATED S/N DATA /

__ WRITE TO RELATO /RELATED SIN DATA

Figure 4-2 Rowchart for Subprogram INFAGG, Stress
Formulation
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TRUNCATED NORMAL ,_

UNIFORM

INTRVL

FOR EACH UFE REGION

FIND Io, INTERVAL ESTIMATE FOR C
FIND Jo, INTERVAL ESTIMATE FOR mi

(See Section 4.1.3.6)

GTPVAR

NO

2
CALCULATE o

(See Section 4.1.3.7)

FNDRNG

COMPUTE POSTERIOR CREDIBlUTY RANGE

(See Section 4.1.3.8)

ADDREG

ADD INFORMATION ON REGIONS WITHOUT SIN DATA

(See Sect�on 4.1.3.9)

Figure 4-2 Rowchart for Subprogram INFAGG, Stress
Formulation (Cont'd)
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CONCAV

IMPOSESS/NCURVECONCAVITYCONSTRAINT
(SeeSection 4.1.3.10)

1

f wTEToouMPfPRIOR AND POSTERIOR

CREDIBIUTY RANGES
2

_, r_, G

I

MEDIAN

CALCULATE MEDIAN m VALUES

(See Section 4.1.3.11)

l
EXPCTD

CALCULATE PARAMETER VALUES
FOR MEDIAN S/N CURVE

(See Section 4.1.3.12)

RETURN _

=(m/)
LIFE REGION BOUNDARIES
SPECIFIC SIN DATA

Figure 4-2 Rowchart for Subprogram INFAGG, Stress
Formulation (Cont'd)
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MUSIG

PERFORMBAYESIANANALYSISTO
OBTAINm, & G,2 FOR EACH REGION

(See Section 4.1.3.13)

_i YES

GTPVAR

NO

CALCULATE 0 2

(See Section 4.1.3. 7)

NORRNG

COMPUTE POSTERIOR CREDIBlUTY RANGE

(See Section 4.1.3.14)

l
ADDRNG

ADD INFORMATION ON REGIONS WITHOUT S/N DATA

(See Section 4.1.3.15)

1
CONCAV

IMPOSES SIN CURVE CONCAVITY CONSTRAINTS

(See Section 4.1.3.10)

Flgure 4.2 Rowchart for Subprogram INFAGG, Stress
Formulation (Cont'd)
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/ WRITE TO DUMP

_, =(mi),a 2 /

RETURN

=(m/)
LIFE REGION BOUNDARIES
SPECIFIC S/N DATA

Figure 4-2 Rowchart for Subprogram INFAGG, Stress Formulation
(Cont'd)
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4.1.3.5. The remaining routine calls depend upon the choice of distribution for the

shape parameters.

The Uniform distribution case begins with the confidence interval calculations

performed by INTRVL. By definition, the prior credibility ranges are the confidence
intervals. If materials processes variation is specified, GTPVAR calculates 02, Equa-

tion 2-49, the extent of departures from the multiple heat median S/N curve warranted

by the available information. The credibility ranges, C constraint, and the user-
provided range information are combined by routine FNDRNG to obtain posterior
credibility ranges on the shape parameters _(ml). _ The user-supplied m ranges for
the non-data life regions to the right of those with data are added to the array

containing the _z(mj) by routine ADDREG. 1° Concavity constraints are applied within
subprogram CONCAV. The results of the calculations above are written to file DUMR
Finally, the median S/N curve is calculated. The median m's are found by MEDIAN
and then used by EXPCTD to obtain the median curve parameters which are written
to file DUMR Routines INTRVL, GTPVAR, FNDRNG, ADDREG, CONCAV, MEDIAN,
and EXPCTD are described in Sections 4.1.3.6, 4.1.3.7, 4.1.3.8, 4.1.3.9, 4.1.3.10,

4.1.3.11, and 4.1.3.12, respectively.

The truncated Normal distribution case begins with the Bayesian analysis per-

formed by MUSIG to find the Normal distribution parameters for the m's. If materials
process variation is requested, GTPVAR calculates 02, the extent of departures from

the multiple heat median S/N curve warranted by the available information, by using
Equation 2-49. The C constraint and the user provided range information are com-
bined by routine NORRNG to obtain posterior credibility ranges on the shape

parameters _r(ml). e The user-supplied m ranges and Normal distribution parameters
for the non-data life regions to the right of those with data are added to the arrays

containing the _(mj), m., and a. 2 by routine ADDRGN. 1° Concavity constraints are
applied within subprogram CONCAV. Then results of the calculations above are
written to file DUMR Routines MUSIG, GTPVAR, NORRNG, ADDRGN, and CONCAV
are described in Sections 4.1.3.13, 4.1.3.7, 4.1.3.14, 4.1.3.15, and 4.1.3.10.

4.1.3.1 Routine INIT

The routine initializes the arrays used in the stress formulation information aggrega-
tion routine, INFAGG, to zero.

9 Combining information to obtain the posterior credibility ranges on m is discussed on
Page 2-13.

10 No data regions to the right are discussed on Page 2-17.
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4.1.3.2 Routine RCE
The flowchart for the RCE routine is given in Figure 4-3• The routine controls the

input/output of the specific and related materials data, region information, and

exogenous information. RCE begins by reading the data from file SPECFD which
contains the specific SIN data, region information and exogenous information, and
then RCE echoes the information to file SPECFO. First the general information

pertaining to the specific material data set is read, including the material description,
yield and ultimate strengths, the total number of SIN data points, and the number of
data divisions: A data division is a group of SIN data points having the same stress
ratio and belonging to the same life region. The number of data divisions is stored in
variable NDIV.

The first data division DO loop reads, transforms, and echoes the specific material
SIN data. The transformation is performed when the stress ratio, stored inthe variable
RATIO, is not equal to minus one. The transformation is to the equivalent stress for
a stress ratio of minus one, and is performed by routine CONVRT. Also, the SIN data

is partitioned and stored appropriately according to the indicated life region. Routine
CONVRT is discussed in Section 4.1.3.3.

When the DO loop is completed, the stress tensile point and region information are
read and echoed next. 11The region information includes the number of life regions

and the upper bounds of those regions.

The last information in file SPECFD used by all stress formulation options is the

implicit and explicit constraints on the shape parameters {m/}. The implicit constraint

is an upper bound, Co, on the coefficient of variation of fatigue strength, C, for the

specific material data set. 12The explicit constraint consists of a point value or range
of values of the shape parameter for each life reg=on of the specific material data se.

When the truncated Normal variation of the shape parameters is specified, RCE
reads and echoes the Bayesian prior information for each life region. TMIf the materials

process variation is specified, the process variation information is read and echoed.
Process variation in materials is discussed in Section 2.1.2.3.

11 Extension of the S/N curve to the left is discussed on Page 2-17.

12 The implicit constraint on the matefi.als, model .shape param.et.er jprovid_, by i_rior
information on the coefficient of vanauon of fattgue strenguz zs _ on rages 2-12

through 2-13•

la The explicit constraint on. the materials model .sha..pepar ,azneter pro_.'d_d by prior
information on the materials shape parameter zs ¢mcnsseo on rage - .

14 Specification of the Bayesian prior distribution for the truncated Normal case is
discussed on Page 2-14.
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START

1
READ AND ECHO SPECIFIC MATERIAL

S/N DATA SET INFORMATION

1

' TO NDIV BY 1

1
READ S/N DATA FOR EACH

DATA DIVISION

CONVRT

FALSE

Figure 4-3

TRANSFORM STRESS DATA

(See Section 4.1.3.3)

l"

I ECHO S/N DATA FOR EACHDATA DIVISION

1

I PARTITION DATA BY REGIONS 1

1
READ AND ECHO

STRESS TENSILE POINT AND
LIFE REGION BOUNDARIES

Rowchart for Subprogram RCE, Stress Formulation
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READANDECHO
IMPUCITANDEXPUCITCONSTRAINTS

ONTHESHAPEPARAMETERS

_ UNIFORM

TRUNCATED

1 NORMAL

READ AND ECHO
BAYESIAN PRIOR INFORMATION

READ AND ECHO

PROCESS VARIATION INFORMATION

NO

READ AND ECHO
NUMBER OF RELATED S/N DATA SETS

1

TO NSETS BY 1

Figure 4-3 Rowchart for Subprogram RCE, Stress Formulation
(Cont'd)
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READ AND ECHO RELATED MATERIAL

S/N DATA SET INFORMATION

1

• TO NDIV BY 1 "_

1
READ S/N DATA FOR EACH

DATA DIVISION

CONVRT

FALSE

TRANSFORM STRESS DATA

(See Section 4.1.3.3)

ECHO S/N DATA FOR EACH
DATA DIVISION

l
PARTITION DATA BY REGIONS

Figure 4-3 Rowchart for Subprogram RCE, Stress Formulation
(Cont'd)
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Next, RCE reads the data from file RELATD which contains the related S/N data is
and echoes the information to file RELATO. First the number of related data sets is

read, stored in variable NSETS, and echoed. The outer data set DO loop is performed
for each related data set. The general information pertaining to each related material
data set is read, including the material description, yield strength, and ultimate

strength, the total number of SIN data points, and the number of data divisions.

The inner data division DO loop reads, transforms, and echoes the related SIN data.
The transformation is performed when the stress ratio, stored in variable RATIO, is
not equal to minus one. The transformation is to the equivalent stress for a stress ratio
of minus one, and is performed by routine CONVRT. Also, the S/N data is partitioned
and stored appropriately according to the indicated life region. Routine CONVRT is
discussed in Section 4.1.3.3.

4.1.3.3 Routine CONVRT

The flowchart for CONVRT is given in Figure 4-4. Routine CONVRT performs the
transformation required to obtain an equivalent maximum stress a_rmx corresponding
to a stress ratio of minus one. An elastic-perfectly-plastic stress versus strain behavior
is assumed here for the material. First, the alternating stress Ga#is calculated from the

maximum stress ore=x and the stress ratio R. This stress is checked against the yield

stress Oy.Three different cases occur. If the alternating stress is above the yield, then
the equivalent maximum stress is the alternating stress. If the alternating stress is
below the yield stress and the maximum stress is above the yield stress, then the
equivalent maximum stress is given by

O'emsx
O'a/t

If both the alternating stress and the maximum stress are below the yield stress, then

the appropriate transformation for the equivalent maximum stress is

0'0/7/8 x

Gait

l+Romax
1

2

4.1.3.4 Routine SW2SU2

The flowchart for the SW2SU2 routine is given in Figure 4-5. The routine performs
the y on x and x on y regressions to obtain the sample variances S2, Sy, and Sxy,

and the residual variances Sa 2 and SG2 for each life region. For the calculations, x is

is Related S/N data is discussed onPage 2-7.
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START _._

l

_ oo,-1 \• TONU.E.OF
POINTS BY 1 /

/

1
CALCULATE THE ALTERNATING STRESS

1-R
Ga/t= °max 2

FALSE

Galt < Gy
&

Gmltx > Gy

FALSE

TRUE

1
O'emax= oa/t

TRUE

o'on/zlx --_

l
Oalt

1 -°V-°_
Gu

Oel?]18 x -_ l+ROmax1
2

Figure 4-4 Rowchart for Subprogram CONVRT, Stress Formulation
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k)

START

[
INITIAUZE ARRAYS

TO R BY 1

[
DO J --" 0

TO P BY 1 _/_

/

l
CALCULATE x/ AND Yi t

IN REGION L I

DOK_ 1

TON i BY1

Figure 4-5 Rowchart for Subprogram SW2SU2
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SUM OVER ALL DATA POINTS IN
EACH DATA SET J FOR REGION L

P N_

/=0 k=l

P N_

j-0 k=l

P N_

i=o k=_

SUM OVER EACH DATA

SET J FOR REGION L

N= T. <Nj- 1_- 1
j=0

TRUE

TRMNAT

STOP PROGRAM

FALSE
r

CALCULATE SAMPLE VARIANCES

Sx_,S,=,Sx,
STOP

Figure 4-5 Rowchart for Subprogram SW2SU2 (Cont'd)
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CALCULATE d AND b

(Equations 2-20 and 2-21)

d=S_/Sx2
b =s,,/#

1

(oo,_o)TO P BY 1

L

TO NiBY1

1
SUM OVER ALL DATA POINTS IN

EACH DATA SET J FOR REGION L

P NI

/=0k=l

P N/

j-Ok-1

1
CALCULATE RESIDUAL VARIANCES

S_ 2 and S_ 2

Figure 4-5 Rowchart for Subprogram SW2SU2 (Cont'd)
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equal to In S and y is equal to In N. SW2SU2 starts by initializing the arrays required
for the calculations.

Within the outer region DO loop are two sets of nested DO loops, where the region
counter L = 1, ..., R, and R is the number of life regions with S/N data. is In each set

of DO loops, the outer loop is for each S/N data set, j = 0, ..., P, and the inner DO

loop is for each data point in each data set, k = 1, ..., NI. The first step is to calculate

the sample means _/and Y/for each data set in each region. Then the sample variances
and degrees of freedom for each region in each data set are calculated as follows:

P N/

NSx ;E
j=O k=l

p N/

j=O k=l

P N/

j=O k=l

P

N=jS o= (Nj- 1)- 1

where S2, Sy2, and Sxy are the sample variance of x, sample variance of y, and sample
covariance ofx and y, and N is the number of degrees of freedom for each life region,

respectively. If S_ is non-negative, the data does not support the analysis assump-
tions and the program run will be terminated. The sample variances are used to

calculate the regression parameters d and b of Equations 2-20 and 2-21,

d = Sxy l Sx2 and b = Sxy l Sy 2.

The second set of DO loops calculates the residual variances S@2 and SG2 for each

life region given by

10 R is equal to one for the strain formulation.
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f

NI ^2

j=0 k=l

2
N S =

j=0 =1

where

_ =_j_- _j)- _(xj_- _)
^

_j_= (xj_- _)- __j_- _)

from Equations 2-20 and 2-21.

4.1.3.5 Routine FINDMC

The flowchart for FINDMC is given in Figure 4-6. Routine FINDMC performs the
calculations to obtain the region-dependent constraint on the shape parameter

(.__c,mc) implied by the user-supplied constraint, Co, on the coefficient of variation of

fatigue strength. The routine begins by initializing the arrays that are to contain the
results. The remaining calculations are performed for each life region.

If a C constraint has been specified, there are three solutions to Equation 2-28. If

Sx2 = Co2, the solution is a lower bound given by Equation 2-30

mo> - s_./(2s.).

If Sx2 < Co2, then the solution is also bounded from below and given by Equation 2-31

mc >
Sx2 _ Co 2

If S2 > Co2, then the solution is an interval constraint given by Equation 2-32

Is_- s,7(s:- Co')]"
Sx2 _ Co 2

<m c <

- _.+[_ - _ (_ - Oo_)]
Sx2 - Co 2
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INITIAUZE ARRAYS

TO R BY 1

"_FALSE

PERFORM COMMON CALCULATIONS

Argl = S2 - Co2

TRUE

1
NO CONSTRAINT

TRUE

l

(Equation 2-30)

TRUE

(Equation 2-31)

( -Sxy - Arg2 ) / Argl < mc < ( -Sxy + Arg2 )/Argl
(Equation 2-32)

Figure 4-6 Rowchart for Subprogram FINDMC, Stress
Formulation
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4.1.3.6 Routine INTRVL
The flowchart for INTRVL is given in Figure 4-7. Routine INTRVL performs the

calculations to obtain the region-dependent point estimates and 95% confidence
intervals on the coefficient of variation of fatigue strength C and shape parameter m

based upon S/N data only. The routine begins by initializing the arrays that are to
contain the results. The remaining calculations are performed for each life region.

The points estimates of m and C are given by Equation 2-22

A
A

m=-d and C-S'g.

The 95% confidence interval on C is given by Equation 2-24

i v= ^ v= 1,o-- ,c
The 95% confidence interval on m is given by Equation 2-26

Jo -- _1 - t.02s(N) (N $2) ¢= ' _ + t'°2s(N) (N $2) v=) "

4.1.3.7 Routine GTPVAR
The flowchart for GTPVAR is given in Figure 4-8. Routine GTPVAR calculates o 2

the extent of departures from the multiple heat median S/N curve warranted by the
information available by using region-specific parameters defined in Equations 2-49
and 2-50. The routine begins by initializing the arrays that are to be used for

intermediate calculations.

The number of data points in region L, NI, is calculated in the inner DO loop. Then

the total number of points N and T, the sum over regions of the "extent of departures,"

is calculated. Finally o 2 is found by dividing T by N.

4.1.3.8 Routine FNDRNG
The flowchart for FNDRNG is given in Figure 4-9. Routine FNDRNG performs the

calculations to obtain the posterior credibility ranges of the shape parameter m for
the Uniform distribution case. These ranges are found by combining the shape

parameter constraints in Equations 2-26 and 2-27 with Equation 2-30, 2-31 or 2-32.
The routine begins by initializing the arrays that are to contain the results. The
remaining calculations are performed for each life region and the posterior credibility
ranges are constrained to be non-negative. The seven different cases that must be
considered are given in Table 4-1:
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START

1
INITIALIZE ARRAYS

TO R BY 1

1
CALCULATE rn AND

(Equation 2-22)

A

rn = - d AND _ = S_"

1
CALCULATE CREDIBlUTY INTERVALS

(Equations 2-24 and 2-26)

Arg = t.025(N) S_/ (N Sx2)v=

l

Figure 4-7 Rowchart for Subprogram INTRVL, Uniform
Distribution
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START j_

INITIALIZE ARRAYS

z j
DOL_I

TO R BY 1

DO J-- 0

TO P BY 1

SUM OVER EACH DATA
SET J FOR REGION L

P

NI= _ N/-1
j'O

SUM OVER EACH REGION L

R

N=_ NI
I=1

R

T = _._ (,,1.N - 1)CI 2
I-1

I a2=T/N 1

RETURN

Figure 4-8 Rowchart for Subprogram GTPVAR
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START._

l
INITIAUZE ARRAYS

l
DOL_I

TO R BY 1

<,

CASE1

FALSE

CASE2

FALSE

CASE3

FALSE

CASE4

FALSE

TRUE

1
.,_(m) -- Jo

TRUE

l
=(m) = Jo n (.re_c,=o)

TRUE

1
_(m)= Jo n _, "_)

TRUE

1
:¢(m) = m = m

<,>

Figure 4-9 Rowchart for Subprogram FNDRNG, Uniform
Distribution
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TRUE

TRUE

L
_(m)-- Jon _, _) n _o, ®)

®

Figure 4-9 Rowchart for Subprogram FNDRNG, Uniform
Distribution (Cont'd)
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Table 4-1 The Seven Cases Considered by Subprogram
FNDRNG

Case

1

2

3

4

5

6

7

_,m-)

NA

Bm=m=m

rn <m <m

rn.c<m

m

rnc < m < mc

NA

m c<rn

M

mc<m <rn c

NA

m._c<m

mc<m <m c

Case 1
There is no user-provided explicit constraint on m or C constraint; therefore the
posterior credibilityrange will be given by Jo.

Case 2
There is no user-provided explicit constraint on m; however, there is an implicit lower
bound provided by the C constraint. If the intersection exists, the lower bound of

_(m) is the maximum of the lower bound of Jo and mc, and the upper bound of

:¢(m) is the upper bound of Jo.

Case 3

There is no user-provided explicit constraint on m; however, there is an implicit range

provided by the C constraint. If the intersection exists, the lower bound of _r(m) is the

maximum of the lower bound of Jo and rnc, and the upper bound of _(m) is the

minimum of the upper bound of Jo and mc.

Case 4

The user-provided explicit constraint on rn is a point value. The explicit value has

priority; therefore _(m) consists only of this point.

Case 5

There is no user-provided C constraint, but there is an explicit constraint on m. If the
intersection exists, the lower bound of _(m) is the maximum of the lower bound of Jo

and m, and the upper bound of _(m) is the minimum of the upper bound of Jo and _.
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Case 6
There is both a user-provided explicit range on m and an implicit lower bound provided

by the C constraint, ff the intersection exists, the lower bound of _z(m) is the maximum
of the lower bound of Jo, rn, and rn¢, and the upper bound is the minimum of the upper

bound of Jo, and _.

Case 7
There is both a user-provided explicit range on m and an implicit range provided by
the C constraint. If the intersection exists, the lower bound of _(m) is the maximum

of the lower bound of Jo, rn, and rnc, and the upper bound is the minimum of the upper

bound of Jo, m, and me.

4.1.3.9 Routine ADDREG

Routine ADDREG adds the user-provided _(mj) ranges for the life regions to the
right without data for the Uniform distribution case of the stress formulation. 17
ADDREG also specifies point values for m in the regions without data for the median
SIN curve calculation.

4.1.3.10 Routine CONCAV
In order to be consistent with the concavity constraints of the stress formulation of

the S/N model, 18 it may be necessary to modify the posterior credibility ranges of the

shape parameters. Routine CONCAV ensures that the upper bounds of the posterior
credibility ranges are consistent with the concavity constraints by setting the upper
bound of the m range in the/th region to be the minimum of the upper bounds in

regions i and i + 1. If the lower bound in region i should be higher than the upper
bound in region i + 1, the program run is terminated. The rest of the concavity
constraints are applied in routine FINDM for the Uniform distribution case and
FINDMN in the truncated Normal distribution case. FINDM and FINDMN are dis-

cussed in Sections 4.1.5.1 and 4.1.5.2.

4.1.3.11 Routine MEDIAN
The flowchart for the MEDIAN routine is given in Figure 4-10. The subprogram

calculates the median m for each life region for the Uniform distribution case of the

stress formulation given by Equation 2-34. The routine begins by initializing the array
that is to contain the median m's. The remaining calculations are performed for each

life region.

1_' No data regions to the right are discussed on Page 2-17.

18 Concavity constraints are discussed on Pages 2-13 through 2-14.
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START

J
INITIALIZE ARRAYS

DO L_I

TO R BY 1

IS _(ml)
A POINT

NO

/= 1

FALSE

YES

l
E(m/) = L/ + UI

TRUE

E(ml) = (L1 + U1) / 2

E(ml) = max [E(ml-2) + Ui , LI + UI ]2

Figure 4-10 Flowchart for Subprogram MEDIAN, Stress
Formulation, Uniform Distribution
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There are three possible cases that must be considered. If the posterior credibility

range has a point value, then the median m will have that point value. If the DO loop

counter is on region 1, then the median is given by

E(ml) = (L 1 + Ul) / 2

otherwise the median m in region I = 2, ..., R is

E(ml) = max I E(m_-_2) + U/ ' L/ + U/12

where L ! and U/ are the lower and upper bounds, respectively, of the posterior

credibility range in region I.

4.1.3.12 Routine EXPCTD

The flowchart for the EXPCTD routine is given in Figure 4-11. The routine controls
the calls to the median curve calculations. The routine uses the point estimates for

the m's to find the {K/} and .80 parameters consistent with those m's and the specific
material data set. The calculations begin by routine TRNSFM transforming the specific

material S/N data. 19 The transformation produces the {Z/} as a function of the S/N

data, the {mi}, and the life region boundaries. Then the sample mean and variance of
Z are calculated by routine SMNVAR. KBETA computes the estimates of k and .8o.

Then the {Kj} are calculated by routine FINDK using Equations 2-37 through 2-41. The
stress values corresponding to the life region boundaries are obtained from FINDSB.

If the tensile point So for the stress formulation is being used, then the S/N curve can

be tied to S o by routine KOMO. 2° Finally, the results of the calculations are written to

file DUMR Routines TRNSFM, SMNVAR, KBETA, FINDK, FINDSB, and KOMO are

described in Sections 4.1.5.3 through 4.1.5. 7 and 4.1.6.

4.1.3.13 Routine MUSlG

The flowchart for the MUSIG routine is given in Figure 4-12. The subprogram

calculates the parameters of the truncated Norma/posterior density of m for each life

region for the truncated Normal distribution case."The routine begins by initializing

the arrays that are to contain the point estimates of m and C and the parameters

m. and 0. 2 for each life region. The remaining calculations are performed for each life

region.

le The S/N data transformation is discussed on Page 2-16.

20 Extension of the S/N curve to the left is discussed on Page 2-17.

21 The Bayesian analysis to obtain the parameters of the truncated Normal posterior
density is discussed onPage 2-14.
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START

1
TRNSFM

TRANSFORM S/N DATA

INTO{z,}
(See Section 4.1.5.3)

l
SMNVAR

COMPUTE_ ANDS_
(See Section 4.1.5.4)

l
KBETA

COMPUTE ESTIMATES FOR
k AND _o

(See Section 4.1.5.5)

l
FINDK

COMPUTE {Ki}

(See Section 4.1.5.6)

1
FINDSB

CALCULATE S_+1 FOR USE.
IN UFE CALCULATION

(See Section 4.1.5.7)

Figure 4-11 Rowchart for Subprogram EXPCTD
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KOMO

NO

CALCULATEmo & Ko

(See Section 4.1.6)

STRAIN

/ _,ooo  / / WRITE TO DUMP /

Figure 4-I 1 Flowchart for Subprogram EXPCTD (Cont'd)
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START

1
INITIALIZE ARRAYS

TO R BY 1

CALCULATE rn AND

(Equation 2-22)

tn = - d ANDC =S_"

TRUE

_nN Sx2 + mo _

m.= NS2 + _

I o. 2 = o 2 / (NS 2 + 6) 1

Figure 4-12 Rowchart for Subprogram MUSIG, Truncated Normal
Distribution

TRUE

1
o.2=s_2/ (NSx2+6)
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First, the point estimates for m and C are calculated using Equation 2-22. The
parameter m. is calculated next. If the user has notspecified a value for 6, indicated

by 6 = 0, then m° is given by the point estimate m. When a value for 6 has been

provided, then m, is given by

_ N S2 + mo 6

m, - NS 2 +6

Finally, the 0".2 is calculated. If the user has not specified a value for a 2, indicated by

G2 _. 0, then o°2 is given by

0. 2 = S_ 2 / (N Sx2 + 6)

otherwise Or.2 is given by

a. 2 = a 2/(NS 2 + 6)

4.1.3.14 Routine NORRNG
The flowchart for NORRNG is given in Figure 4-13. Routine NORRNG performs the

calculations to obtain the posterior credibility ranges of the shape parameter m for
the truncated Normal distribution case. These ranges are found by combining the

shape parameter constraints in Equation 2-27 with Equation 2-30, 2-31 or 2-32. The
routine begins by initializing the arrays that are to contain the results. The remaining
calculations are performed for each life region and the posterior credibility ranges are
constrained to be non-negative. The four different cases that must be considered are

given in Table 4-2.

Table 4-2 The Four Cases Considered by Subprogram NORRNG

Case

2

3

4

_,m-)

m=m=m

rn<m<m

m._c<m

mc < m <m c

NA

m_.c<m

mc<m <m c
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START )

1
INMAUZE ARRAYS

TO R BY 1

L
\

I FALSE

TRUE

l
_(m) = rn = m

TRUE

TRUE

#(m) = (m, _) n _c, ®)

:_(m) = (.m_,m ) n _c, _c)

I

( R_oR.)

Figure 4-13 Rowchart for Subprogram NORRNG, Truncated
Normal Distribution
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Case 1
The user-provided explicit constraint on m is a point value. The explicit value has

priority; therefore _(m) consists only of this point.

Case 2
There is no user-provided C constraint, but there is an explicit constraint on m;
therefore, the posterior credibility range will be given by (.m_,m).

Case 3
There is both a user-provided explicit range on m and an implicit lower bound provided

by the C constraint. If the intersection exists, the lower bound of _(rn) is the maximum

of m and m._c,and the upper bound is _.

Case 4

There is both a user-provided explicit range on m and an implicit range provided by
the C constraint. If the intersection exists, the lower bound of _(m) is the maximum

of m and m__c,and the upper bound is the minimum of m and mc.

4.1.3.15 Routine ADDRGN

Routine ADDRGN adds the user-provided _(mi) ranges for the life regions to the
right without data for the truncated Normal distribution case of the strain formulation. 22

ADDRGN also specifies point values for m in the regions without data for the median
S/N curve calculation.

4.1.4 Routine DECOMP

The flowchart for the DECOMP routine is given in Figure 4-14. The routine controls
the calls to the data input, strain decomposition, and information aggregation calcula-
tion routines. DECOMP starts by opening the following input and output files:

N,M I PE ICO.TE rS
RELATD llnput IRelatedmaterial data input
RELATO IOutput IRalated material data echo

The arrays are then set to their default or initial values by routine INITD. Routine
RDECHO reads the data from files SPECFD and RELATD and echoes the data to files
SPECFO and RELATO. Routines INITD and RDECHO are described in Sections
4.1.4.1 and 4.1.4.2.

The strain decomposition begins with a call to PREP. Routine PREP stores the user-

supplied plastic and elastic strain components into arrays with the data structure

22 No data regions to the right are discussed on Page 2-17.
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START ._

OPEN FILES
RELATD AND RELATO

INITD

|

READ FROM SPECFD /

SPECIFIC SIN DATA//__

WRITETO SPECFO /

SPECIFICS/NDATA

m(__,_p), m(_,ME)/ t

GIVEN

PLASTIC

INITIALIZE ARRAYS

(See Section 4.1.4.1)

RDECHO

READ DATA

ECHO DATA

(See Section 4.1.4.2)

PREP

PREPARE DATA FOR DATA
STRUCTURE REQUIRED

(See Section 4.1.4.3)

READ FROM RELATD /

RELATED S/N DATA/

/
WRITE TO RELATO /
RELATED SIN DATA /

/

GIVEN
ELASTIC

COMPONENTS

SW2SU2

REGRESS In SpON In N
REGRESS In N ON In S,o

(See Section 4.1.3.4)

COMPONENTS

SW2SU2

REGRESS In SE ON In N
REGRESS In N ON In SE

(See Section 4.1.3.4)

Figure 4-14 Flowchart for Subprogram DECOMP, Strain
Formulation
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INTRVL

FINDPOINTESTIMATEFOR

(SeeSect�on 4./.3.6)

EXPCTD

mp

CALCULATE /_p FOR
GIVEN PLASTIC STRAINS

(See Section 4.1.3.12)

INTRVL I
FIND POINT ESTIMATE FOR mE

(See Section 4.1.3.6)

EXPCTD

CALCULATE /_E FOR
GIVEN ELASTIC STRAINS

(See Sect�on 4.1.3.12)

LASTIC:Jo,mAP, /
ELASTIC: Jo, mE, KE/

/

PECOMP

CALCULATE PLASTIC AND ELASTIC STRAIN
COMPONENTS FOR REMAINING TOTAL STRAIN DATA

(See Section 4.1.4.4)

PREP

PREPARE DATA FOR DATA
STRUCTURE REQUIRED

(SeeSection4.1.4.3)

Figure 4.14 Rowchart for Subprogram DECOMP, Strain
Formulation (Cont'd)
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1)

CALCULATED
PLASTIC

COMPONENTS

l

_ TRUNCATED

NORMAL

• I CALCULATED
ELASTIC

I UNIFORM COMPONENTS

l
SW2SU2

REGRESSIn Sp ON In N
REGRESSIn N ON In Sp

(See Section 4.1.3.4)

1
INTRVL

FIND Jo, INTERVAL ESTIMATE FOR mp
AND POINT ESTIMATES mp AND _'p

(See Section 4.1.3.6)

L
FNDRNG

COMPUTE POSTERIOR
CREDIBILITY RANGE

(See Section 4.1.3.8)

SW2SU2

REGRESSIn SE ON In N
REGRESS In N ON In SE

(See Section 4.1.3.4)

INTRVL

FIND Jo, INTERVAL ESTIMATE FOR mE
AND POINT ESTIMATES mE AND _'E

(See Section 4.1.3.6)

1
FNDRNG

COMPUTE POSTERIOR
CREDIBILITY RANGE
(See Section 4.1.3.8)

1 l
l
t

p WRITE TO DUMP /
LASTIC: Jo, mP RANGE FOR :¢(rnp)

ELASTIC: Jo, mE, RANGE FOR _(mE)
x

Figure 4-14 Rowchart for Subprogram DECOMP, Strain
Formulation (Cont'd)
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EXPCTD

CALCULATEPARAMETERVALUES
FORMEDIANPLASTICS/NCURVE

(SeeSection 4.1.3.12)

EXPCTD

CALCULATE PARAMETER VALUES
FOR MEDIAN ELASTIC S/N CURVE

(See Section 4.1.3.12)

L

I  °u TEIFOR MEDIAN SIN

WRITE TO DUMP /Po

NO

YES
GTPVAR

CALCULATE a 2

(See Section 4.1.3. 7)

WRITE TO DUMPG 2 /

@

_(mp), _(mE)
SPECIFIC PLASTIC COMPONENT S/N DATA
SPECIFIC ELASTIC COMPONENT S/N DATA

_ RETURN

Figure 4-14 Rowchart for Subprogram DECOMP, Strain
Formulation (Cont'd)
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CALCULATED
PLASTIC

COMPONENTS

l
SW2SU2

C_

REGRESS In Sp ON In N
REGRESS In N ON In Sp

(See Section 4.1.3.4)

MUSIG

PERFORM BAYESIAN ANALYSIS
TO OBTAIN m.p & G.p2 FOR

PLASTIC COMPONENTS

(See Section 4.1.3.13)

NORRNG

COMPUTE POSTERIOR
CREDIBlUTY RANGE
(See Section 4.1.3.14)

CALCULATED
ELASTIC

COMPONENTS

l
SW2SU2

REGRESS In SE ON In N
REGRESS In N ON In S E

(See Section 4.1.3.4)

MUSIG

PERFORM BAYESIAN ANALYSIS
TO OBTAIN m. E & 0. 2 FOR

ELASTIC COMPONENTS

(See Section 4.1.3.13)

l
NORRNG

COMPUTE POSTERIOR
CREDIBIUTY RANGE
(See Section 4.1.3.14)

1

/ wTEToouM/PLASTIC: _p, _(mp)
ELASTIC: mE, _r(m E)

I

Figure 4-14 Rowchart for Subprogram DECOMP, Strain
Formulation (Cont'd)
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required by those routines shared with the stress formulation calculations. Linear
regressions are performed by routine SW2SU2 on the combined specific and related
plastic strain component data. Routine INTRVL then calculates the median value for
the shape parameter rnp. EXPCTD finds the median location parameter Kp for the

plastic components. Then SW2SU2, INTRVL, and EXPCTD are called using the elastic
strain components to find the median m E and KE. Routines PREP, SW2SU2, INTRVL,
and EXPCTD are described in Sections 4.1.4.3, 4.1.3.4, 4.1.3.6, and 4.1.3.12, respec-

tively.

The actual strain decomposition is performed by routine PECOMP using the median

mp, Kp, m E, and KE found above. Routine PREP is used again to store the plastic and
elastic strain component data into the required arrays for the information aggregation
calculations. PECOMP and PREP are described in Sections 4.1.4.4 and 4.1.4.3. The

remaining routine calls depend upon the choice of distribution for the shape

parameters mp and m E.

The information aggregation for the Uniform distribution case begins with linear

regression calculations performed by routine SW2SU2 on the specific and related
plastic strain components. The confidence interval calculations for the plastic strain
components are performed by INTRVL. The prior credibility range is defined to be the
confidence interval. The credibility range for mp and the user-provided range informa-

tion are combined by routine FNDRNG to obtain the posterior credibility range on the

shape parameter _r(mp). 23 The results of these calculations are written to file DUMR
The median S/N curve is then calculated by routine EXPCTD and written to file DUMR
The calls to SW2SU2, INTRVL, FNDRNG, and EXPCTD are repeated for the elastic

strain components./_o, defined as the average of the/_o'S resulting from the two calls
to EXPCTD, is calculated. Routines SW2SU2, INTRVL, FNDRNG, and EXPCTD are
described in Sections 4.1.3.4, 4.1.3.6, 4.1.3.8, and 4.1.3.12, respectively.

The truncated Normal distribution case begins with linear regression calculations

performed by routine SW2SU2 on the combined specific and related plastic strain
components. A Bayesian analysis is performed by MUSIG to find the Normal distribu-
tion parameters for mp. The user-provided range information is translated by routine
NORRNG into a posterior credibility range on the shape parameter rap. The results

of these calculations are written to file DUMR The calls to SW2SU2, MUSIG, and
NORRNG are repeated for the elastic strain components. Routines SW2SU2, MUSIG,
and NORRNG are described in Sections 4.1.3.4, 4.1.3.13, and 4.1.3.14, respectively.

23 Combining informationto obtain the posterior ca-edibilityranges on m is discussed on
Page 2-13.
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For both Uniform and truncated Normal distribution cases, if materials process

variation is requested, GTPVAR calculates a 2, the extent of departures from the
multiple heat median SIN curve warranted by the available information, by using

Equation 2-49. Routine GTPVAR is described in Section 4.1.3.7.

4.1.4.1 Routine INITD

The routine initializes the arrays used in the strain formulation information aggrega-

tion routine, DECOMP, to zero.

4.1.4.2 Routine RDECHO

The flowchart for the RDECHO routine is given in Figure 4-15. The routine controls
the input/output of the specific and related materials data, and exogenous information.
RDECHO begins by reading the data from file SPECFD which contains the specific
S/N data, and exogenous information, and echoes the information to file SPECFO.
First, the general information pertaining to the specific material data set is read,
including the material description, the number of S/N data points with plastic and
elastic decomposition information, the total number of S/N data points, and the
number of tensile points.

First the S/N data with decomposition information is read and echoed. The S/N data

is in the form of (S, N, Sp, SE) quadruplets, where S is the total strain, N is the cyclic

fatigue life, Sp is the plastic strain component, and SE is the elastic strain component.
Then the remaining S/N data in the form of (S, N) pairs is read and echoed. Next, the
tensile data is read and echoed. Inclusion of tensile data is discussed in Section
2.1.2.2.

The last information in file SPECFD used by all strain formulation options is the
explicit constraints on the shape parameters mp and m E. The explicit constraint

consists of a point value or range of values for each strain component curve of the
specific material data set. 24

When the truncated Normal variation of the shape parameters is specified,

RDECHO reads and echoes the Bayesian prior information for each strain component
curve. 2s If materials process variation is specified, the process variation information
is read and echoed. Process variation in materials is discussed in Section 2.1.2.3.

24 The explicit constraint on the materials shape parameterprovided by prior information
on the materials shape parameter is discussed onPage 2-12.

Specifications of the Bayesian prior distribution for the truncated Normal case is
discussed on Page 2-14.
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READ AND ECHO SPECIFIC MATERIALS/N DATA SET INFORMATION

READ AND ECHO

S, N, Sp, AND SE FOR
GIVEN DECOMPOSITION DATA

READ AND ECHO

S, N FOR REMAINING DATA

READ AND ECHOTENSILE POINTS

READ AND ECHO
EXPUCIT CONSTRAINTS

ON THE SHAPE PARAMETERS

READ AND ECHO
BAYESIAN PRIOR INFORMATION

NO

Figure 4-15 Rowchart for Subprogram RDECHO, Strain Formulation
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READANDECHO
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1"
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SIN DATA SET INFORMATION
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S, N, Sp, AND SE FOR

GIVEN DECOMPOSITION DATA
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1
READ AND ECHO
FOR REMAINING DATA

1
READ AND ECHO
TENSILE POINTS

Figure 4-15 Rowchart for Subprogram RDECHO, Strain
Formulation (Cont'd)
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Next, RDECHO reads the data from file RELATD which contains the related SIN
data 2s and echoes the information to file RELATO. First, the number of related data

sets is read, stored in variable NSETS, and echoed. The data set DO loop is performed
for each related data set. The general information pertaining to the related material
data set is read, including the material description, the number of SIN data points with

plastic and elastic decomposition information, the total number of SIN data points,
and the number of tensile points. The SIN data with decomposition information is read
and echoed. The SIN data is in the form of (S, N, Sp, SE) quadruplets, where S is the

total strain, N is the cyclic fatigue life, Sp is the plastic strain component, and SE is the

elastic strain component. Then, the remaining S/N data in the form of (S, N) pairs is
read and echoed. Finally, the tensile data is read and echoed. Inclusion of tensile data
is discussed in Section 2.1.2.2.

4.1.4.3 Routine PREP
The routine stores the plastic and elastic strain component data in arrays with the

data structure required by routines SW2SU2 and EXPCTD. Routines SW2SU2 and
EXPCTD are described in Sections 4.1.3.4 and 4.1.3.12.

4.1.4.4 Routine PECOMP
The flowchart for the PECOMP routine is given in Figure 4-16. The routine performs

the calculations to decompose the total strain data into plastic and elastic strain

components. The decomposition is based upon _=_r_/_ KE, and r_E, estimates of the
location and shape parameters, for the given plastic and elastic strain data. PECOMP
starts by initializing the arrays for the storage of the calculated plastic and elastic strain
components and the given plastic and elastic strain data.

The plastic and elastic strain components are calculated from the total strain and
fatigue life using Equations 2-46 and 2-47, and then stored in the appropriate arrays.
The elastic strain and total strain are calculated for the tensile points, assuming that

the tensile point is the plastic strain at one cycle given by Equation 2-45. Finally, the
results of the decomposition calculations are written to file DUMR

4.1.5 PAREST Routine

The flowchart for the PAREST routine is given in Figure 4-17. The routine controls

the calls to the parameter estimation calculations. The parameter estimation begins

by selecting the m's for each region. The m selection is performed by FINDM for the
Uniform distribution case and FINDMN for the truncated Normal distribution case.
Routines FINDM and FINDMN are described in Sections 4.1.5.1 and 4.1.5.2.

2e Related S/N data is discussed on Page 2-7.
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START j_

INITIALIZE STRAIN COMPONENT ARRAYS
FOR DECOMPOSITION CALCULATIONS

I STORE GIVEN DECOMPOSITION DATA IIN STRAIN COMPONENT ARRAYS

CALCULATE AND STORE STRAIN COMPONENTS
FOR TOTAL STRAIN / LIFE DATA

(Eqs 2-46 & 2-47)

KE
;ti =

1 +a i

SpI = _i Si

SE,= Si - Sp,

CALCULATE AND STORE
SEAND SFOR TENSILE DATA

NOTE: N = 1 CYCLE

_p
Gi= /_E

Spj = TENSILE POINT

SEj = Spi / a i

Si = Spj + SEI

Figure 4-16 Rowchart for Subprogram PECOMP, Strain Formulation
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IVENDECOMPOSITIONDATAAND /

RESULTS OF DECOMPOSITION /
{N,,S,,s,,s_,} /

/

Figure 4-18 Rowchart for Subprogram PECOMP, Strain
Formulation (Cont'd)
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START

UNIFORM

FIND M FINDMN

SELECTmj SELECTmj

(See Section 4.1.5.1) I (See Section 4.1.5.2)

L
TRNSFM

TRANSFORM S/N DATA

,_o {z,}
(See Section 4.1.5.3)

l
SMNVAR

COMPUTE Z AND S_

(See Section 4.1.5.4)

l
KBETA

UFE REGION BOUNDARIES
SPECIFIC S/N DATA

COMPUTE ESTIMATES FOR

k AND ,8o

(See Section 4.1.5.5)

Figure 4-17 Rowchart for Subprogram PAREST
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FINDK

COMPUTE {Ki}

(See Section 4.1.5.6)

1
FINDSB

CALCULATE S/,i+1 FOR USE

IN LIFE CALCULATION

(See Section 4.1.5.7)

_o.{Kj,m_},S;j÷,

Figure 4-17 Rowchart for Subprogram PAREST (Cont'd)
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The remaining calculations find the {KI} and ,80 parameters consistent with the

randomly selected {mi} and the specific material data set. The calculations begin by
routine TRNSFM transforming the specific material S/N data. 27 The transformation

produces the {Zl} as a function of the SIN data, the {mi}, and the life region boundaries.
Then, the sample mean and variance of Z are calculated by routine SMNVAR. KBETA

computes the estimates of k and ,80- Then, the {Ki} are calculated by routine FINDK
using Equations 2-37 through 2-41. Finally, the stress values corresponding to the life
region boundaries are obtained from FINDSB. Routines TRNSFM, SMNVAR, KBETA,

FINDK, and FINDSB are described in Sections 4.1.5.3 through 4.1.5.7.

4.1.5.1 Routine FINDM

The flowchart for the FINDM routine is given in Figure 4-18. The routine performs
the random selection of the {ml} off the =(ml) for the Uniform distribution case. The

subprogram begins by initializing the array that is to contain the {ml}. The remaining
calculations are performed for each life region.

There are three possible cases that must be considered. If the range for _(m) has
a point value, then the m in that life region will have that point value. If the DO loop

counter is on region 1, then m 1 will be randomly selected off of U(L 1, U1) where L 1 is

the lower bound of _(ml) and U1 is the upper bound of _(ml). Otherwise, m I is
randomly selected off of U(max [ml_ 1, LI], UI), where ml_ 1 is the randomly selected

m in region/- 1, L I is the lower bound of _z(ml), and UI is the upper bound of _(ml).

4.1.5.2 Routine FINDMN

The flowchart for the FINDMN routine is given in Figure 4-19. The routine performs

the random selection of the {ml} off the _r(ml) for the truncated Normal distribution

The subprogram begins by initializing the array that is to contain the {mr}. Thecase.

remaining calculations are performed for each life region.

There are three possible cases that must be considered. If the range for =(m) has
a point value, then the m in that life region will have that point value. If the DO loop

counter is on region 1, m 1 will be randomly selected off of N(m. 1, a.12), then FINDMN

checks to see if the selected m is within the range of =(ml) given by [L 1, U1], where

L 1 is the lower bound of _(ml) and U1 is the upper bound of =(ml). If the randomly
selected m is not in the range, values are selected until a value is found within the
range. If _r(ml) is not a point and I is not 1 then, m I is randomly selected off of

N(m,i, a.2), then FINDMN checks to see if the selected m is within the interval

[ max(ml_ 1, LI), UI], where ml_ 1 is the randomly selected m in region I-1, L I is the

27 The S/N datatransformationis discussed on Page 2-16.
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C START

J
INmAUZE ARRAYS

[

TO R BY 1

NO

YES

m I = LI = UI

TRUE

RANDOM

PICK m I ~ U(L1, Ul)

RANDOM

PICK mI ,-, U(max [m/_ 1, LI], Ul)

Figure 4-18 Rowchart for Subprogram FINDM, Uniform Distribution
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START

J
INITIAUZE ARRAYS

DOL_ 1

TO R BY 1
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NO

YES

1
m/= LI = UI

I=1 TRUE
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J

NORMGN

PICK m1 ~ N(m. 1, O',12)
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Figure 4-19 Rowchart for Subprogram FINDMN, Truncated
Normal Distribution
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NORMGN

PICK mI " N(m*/, 0./2)

FALSE

TRUE

_ RETURN

Figure 4-19 Rowchart for Subprogram FINDMN, Truncated Normal
Distribution (Cont'd)
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lower bound of ;¢(ml), and UI is the upper bound of _z(ml). If the randomly selected m

is not in the range, values are selected until a value is found within the range.

4.1.5.3 Routine TRNSFM
The flowchart for the TRNSFM routine is given in Figure 4-20. The routine performs

the transformation, Equations 2-39 and 2-40, which produces the {Zk} as a function

of the S/N data, the {ml}, and the life region boundaries {N_'_Ij}. The subprogram
begins by initializing the array that is to contain the {Zk}. The remaining calculations

are performed as follows. First, calculate Zk for each data point in region I, I = 1,

,.o, R

Then for each life region to the left II,//-- 2, ..., I

Zk = Zk In Sk NII_I,II )

4.1.5.4 Routine SMNVAR
The flowchart for the SMNVAR routine is given in Figure 4-21. The routine performs

the calculations to obtain the sample mean and variance of the {Zk} given by the

following equations:

N

forthemean Z- 1 _IZi/Voi=

No

for the variance S2= -
No

4.1.5.5 Routine KBETA

KBETA calculates kAand/_o using Equation 2-42 and the sample mean and variance
obtained in routine SMNVAR where

^ --

k=Z and /_O=SzV_.

4.1.5.6 Routine FINDK
The flowchart for the FINDK routine is given in Figure 4-22. The routine performs

the calculations of Equations 2-41 and 2-37 to obtain the {KI} as a function of k,/_o,

the {m/}, and the life region boundaries {NI*..1,1}.The subprogram begins by initializing
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START

1
INITIALIZE ARRAYS

TO R BY 1

TO NI BY 1

1
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\

L
CALCULATE Zk
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1 1
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Zk = Zk In _Sk NII_ I, II )

Figure 4-20 Rowchart for Subprogram TRNSFM
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TO N BY 1

l
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i
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N
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i
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1
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Figure 4-21 Flowchart for Subprogram SMNVAR
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1
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TO R BY 1

CALCULATE KI
FOR EACH REGION L

RETURN

Figure 4-22 Rowchart for Subprogram FINDK
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the array that is to contain the {KI}. The remaining calculations are performed as
follows. First, calculate K1 given by Equation 2-41

K1 = (In 2)% exp(k +_o)

where y is Euler's Constant. Then, using Equations 2-37 for each life region I, I = 2,
..., R

! rn_- 1"

Kl=Kl-1 _

4.1.5.7 Routine FINDSB

Subprogram FINDSB calculates the life region "tie-points", or stress values S*,
which correspond to the "life boundaries" conditional on the randomly selected {ml},

the {KI}, #o and k using Equation 2-11, with I = 1, ..., R

S; = KI N; (-1/m')

Note: If N_ = oo indicated by 1036, then S_ = 0.

4.1.6 Routlne KOMO

The KOMO routine calculates Ko and m o for the zero region, the no-data region to
the left of the first data region, and extends the S/N curve consistent with the tensile
point at So for the stress formulation of the materials model. 2sThe subprogram begins

by setting Ko equal to the value of So. Then, the S/N curve parameters are checked

and adjusted to maintain consistency with So. Finally, m o is calculated according to
the following relation

In K1 - In S_ + In (_p,1._.Z)

m° = ml In So - In S_

4.1.7 Routine ADJSTM

Routine ADJSTM adjusts the posterior credibility range for the elastic shape

parameter mE to be consistent with the concavity constraints of the strain formulation
of the S/N model. ADJSTM set the lower bound of the mE range to be the maximum

of the lower bound of :z(mE) and mp.

28 Extension of the S/N curve to the Left is discussed on Page 2-17.
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4.1.8 Routine GTLIFE

Routine GTLIFEcalculates the fatigue life (cycles) given by Equation 2-48 at a user-

provided stress level for the stress formulation of the materials characterization model.
The subprogram begins by checking to see if the tensile point SO is being used. If

So is being used, the subprogram checks to see if the stress S is greater than or equal
to So, then the life N will be set to one cycle. Otherwise the life is calculated as

°
When process variation is not in use the paremeters Z_(and Z are defined to be one.
Routine GTLIFE has another implementation for use with the PFM's. This implemen-
tation differs in that the K and p parameters are raised to the m power by the PFM

before GTLIFE is called.

4.1.9 Routine GTLIF2

Routine GTLIF2 provides the fatigue life (cycles) at a user-provided strain level S
for the strain formulation of the materials characterization model. The fatigue life is

obtained by solving Equation 2-50 for N using Newton's method. The initial value
provided to the Newton's method routine NEWTON is given by the elastic strain

component

N= IKEPZ*KZ/SI mE.

When process variation is not in use, the parameters ,1._(and Z are defined to be one.

Subprogram NEWTON is described in Section 4.1.9.1.

4.1.9.1 Routine NEWTON
Routine NEWTON is a modified version of subroutine RTNI taken from IBM

Apolication Prooram. Svstem/360 Scientific Subroutine Package. Version III.
proarammer's Manual, Program Number 360-CM-03X, Page 220. The estimates oT
the _fe N for each iteration are obtained by a call to routine FCT discussed in Section

4.1.9.2.

4.1.9.2 Routine FCT
Routine FCT is used by subprogram NEWTON to calculate the value of the function

and its derivative at the value N, in order to find the solution of the strain formulation

S/N curve. The function is Equation 2-50, rewritten so as to find the zero,

F= IKpN-1/mP -i. KEN-1/rnEl _o I,_.*KZI - S
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and the derivative is given by

ciF=- [K--'P-N(-1-1/mp) + KE N(-1-11rn')] P I_'*KZ]dNmp mE

Routine NEWTON is discussed in Section 4.1.9.1.

4.1.10 Routlne SORTM

The flowchart for the SORTM routine is given in Figure 4-23. The routine sorts the
m values in increasing order for each life region or strain component for the truncated
Normal distribution case. 29

4.1.11 Routlne TRMNAT

Subprogram TRMNAT performs the premature termination of the program when
the program has detected a fatal error during execution.

The need for saving m's is discussed onPage 2-15.
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Figure 4-23 Rowchart for Subprogram SORTM
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EXCHANGE VALUES

Y=X(I,L)
X(I,L) =X(I+J,L)

X(I+J,L) = Y

INORDER = FALSE

TRUE

®

Figure 4-23 Rowchart for Subprogram SORTM (Cont'd)
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Section 4.2

Prior Distribution Parameter Estimation Software

4.2.1 Introduction

This section presents a description of the computer programs which implement the

prior failure distribution parameter estimation and assurance calculation discussed in
Section 2.1.1. The programs are described in detail using flowcharts. The user's
guide for running these programs is given in Section 6.4, and the source listings,
including a definition of key variables, are given in Section 7.4. A glossary of standard
flowchart symbols is given for the reader's benefit in Appendix 5,A.

4.2.2 BFIT Program

The prior failure distribution parameter # estimation procedure of Section 2.1.1 is

implemented as the FORTRAN program BFIT. This program can be used to estimate
the prior failure distribution parameter/_, based on failure lives generated by the
appropriate probabilistic failure modeling. The flowchart for the BFIT program is given
in Figure 4-24. The program starts by opening the input and output files. They are:

NAME
BFrFD
LOWLIF
BFITO
IOUTPR

TYPE

Input
Input
Output
Output

CONTENTS

Analysis indices
ISorlKI fatigue lives
IResults
IUser-requested information

The indices which define the data base used to estimate # are read from file BFITD.
Then the failure times are read from file LOWLIF, and the values of

Yi = In ( -In [1 - F(Ni)])

are calculated for each failure time.

The estimation of# by b is performed by subprogram LLS described in Section 4.2.2.1.
LLS utilizes a linear least squares algorithm to perform the parameter estimation using
N simulated failure lives. The results are then written to the output file BFITO.

4.2.2.1 LLS Routine

The flowchart for the LLS routine is given in Figure 4-25. The routine uses linear
least squares regression of In ( - In [1 - F(N)]) on In(N) to estimate/_ by b where

)(i = InN/

Yi = In ( -In [1 - F(N_)]).
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START ._

OPEN DATA FILES

/
t

READ INPUT DATA /
CALCULATE

= In( -In [1 - F(Ni)])Y,,

1
U.S

PERFORM UNEAR LEAST
SQUARES FROM START TO END

Y = In(=/e) +/3 In(N)

(Equation 2-9)

WRITE b to BFITO

STOP

Figure 4-24 Rowchart for the Prior Failure Distdbution Parameter
Estimation Program BRT
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Figure 4-25 Rowchart for Subprogram LLS
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LLS starts byinitializing the arrays required for the calculations. Then the sample
means X and Y are calculated. The sample variances are calculated as follows:

END

NSx
i = S3"/U:II"

END

i = ST,aJ=rl"

where N = END - START, and Sx2 and Sxy are the sample variance of X, and sample

covariance of X and Y, respectively. The sample means and variances are used to
calculate the regression parameters b and In c of Equations 2-9,

b = SxylS 2 and In c = _( - bX

fl is estimated by b and In c is computed for the user's information only.

4.2.3 ABTFIT Program

The prior failure distribution parameters a and 0 estimation procedure of Section
2.1.1 is implemented as the FORTRAN program ABTFIT. This program is used to
estimate a and 0, given fl = b, based on the failure lives produced by the probabilistic
failure modeling. The flowchart for the ABTFIT program is given in Figure 4-26. The

program starts by opening the input file PARAMS, reading the least squares
parameters, and then closing PARAMS. If IOUT is equal to 10 or 20, then file IOUTPR
must be opened. The input file LOWLIF is opened, the failure times are read, the value
of

Yi = -In [1 - F(Ni) ]

is calculated for each failure time and LOWLIF is closed.

The estimate of fl is provided exogenously or by the program BFIT described in
Section 4.2.2. The estimates of the parameters a and 0 using the N simulated failure

lives are performed by the nonlinear least squares IMSL subprogram DUNLSJ.
Subprogram DUNLSJ is described in "User's Manual," IMSL Math/Library FORTRAN
Subroutines for Mathematical ADDlications MALB-USM-UNBND-EN8901-1.1, Version
1.1, Volume 3, IMSL Inc., January 1989, pp. 841-846. The results are then written to

the output files ABTOUT and BAYESD.
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START }

l
OPEN PARAMS

1

READ INPUT DATA /

l
CLOSE PARAMS

FALSE

I OPEN IOUTPR

I OPEN LOWLIF

l

READ INPUT DATA /
CLOSE LOWLIF

l
CALCULATEFOR EACH DATAPOINT

Yi = - In [ 1 - F(Ni) ]

Figure 4-26 Rowchart for the Prior Failure Distribution Parameter
Estimation Program ABTFIT
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DUNLSJ

PERFORMNONUNEARLEASTSQUARES
TORND,', AND 8 GIVEN ,8 = b

ABT

FUNCTION EVALUATION

f = Y - ¢zIn [1 -I- Nb/e]

(Equation 2-10)

JABT

JACOBIAN EVAWATION
af <zNb

= e2 [1 + Nb/e]

N -In [1 +Nb/8]&:z=
(Equation 2-10)

1
OPEN ABTOUT

Figure 4-26 Rowchart for the Prior Failure Distribution Parameter
Estimation Program ABTFIT (Cont'd)
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WRITEESTIMATESOFa,/_, 8 AND
NUMBER OF ITERATIONS

TO ABTOUT

CLOSE ABTOUT

OPEN
BAYESD I

1
!

WRITE ESTIMATES OF /

/_,8, a TO BAYESD

CLOSE BAYESD

Figure 4-26 Rowchart for the Pdor Failure Distribution Parameter
Estimation Program ABTFIT (Cont'd)
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4.2.3.1 ABT Routine
Routine ABT performs the function evaluation for each failure time required by

DUNLSJ. The function to be evaluated is given by Equation 2-10

f=Y-aln[l+-_].

4.2.3.2 JABT Routine

Routine JABT performs the Jacobian evaluation for each failure time required by
DUNLSJ. The Jacobian to be evaluated is given by the partial derivatives with respect
to 0 and a of the function in Equation 2-10

af a N b

-_ = - In 1+ .

4.2.4 LZERO Program

The assurance calculation of Section 2.1.1 is implemented as the FORTRAN

program LZERO. This program is used to calculate ,1.o in Equation 2-5 for a specified
assurance level A. The flowchart for the LZERO program is given in Figure 4-27. The

program starts by opening the input and output files. They are:

NAME TYPE ICONTENTS

BAYESD Input IFailure distribution parameters
LDAT Input IAssurance level and,t bounds
LOUT Output IResu_s
IOUTPR Output IUser-requested information

LZERO reads from file BAYESD the parameters a and 8 derived for the failure life

distribution using the program ABTFIT Then lOUT, the desired assurance level A,
and the bounds, _'/b and/1.ub, on ,1.o are read from file LDAT. if lOUT is equal to 10,
then file IOUTPR is opened and the intermediate calculations are written in the file.

F(Zlb) and F(_.ub) are evaluated in routine GAMMA and written to file LOUT. If the
desired assurance is not bounded by these two values the routine TRMNAT is called
to terminate the program run. Subprograms GAMMA and TRMNAT are described in
Sections 4.2.4.1 and 4.2.4.5. If the desired assurance is bounded by F(Zlb) and

F(,1.ub) then the assurance is obtained by using Mueller's iteration method performed
by routine MUELLR. MUELLR is described in Section 4.2.4.3. The results are then
written to the output file LOUT.
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Figure 4-27 Rowchart for the Assurance Calculation Program
LZERO
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CALL TRMNAT

TRUE

I

MUELLR

USE MUELLER'S ITERATION

METHOD TO FIND 4o FOR A
DESIRED ASSURANCE A

FCT
FUNCTION EVALUATION

f = F(x) - A

l
OPEN LOUT

l
[ _____._..WRITEESTIMATES OF

( s_oP)

Figure 4-27 Rowchart for the Assurance Calculation Program
LZERO (Cont'd)
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4.2.4.1 Routine GAMMA

The cumulative distribution function F(x) for a Gamma variate is calculated in this
routine. This is done by integrating the Gamma density function, Equation 2-1, by
using a series representation given as follows:

= (fix),
F(x) = (fix) = exp(- fix) E F(a + 1 + i)

/=0

(¢.1)

and for ease of calculation, F(x) may be approximated as a finite sum in the form

NS

F(x) = E
i=0

exp( - In [F(¢ + 1 + O] + (i + a) ln [fix] - fix)
(4-2)

The flowchart for the GAMMA routine is given in Figure 4-28. The routine DLGAM
calculates the logarithm of the gamma function.

4.2.4.2 Routine DLGAM

This routine calculates the double precision Value of the gamma function (i.e.,
In F[X]). It is a modified version of subroutine DLGAM taken from IBM A0olication
Program. System/360 Scientific Subroutine Package. Version III. Programmer's
Manual, Program Number 360-CM-O3X, Page 362.

4.2.4.3 Routine MUELLR

Routine MUELLR is a modified version of subroutine DRTMI taken from IBM

ADDlication Program. System/360 Scientific Subroutine Package. Version II1.
Programmer's Manual, Program Number 360-CM-03X, Page 219. The estimates of
the assurance for each iteration are obtained by a call to routine FCT discussed in
Section 4.2.4.4.

4.2.4.4 Routine FCT

Routine FCT is used by subprogram MUELLR to calculate the value of the function
at the value x, in order to find the desired assurance level. The function is written so
as to find the zero

f= F(x) - A

where F(x) is the cumulative distribution function for a Gamma variate and A is the
desired assurance level. Routine MUELLR is discussed in Section 4.2.4.3.

4.2.4.5 Routine TRMNAT

Subprogram TRMNAT performs the premature termination of the program when
the program has detected a fatal error during execution.
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1
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I=-1, F=0.0
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TRUE /
\ RETURN

Figure 4-28 Rowchart for Subprogram GAMMA
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Section 4.3

Bayesian Statistical Procedure Software

4.3.1 Introduction

This section presents a description of the computer program that implements the
Bayesian procedure described in Section 2.1.1. The program is described below in
detail using a flowchart. The user's guide for running this program is given in Section
6.5, and the complete source listing, including a definition of key variables, is given in
Section 7.5. A glossary of standard flowchart symbols is given for the reader's benefit
in Appendix 5.A.

4.3.2 BAYES Program

The Bayesian statistical procedure of Section 2.1.1 is implemented as the

FORTRAN program BAYES. This program is used to combine operating experience
with the prior failure distribution obtained from probabilistic failure modeling. The
flowchart for the BAYES program is given in Figure 4-29. The program starts by
opening the following input and output files:

NAME TYPE CONTENTS

BAYESD IInput Prior failure dietribution parameters and operating experience
BAYESO lOutput Echo of input data and results of analysis
UBAYES IOutput Posterior failure distribution parameters

The array for storing the operating experience is initialized and the input data is read
from the BAYESD file. The parameters of the posterior failure distribution a' and 8'
are calculated by means of Equation 2-2, using the parameters of the prior failure
distribution and the operating experience. Then B-lives 3° for both the prior and the
posterior failure distributions are calculated using Equation 2-6. The parameters of

the posterior failure distribution fl, (_', and a' are written on file UBAYES. Finally, an
echo of the input information, the posterior distribution, and the calculated B-lives are
written to file BAYESO.

3o A B-life is the value of the failure parameter (e.g., time) at a failure probability specked
as a percent: e.g., B.1 is the failure time at a probability of 0.001 or 0.1%.
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OPEN BAYESD, BAYESO, AND UBAYES

l

I INmAUZE ARRAY

l

READ INPUT DATA /
CALCULATE a' AND e'

a' -_a + 8

n

i-1

(Equation 2-2)

CALCULATE BUVES

WRITE
POSTERIOR DISTRIBUTION
PARAMETERS p, e', a'

TO FILE UBAYES

( STOP )

Figure 4-29 Rowchart for the Bayesian Statistical Procedure
Program BAYES
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Section 4.4

Random Number Generation Software

4.4.1 Introduction

This section presents a description of the random number generation routines
mentioned throughout Sections 4, 5, and 7. The complete source listings, including
the definitions of key variables, are given in Section 7.6.

4.4.2 RANDOM Routine

The Uniform(0,1) random number generation is implemented as the FORTRAN
routine RANDOM. The random variates are generated using the Linear Congruential
Algorithm described in [1].

4.4.3 NORMGN Routine

The Normal(u, 02) random number generation is implemented as the FORTRAN

routine NORMGN. The random variates are generated using the "Direct Method,"
Abramowitz and Stegun [2], pg. 953.

4.4.4 GAM Routine

The Gamma(a) random number generation is implemented as the FORTRAN
routine GAM. The random variates are generated using an "Acceptance/Rejection
Method," Fishman [3].

4.4.5 BETAGN Routine

The Beta(x; a, b, p, 8) random number generation is implemented as the FORTRAN
routine BETAGN. A standard Beta random variate is defined by

y_ Xl

X_ + X2

where X1 ,-, Gamma(a) and X2 ,-, GammaS) are independently distributed, Johnson

and Kotz [4], pp.181-182.

g(y)=y=-l(l_y) p-1 F(a+fl)
r(a) r(f) 0sy_l

That standard Beta distribution can be related to the Beta distribution we use,
Equation 2.54
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f(x)= (x - ay'° (b - x)0 -p)o
(b - a)° * 1

a<x<b O<_p<l 0>0

by the transformations

X=a + (b-a)Y

a=pO+ l

fl = (1 -p)O + 1

4.4.6 WEIBGN Routlne

r(o + 2)
rGoo+ 1)r[(1-p)o+ 1]

The Weibull_, r/) random number generation is implemented as the FORTRAN
routine WEIBGN. This Weibull distribution is implemented with the median con-
strained to be 1, which implies dependence between T/and fl given by

1 = r/(In 2) 1/p.

A Weibull random variate is obtained with the =Inverse Transformation Method" by

solving the Weibull cumulative distribution function for N, where F(N) is treated as a
Uniforrn(0,1) variate
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Section 4.5

Reference Time History Generation Software

4.5.1 Introduction

This section presents a description of the computer program that was used to
generate the reference time histories which are required as inputs to the HCF
computer codes described in Section 5.1 in order to construct the stress-time
histories used in the HCF analyses. Since each stress-time history component
(random or sinusoidal) is a scalar multiple of a corresponding reference time history
component, we have used a computer code that has the capability to compute
stress-time history components with all scale factors set to one in order to generate
reference time history components. The pertinent methodology is given in Section
2.1.4. The program is described in detail using a flowchart. The random variate
generators are described in Section 4.4. The user's guide for running this program
is given in Section 6.6, and a list of subprograms, a definition of key variables, and
the complete source listing are given in Section 7. 7. A glossary of standard flowchart
symbols is given for the reader's benefit in Appendix 5.4.

4.5.2 NBSIN Program

The reference time history generation is implemented using the stress-time history
generation FORTRAN program NBSIN. The flowchart for the NBSIN program is given
in Figure 4-30. The program uses the following input and output files:

NAME
NBSIN
IOUTPR

User-Specified

TYPE
Input
Output
Output

CONTENTS

IGeneration parameters
]Intermediate calculations
INarrow-band and sinusoidal time histories

The input data is read from the NBSIN file; the angular frequencies and phase angles
are calculated for the sinusoidal reference time histories, then file NBSIN is closed.

The time increment and the parameters for each of the narrow-band reference time
histories to be generated are subsequently calculated.

Generation of the narrow-band reference time histories begins by initializing the
AR(1) process. 31 Two independent draws from the N(0, 1) distribution are obtained

by calling subroutine NORMGN for each set of loads in a given direction. Since NBSIN
has the ability to compute stress-time history components, the Normal variates can

be transformed to N(0, ON2) variates; however, for reference time histories the

31 The AR(1) process is described inSection 2.1.4.
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/

t
OPEN NBSIN AND IOUTPR

1
READ INPUT DATA /

t
CALCULATE ANGULAR FREQUENCIES oJ¢/

AND PHASE ANGLES Y'i FOR SINUSOIDS

t
CLOSE NBSIN

l
CALCULATE TIME INCREMENT At

1
At = _ (Eq.2-60)

L
CALCULATE NARROW-BAND PARAMETERS

Pk=exp[ -2_'_f°k]Nf

Ock=ask = GNk(1 --pk2)V= (Eq. 2-60)

_ok = 2_fok k=l ..... R

l
NORMGN

INMAUZE NARROW-BAND PROCESSES

z11,zl=,z2_,zzz,z3_,z=, z4_,z,,=,,, N(O,+)

Flgure 4-30 Rowchart for the Time History Generation Program
NBSIN
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TRANSFORM VARIATES
k=l ..... k 1

Nc(t_t) = OnkZ11, Ns(t-1) = OnkZl2

k = (k 1 + 1) ..... (k 1 + k2)

Nc(t_l) = %kZ21, N,(t-1) = GnkZ22

k=(k l+k 2+ 1) ..... (k l+k 2+k3)

No(t_1) = OnkZ31, Ns(t-1) = OnkZ32

k = (k 1 + k2 + k3 + 1) ..... (k 1 +k 2 + k3 + k4) =R

Nc(t_l) = GnkZ41, Ne(t-1) = %kZ42

l
OPEN FILES FOR NARROW-BAND

HISTORY STORAGE

L
INCREMENT TIME STEP

tl = t__l+At

1
NORMGN

OBTAIN

Z11,Z12,Z21,Z22,Z31,Z_, Z41,Z42~ N(0,1)

l
TRANSFORM VARIATES

k=l ..... k 1

Uc,(t_)= oc,Z., U,x(tj)= %, Z12
k=(k 1+ 1) ..... (k 1+k2)

u_,(ti) = %, z2_,u,,(ti) = %, zzz
k=(k 1 +k 2+1) ..... (k 1 +k 2+k3)

uc,(t_)= %_,z3_,u,,(t_)= o,kz=
k=(k l+k 2+k 3+ 1) ..... (k l+k 2+k 3+k4)=R

Uck(ti) = ack Z41, Usk(t i) -----ask Z42

Figure 4-30 Rowchart for the Time History Generation Program

NBSIN (Cont'd)

4 -91



CALCULATE COSINE AND SINE COMPONENTS

OF NARROW-BAND PROCESSES

Nck(tl) = Pk Nck(ti_ l) + Uck(tl)

Nsk(tl) = Pk N=_(ti- 1) + U=k(ti)

1
CALCULATE NARROW-BAND PROCESSES

(Eq.2-S0)
k=l ..... R

Nk(tl) = Nck(tl) COSO_okti + Nsk(ti) sin _ok tl (Eq. 2-57)

TRUE

1
CLIP PEAKS AT USER-SPECIFIED LEVELS

1
I

WRITE Nk(tl) TO HISTORY I
STORAGE FILES __

CLOSE NARROW-BAND HISTORY
STORAGE FILES

Figure 4-30 Rowchart for the Time History Generation Program
NBSIN (Cont'd)
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OPENFILESFORSINUSOIDALHISTORYSTORAGE

CALCULATESINUSOIDAL PROCESSES

Sj<ti)= Ajcos(=c/t_+ _oi + _)

TRUE

WRITE S/{ti) TO HISTORY

STORAGE FILES

Figure 4-30 Rowchart for the Time History Generation Program
NBSIN (Cont'd)
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transformation is an identity transformation, so ONK2 = 1 is required. After initialization

of the AR(1) process, the files for the narrow-band reference time history storage are

opened.

The narrow-band reference time history is generated by obtaining two independent

N(O, 1) random variates from NORMGN for each set of loads in a given direction,
transforming them to pairs of N(O, Gc2) random variates, and then calculating the

cosine and sine components Nck(ti) and Nek(ti), respectively. The narrow-band

reference time histories Nk(ti) are then obtained using Equation 2-57. NBSIN provides

the option to clip peaks at a user-specified level in order to limit them to finite bounds.
Finally, the values of Nk(ti) are written to their corresponding storage files. When all
the narrow-band reference time histories have been generated and written to their

files, the files are closed.

The sinusoidal reference time histories are generated next. The reference time

history storage files are opened, then the sinusoids Sk(ti) are calculated at the same
times as the narrow-band processes and written to their corresponding storage files.
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Section 5.1

High Cycle Fatigue Analysis Software

5.1.1 Introduction

The codes for analyzing the HPOTP main discharge duct, the LPFTP turbine drive
duct, and the HPOTP HEX coil small tube outlet are described here. The pertinent
HCF methodology is given in Section 2.2.1. A list of subroutines and the key variables

along with the complete source listing are given in Section 7.1. The relevant user's
guides for running these codes are given in Section 6.1.

Figure 2-18 shows a general schematic for the HCF analysis. Two stand-alone
programs, namely the DCTHCF and HEXHCF, were developed for the HCF analyses.
The DCTHCF has the capability for analyzing elbow ducts with welds and was used
for the study of the main discharge duct and the turbine drive duct. HEXHCF can
analyze straight ducts with welds having large temperature differences across the
duct wall. The HEXHCF program was used for analyzing the HEX coil. From the
description given below, it will become clear to the reader that both of these programs
share many subroutines, including the S/N materials characterization modules. The
reason for developing them as separate programs is to demonstrate the probabilistic
fatigue analysis methodology using efficient software for specific case studies.

The two programs are described here by the use of algorithmic flowcharts. A
glossary of standard flowchart symbols is given for the reader's benefit in Appendix
5.A. The overall layout of the programs is described using the main flowcharts.
Reference is made in the main flowcharts to other secondary flowcharts which
describe subprograms. Flowcharts for the input, output, and driver transformation
subprograms are given here. However, the subprograms related to materials char-
acterization and general purpose probability distribution routines are described in
Section 4.1 and Section 4.4, respectively.

When describing FORTRAN statements that relate to the equations given in the
methodology section, a one-to-one correspondence is established in most cases.
Equation numbers are given in parentheses where applicable. A single equation may
result in several FORTRAN statements. Sometimes this is done for reasons of

efficiency. Also, the codes have been written to exploit vector processing.



5.1.2 DCTHCF Program

The HCF analyses of the HPOTPmain discharge duct and the LPFTP turbine drive
duct are implemented as the FORTRAN program DCTHCE Figure 5-1 shows the
structure of the Probabilistic Failure Model (PFM) for the ducts. This section provides

the description and flowcharts for program DCTHCF.

5.1.2.1 Main Routine
The main flowchart for the DCTHCF program is given in Figure 5-2. The program

starts by opening the input and output files. 1 They are:

NAME
DCTHCD
DCTHCO
RELA'rD
RELATO
DUMP
IOUTPR
LOWUF
user-s_

TYPE

Input
Output
Input
Output
Output
Output

Input

CONTENTS
_natyslsdata
_put d__ echo, resuRs
le___l .rr_t__edaldata input

Echo of Information in RELA'rD
R_=__,__J__Rof materials charectefizat;on ca;culations
Run Information and user-requested ;_fo,_=tion

First one percent of sorted fatigue lives
Random and sinusoidal f_e_ence tIE_ hlatof'_

The arrays and variables are then set to their default or initial values. The input data
is read from the DCTHCD file. An echo of the input data is written onto DCTHCO.
The related materials data is read from the file RELATD and processed in the INFAGG
routine. INFAGG controls the materials information aggregation and is described in

Section 4.1.3.

The selection of hyperparameters 2 is performed in the outer DO loop of the
simulation. This includes calling the RANDOM and PRYRV subroutines to set up the

p and 0 parameters for drivers with Beta distributions. The PAREST routine controls
the calculations for estimating the parameters for the S/N model. Routine PAREST is
described in Section 4.1.5. Materials process variation may be included in the SIN

model on request.

The inner DO loop for the simulation performs the driver draws. Drivers are selected

by calling BETAGN, NORMGN and PRYRV, which draw from Beta, Normal, and
Uniform distributions, respectively. The region-dependent SIN curve is calculated by

scaling the median SIN curve with a random draw from a Weibull distribution by using
WEIBGN. The general purpose probability distribution subroutines RANDOM,

BETAGN, NORMGN, WEIBGN, and PRYRV are described in Sections 4.4 and 7.6.

1 F'des RELATD and RELATO are opened in INFAGG.

2 Hyperparameters are cfiscussed inSectJon 2.1.1.
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RANDOM SELECTION OF PROBABILITY
DISTRIBUTIONS FOR

WOLF, KT1, KT2, /I'DR/wDou, Jl"Ds_uso_ _

DRIVER SELECTION

RANDOM SELECTION OF VALUES FOR

WOFF'KTI' KT2'"I"DpANDO_'_Ds_u_;o¢_'_ova/'
_'ST, _'OYN_, _'ST_' CIz' Cly' Ccz" Coy' _'OFF, _dam

• PROBABIUSTIC CHARACTERIZATION
OF DRIVER UNCERTAINTIES

• NOMINAL LOADS AND ENVIRONMENT
• GEOMETRIC PARAMETERS
• MATERIALS DATA
• REFERENCE TIME HISTORIES

l

DISTRIBUTION SELEC"TIE_

#

l
MATERIALS MODEL
INFORMATION AGGREGATION

t
MATERIALS MODEL

PARAMETER ESTIMATION --_,8o, Kj, mj

SELECTED
MEDIAN S/N CURVE

SELECRON OF MATERL=J.
RANDOM VARIABLE, _o

LOOP n TIMES

1 1
I ouo tHCF FAILURE SIMULATION

l
PREDICTED FAILURE TIME

J

LOOP N TIMES
ACCUMULATE SMALLEST
n x N/100 FAILURE TIMES

Figure 5-1 Structure of the Probabilistic Failure Modet for the
Elbow Ducts with Welds
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C ST_r
I

OPEN INPUT AND
OUTPUT RLES

INITIALIZE ARRAYS 1AND SET DEFAULTS

/ READ AND ECHO /INPUT DATA

INFAGG

PERFORM MATERIALS
INFORMATION AGGREGATION

(See Section 4.1.3)

J ooJ--,
TO NYPHER BY1 "_

I
RANDOM, PRYRV

OBTAIN (P, 8) AND (", o)

PAIRS FOR DISTRIBUTION

SELECTION OF INNER

LOOP CALCULATIONS

(See Sections 4.4.2 and 7.6.6)

PAREST

PERFORM MATERIALS

PARAMETER ESTIMATION

(See Section 4.1.5)

/

O__Fr!ONAL........... ,J........................

I SELECT MATERIALS I

II

PROCESS VARIATI ON

Figure 5-2 Main Rowchart for the Duct Analysis Program
DCTHCF
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Joo ,.--"_ TO NUFE BY 1

_ INNER LOOP

BETAGN, NORMGN, PRYRV

DRIVER SELECTION

(See Sections 4.4.5, 4.4.3 & 7.6.6)

1
WEIBGN

SELECT MATERIALS FATIGUE
LIFE PARAMETER P

(See Section 4.4.6)

I

CALCULATE REGION DEPENDENT I

IS/N CURVE

ELWELD

PERFORM DRIVER
TRANSFORMATION AND

CALCULATE FATIGUE LIFE

(See Figure 5-3)

INSORT

SAVE AND SORT THE LOWEST
FIFTY PERCENT OF UVES

(See Appendix 5.B)

WRITE B-LIVES IN FILE DCTHCO
I AND THE LIST OF UVES IN FILE I

OPTIONAL _._WU F _ ....--------------_

IF TRUNCATED SORTM, EXPCTD
NORMAL
VARIATION CALCULATE MEDIAN S/N CURVE
ON m WAS (See Sections 4.1.10 & 4.1.3.12)
USED

............................................. _: ...........................

Figure 5-2 Main Rowchart for the Duct Analysis Program
DCTHCF (Cont'd)
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The routine ELWELD performs the driver transformation and calculates the fatigue
life. The flowchart for ELWELD is given in Figure 5-3 and the routine is described

below.

Once a fatigue life is calculated in ELWELD, it is sorted and saved in a list containing
the lowest fifty percent of the lives. The INSORT routine performs an insertion sort
with the new fatigue life. When the two simulation DO loops are completed, a list of

lives representing the left-hand tail of the failure distribution is written to the file LOWLIF.

Finally, if truncated Normal variation was used for the materials shape parameter
m, an empirical median SIN curve may be calculated on request. The routine SORTM
is called to sort the m values and routine EXPCTD calculates the median S/N curve.
Section 4.1.10 and 4.1.3.12 describe the routines SORTM and EXPCTD, respectively.

5.1.2.2 ELWELD Routine
The flowchart for the ELWELD routine is given in Figure 5-3. The routine essentially

controls the calls to the stress and fatigue life calculation routines based on the critical
location. The routine NARBN1 calculates the fatigue life and is described below. The

stress magnitudes are calculated for the different locations by calling the following
routines.

LOCATION POSITION ROUTINE
1 Extedor Surface M2L1

2 Intedor Surface M2L2

Both stress routines are called when fatigue life is calculated for both locations and a
critical location is identified as the one having the lowest life.

5.1.2.3 M2L1 Routine
The stress influence coefficients for the critical location on the exterior surface and

the outer bend of the elbow are calculated within M2L1. The coefficients vary for the

different locations but the layout for routine M2L2 is similar to M2L1. Hence, only
M2L1 is described.

The flowchart for the M2L1 routine is given in Figure 5-4. First, the stress concentra-

tion factor KOFF due to weld offset is calculated by using Equation 2-73. The equation
numbers referenced here are contained in the HCF methodology Section 2.2.1.3.

The elbow effects are given by Equations 2-74 through 2-80. The stress increase due
to the torus effect ,8 is calculated by using Equation 2-79. Equation 2-80 gives the

decay rate QT for the torus effect. Then the ovality stress effect coefficients Ytz,?cz, Y_y,

and _'cyof Equations 2-74 through 2-77 and the associated decay rate Qo of Equation
2-78 are calculated. Finally, routine CALCS is called to obtain the stress magnitudes.
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START

FALSE

M2L1

STRESS TERM CALCULATIONS
FOR LOCATION 1
(See Figure 5-4)

NARBN1

CALCULATE COMPOSITE STRESS
TIME HISTORY AND FATIGUE UFE

(See Figure 5-6)

I TRUE
M2L2

STRESS TERM CALCULATIONS
FOR LOCATION 2

(Similar to M2L1)

1
NARBN1

CALCULATE COMPOSITE STRESS
TIME HISTORY AND FATIGUE UFE

(See Figure 5-6)

1

Figure 5-3 Rowchart for the Subprogram ELWELD

FALSE
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START ._

CALCULATE STRESS CONCENTRATION FACTOR
DUE TO ECCENTRICITY OF THE WELD

Ko_ = _o_ (1 + 3Fk Wo_F) (Eq. 2-73)

CALCULATE THE STRESS INCREASE
DUE TO TORUS EFFECT

(Eq. 2-79)/_=1 + OTIP'- 1]
(2 RB + RmSin¢)

/$'= 2 (RB + Rmsin_ )

QT = 1 - Wo (Eq. 2-80)
Rm

CALCULATE THE STRESS INCREASE
DUE TO OVALJTYEFFECT

Y/z = _ova/[sin _ + Qo (CIz Ylz' - sin ¢)] (Eq. 2-74)

(Eq.2-75)Ycz= _oval Qo CczYcz'

Y/),= 1ova/[cos ¢ + Oo (Cry7/y' - cos ¢)] (Eq. 2-76)

(Eq. 2-7"/)Ycy= '_ovalQo CcyYcy'

Qo = 1 - wo (Eq. 2-78)
4Rm

CALCS

CALCULATE THE STRESSES

(See Figure 5-5)

_ RETURN _

Figure 5-4 Rowchart for the Subprogram M2L1
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5.1.2.4 CALCS Routine

Figure 5-5 gives the flowchart for the CALCS routine. Equations 2-68, 2-69, 2-71
and 2-72 are used to derive the four stress components. The input to this routine

includes the coefficients Ylz,Yc.z,Y¥, _'cy, and the angular position _. Also, radius R in
the stress equations is equal to Rj for the interior surface and Ro for the exterior

surface. First, the static stress components are calculated. The ducts had no external

pressure or thermal gradient. Thus, both Po and OTHare zero in Equations 2-68, 2-69,
2-70, and 2-71. Next, the non-time-varying stress magnitudes are calculated for each
dynamic load component. The dynamic stresses are not affected by static internal
pressure, external pressure, and temperature difference across the wall.

5.1.2.5 NARBN1 Routine

The flowchart for the NARBN1 routine is given in Figure 5-6. The composite stress

history, which is a summation of the static, random and sinusoidal loads, is derived
in this routine. First, the static stresses are assigned to the four stress component
histories. Then, the reference time histories for each load component are scaled by

the non-time-varying dynamic stress magnitudes and added to the stress time history
components, as given by Equation 2-82. Next, the four stress components are
collapsed to a single equivalent von Mises stress by using Equation 2-84. The
resulting equivalent stress history is assigned the algebraic sign of the maximum
principal stress (in this case the axial stress). Finally, the RAINF1 routine is called.
This routine performs a rainflow cycle count and derives the fatigue life.

5.1.2.6 RAINF1 Routine

The flowchart for RAINF1 is given in Figure 5-7. First, the equivalent stress history
is scanned to identify the largest stress and its location. The history is resequenced
such that the largest stress is placed at the beginning and end of the stress array.
Then, the intermediate points in the history are filtered leaving only the peaks and

troughs. This is done by testing for a sign change in the gradients of adjacent
segments. Next, the counting of the cycles begins. Consecutive peaks and troughs

are added to a holding array, each time checking whether the new peak-trough
segment is greater than the previous one; if so, then a cycle has been closed. Then,
the peak and trough corresponding to the closed cycle are removed from the holding
array. The cycle is saved if it is large enough, i.e., larger than a user-specified
threshold. The procedure is repeated by adding new peaks and troughs to the
holding array until another cycle is identified.

Once all the cycles have been identified, the alternating and mean values of each
stress cycle are calculated. An equivalent mean stress is calculated for the entire
history based on the mean of the biggest cycle. The routine PGETSM, described
below, is called to estimate the mean stress. The alternating stresses for each cycle

are adjusted to equivalent zero-mean stresses using the Goodman relation given by
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CALCULATE STATIC STRESSES

fPsr (_
°sT1=KT1_ 't-A-+_ I "'"

+R2)o_=K_{p(p,_=<_o-_)'

°S1"3= - Pi

MxsTR
°ST4 -- 2 1 "'"

(Eq. 2-68)

(Eq.2_9)

(Eq. 2-71)

(Eq. 2-72)

DO I ,--- 1 "_

'_ TO NUMBER OF LOAD

"_OMPONENTS NLOAD/

1
CALCULATE NON-TIME-VARYING DYNAMIC STRESSES

_DII = KT1KoFp{_ + YlyIM_I ...

°0--'_= 0.0

M_dR
_- 21 '"

(Eq.2-68)

(Eq.2-e9)

(Eq.2-71)

(Eq.2-72)

Figure S-5 Rowchart for the Subprogram CALCS
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START )

1

/ DO J-- 1 "_

'_ TO NUMBER OF REFERENCE )

"_'ME HISTORY POINTS M///

ASSIGN THE STATIC STRESSES

O/k= %Tk (k = 1,2,3,4)

1
// Do,-,

_/ TO.O_SE.OFLO,O

1
/ ooJ-,
:o.o_8_.OF.EF )

SCALE THE REFERENCE HISTORIES

°jk = °jk + _Dki " °ij (Eq. 2-82)
(k = 1,2,3,4)

Figure 5-6 Rowchart for the Subprogram NARBN1
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TOLI,.,.... ER OF REFERENCE //"

ME HISTORY POINTS MJ

L
CALCULATE VON MISES EFFECTIVE

STRESS AND ASSIGN IT THE ALGEBRAIC
SIGN OF THE MAXIMUM PRINCIPAL STRESS

(Eq.

FATUF == RAINF1

PERFORM RAINFLOW COUNTING AND
CALCULATE FATIGUE LIFE

(See Figure 5-7)

Figure 5-6 Rowchart for the Subprogram NARBN1 (Cont'd)
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START

1
J oo,_1 _.,

,4_ TONU..OF_T_%

FALSE

RECORD THE LARGEST oa# AND
ITS LOCATION

o'etrn_x-- o'effl

JMAX -- I

DO I .-- 1 "_

(M - JMAX + 1) BYI_

1
J=JMAX-I+I

°pt = %n/

i
I _ (M - JMAX + 2)_..

TO M BY 1

Figure 5-7 Rowchart for Subprogram RAINFI
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J

J=J+l

L

TO M BY 1

SET UP TWO TEST ARRAYS TO
ELIMINATE INTERMEDIATE POINTS

TESTli = apl_, -- ap,

TEST2i = TESTli (Op,- ap,.l )

TO M BY 1

IDENTIFY THE LOCATIONS OF THE
PEAKS AND TROUGHS

K=K+I

INDEX k = I

FALSE

Figure 5-7 Rowchart for Subprogram RAINF1 (Cont'd)

5-16



TOTAL NUMBER OF POINTS
IN ARRAY

NEWTOT = K + 1

INDEX NEWlrOT: M + 1

SET UP THE PEAK- TROUGH ARRAY

K : INDEX i

o/= Opk

t

I INITIALIZE COUNTERS
I = 0, J = 0, K = 0

T
INCREMENT COUNTERS

J=J + 1

K=K+I

'UE

ALSE

®

.©

Figure 5-7 Rowchart for Subprogram RAINF1 (Cont'd)
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COPY STRESS POINTS TO A HOLDING ARRAY

Ek=oi

TRUE

TRUE _

_ FALSE

TRUE
SINCE CYCLE IS LARGE ENOUGH TO SAVE

I=1 +1

%ff 1,= max [Ek_1, Ek_2 ]

°_21 = min [Ek_1, Ek_2 ]

DISCARD POINTS K-1 AND K-2 AND
DECREMENT THE COUNTER

Ek-2= Ek

K=K-2

Figure 5-7 Rowchart for Subprogram RAINF1 (Cont'd)

@
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RECORD THE FINAL NUMBER
OF CYCLES FOUND

N=I

.....-- oo,-1'_NUMBER OF CYCLES N

°'ALT0 = (°'eff 11 -- °'eff _ )/2.0 (Eq. 2-85)

aMEANI= (°off 1_-- °n 2_)/2.0 (Eq. 2-86)

SM == PGETSM

CALCULATE EQUIVALENT MEAN STRESS

(See Figure 5-8)

@
Figure 5-7

_J, DOI ---- 1

"__. NUMBER OF CYCLES N B_

CALCULATE THE EQUIVALENT STRESS
USING GOODMAN RELATION

aALTI

Gi=( sM)1 G_ (Eq. 2-90)

i

jf DO I_ 1

"_.._NUMBER OF CYCLES N BY1_

Rowchart for Subprogram RAINF1 (Cont'd)
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UFE i = GTUFE

CALCULATE THE FATIGUE UFE
FROM THE S/N CURVE

(See SecUon 4.1.8)

t

UMBER OF CYCLES N

l
INVERT THE UFE

1
INVUFi = UFE---'--_

1
oo,-,

i
SUM THE DAMAGE FRACTIONS

SUMDAM = SUMDAM + INVUFi

RAINF1 = PERIOD/SUMDAM

Figure 5-7 Rowchart for Subprogram RAINF1 (Cont'd)
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Equation 2-90. The life corresponding to each stress cycle is obtained from the S/N
curve by calling the GTLIFE routine. The GTLIFE routine is described under materials
characterization in Section 4.1.8. Miner's rule is used to accumulate the damage due

to each cycle. There are four separate DO loops over the number of cycles in the
last four steps starting with the Goodman transformation. This was done to enable
vectorization of the DO loops. For running on a scalar machine, these four steps may

be embedded within a single DO loop.

5.1.2.7 PGETSM Routine

The flowchart for PGETSM is given in Figure 5-8. An elastic-perfectly-plastic stress
vs. strain behavior is assumed here for the material. First, the total stress is calculated

by summing the alternating and mean stress of the largest cycle. This stress is
checked against the yield stress. Three different cases occur, as given by Equation
2-87. If the total stress is below yield, then the mean stress is unchanged. If it is
above the yield stress, then the adjusted mean stress is the yield stress minus the
alternating stress. If the alternating stress alone is larger than the yield stress, then
the mean stress is set to zero.

5.1.3 HEXHCF Program

The HCF analysis of the HPOTP heat exchanger (HEX) coil small tube outlet is
implemented as the FORTRAN program HEXHCF. Figure 5-9 shows the structure of
the Probabilistic Failure Model (PFM) for the coil. This section provides the description

and flowcharts for program HEXHCE

5.1.3.1 Main Routine

The main flowchart for the HEXHCF program is given in Figure 5-10. The program
starts by opening the input and output files.3 They are:

NAME
HEXHCD
HEXHCO
RELATD
RELATO
DUMP
IOUTPR
LOWUF

User-Specified

TYPE

Input
Output
Input
Output
Output
Output
Output
Input

CONTENTS

Analysis data
Input data echo, results
Related material data Input
Echo of information in RELATD
Results of materials characterization calculations

Run information and user-requested information
First one percent of sorted fatigue lives
Random and sinusoidal reference time hiatodes

The arrays and variables are then set to their default or initial values. The input data
is read from the HEXHCD file. An echo of the input data is written onto HEXHCO.
The related materials data is read from the file RELATD and processed in the INFAGG

3 F'des RELATD and RELATO are opened in INFAGG.
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START ._

L
CALCULATE THE TOTAL STRESS

a T -----K T (OALT -I- aMEAN )

FALSE

L
PGETSM = ov - ax

PLASTIC CASE

0 x = K T " OALT

t
._U.N

FALSE

l
ELASTIC CASE

PGE'FSM = OMEAN

Figure 5-8 Rowchart for Subprogram PGETSM
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• PROBABIUSTICCHARACTERIZATION
OFDRIVERUNCERTAINTIES

• NOMINAL LOADS AND ENVIRONMENT
• GEOMETRIC PARAMETERS
• MATERIALS DATA
• REFERENCE TIME HISTORIES

1

1
DISTRIBUTION Si_-CRON

RANDOM SELECTION OF PROBABlUTY
DISTRIBUTIONS FOR

WOFF, KT1, KT2, O i, t, IDpANDOM, IOswuso_¢' Ti' To' PI'

DRIVER SELECTION

RANDOM SELECTION OF VALUES FOR

WOLF, KT1, KT2, D I, t, _O_w¢o_' IOs=vuscm_ ' Ti' To'Pl,
Vl"D_Ro' ISTAE_o' IDYNar' IAERO_u' IOFF, ineu, _dam

l
MATERIALS MODEL
INFORMATION AGGREGATION

MATERIALS MODEL

PARAMETER ESTIMATION 7_o, Kj, mj

SELECTED
MEDIAN S/N CURVE

SELECTION OF MATERIAL
RANDOM VARIABLE, p

1 1
DUCT tHCF FAILURE SIMULATION

I

LOOP n TIMES

LOOP N TIMES

PREDICTED ALLURETIME

ACCUMULATE SMALLEST
n x N/100 FAILURE TIMES

Figure 5-9 Structure of the Probabilistic Failure Model for Straight
Ducts with Welds and Temperature Differences
Across the Wall
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l

I OPEN INPUT AND 1OUTPUT RLES

I INITIAU_ ARRAYSAND SET DEFAULTS

READ AND ECHO /INPUT DATA

INFAGG

PERFORM MATERIALS
INFORMATION AGGREGATION

(See Section 4.1.3)

JDO JJ' --- 1_

<_ To.Vp.E.B¥1">

RANDOM, PRYRV

OBTAIN (p, 8) AND _, o)
PAIRS FOR DISTRIBUTION

SELECTION OF INNER
LOOP CALCULATIONS

(SeeSections 4.4.2 and 7.6.6)

PAREST

PERFORM MATERIALS
PARAMETER ESTIMATION

(See Section 4.1.5)

O_._PT_!ON__A_...........1.......................
SELECTMATERIALSI

I PROCESSVARIATIONl
.................... ___rE--- .................... J

Figure 5-10 Main Rowchart for the HEX Coil Analysis Program
HEXHCF

5 - 24



DO I ,-- 1
TONUFE BY1 "_
INNERLOOP J

L
BETAGN, NORMGN, PRYRV

DRIVER SELECTION
(See Sections 4.4.5, 4.4.3 & 7.6.6)

WEIBGN

SELECT MATERIALS FATIGUE
UFE PARAMETER P
(See Section 4.4.6)

CALCULATE REGION-DEPENDENT
SIN CURVE

THWELD

PERFORM DRIVER
TRANSFORMATION AND

CALCULATE FATIGUE LIFE

(See Figure 5-11)

INSORT

SAVE AND SORT THE LOWEST
FIFTY PERCENT OF UVES

(See Appendix 5.B)

WRITE B-LIVES IN FILE HEXHCO
I AND THE LIST OF UVES IN FILE I

OPTIONAL _ LOWUF _---- ..,J
................................. ................................

NORMAL SORTM, EXPCTD
VARIATION CALCULATE MEDIAN SIN CURVE
ON m WAS (See Sections 4.1.10 & 4.1.3.12)
USED

i .................................................... -1[" ................................

Figure 5-10 Main Rowchart for the HEX Coil Analysis Program
HEXHCF (Cont'd)
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routine. INFAGG controls the materials information aggregation and is described in
Section 4.1.3.

The selection of hyperparameters 4 is performed in the outer DO loop for the
simulation. This includes calling the RANDOM and PRYRV subroutines to set up the

p and 0 parameters for drivers with Beta distributions. The PAREST routine controls
the calculations for estimating the parameters for the S/N model. Routine PAREST is
described in Section 4.1.5. Materials process variation may be included in the S/N

model on request.

The inner DO loop for the simulation performs the driver draws. Drivers are selected

by calling BETAGN, NORMGN and PRYRV, which draw from Beta, Normal, and
Uniform distributions, respectively. The region-dependent S/N curve is calculated by
scaling the median S/N curve with a random draw from a Weibull distribution by using
WEIBGN. The general purpose probability distribution subroutines RANDOM,
BETAGN, NORMGN, WEIBGN, and PRYRV are described in Sections 4.4 and 7.6.

The routine THWELD performs the driver transformation and calculates the fatigue
life. The flowchart for THWELD is given in Figure 5-11 and the routine is described
below.

Once a fatigue life is calculated in THWELD, it is sorted and saved in a list containing
the lowest fifty percent of the lives. The INSORT routine performs an insertion sort
with the new fatigue life. When the two simulation DO loops are completed, a list of
lives representing the left-hand tail of the failure distribution is written to the file LOWU F.

Finally, if truncated Normal variation was used for the materials shape parameter
m, an empirical median S/N curve may be calculated on request. The routine SORTM
is called to sort the m values and the routine EXPCTD calculates the median S/N

curve. Sections 4.1.10 and 4.1.3.12 describe the routines SORTM and EXPCTD,

respectively.

5,1.3.2 THWELD Routine
The flowchart for the THWELD routine is given in Figure 5-11. The routine

essentially controls the calls to the stress and fatigue life calculation routines, based
on the critical location. The routine NARBN2 calculates the fatigue life and is
described below. The stress magnitudes are calculated for the different locations by

calling the following routines.

4 Hyperparamctcrs arc discussed in Section 2.L1.
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START

TRUE

M4L1

STRESS TERM CALCULATIONS
FOR LOCATION 1

(See Figure 5-12)

NARBN2

CALCULATE COMPOSITE STRESS
TIME HISTORY AND FATIGUE LIFE

(See Figure 5-13)
|

TRUE

M4L2

STRESS TERM CALCULATIONS
FOR LOCATION 2
(Similar to M4L1)

NARBN2

CALCULATE COMPOSITE STRESS
TIME HISTORY AND FATIGUE UFE

(See Figure 5-13)

I.

Figure 5-11 Rowchart for Subprogram THWELD
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LOCATION I I:__SmON [ ROUTINE
I Exterior Surface M4L1
2 Interior Surface M4L2

M4LI and M4L2 routines are called when fatigue life is calculated for both locations
and a critical location is identified as the one associated with the lowest life.

5.1.3.3 M4L1 Routine
The flowchart for the M4L1 routine is given in Figure 5-12. This contains stress

component calculations for the exterior surface. The routine M4L2 is similar to M4L1,
and it calculates the stresses for the internal surface. First, the stress concentration

factor KOFF due to weld offset is calculated by using Equation 2-73. Then, Equations
2-68 through 2-72 are used to calculate the four stress components. These stress
equations are for a general elbow case. The HEX was treated as a straight cylinder
and the coefficients Ylz = sin ¢, >'iF = cos ¢, Yr.z= Y_/= 0, and/_ = 1 and the equa-
tions reduce to the standard pressure vessel case. For the exterior surface, the radius

R is set to Ro.

First, the static stress components are calculated. Then, the non-time-varying

stress magnitudes are calculated for each dynamic load component. The dynamic
stresses are not affected by static internal pressure Pi, external pressure Po, and

temperature difference AT.

5.1.3.4 NARBN2 Routine
The flowchart for the NARBN2 routine is given in Figure 5-13. The composite stress

history, which is a summation of the static, random, sinusoidal and aerodynamic
loads, is derived in this routine. First, the static stresses are assigned to the four
stress component histories. Then, the reference time histories for each load com-

ponent are scaled by the non-time-varying dynamic stress magnitudes and added to
the stress time history components as given by Equation 2-82. Next, the four stress

components are collapsed to a single equivalent von Mises stress by using Equation
2-84. The resulting equivalent stress history is assigned the algebraic sign of the

maximum principal stress (in this case, the axial stress). Finally, the RAINF2 routine
is called. This routine performs a rainflow cycle count and derives the fatigue life.

The NARBN2 routine performs the same calculations as the NARBN1 routine

employed in DCTHCE The only difference between the two is that RAINF1 is called
by NARBN1 for the rainflow counting and fatigue life derivation.

5.1.3.5 RAINF2 Routine
The flowchart for RAINF2 is given in Figure 5.14. First, the equivalent stress history

is scanned to identify the largest stress and its location. The history is resequenced
such that the largest stress is placed at the beginning and end of the stress array.
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START ._
1

CALCULATE STRESS CONCENTRATION FACTOR
DUE TO ECCENTRICITY OF THE WELD

Ko_= _ (1 + 3FkW_) (Eq.2-73)

L
CALCULATE STATIC STRESSES

[PST _in 8...
GST1= KT1 Ko_ _ + I

aST==KT=_ (_o+_,)
_o-# - po(___)...

(Eq.2_8)

(Eq. 2-69)

aST3 = Po (Eq. 2-71)

MxSTRo
GST4-- 2 1 "'" (Eq. 2-72)

L
/ DOI-_ 1 _._

._" TO NUMBER OF LOAD

_COMPONENTS NLOADJ

CALCULATE NON-TIME-VARYING DYNAMIC STRESSES

= KT1KoFr _ + inO... (Eq. 2-68)

O'D---"_" = 0.0

= 0.0

MxiRo
GO4i -- 2 1

(Eq. 2-69)

(Eq. 2-71)

(Eq.2-72)

Figure 5-12 Rowchart for Subprogram M4L1
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START ._

TO NUMBER OF REFERENCE

ME HISTORY POINTS M/

ASSIGN THE STATIC STRESSES

aik = ¢rSTk (k = 1,2,3,4)

l
/ oo,-, _.

TO NUMBER OF LOAD "_

1
/- oo_--, \

SCALE THE REFERENCE HISTORIES

aik = aik + _D_ " Gii (Eq. 2-82)

(k = 1,2,3,4)

Figure 5-13 Rowchart for the Subprogram NARBN2
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J ooJ-1
J TONUMBEROFREFERENCE"_

"__ME HISTORY _

CALCULATE VON MISES EFFECTIVE

STRESS AND ASSIGN IT THE ALGEBRAIC

SIGN OF THE MAXIMUM PRINCIPAL STRESS

F
FATUF == RAINF2

PERFORM RAINFLOW COUNTING AND
CALCULATE FATIGUE LIFE

(See Figure ,5-14)

Figure 5-13 Rowchart for Subprogram NARBN2 (Cont'd)
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START

1

/ ToNUM.EROFS_ESS

.,STORYPo,msMBY

FALSE

RECORD THE LARGEST oef/ AND
ITS LOCATION

oaf/max= oef/i

JMAX = I

f DO I .--- 1

"_...TO (M - JMAX + 1)

J=JMAX-I+I

Opi= oef_

I ,_-(M - JMAX + 2) _._

TO M BY 1

Figure 5-14 Rowchart for Subprogram RAINF2
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L I

J

J=J+l

Opi I O'e_

// ool .- 2 "_
'_'_ TO M BY1

\
SET UP TWO TEST ARRAYS TO

EUMINATE INTERMEDIATE POINTS

TESTli = Opl_l -- ap/

TEST21 = TESTli (ap_- ap,+,)

1

TO M BY 1

IDENTIFY THE LOCATIONS OF THE
PEAKS AND TROUGHS

FALSE

K=K+I

INDEX k : I

Figure 5-14 Rowchart for Subprogram RAINF2 (Cont'd)

Q

i

i

I
i

I

I
I

I
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I TOTAL NUMBER OF POINTS

IN ARRAY

NEw'roT = K + 1

INDEX mWTOT: M + 1

oOO,_ 1\

ISET UP THE PEAK- TROUGH ARRAY

K : INDEX I

oi = Op,

t
INITIALIZE COUNTERS

I = 0, J = 0, K = 0

F
INCREMENT COUNTERS

J =J + 1
K=K+I

LSE

®

.©

Figure 5.14 Rowchart for Subprogram RAINF2 (Cont'd)
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COPY STRESS POINTS TO A HOLDING ARRAY

Ek=a/

®

K <3

FALSE

FALSE

IEk_l-Ek_21 > TRUNC

TRUE

TRUE

TRUE

FALSE

SINCE CYCLE IS LARGE ENOUGH TO SAVE

I =1 +1

OoMI,= max[Ek-1,Ek-2]

oefr2_= mZn[Ek_l, Ek_2 ]

.

DISCARD POINTS K-1 AND K-2 AND
DECREMENT THE COUNTER

Ek_2= Ek

K--K-2

Figure 5-14 Rowchart for Subprogram RAINF2 (Cont'd)

5 - 35



RECORD THE FINAL NUMBER
OF CYCLES FOUND

N--I

J DO I --- 1

_._UMBER OF CYCI F_ N BY 1J

==T,= /,,o,,,,- Oo,,_),'2.0 CEq.2-asI

o,_, = (Oo.,,. o°._) /2.0 CEq.2-_1

SM m NEUBER

CALCULATE EQUIVALENT MEAN STRESS

(See Figure 5-15)

f DOI---- 1 "_

UMBER OF CYCLES

CALCULATE THE EQUIVALENT STRESS
USING GOODMAN RELATION

a_TI (Eq. 2-90)

°i=( SM)1 - o--_

jJ DO I --- 1

Figure 5-14 Rowchart for Subprogram RAINF2 (Cont'd)
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UFE i = GTUFE

CALCULATE THE FATIGUE lIFE

FROM THE S/N CURVE

(See Section 4.1.8)

DOI_ 1

'_UMBER OF CYCLES N_

1
INVERT THE UFE

1

INVUFi = UFEi

DO I ----

"_O NUMBER OF CYCLES N

1
SUM THE DAMAGE FRACTIONS

SUMDAM = SUMDAM + INVUFi

i
RAINF2 = PERIOD/SUMDAM

Figure 5-14 Rowchart for Subprogram RAINF2 (Cont'd)
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Then, the intermediate points in the history are filtered leaving only the peaks and
troughs. This is done by testing for a sign change in the gradients of adjacent
segments. Next, the counting of the cycles begins. Consecutive peaks and troughs
are added to a holding array, each time checking whether the new peak-trough

segment is greater than the previous one; if so, then a cycle has been closed. Then,
the peak and trough corresponding to the closed cycle are removed from the holding
array. The cycle is saved if it is large enough, i.e., larger than a user-specified
threshold. The procedure is repeated by adding new peaks and troughs to the

holding array until another cycle is identified.

Once all the cycles have been identified, the alternating and mean values of each
stress cycle are calculated. An equivalent mean stress is calculated for the entire
history based on the mean of the biggest cycle. The routine NEUBER, described
below, is called to estimate the equivalent mean stress. The alternating stresses for

each cycle are adjusted to equivalent zero-mean stresses by using the Goodman
relation given by Equation 2-90. The life corresponding to each stress cycle is
obtained from the S/N curve by calling the GTLIFE routine. The GTLIFE routine is
described under materials characterization in Section 4.1.8. Miner's rule is used to

accumulate the damage due to each cycle. There are four separate DO loops over
the number of cycles in the last four steps, starting with the Goodman transformation.
This was done to enable vectorization of the DO loops. For running on a scalar

machine, these four steps may be embedded within a single DO loop.

The RAINF2 performs the same calculations as RAINF1, which is used in DCTHCF.

The only difference is that RAINF1 calls PGETSM and RAINF2 calls NEUBER for the
equivalent mean stress calculation.

5.1.3.6 NEUBER RouUne
The flowchart for NEUBER is given in Figure 5-15. The total stress is calculated by

summing the mean stress and the alternating stress with the algebraic sign of the
mean applied to the latter. The stress-strain product is calculated next. The goal is
to find the intersection of the stress vs. strain curve to the hyperbola, given by Equation

2-88, which represents the constant stress-strain product. First, the product is
checked as to whether it is in the elastic region; if so, then the stress is unchanged.

Otherwise, the intersection of the stress vs. strain curve with the hyperbola is

determined by checking through the segments of the curve. The intersection defines
the desired Neuber stress value. The new mean stress is the Neuber stress minus

the alternating stress, as given by Equation 2-89.
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(7m
a ---- GAI T-_Jra m

IOml
PRODCT = a2/E

TRUE

CURVE MINUS ONE

(NUMSEG -1)

FALSE

r

' II TEMP = om
L

e = £i
+ (ei+l - ei)(PRODCT - crel)

(a ej+1 - a _i )

TEMP -
PRODCT

aAIT

ASSIGN THE ALGEBRAIC SIGN OF THE STRESS
TO THE MEAN

(7NEUBER = TEMP * --
lal

Figure 5-15 Rowchart for Subprogram NEUBER
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Section 5.2

Low Cycle Fatigue Analysis Software

5.2.1 Introduction

This section presents a description of the computer program which implements the
LCF analysis discussed in Section 2.2.2.2. The code for analyzing the ATD-HPFTP
second stage turbine disk is described here. The overall layout of the program is
described by using a main flowchart that refers to other flowcharts, which describe
subprograms and key portions of the main program in greater detail. The materials
characterization subprograms and those subprograms that are of a generic nature,
such as the random variate generators, are described in Section 4.1 and Section 4.4,
respectively. The relevant user's guide for running this code is given in Section 6.2,
and a list of subprograms, a definition of key variables, and the complete source code
listing are given in Section 7.2. A glossary of standard flowchart symbols is given for
the reader's benefit in Appendix 5.4.

5.2.2 TRBPWA Program

The LCF analysis of the ATD-HPFTP second stage turbine disk is implemented as
the FORTRAN program TRBPWA. Figure 5-16 shows the structure of the Probabilistic

Failure Model (PFM) for the disk. This section provides the description and flowcharts
for program TRBPWA.

5.2.2.1 Main Routine

The main flowchart for the TRBPWA program is given in Figure 5-17. The program
starts by opening the following input and output files: s

NAME
TRBPWD
TRBPWO
RELATD
RELATO
DUMP
IOUTPR
LOWI.JF

TYPE

Input
Output
Input
Output
Output
Output
Output

CONTENTS

Analysis data
Input data echo, results
Related matedal data input
Echo of information in RELATD
Results of materials characterization calculations

Run information and user-requested information
First one percent of sorted fatigue lives

The arrays and variables are then set to their default or initial values. The input data
is read from the TRBPWD file. An echo of the input data is written onto TRBPWO.
The related material S/N information is read from the file RELATD and processed in

5 F'tles RELATD and RELATO are opened in INFAGG.



• PROBABIUSTIC CHARACTERIZATION OF
DRIVER UNCERTAINTIES

• NOMINAL STRESSES AND ENVIRONMENT

• PARAMETRIC SENSITIVITIES

• MATERIALS DATA
• NUMBER OF CRITICAL LOCATIONS

l

RANDOM SELECTION OF A
PROBABlUTY DISTRIBUTION
FOR &Tr

?
RANDOM SELECTION
OF VAWES FOR
¢u,ATf, ,_Kr,tK_

LOOP n TIMES

LOOP N TIMES

1
DISTRIBUTION SELECTION

DRIVER SELECTION

l
MATERIALS MODEL
INFORMATION AGGREGATION

MATERIALS MODEL

PARAMETER ESTIMATION 7,8o,Kl, mi

SELECTED MEAN
S/N CURVE

SELECTION OF MATERIAL
RANDOM VARIABLE, ,p

LOOP 5O
TIMES

MIN _o

1
1 1

ATD DISK

LCF FAIWRE SIMULATION

t
PREDICTED FAILURE TIME

ACCUMULATE SMALLEST
n x N / 100 FAILURE TIMES

Figure 5-16 Structure of the ProbabUistic Failure Model for the
ATD-HPFTP Second Stage Turbine Disk
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START
t

/ READ AND ECHO /INPUT DATA

INFAGG

PERFORM MATERIALS
INFORMATION AGGREGATION

(See Section 4.1.3)

INITIAUZE ARRAYS
AND SET DEFAULTS

JDO J.--- 1_,
._ TO NHYPER BY1
_OUTER LooPj

RANDOM, PRYRV

CHOOSE ATI REGIME
AND DISTRIBUTION

(See Sections 4.4.2 & 7.6.6)

1
PAREST

PERFORM MATERIALS
PARAMETER ESTIMATION

OPTIONAL (See Section 4.1.5)

.......................................IF MATERIALS I........................
PROCESS SELECT MATERIALS HEAT
VARIATION (See Section 4.1.5)

/................................................
./'_ DOI'_- 1_.._

'_,. TO NUFE BY1
INNER LOOP

NORMGN, BETAGN, PRYRV

DRIVER SELECTION FOR

(See Sections 4.4.3, 4.4.5 & 7.6.6)

Figure 5-17 Main Rowchart for the ATD Disk LCF Analysis
Program TRBPWA
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TO NSYM BY 1

YMMETRY LOOP/,/"

WEIBGN

SELECT MATERIALS

SCATTER PARAMETER fP

(See Section 4.4.6)

KOMO

TIE SIN CURVE TO
TENSILE POINT

(See Section 4.1.6)

DRIVER TRANSFORMATION

(See Figure 5-18)

GTLIFE

CALCULATE FATIGUE LIFE

N=_, s_m'_='
(Eq. 2-12, See Section 4.1.8)

__L
INSORT

SAVE AND SORT LOWEST
FIFTY PERCENT OF LIVES

(SeeAppend/x5.B)

min {p, .....PNS'IU }

SR

]
WRITE RESULTS TO:

l

I TRBPWO

?_o._ _ .................
IF TRUNCATED SORTM, EXPCTD
NORMAL
VARIATION ON CALCULATE EMPIRICAL

MEDIAN SIN CURVE
m WAS USED

(See Sections 4.1.10 & 4.1.3.12)

L ................................ _ .................................

( s,o )

Figure 5-17 Main Rowchart for the ATD Disk LCF Analysis

Program TRBPWA (Cont'd)
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the INFAGG routine. INFAGG controls the materials information aggregation and is
described in Section 4.1.3.

The selection of hyperparameters s is performed in the outer DO loop of the
simulation by calling the RANDOM and PRYRV routines to obtain the Beta distribution

parameters p and 8 for AT1; it is the only driver whose probability distribution is
described by Beta distributions. The PAREST routine controls the calculations for
estimating the parameters for the S/N model. Routine PAREST is described in Section
4.1.5. If materials process variation is included, the materials parameter Z in Equation
2-48 is selected by calling the NORMGN routine and then transforming the resulting
Normal variate to a Lognormal variate.

The inner DO loop for the simulation performs the driver selection. The drivers m,

ATt, ZK, and ZK_are selected by calling NORMGN, BETAGN, and PRYRV, which draw
from Normal, Beta, and Uniform distributions, respectively. The random variate
routines RANDOM, BETAGN, NORMGN, and PRYRV are described in Sections 4.4
and 7.6.

In the symmetry DO loop, the materials model parameter p is found from the
minimum of 50 draws of a Weibull distribution. Calls to WEIBGN provide the 50 values
of p. Subroutine WEIBGN is described in Sections 4.4.6.

When all the S/N model parameters have been selected for the region with S/N
data, the S/N curve is tied to the tensile point So by routine KOMO. The driver

transformation, discussed in Section 5.2.2.2, is then performed. The result of the
driver transformation is the reference stress SR used by subprogram GTLIFE to
calculate a fatigue life by using the randomly selected S/N curve. Subprograms

KOMO and GTLIFE are described in Sections 4.1.6 and 4.1.8, respectively.

The fatigue lives are arranged in ascending order in a list containing the lowest fifty
percent of the lives. The INSORT routine performs an insertion sort with each new
fatigue life. When the outer DO loop is completed, the list of lives representing the
left-hand tail of the failure distribution is written to file LOWLIE Subprogram INSORT
is described in Appendix 5.B.

If a truncated Normal distribution was used for the materials shape parameter m,
the empirical median S/N curve will be calculated upon user request. The routine
SORTM is called to sort the values ofm and the routine EXPCTD calculates the median

6 Hyperparameters are discussed inSection Z1.1.
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S/N curve. Sections 4.1.10 and 4.1.3.12 describe the routines SORTM and EXPCTD,

respectively.

5.2.2.2 Driver Transformation
The flowchart for the driver transformation discussed in Section 2.2.2.2 is given in

Figure 5-18. The driver transformation is performed in several steps. The first step

is to calculate Cs, Zm and ,1.e by using the parametric relationships of Equations 2.94
through 2-98 and the values of m and ATt. Then Cs, Zm, ZG; the nominal stresses

SMo,Srnoand SG=;and the model accuracy factors ZK, and ZK_are combined by using
Equation 2-103. The result is the reference stress SRfor the single-cycle stress history,
which is then used in the low cycle fatigue life calculation.
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_, _,T_,,tK,,,tK=,

l
CALCULATE THE SPEED VARIABIUTY

CORRECTION FACTOR

Cs = (o_/_o) 2 (Eq. 2-94)

1
CALCULATE THE DEVIATION FROM

NOMINAL METAL TEMPERATURE
ATm = Crnf AT I (Eq. 2-95)

1
CALCULATE THE SENSITIVITY OF STRESS

TO METAL TEMPERATURE VARIATION

Am = 1 + Cm _,Tm/Smo (Eq. 2-97)

FALSE

AGT = CG2&Tf (Eq. 2-96)

CALCULATE THE SENSITIVITY OF
STRESS TO THERMAL GRADIENT VARIATION

JIG= 1 + CGAGT/SGo (Eq. 2-98)

AGT = CG1AT, (Eq.2-96) I

CALCULATETHEREFERENCESTRESS

S_=_ICsS.o+ _mS.o+ _OSaJK_/K, (Eq.2-10_)

l
S_

Figure 5-18 Rowchart of DriverTransformation
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Appendix 5.A

Program Flowchart Symbols

The symbols employed in the flowcharts are given in Figure 5-19.

/ /
INPUT/OUTPUT PROCESS

FLOWLINE

DECISION

SUBROUTINE, FUNCTION

FLOWLINE CONTINUATION
IDENTIFIERS

DOCUMENT

_DOI-- M_

TO N BY 1

DO LOOP PREPARATION
(INCREMENT I BY 1 FROM M TO N)

START, STOP, RETURN

Figure 5-19 Program Rowchart Symbols
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Appendix 5.B

INSORT Routine

The flowchart for the FORTRAN routine INSORT is given in Figure 5-20. The routine

performs an insertion sort on the failure times provided by the Probabilistic Failure

Models (PFMs). Only the lowest fifty percent of the failure times are saved.

START

1
CALCULATE NUMBER OF UVES TO BE SAVED

NUM = TOTAL NUMBER OF LIVES / 2

//oo,-1
TO NUM BY 1

INSERT X AT
PLACE = I

FALSE

Figure 5-20 Rowchart for Subprogram INSORT
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DOI -----PLACE+ 1"_\

TO NUM BY 1

l
MOVE ENTRIES > X

TO TEMPORARY ARRAY

Y(I) = UFE(I-1)

i

INSERT X IUFE( PLACE ) = X

1
DO I_ PLACE + 1 _.,\

TO NUM BY 1

l
RESTORE ENTRIES FROM

TEMPORARY ARRAY

UFE(I) =Y(I)

l
RETURN

Figure S-20 Rowchart for Subprogram INSORT (Cont'd)
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Section 6.1

High Cycle Fatigue Analysis User's Guides

The user's guides for running the two high cycle fatigue (HCF) analysis codes
DCTHCF and HEXHCF are given here. The HCF methodology is discussed in Section
2.2.1, the program descriptions and flowcharts are presented in Section 5.1, and the
code structures and listings are provided in Section 7.1.

6.1.1 DCTHCF Program

The DCTHCF program was used to analyze high cycle fatigue failure of the HPOTP

main discharge duct and the LPFTP turbine drive duct. The dynamic load input for
the program consists of narrow-band and sinusoidal reference time histories. These
reference time histories are generated using the program NBSlN. The output of
DCTHCF includes the simulated B-lives and a list of the lowest one percent of lives.
The list of lives may be used as input to the regression programs of Section 4.2 to
compute the parameters of the Bayesian prior failure distribution. This prior distribu-
tion and success/failure data are used as input to the Bayesian updating program
BAYES to obtain a posterior failure distribution.

6.1.2 How To Use Program DCTHCF

The program DCTHCF is intended to be run in batch (i.e., background) mode.
DCTHCF requires two input data files: DCTHCD and RELATD. The materials char-
acterization model portion of the program requires both files for all runs, even when
no related S/N data is used. DCTHCF also uses a set of load data files containing
the reference time histories. The names of the load data files must be defined by the

user. The file DCTHCD contains the analysis control parameters, driver distributions,
engineering analysis parameters, and specific and exogenous materials information.
The file RELATD contains the related materials information. A complete description

of the input data for the DCTHCD and RELATD data files is given in Section 6.1.3.

The results from the DCTHCF program are written to five output files: DCTHCO,
RELATO, DUMP, IOUTPR, and LOWUE DCTHCO contains the echo of the informa-
tion in DCTHCD, the results of any stress ratio transformations performed on specific
materials data, and the results of the simulation. RELATO contains the echo of the
information in RELATD and the results of any stress ratio transformations performed
on related materials data. The results of the materials characterization calculations

are primarily given in DUMR These calculations include point and interval estimates
for S/N curve parameters m and C, posterior credibility ranges for m, and an estimate
of the median S/N curve. File IOUTPR contains an echo of the analysis parameters

and, if requested, a dump of intermediate calculations. If the program terminates

PRECEDIN6 PAGE BLANK hot FILMED
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prematurely, an error message will be printed in the IOUTPR file. A list of error
messages and possible remedies for the problems is given in Section 6.1.6. LOWUF
contains the first one percent of the lives of the simulated failure distribution.

6.1.3 Description of Input Data Files

Annotated examples of the complete data file format structure for DCTHCD and

RELATD are presented inFigures 6-1 and 6-2, respectively. The data lines of the input
files are given in boxes, with a description of each data line located adjacent to each
box. The specific input parameters of Figures 6-1 and 6-2 are individually defined in
Sections 6.1.3.1 and 6.1.3.2. Input parameter values given in Figures 6-1 and 6-2 are

not necessarily those used in the application case studies of Section 3.1.

The input data is read by free format statements from files DCTHCD and RELATD.
Thus, the numbers may be provided sequentially on a line up to 80 characters in

length, with each number separated by a blank character or comma. Each number
may also be on a separate line in the file. However, it is recommended that the input
format suggested in Figures 6-1 and 6-2 be followed whenever possible.

6.1.3.1 Input File DCTHCD
The required data for the DCTHCD file is divided into the four blocks shown in Figure

6-3: analysis parameters, driver information, load and geometry, and materials
information. The analysis parameters block contains the analysis parameters and the

keys to select the program options. The driver information block contains the
parameters that define the driver distributions. The number of dynamic loads, the
magnitudes of the dynamic loads, the load file names, the static loads, and duct
geometry are given in the load and geometry block. The materials information block
contains the specific material S/N data, including the yield and ultimate strengths,
stress ratio, the S/N data points, life region boundaries, and materials characterization

model parameter constraints.

The input parameters are described below by using the following convention: the
input variable names are indicated by BOLD UPPERCASE letters; the variable types
are specified as character [CHR], integer [INT], real [RE], and double precision real
[DRE]; the function of the variable is _ and followed by a description and a
list of options, when appropriate; the program and file names are indicated by
UPPERCASE letters. A consistent set of units is given in parentheses for specifying
dimension, load, and stress input parameters. All character strings must be enclosed

by 'single quotes'. The user is reminded about the difference between the number
"0" and the letter "O" when preparing the input files.
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675
0
1

20OOO
2

0
0
10

Random number seed

Output dump controller

Inner loop size
Outer loop size
Type of S/N variation

Request for truncated Non'nal median S/N curve
Controls materials process variation
Number of B-lives

Decimal equivalent of percentages for B-lives

I 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.010

Weld offset two Beta distribution Information

0.13 0.13 0.00 0.00 0.0 0.0

0.00 0.00 0.00 0.00 0.0 0.0
1.00

Outer diameter weld axial stress concentration factor Beta distribution Information

J 1.20 3.50 0.08696 0.3478 10. 10. J

Inner diameter weld axial stress concentration factor Beta distdbution information

J 1.04 1.43 0.30 0.70 0.5 10. J

Outer diameter geometric axial stress concentration factor Beta distribution Information

11.20 1.34 0.30 0.70 0.5 10. I

2.00 2.00

2.00 2.00

0.90 1.10
0.80 1.20
0.90 1.10

0.40 0.60
0.40 0.60

0.40 0.60
0.40 0.60

0.85 1.15

0.8O 1.20
-1.38629 0.95166
14

0.15 0.866667

0.20 0.933333

Narrow-band random load scale factor

Sinusoidai load scale factor

Static load scale factor

Dynamic stress analysis accuracy factor

Static stress analysis accuracy factor
In-plane axial stress carryover factor
Out-of-plane axial stress carryover factor
In-plane clrcumferential stress carryover factor

Out-of-plane circumferential stress carryover factor
Ovality effect analysis accuracy factor

Weld offset accuracy factor
Damage accumulation model accuracy factor
Number of dynamic loads

Figure 6.1 Format for File DCTHCD
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Static loads: P, M_ My, M z, Vie Vz

18130.00 20903.0o 42010.0o 42010.03

Dynamic loads: file name, load type, P, Mx, My, Mz, Vy,Vz

'NBP' 1 237.675 0.00 0.00 0.00
'NBT' 1 0.03 103.41 0.03 0.00

'NBM3' 1 0.03 0.03 0.00 626.175
'NBV3' 1 0.00 0.03 0.03 0.03

'SIN1' 2 4.889461 1.88731 3.032265 8.618995
'SIN2' 2 17.2329 12.6415 0.182346 38.4677

'SIN3' 2 3.117695 2.764815 4.45821 29.7981
'SIN4' 2 1.107417 0.856604 1.17435 3.663675
'SIN5' 2 10.23887 11.81 905 137.38 28.5843
'SIN6' 2 2.151205 1.62707 0.430078 5.991475
'SIN7' 2 4.13738 8.509805 5.235795 71.06695

'SIN8' 2 9.1491 0.904076 5.953345 0.934805
'SIN9' 2 32.10965 0.084774 1.236315 23.9187
'SIN10' 2 79.7046 7.056975 2.48936 35.04565

3805.00

0.03
0.00

0.03
0.00

13.91015
54.89455
4.905385

1.350412
6.0813
7.077595
15.61234

5.04324
16.7327

36.66045

3805.00

0.03

0.00
0.03
34.075

0.829459
2.90558

0.691592
0.414575
13.24209

0.395232
1.242015

0.843876

0.1 62597
4.07806

1. 1.

4675.

6.0

.112

4.

0.1115

0.1378

3.01E + 07
1

20.

1.0
0.00

i 2O0Ol

. Other fatigue stress concentration factors

Inner wall limit pressure, Pi

Elbow bend radius, RB
Weld distance from the elbow tangency line, WD

Inside diameter, DI

Minimum wall thickness, outer diameter, ew1

Wall thickness at bend, inner diameter, tw2

Young's modulus of elasticity, E
Critical duct location

Angular position about the duct circumference, ¢
Reference time history pedod, T
Noise filter

Number of points in reference time history

Figure 6-1 Format for File DCTHCD (Cont'd)
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0.615 2.00

0.693 4.80

0.753 7.20

0.813 9.60

0.873 12.50

0.933 15.80

0.993 20.00

1.029 24.00

1.053 30.00

1.053 200.00

The ten points of the

piecewise linear

Fk vs.R/t curve

Description of specific material SIN data set

I '-320 HOURGLASS + STRAIGHT' I

Specific materials information: yield and ultimate strengths, number of data divisions, and total number
of points in data set

[ 178600. 220400. 1 20 I

Specific materials information for each data division: number of points in data division, stress ratio, and

life region

I 20 0.05 1 I

Figure 6-1 Format for File DCTHCD (Cont'd)
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150000. 65000.

140000. 261000.

120O00. 265000.

160000. 377000.

130O00. 694000.

110000. 2175000.

100000. 4198000.

105000. 505,3000.

92000. 9210000.

95000. 9667000.

150000. 418000.

14OOOO. 73200O.

130OOO. 740OOO.

120000. 859000.

110000. 1181000.

10OOO0. 4O200OO.

92000. 5917000.

94000. 6522000.

90000. 6891000.

86000. 4460000.

0.00

1 0
1.0E + 36
0.00

2 3.596 5.874

S1, N1

S2,N2
S3,N3
S4,N4
Ss,N5
Se,Ne
ST,N7
SS,N8
Sg,N9
$10, N10

$110 Nll

$12, N12

$13, N13

$14, N14

$15, N15

$16, N16

$17, N17

$18, N18

$19, N19

$20, N20
Stress tensile point
Number of life regions with and without data

Life boundary
C constraint
Prior information on m

I 0.0 0.0 0.0 J Bayesian pdor distribution information

I 0.0 0.0 ] Materials process variation information

Figure 6-I Format for File DCTHCD (Cont'd)
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I-'1--1 Number of related data sets

I "TITANIUM, -423F, 0.14 Fe' I Description of related material S/N data set

Related materials information: yield and ultimate strengths, number of data divisions, and total number

of points in data set

1201700. 215300. 2 10 I

Related materials Information for data division 1: number of points in data division, stress ratio, and life

region

4 0.10 1 I

140000. 38000.

130000. 30000.

130000. 713000.

130000. 3100OO.

6 0.10 2

120000. 72000.

110000. 3224000.

100000. 910000.

100000. 3230000.

120000. 665000.

110000. 56000.

$1, N1

$2, N2

s3, N3
S., N4
Number of points in division 2, stress ratio, region

$5, N5

S6, N6

Sz,N7
$8, N8

S9, N 9

$10, N10

Figure 6-2 Format for File RELATD

ANALYSIS PARAMETERS I

L
DRIVER INFORMATION

[
LOAD AND GEOMETRY

L
MATERIALS INFORMATION

Figure 6-3 Data Blocks for Input File
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Analysis Parameters Block

RAND

[DRE]

Random number seed

Needed by DCTHCF's built-in random number generator.

lOUT

lINT]

Output dump controller
DCTHCF has the ability to write intermediate calculations to file IOUTPR. The following

integer values control the =dump" of DCTHCF's calculations.

lOUT = 0

lOUT = 10

lOUT = 15

lOUT = 20

lOUT = 25

no intermediate calculation output

materials characterization model calculations

driver sampling

cycle counting and damage accumulation calculations

stress analysis calculations

NUFE

pNT]

Inner loop number
Size of the inner loop of the Monte Carlo (MC) simulation. A positive value is required.

NHYPER

[INT]

Outer loop number
Size of the outer loop of the MC simulation. The program requires a positive value.

VARY

[INT]

Type of SIN variation 1

Controls the type of stochastic variation to be included in the materials charac-

terization model S/N curve.

1 A discussion of the posu'ble stochastic specifi_4.tions of the materials model shape
parameter m is given in Pages 2-13 throfigh 2-1.
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VARY = 0

VARY = 1

VARY = 2

VARY = 3

no variation will be Included

allows ordy intrinsicmaterials variation

allows Uniform variation of the materials model shape parameter m
and intrinsic materials variation

allows truncated Normal variation of the materials model shape
parameter rn and intrinsic materials variation

NMED

[IN'r]

Request for truncated Normal median S/N curve 2

If VARY = 3, then NMED controls the calculation of the empirical median S/N curve.

NMED = 0 no median curve calculation is required

NMED = 1 median curve calculation is required

MPROC

[IN'I']

Controls materials process variation
Controls the inclusion of materials process variation (heat-to-heat variation). Process
variation in materials is discussed in Section 2.1.2.3.

MPROC = 0 no variation to be included

MPROC = 1 variation is to be included

NBLIFE

[INT]

Number of B-lives

The number of B-lives to be provided from the simulated distribution of life. A B-life

is the value of accumulated operating time to failure at a failure probability specified

as a percentage; e.g., B.1 is the failure time at a probability of 0.001 or 0.1%. NBLIFE

must be non-negative and cannot exceed 10.

2 The median S/N curve for the truncated Normal distribution is discussed on Page 2-15.
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BLFPER(1) BLFPER(2)... BLFPER(NBLIFE)

[RE] [RE] [RE]

B-life percentages
The decimal equivalent of the percentages at which the B-lives are required; e.g., if
the B.1 life is desired, then BLFPER = 0.001. A total of NBUFE percentages must

be provided. The percentage cannot exceed 50% (BLFPER < 0.50).

Driver Information Block

WEOFA WEOFB WEOFR1 WEOFR2 WEOFT1 WEOFT2

[RE] [RE] [RE] [RE] [RE] [RE]

WEOFC WEOFD WEOFR3 WEOFR4 WEOFT3 WEOFT4

[RE] [RE] [RE] [RE] [RE] [RE]

WEOFE

[RE]

Weld offset Beta distribution information

WOF_ in Equation 2-73 is the weld offset and may be characterized by two Beta
distributions. The first two lines are the two Beta distributions, one per line. See

Section 2.1.3.1 and Equation 2-54 for defining parameters for setting up a Beta driver

distribution. The first two parameters are the lower and upper bounds, respectively,

for Wo_P The next two parameters are the lower and upper bounds for the Uniform

distribution on p. Similarly, the last two parameters describe the Uniform distribution
on _). The third line is the decimal equivalent percentage weight for the first Beta

distribution and must be between 0.00 and 1.00.

WEOFA

WEOFB

WEOFR1

WEOFR2

WEOFT1

WEOFT2

WEOFC

WEOFD

WEOFR3

WOF F lower bound of Beta distdbuUon 1

WOF F upper bound of Beta distribution 1

p Uniform distribution lower bound of Beta distribution 1 of WOFF

p Uniform distribution upper bound of Beta distribution 1 of WoFF

0 Uniform distribution lower bound of Beta distribution 1 of WOFF

e Uniform distribution upper bound of Beta distribution 1 of Wo_F

WOFF lower bound of Beta distribution 2

WOFF upper bound of Beta distribution 2

p Uniform distribution lower bound of Beta distribution 2 of WOFF
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WEOFR4

WEOFT3

WEOFT4

WEOFE

p Uniform dlstdbution upper bound of Beta distdbution 2 of WOF F

8 Uniform distribution lower bound of Beta distdbution 2 of WOI F

e Uniform distdbution upper bound of Beta distdbution 2 of WOFF

decimal equivalent percentage weight occurring in Beta distdbution 1
of the weld offset, WOFF

KWODA KWODB KWODR1 KWODR2 KWODT1 KWODT2

[RE] [RE] [RE] [RE] [RE] [RE]

Outer diameter weld axial stress concentration factor Beta distribution information
The outer diameter weld axial stress concentration factor is characterized by a Beta
distribution. See Section 2.1.3.1 and Equation 2-54 for defining parameters for setting

up a Beta driver distribution. The first two parameters are the lower and upper
bounds, respectively, for the outer diameter weld axial stress concentration factor.
The next two parameters are the lower and upper bounds for the Uniform distribution
on p. Similarly, the last two parameters describe the Uniform distribution on 0. The

weld axial stress concentration factor is used to calculate KT1 inouter diameter

Equation 2-68.

KWODA

IONODB

KWODR1

KWODR2

KWODT1

KWODT2

outer diameter weld axial stress concentration factor lower bound of
Beta distribution

outer diameter weld axial stress concentration factor upper bound of
Beta distribution

p Uniform distribution lower bound of Beta distribution of outer
diameter weld axial stress concentration factor

p Uniform distribution upper bound of Beta distribution of outer
diameter weld axial stress concentration factor

0 Uniform distribution lower bound of Beta distribution of outer
diameter weld axial stress concentration factor

e Uniform distribution upper bound of Beta distribution of outer
diameter weld axial stress concentration factor

KWlDA KWlDB KWlDR1 KWlDR2 KWlDT1 KWlDT2

[RE] [RE] [RE] [RE] [RE] [RE]

Inner diameter weld axial stress concentration factor Beta distribution information
The inner diameter weld axial stress concentration factor is characterized by a Beta

distribution. See Section 2.1.3.1 and Equation 2-54 for defining parameters for setting

up a Beta driver distribution. The first two parameters are the lower and upper
bounds, respectively, for the inner diameter weld axial stress concentration factor.
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The next two parameters are the lower and upper bounds for the Uniform distribution

on p. Similarly, the last two parameters describe the Uniform distribution on 0. The
inner diameter weld axial stress concentration factor is used to calculate Kn in

Equation 2-68.

KWIDA inner diameter weld axial stress concentration factor lower bound of
Beta distdbution

KWlDB inner diameter weld axial stress concentration factor upper bound of
Beta distribution

KWlDR1 p Uniform distribution lower bound of Beta distribution of inner
diameter weld axial stress concentration factor

KWlDR2 p Uniform distdbutlon upper bound of Beta distribution of inner
diameter weld axial stress concentration factor

KWlDT1 0 Uniform distribution lower bound of Beta distribution of inner
diameter weld axial stress concentration factor

KWlDT2 0 Uniform distdbution upper bound of Beta distribution of Inner
diameter weld axial stress concentration factor

KGODA KGODB KGODR1 KGODR2 KGODT1 KGODT2

[RE] [RE] [RE] [RE] [RE] [RE]

Outer diameter geometric axial stress concentration factor Beta distribution information
The outer diameter geometric axial stress concentration factor is characterized by a
Beta distribution. See Section 2.1.3.1 and Equation 2-54 for defining parameters for

setting up a Beta driver distribution. The first two parameters are the lower and upper
bounds, respectively, for the outer diameter geometric axial stress concentration
factor. The next two parameters are the lower and upper bounds for the Uniform

distribution on p. Similarly, the last two parameters describe the Uniform distribution
on 0. The outer diameter geometric axial stress concentration factor is used to

calculate KT1 in Equation 2-68.

KGODA outer diameter geometric axial stress concentration factor lower
bound of Beta distribution

KGODB outer diameter geometric axial stress concentration factor upper
bound of Beta distribution

KGODR1 p Uniform distribution lower bound of Beta distribution of outer
diameter geometric axial stress concentration factor

KGODR2 p Uniform distdbution upper bound of Beta distribution of outer
diameter geometdc axial stress concentration factor

KGODT1 0 Uniform distribution lower bound of Beta distribution of outer
diameter geometric axial stress concentration factor
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KGODT2 e Uniform distribution upper bound of Beta distribution of outer
diameter geometric axial stress concentration factor

LAMNA LAMNB LAMNC LAMND

[RE] [RE] [RE] [RE]

Narrow-band random load scale factor distribution information

This line contains the parameters to define the narrow-band random load scale factor
_o_o,a in Equation 2-81. See Section 2.1.3.2 on load scale factors for a detailed

description of the parameters k, coefficient of variation C, and strain gage factor d.

LAMNA lower bound of Uniform distribution of k for the narrow-band random
load scale factor

LAMNB upper bound of Uniform distribution of k for the narrow-band random
load scale factor

LAMNC coefficient of variation C for the narrow-band random load scale factor

LAMND strain gage factor d for the narrow-band random load scale factor

LAMSA LAMSB LAMSC LAMSD

[RE] [RE] [RE] [RE]

Sinusoidal load scale factor distribution information

This line contains the parameters to define the sinusoidal load scale factor _os,_soe,_

in Equation 2-81. See Section 2.1.3.2 on load scale factors for a detailed description
of the parameters k, coefficient of variation C, and strain gage factor d.

LAMSA lower bound of Uniform distribution of k for the sinusoidal load scale
factor

LAMSB upper bound of Uniform distribution of k for the sinusoidal load scale
factor

LAMSC coefficient of variation C for the sinusoidal load scale factor

LAMSD strain gage factor d for the sinusoidal load scale factor

LAMSTA LAMSTB

[RE] [RE]

Static load scale factor distribution information

ZST in Equation 2-81. This is the static load scale factor and it is characterized by a
Uniform distribution.
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LAMSTA

LAMSTB

static load scale factor Uniform distribution lower bound

static load scale factor Uniform distribution upper bound

DSTRA DSTRB

[RE] [RE]

Dynamic stress analysis accuracy factor Uniform distribution information
/OYNst, in Equation 2-81. This is the dynamic stress analysis accuracy factor and it is

characterized by a Uniform distribution.

DSTRA dynamic stress analysis accuracy factor Uniform distribution lower
bound

DSTRB dynamic stress analysis accuracy factor Uniform distribution upper
bound

SSTRA SSTRB

[RE] [RE]

Static stress analysis accuracy factor Uniform distribution information
_STs_ in Equation 2-81. This is the static stress analysis accuracy factor and it is

characterized by a Uniform distribution.

SSTRA static stress analysis accuracy factor Uniform distribution lower bound

SSTRB static stress analysis accuracy factor Uniform distdbutton upper bound

CLZA CLZB CLYA CLYB

[RE] [RE] [RE] [RE]

CCZA CCZB CCYA CCYB

[RE] [RE] [RE] [RE]

Stress carryover factors
The stress carryover factors Clz, Ciy, Ccz, and C_ in Equations 2-74 through 2-77.

They are characterized by Uniform distributions. The stress carryover factors are

required to evaluate the stresses at the elbow-straight pipe junction, given the stresses

on the elbow away from end-effects.

CLZA in-plane axial stress carryover factor Clz Uniform distribution lower
bound
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Cl.ZB

CLYA

CLYB

CCZA

CCZB

CCYA

CCYB

in-plane axial stress carryover factor Ctz Uniform distribution upper
bound

out-of-plane axial stress carryover factor C/y Uniform distribution lower
bound

out-of-plane axial stress carryover factor C/y Uniform distribution
upper bound

in-plane circumferential stress carryover factor Ccz Uniform distribu-
tion lower bound

in-plane circumferential stress carryover factor Ccz Uniform distribu-
tion upper bound

out-of-plane circumferential stress carryover factor Ccy Uniform dis-
tribution lower bound

out-of-plane circumferential stress carryover factor Ccy Uniform dis-
tribution upper bound

OVALA OVALB

[RE] [RE]

Ovality effect analysis accuracy factor Uniform distribution information
Zovat in Equations 2-74 through 2-77. This is the ovality effect analysis accuracy factor

and it is characterized by a Uniform distribution.

OVALA _ova/Uniform distribution lower bound

OVALB 2ova/Uniform distribution upper bound

LAMWA LAMWB

[RE] [RE]

Weld offset accuracy factor Uniform distribution information

ZOFFin Equation 2-73. This is the weld offset eccentricity stress concentration accuracy
factor and it is characterized by a Uniform distribution.

LAMWA _'OFF Uniform distribution lower bound

LAMWB _OFF Uniform distribution upper bound

GAMA GAMB

[RE] [RE]
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Damage accumu!_ion model accuracy factor distribution information
This line contains the Uniform distribution bounds in Ioge space for the damage

accumulation model accuracy factor Zd=m in Equation 2-91. See Section 2.2.1.4 for a

discussion of the damage accumulation calculations.

GAMA lower bound of damage accumulation accuracy factor

GAMB upper bound of damage accumulation accuracy factor

Load and Geometry block

NLOAD

[INT]

Number of dynamic loads
Total number of dynamic or time-varying loads. NLOAD cannot exceed 16.

PSTAT TSTAT MSTAT(1) MSTAT(2) VSTAT(1) VSTAT(2)

[RE] [RE] [RE] [RE] [RE] [RE]

Static loads
This line contains the six beam-end force components due to static loads.

PSTAT P (Ibs) in Equation 2-68, the static axial load component

TSTAT Mx (in.-Ibs) in Equation 2-72, the static torsional load component

MSTAT(1) My (in.-Ibs) in Equation 2-68, the static moment load component about
the y axis

MSTAT(2) M z (in.-Ibs) in Equation 2-68, the static moment load component about
the z axis

VSTAT(1) Vy 0bs) in Equation 2-72, the static shear load component along the y
axis

VSTAT(2) Vz 0bs) in Equation 2-72, the static shear load component along the z
axis

LDNAME(I) TYPE(I) P(I) T(I) M(1,1) M(2,1) V(1,1) V(2,1)

[CHR] lINT] [RE] [RE] [RE] [RE] [RE] [RE]

Dynamic loads
This line contains the dynamic load file names, load types, and the six components

of the beam-end force magnitudes. A total of NLOAD lines must be specified (i.e.,

the value of I goes from 1 to NLOAD).
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LDNAME(I)

TYPE(I)

P(I)

T(I)

M(1,1)

M(2,1)

v(_,l)

V(2,1)

File names containing the reference time history for load I. The file
name cannot be more than six characters long and must be enclosed
by single quotes.

Load-type of load I, used to assign the appropriate load scale factor
TYPE(I) = 1 Narrow-bend random load
TYPE(I) = 2 Sinusoidal load

P (Ibs) in Equation 2-68, the dynamic axial load magnitude for load I

Mx (in.-Ibs) inEquation 2-72, the dynamic torsional load magnitude for
load I

My (in.-Ibs) in Equation 2-68, the dynamic moment load magnitude
about the y axis for load I

Mz (in.-Ibs) inEquation 2-68, the dynamic moment load magnitude
about the z axis for load I

Vy (Ibs) inEquation 2-72, the dynamic shear load magnitude along the
y axis for load I

Vz (Ibs) in Equation 2-72, the dynamic shear load magnitude along the
z axis for load I

KGID KT(2,1) KT(2,2)

[RE] [RE] [RE]

Fatigue stress concentration factors
Inner diameter geometric axial and hoop fatigue stress concentration factors. The
geometric axial stress concentration factors are used to calculate the total axial stress

concentration factor, KT1 in Equation 2-68, by the multiplication of the geometric
factors KGOD and KGID, and the weld factors KWOD and KWlD, specified above.

KGID inner diameter axial geometric stress concentration factor

KT(2,1) outer diameter hoop stress concentration factor KT2 in Equation 2-69

KT(2,2) inner diameter hoop stress concentration factor K72 in Equation 2-69

LIMPR

[RE]

Limit pressure
Pi (psi) in Equation 2-68, the inner wall limit pressure.

BNRD

[RE]
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Bend radius

R B (in.) in Equation 2-74, the elbow bend radius.

WEDS

[RE]

Weld distance

W o (in.) in Equation 2-78. This is the weld distance from the elbow tangency line.

IDWE

[RE]

Inside diameter

D r (in.) the duct inside wall diameter is used to calculate R i in Equation 2-68.

MNWT

[RE]

Minimum wall thickness

tw 1 (in.) the duct minimum wall thickness assumed to occur atthe bend outer diameter
is used to calculate trn and other geometric quantities in Equations 2-68 through 2-80.

W3"ID

[RE]

Wall thickness at bend

tw 2 (in.) the duct wall thickness at the bend inner diameter is used to calculate tm and

other geometric quantities in Equations 2-68 through 2-80.

EMOD

[RE]

Elastic modulus

E (psi) in Equation 2-70. This is Young's modulus of elasticity for the component material.

LOCAT

[INT]

Critical location

Critical location of interest on the duct.

LOCAT = 1 outer wall

LOCAT = 2 innerwall
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ANGLE

Critical anc lle
(degrees) in Equation 2-68. This is the angle measured counterclockwise from the

Z-direction to the critical circumferential location of the duct.

PERIOD

[RE]

Period

T (sec) in Equation 2-91. This is the period of the reference time histories, and it is

required so that life may be provided in seconds.

TRUNC

[RE]

Noise filter

Value (psi) used to filter out the insignificant cycles in the composite stress-time history

during rainflow cycle counting.

NRAN

[RE]

Number of history points
Number of points in the reference time history files for the dynamic loads.
cannot exceed 24,000.

NRAN

FK(I) RT(I)

[RE] [RE]

Fk versus R/t curve

F k versus R/t points for each segment of the curve are used by Equation 2-73 in the

weld offset eccentricity stress concentration calculations. A block of 10 segments

must be provided (i.e., the value of I goes from 1 to 10). Both FK and RT must be

positive and increase with increasing I (i.e., I = 1 is the lower bound of the first

segment and I = 10 is the upper bound of the last segment).

FK(I) Fk(R/t) value

RT(I) R/t value
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Materials Information Block

DESCRP(O)
[CHR]

Description of specificmaterial SIN data set
Name and test environment for the specifiu material S/N data. This is a character

string no more than 40 characters long, enclosed by single quotes.

FTY FTU NDIV NPTS(O)

[RE] [RE] [INT] [INT]

Specific materials information
Yield strength, ultimate strength, number of divisions of data, number of points in S/N
data set. The data may be divided when they are assigned to a different life region

or have different stress ratios. NPTS(0) cannot exceed fifty. The next two data sets

have to be provided for each data division.

FrY

FTU

NDIV

NPTS(O)

yield strength corresponding to the specific material data set (psi)

ultimate strength corresponding to the specific material data set (psi)

number of data divisions for the specific material data set

total number of points in the specific material S/N data set

NUM RATIO REG

lINT] [RE] [INT]

Materials information for each dma division of the specific SIN data set

Number of points, stress ratio, and the life region of interest for each data division.

This line must be provided for each data division.

NUM number of $/N data points inthe data division

RATIO stress ratio for the data in the data division

REG life region number to be assigned to the data in the data division

RAWSTR(I,0) RAWNF(I,0)

[RE] [RE]
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Specific material S/N data points
Stress versus fatigue life data points for each data division. A block of NUM lines

must be specified (i.e., the value of I goes from 1 to NUM). This block must be
provided for each data division.

RAWSTR(I,0) stress value (psi)

RAWNF(I,O) fatlgue llfe value (cycles)

SZERO

[RE]

Tensile point 3

Stress tensile point S o (psi). Must be non-negative. A value of zero indicates no tensile

point. For HCF applications, this aspect of the materials model has been disabled,
however, a value of SZERO must be provided.

NUMREG NNODAT

[INT] [INT]

Data regions 4

Number of life regions that are data-determined and not data-determined. NUMREG

+ NNODAT cannot exceed three. NUMREG must be 1, 2, or 3, and NNODAT must
be non-negative, and should be 0 or 1.

NUMREG number of life regions determined by data

NNODAT number of life regions (to the dght) not determined by data

NBND(L)
[RE]

Life Boundaries s

The upper boundaries of the life regions are specified (cycles). The value of L goes

from ZROREG to the total number of regions (equal to NUMREG + NNODAT). If a
non-zero tensile point is specified, then ZROREG = 0 else ZROREG = 1. The

program expects the upper bound of the last life region to be 103s, a proxy for oo.

3 Extension of the S/N curve to the left is discussed on Page 2-17.

4 Extension of the S/N curve to the right is discussed on Page 2-17.

5 Life region boundaries are discussed on Page 2-15.
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CZERO
[RE]

Prior information on coefficient of variation of fatigue strength s

Information in the form of a constraint on the coef_cient of variation of fatigue strength

C for the specific matedal SIN data set. Value must be non-negative and a value of

zero indicates that CZERO is not in use.

MPNT(L) MZERO(1 ,L) MZERO(2,L)

[IN'l] [RE] [RE]

Prior information on the materials shape parameter m 7

The number of MZERO values in each life region, and ,he lower and upper bound for

the range of m. The value of L goes from 1 to (NUMREG + NNODA'F). If VARY =

3 is specified (truncated Normal distribution on m), then a prior range of m must be

specified for each region.

MPNT(L) The number of points, 0, 1, or 2 (no prior on m, a point prior on m, or a
prior over a range of m, respectively), in MZERO( ) for each region.

MZERO(1,L) The lower bound on the range of m or the value of the point pdor for m.

MZERO(2,L) The upper bound on the range of m. Program requires that the value
be zero if a point prior for m is specified.

DELTA(L) MO(L) SlGMA2(L)

[RE] [RE] [RE]

information on the Bayesian prior distribution for the truncated Normal distribution 8

If VARY = 3, then the materials model uses the truncated Nof_-,ai distribution. The

truncated Normal distribution requires some prior information on the Normal distribu-

tion parameters because a Bayesian analysis is performed. The information is
required for each life region. The value of L goes from 1 to (NUMREG + NNODAT).

DELTA(L) The shape parameter 6 of the Bayesian prior distribution is used to

compute the Bayesian posterior distribution parameters. Value must
be non-negative, a value of zero indicates a diffuse prior distribution.

on the coefficient of varmbon ol iaugue surengm ts mscusseu u,. • ,,p., .... ,q_ •

7 The expficit constraint on the mate.riaL.s,shape.param_cter/p_ovided by prior information
on the materials shape parame[er ts mscnsseo on rage ,_- .

8 Specification of the Bayesian prior distribution for the truncated Normal case is
discussed on Page 2-14.
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MO(L)

SlGMA2(L)

Location parameter rno of the Bayesian prior distribution of the shape
parameter m. Must be positive. Required when DELTA(L) is non-zero.

2
o , the known variance of In (fatigue life), V( In N I In S). Must be
non-negative.

KRATIO LAMN

[RE] [RE]

Materials process variation information
If MPROC = 1, then specification of KRATIO and LAMN is required. KRATIO is ZK,

the ratio MED K*/MED K where IVIEDK" is the median value over all heats for the stress

(psi) at a life of one cycle, and MED K is the median value for the specific S/N data for
the stress (psi) at a life of one cycle. LAMN is the ratio of the variance of In(life)
conditional on stress over all heats to the intrinsic materials variation for the given S/N
data conditional on stress. Process variation in materials is discussed in Section
2.1.2.3.

6.1.3.2 Input File RELATD
The input data for file RELATD, which contains the related materials information, 9

is given below. The data format is similar to that used to specify the S/N data in the

specific materials information block in the DCTHCF file.

NSETS

lINT]

Number of related data sets
Number of related material S/N data sets. The following data groups have to be

repeated as a block for each data set. The value of J varies from 1 to NSETS. If
there is no related data, then file RELATD will only contain the number =0". NSETS
cannot exceed five.

DESCRP(J)
[CHR]

Description of related material SIN data set
Name and test environment for related material S/N data set J. This is a character

string no more than 40 characters long, enclosed by single quotes.

g Related S/N data is discussed on Page 2-7.
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FTY FTU NDIV NPTS(J)

[RE] [RE] [INT] [INT]

Related materials information

Yield strength, ultimate strength, number of divisions of data, number of points in S/N

data set. The data may be divided when they are assigned to a different life region
or have different stress ratios. If all the data has a stress ratio of -1.0, then the yield

and ultimate strengths are not required, but zero values must be specified as

placeholders. NPTS(J) cannot exceed fifty. The next two data sets have to be

provided for each data division.

FTY

FTU

NDIV

NPTS(J)

yield strength corresponding to related material data set J (psi)

ultimate strength corresponding to related material data set J (psi)

number of data divisionsfor related material data set J

total number of points in related material S/N data set J

NUM RATIO REG

[INT] [RE] [INT]

Materials information for each data division of the related S/N data sat

Number of points, stress ratio, and the life region of interest for each data division.

This line must be provided for each data division.

NUM number of S/N data points in the data division

RATIO stress ratio for the data inthe data division

REG life region number to be assigned to the data in the data division

RAWSTR(I,J) RAWNF(I,J)

[RE] [RE]

Related material S/N data points
Stress versus fatigue life data points for each data division.

must be specified (i.e., the value of I goes from 1 to NUM).

provided for each data division.

RAWSTR(I,J) stress value (psi)

RAWNF(I,J) fatigue life value (cycles)

A block of NUM lines

This block must be
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6.1.3.3 Reference Time History Flies
The data format for the reference time history files is given below. There must be

NLOAD files with the same names, as specified by LDNAME(I) in file DCTHCD.
Reference time histories are typically generated by program NBSIN described in
Sections 4.5, 6.6, and 7.7.

STRHIS(I,J)
[RE]

The points of the Ith reference time history
The points of the time history specified by LDNAME(I). The data is entered one point
per line for J = 1, ..., NRAN.

6.1.4 Options and Capabilities

DCTHCF is a Monte Carlo simulation program which generates a sequence of
component lives for a particular failure mode, where life is defined as the accumulated
operating time at failure. The simulation has a double-loop structure with NHYPER
outer loops and NLIFE inner loops. The simulation size is dependent on the failure

probability at which a life estimate is desired and the precision desired. For the HPOTP
main discharge duct and LPFTP turbine drive duct applications, single-loop runs with
NHYPER = 20,000 and NLIFE = 1 were used to characterize component reliability,
and single-loop runs with NHYPER = 1000 and NLIFE - I were used for the marginal

analysis to assess the importance of drivers.

During a run, it may be desirable to "hold" a driver at a fixed value. This may be
the nominal or median value of the driver. This is done for drivers with a Beta or a

Uniform distribution by merely specifying both the upper and lower bounds to be the
desired value. For drivers with a Normal distribution, the standard deviation o, or
coefficient of variation C, is set at zero and the mean/_ is set at the desired value.

The procedure of holding certain drivers at fixed values while letting the other drivers
vary according to their probability distributions may be used for driver variation

sensitivity studies. That is, the effect on life of driver variation may be evaluated by
letting it vary while holding other drivers at fixed values. Each driver variation
sensitivity was determined in the case studies of this report with the intrinsic variation
of the fatigue life of the material included (VARY = 1).

A printout of intermediate calculations in various parts of the program may be
obtained via the lOUT option. This output will be printed in the IOUTPR file. It is
recommended that such output not be requested when the simulation size is large
since the information will be dumped during every simulation loop. The NMED option

provides for calculation of an empirical median S/N curve if the truncated Normal
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distribution is employed. 1° In this case, the median SIN curve is based on the

empirical median rn from all the shape parameters used in the simulation. The
MPROC option activates the computations for the process variation feature of the
materials characterization model, as discussed in Section 2.1.2.3.

6.1.5 Code Executlon Example

The following example run of the HCF analysis code DCTHCF was carried out with
random variation of all drivers for the HPOTP main discharge duct. In this example run,

1000 lives were simulated (NMFE = I times NHYPER = 1000) by using Uniform shape

parameter variation VARY = 2 and NMED = 0; and no materials process variation,
MPROC = 0. The B-lives11to be provided are B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9,

and B1 (NBMFE = 10, BLFPER(1) = 0.001, BLFPER(2) = 0.002, BLFPER(3) = 0.003,
BLFPER(4) = 0.004, BLFPER(5) = 0.005, BLFPER(6) = 0.006, BLFPER(7) = 0.007,
BLFPER(8) = 0.008, BLFPER(9) = 0.009, BLFPER(10) = 0.01). The user may refer
to Section 2.2.1.5 for additional information on the engineering analysis and to Section
3.1 for the results of the case study for this component.

Figure 6-4 shows the component in detail and the location of the critical weld,

designated as Jk. The bend radius for the elbow BNRD is 6.0 inches, and the weld

distance from the elbow tangency line WEDS is 0.112 inches. The minimum wall

.112"

.112"

Figure 6-4 Detai of the HPOTP Main Discharge Duct, Near Weld 6

10 The truncated Normal distribution for the materials model shape parameter m is
discussed on Page 2-14.

11 A B,life is the value of accumulated operatin_ time to failure at a failure probability
specified as a percent; e.g., B.1 is the failure tune at a probability of 0.001 or 0.1%.

6 - 28



thickness MNWT is 0.1115 inches, and the wall thickness at the bend inner diameter
is 0.1378 inches. The duct inside wall diameter IDWE is 4.00 inches.

The drivers for the HCF failure of a welded duct are as follows:

DRIVER DISTRIBUTION

1. Weld Offset

2. KT Weld and Geometry Factors
3. Dynamic Load Scale Factors
4. Static Load Scale Factor

5. Dynamic Stress Analysis Accuracy
6. Static Stress Analysis Accuracy
7. Axial Stress Carryover Factors
8. Circumferential Stress Carryover Factors

9. Ovality Effect Analysis Accuracy

10. KT Weld Offset Eccentricity Accuracy
11. Damage Accumulation Model Accuracy

Beta

Beta
Normal

Uniform

Uniform
Uniform
Uniform

Uniform
Uniform

Uniform

Uniform

The rationale for the specification of the driver distributions is given in Section 3.1.3.

The weld offset was held at 13% by fixing the upper and lower bounds of the
distribution at WEOFA = WEOFB = 0.13.

In addition to the static loads, there were two narrow-band random loads and one

sinusoidal load. The three dynamic loads (NLOAD = 3) used here are a subset of

the significant loads for this component. The procedure for identifying the significant
loads is described in Sections 2.2.1.5 and 2.3. 7. The three reference time histories

are in the files named NBP, NBM3, and SIN10, and the contents of these input files

are given below. The reference time histories have five points (NRAN = 5) and

represent 0.00025 seconds (PERIOD = 0.00025) of the loading. The reference time
histories used for the case studies of the discharge duct given in Section 3.1 consisted

of 20,000 points. Shorter histories are used here to permit their inclusion in this

example. The critical location is the outer-wall at an angle of 200 counterclockwise

from the crown (LOCAT = 1, ANGLE = 20) at weld 6.

Twenty S/N data points, NUM = 20 with a stress ratio of 0.05 (RATIO = 0.05) are

provided. The number of regions with data, NUMREG, is 1, and there are no regions
to the right without data, NNODAT = 0. The data is in one division, NDIV = 1, and
the total number of points is twenty, NPTS(0) = 20. No related data is provided.

Thus, the RELATD file is empty, except for a single entry to indicate NSETS = 0. If

further explanation of file DCTHCD is required, refer to Section 6.1.3.1 and Figure 6-1.
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The echo of the input data is in the output file DCTHCO. The simulated B-lives are
also given for the component. For instance, the B.1 life is 1.8x10 s seconds. This
value is different from the B.1 life obtained during the case study of this component

as given in Section 3.1.5 because the number and size of the reference time histories
and the number of simulation trials have been reduced to facilitate the example run.

There are only three time histories with just five points each used here, and therefore

they do not properly represent the loads. Also, the Fk versus R/t curve is only an

example curve.

The IOUTPR file gives an echo of the analysis parameters. The dump parameter
lOUT is zero; therefore, no other output is in this file. The LOWLIF file contains the

lowest one percent of the 1000 simulation lives. Finally, the DUMP file contains the
results of the materials characterization model information aggregation calculations.12

Input File - DCTHCD

675

0

1

1000

2

0

0

10

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

0.13

0.00

1.00

1.20

1.04

1.20

2.00

2.00

0.90

0.80

0.90

0.13 0.00 0.00 0.0 0.0

0.00 0.00 0.00 0.0 0.0

3.50

1.43 0.30

1.34 0.30

2.00 0.15

2.00 0.20

1.10

1.20

1.10

0.08696 0.3478

0.70 0.5

0.70 0.5

0.866667

0.933333

10. I0.

10.

10.

12 The information aggregation calculations are discussed on Pages 2-6 through 2-14.
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0.40

0.40

0.40

0.40

0.85

0.80

-1.38629

3

8130.00

'NBP ' 1

'NBM3' 1

'SIN10' 2

1.

1.

1.

4675.

6.0

.112

4.

0.1115

0.1378

3.01E+07

1

20.

0.00025

0.00

5

0.615

0.693

0.753

0.813

0.873

0.933

0.993

1. 029

1. 053

1. 053

'-320

178600.

20 0.05

150000.

140000.

120000.

160000.

130000.

110000.

100000.

105000.

92000.

95000.

0.60

0.60

0.60

0.60

1.15

1.20

0.95166

20900.00 42010.00 42010.00 3805.00 3805.00

237.675 0.00 0.00 0.00 0.00

0.00 0.00 0.00 626.175 0.00

79.7046 7.056975 2.48936 35.04565 36.66045

2.00

4.80

7.20

9.60

12.50

15.80

20.00

24.00

30.00

200.00

HOURGLASS +

220400.

1

65000.

261000.

265000.

377000.

694000.

2175000.

4198000.

5053000.

9210000.

9667000.

STRAIGHT '

1 20

0.00

0.00

4.07806
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150000. 418000.

140000. 732000.

130000. 740000.

120000. 859000.

110000. 1181000.

100000. 4020000.

92000. 5917000.

94000. 6522000.

90000. 6891000.

86000. 4460000.

0.00

1 0

1.0E+36

0.00

0 0.00 0.00

Input File - RELATD

0

Input File - NBP

0.629458884176211

0.596733661621406

-0.119721868089590

-0.820795694851671

-1.16311124100903

Input File - NBM3

-0.645335663562470

-0.592612186107565

-0.570937436536749

-0.532482208042243

-0.797739965345054

Input File - SIN10

0.973888469945478

0.921335424736327

0.516863543379789

-0.850326546259054D-001

-0.654449266970346
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Output File - DCTHCO

Copyright (C) 1990, california Institute of Technology. U.S. Government

Sponsorship under NASA Contract NAS7-918 is acknowledged.

INPUT DATA

DRIVERS

WELD OFFSET ( %)

K WELD (co)

K WELD (ID)

K GEOa (CO)

Be(0.13, 0.13)

Be(0.00, 0.00)

TEST = 1.00

Be(1.20, 3.50)

Be(1.04, 1.43)

Be(1.20, 1.34)

PARAMETER DISTRIBUTIONS

RHO THETA

U(0.00000, 0.00000) U( 0.0,

U(0.00000, 0.00000) U( 0.0,

0.0)

0.0)

IJU, mDA RANDOM

LAMBDA SINE

U(0.08696, 0.34780) U(10.0, 10.0)

U(0.30000, 0.70000) U( 0.5, 10.0)

U(0.30000, 0.70000) U( 0.5, 10.0)

k= U(2.00000, 2.00000)

COEFFICIENT OF VARIATION: 0.150

STRAIN GAGE FACTOR: 0.8666670

k: U(2.00000, 2.00000)

COEFFICIENT OF VARIATION: 0.200

STRAIN GAGE FACTOR: 0.9333330

U( 0.90000,

U( 0.80000,

U( 0.90000,

U( 0.40000,

U( 0.40000,

U( 0.40000,

U( 0.40000,

U( 0.85000,

U( 0.80000,

1.10000)

1.20000)

1.10000)

0.60000)

0.60000)

0.60000)

0.60000)

1.15000)

1.20000)

LAMBDA STATIC

DYNAMIC STRESS ANALYSIS

STATIC STRESS ANALYSIS

STRESS CARRYOVER FACTORS

IN-PLANEAXIAL

OUT-OF-PLANE AXIAL

IN-PLANE CIRCUMFERENTIAL

OUT-OF-PLANE CIRCUMFERENTIAL

OVALITY ANALYSIS FACTOR

LAMBDAKOFF
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DAMAGE MODEL ACCURACY u(in 0.25000, in 2.59001)

LOADS INPUT

p LOADS T LOADS M2 LOADS M3 LOADS V2 LOADS V3 LOADS
(LBS) (IN.-LBS) (IN .-LBS) (IN.-LBS) (LBS) (LBS)

STATIC

8130.0000 20900.0000 42010.0000 42010.0000 3805.0000 3805.0000

NBP

237.6750 0.0000 0.0000 0.0000 0.0000 0.0000

NBM3

0.0000 0.0000 0.0000 626.1750 0.0000 0.0000

SIN10

79.7046 7.0570 2.4894 35.0457 36.6604 4.0781

GEOMETRIC AND O,Tt_._

K GEOM (ID)

K HOOP (OD)

K BOOP (ID)

LIMIT PRESSURE, PSI

BEND RADIUS, IN.

WELD DISTANCE FROM ELBOM TANGENCY LINE, IN.

DUCT INSIDE DIAMETER, IN.

•MINIMUM _%LL THICKNESS, IN-

WALL THICKNESS AT BEND (ID), IN.

ELASTIC MODULUS, PSI

ANALYSIS LOCATION

J_ULE PHI (DEG)

1.00

1.00

1.00

4675.

6.00

0.112

4.00

0.1115

0.1378

0.301E+08

1

20.0

6-34



STRESS-TIME HISTORY PERIOD, SEC

STRESS-TIME HISTORY NOISE FILTER,

NUMBER OF TIME-VARYING LOADS

NUMBER OF POINTS IN HISTORIES

PSI

0.00

0.0

3

5

MATERIAL INPUT

DESCRIPTION"

YIELD STRENGTH

ULTIMATE STRENGTH

NUMBER OF POINTS

-320 HOURGLASS + STRAIGHT

0.17860E+06

0.22040E+06

20

ORIGINAL S/N

STRESS LIFE

0.15000E+06 65000.

0.14000E+06 261000.

0.12000E+06 265000.

0.16000E+06 377000.

0.13000E+06 694000.

0.11000E+06 2175000.

0.10000E+06 4198000.

0.10500E+06 5053000.

0.92000E+05 9210000.

0.95000E+05 9667000.

0.15000E+06 418000.

0.14000E+06 732000.

0.13000E+06 740000.

0.12000E+06 859000.

0.11000E+06 1181000.

0.10000E+06 4020000.

0.92000E+05 5917000.

0.94000E+05 6522000.

0.90000E+05 6891000.

0.86000E+05 4460000.

STRESS

RATIO REGION

0.05 1

0.05 1

0.05 1

O.O5 1

0.05 1

0.05 1

0.05 1

0.05 1

0.05 1

0.05 1

0.05 1

0.05 1

0.05 1

0.05 1

0.05 1

0.05 1

0.05 1

0.05 I

0.05 1

0.05 1

TRANSFORMED SIN

STRESS LIFE

0.11086E+06 65000.

0.99773E+05 261000.

0.79814E+05 265000.

0.12280E+06 377000.

0.89449E+05 694000.

0.70802E+05 2175000.

0.62353E+05 4198000.

0.66510E+05 5053000.

0.55964E+05 9210000.

0.58323E+05 9667000.

0.11086E+06 418000.

0.99773E+05 732000.

0.89449E+05 740000.

0.79814E+05 859000.

0.70802E+05 1181000.

0.62353E+05 4020000.

0.55964E+05 5917000.

0.57532E+05 6522000.

0.54416E+05 6891000.

0.51374E+05 4460000.

THERE IS 1 REGION(S) WITH DATA
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AND 0 RI_ION(S) TO THE RIGHT WITHOUT DA'_

THE UPPER BOUND(S) OF THE REGIOtq(S) ARE (CYCLES):

0. 100E+37

EXOGENOUS INFORMATION

CONSTRAINT ON COEFFICIENT OF VARIATION, C:

EXPLICIT CONSTRAINT ON m FOR EACH REGIONs

REGION # OF POINTS LOWER BOUND

1 0 0.0000

0.0000

UPPER BOUND

0.0000

B LIVES: EMPIRICAL

0.00100 0.178612E+07

0.00200 0.454616E+07

0.00300 0.490656E+07

0.00400 0.495901E+07

0.00500 0.508289E+07

0.00600 0.583508E+07

0.00700 0.645511E+07

0.00800 0.701038E+07

0.00900 0.716342E+07

0.01000 0.757381E+07

0.50000 0.315738E+10

Output File - RELATO

NUMBER OF DATA SETS: 0

NOTE: ALL Kt ASSUMED TO BE 1.0

TRANSFORMED DATA

Output File - DUMP

Copyright (C) 1990, California Institute of Technology. U.S. Government

Sponsorship under NASA Contract NAS7-918 is acknowledged.
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RESULTS OF INFORMATION AGGREGATION _TIONS

95% CONFIDENCE INTERVALS ON C ANDmFOREACHREGION

REGION: 1 Io = ( 0.092758540, 0.181539600}

Jo = ( 3.596348000, 5.874000000}

POINT ESTIMATES OF C AND m FOR EACH REGION

REGION E(C) E(m)

1 0. 122759400 4.735174

POSTERIOR CREDIBILITY RANGE ON m FOR EACH REGION

REGION LOWER BOUND UPPER BOUND

1 3.5963 5.8740

PARAMETER VALUES FOR MEDIAN S/N CURVE

NUMBER OF REGIONS: 1 E(BETAo) .. 9.6555

REGION m K LIFE BOUND

1 4.73517 0. 15458E+07 0. 100E+37

E(k) - 14.2292

STRESS BOUND

0.00000E+00

Output File- IOUTPR

RANDOM NUMBERSEED =

IOUT (MATCER- 10, DCTHCF = 15, ELWELD = 25)=

INNER LOOP SIZE =

OUTER LOOP SIZE

TYPE OF S/N VARIATION DESIRED =

675.000000000000

0

1

1000

2
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NORMAL MEDIAN CURVE (0 - NO, I - YES) -

MATERIALS PROCESS VARIATION DESIRED

(0 - NO, 1 - YES) -

0

0

Output File- LOWLIF

1 0.100000E-02 0.178612E+07

2 0.200000E-02 0.454616E+07

3 0.300000E-02 0°490656E+07

4 0.400000E-02 0.495901E+07

5 0.500000E-02 0.508289E+07

6 0.600000E-02 0.583508E+07

7 0.700000E-02 0.645511E+07

8 0.800000E-02 0.701038E+07

9 0.900000E-02 0.716342E+07

10 0.100000E-01 0.757381E+07

6.1.6 Error Messages and Posslble Remedles

The following messages, when applicable, will appear in file IOUTPR. These
messages are primarily generated by the materials characterization model (MATCHR)

portion of DCTHCF. An error message stating that a limit has been exceeded will
require that the user increase those limits, as directed, and reviewing or consulting
Section 7.3.1.3 is desirable. The messages are listed in alphabetical order for the

convenience of the user.

ERROR: BAD VALUE FOR DELTA OR VALUE OF MO INCONSISTENT WITH

DELTA IN REGION 'L'
Fatal This error can occur during the use of the truncated Normal variation

option of the materials characterization model for two reasons. First, the
value of 6 may be negative. Second, a value of _ was specified, but the

value for mo is not positive. Check file DCTHCD.

ERROR: CANNOT FIND CULPRIT LOCATION

Fatal Program error in identification of culprit failure location for LOCAT - 0.
Please take note of all input parameters for this run and contact the analyst.

ERROR: CANNOT OPEN FILE, 'filename' DOES NOT EXIST
Fatal DCTHCF attempted to open the indicated file, however the file did not
exist. Check the directory for existence of the file and also check file

DCTHCD for correct spelling of the filename.
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ERROR: Co TOO LOW

Fatal The constraint, Co, imposed on the coefficient of variation of fatigue

strength is inconsistent with the observed S/N data.

ERROR: EXCEEDED UMIT ON DEGREES OF FREEDOM IN CHI-SQUARE

TABLE, IN REGION 'L'
Fatal As implemented, the credibility interval calculations can handle no
more than 150 degrees of freedom, and the amount of data in the region in-
dicated requires more. The Z2 tables of routine INTRVL must be increased.
See Sections 4.1.3.6 and 7.3.1.3 for more information.

ERROR: EXCEEDED LIMIT ON NUMBER OF REGIONS
Fatal The materials characterization model can handle no more than 3 life

regions. Check file DCTHCD because the sum of the number of regions
with data and the number of regions without data is greater than 3.

ERROR: INVALID RESPONSE TO NORMAL MEDIAN CURVE QUESTION

Fatal NMED can only have the integer value 0 or 1. Check file IOUTPR for
the value used.

ERROR: INVALID TYPE OF MATERIALS PROCESS VARIATION DESIRED

Fatal MPROC can only have the integer value 0 or 1. Check file IOUTPR for
the value used.

ERROR: INVALID TYPE OF SIN VARIATION DESIRED

Fatal VARY can only have the integer value 0, 1, 2, or 3. Check file IOUTPR
for the value used.

ERROR: INVALID VALUE FOR RATIO: 'RATIO'
Fatal An invalid value for the stress ratio has been declared for the specific

material data set. Only values between -1.0 and + 1.0 inclusive, are pos-
sible. Check file DCTHCD.

ERROR: INVALID VALUE OF RATIO: 'RATIO'
Fatal An invalid value for the stress ratio has been declared for a related

material data set. Only values between -1.0 and + 1.0 inclusive, are pos-
sible. Check file RELATD.

ERROR: LOAD INCORRECTLY TYPED

Fatal TYPE(I) can only have the integer value 1 or 2.
for the value used.

Check file DCTHCD
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ERROR: LOCATION INCORRECTLYSPECIFIED
Fatal LOCAT can only have the integer value 0, 1, or 2.
for the value used.

Check file DCTHCD

ERROR: NO INTERSECTION BETWEEN Jo AND Mc
ERROR: NO INTERSECTION BETWEEN Jo AND Mo
ERROR: NO INTERSECTION BETWEEN Jo, Mo, AND Mc
ERROR: NO INTERSECTION BETWEEN Mo AND Mc

Fatal These errors indicate that the specified C constraint and/or prior

credibility range on m do not agree with each other and/or the observed

SIN data.

ERROR: NORMAL VARIATION REQUIRES A PRIOR RANGE ON M
Fatal The truncated Normal variation option of the materials characterization

model requires a prior range on m. The number of points for the prior range
on m has been incorrectly specified. Check file DCTHCD to verify that the

number of points indicated for each range has an integer value of 1 or 2.

ERROR: NUMBER OF POINTS PER DIVISION INCORRECTLY SPECIFIED IN SET 'J'
Fatal The materials characterization model has been given conflicting infor-

mation about the number of points in one of the related SIN data sets.
Check file RELATD to compare for each related data set the total number of

points declared with the sum of the numbers of points in each data division.

ERROR: NUMBER OF POINTS PER DIVISION INCORRECTLY SPECIFIED IN

SPECIFIC DATA SET
Fatal The materials characterization model has been given conflicting infor-

mation about the number of points in the specific SIN data set. Check file
DCTHCD, since the total number of points in the specific data set declared
and the sum of the numbers of points in each data division do not agree.

ERROR: OVERALL PRIOR RANGE INCORRECTLY SPECIFIED IN REGION

WITHOUT DATA
Fatal The prior credibility range on m in one of the regions without data has
been incorrectly specified. Check file DCTHCD to verify that either more

regions without data have been indicated than intended or that the number
of points in the prior on m in a region without data has been incorrectly

specified. Only the integer value 0, 1, or 2 is acceptable.

ERROR: OVER LIMIT ON NUMBER OF POINTS IN SET 'J'
Fatal The materials characterization model cannot accept more than 50 SIN

points in any related material data set. Check file RELATD for the total num-
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ber of points in each related data set declared, or there may be more than
50 S/N points with an incorrect total declaration. It is suggested that the
number of S/N data points in each related set be recounted. If more than
50 points are desired, the parameter MAXDAT must be increased. Refer to
Section 7.3.1.3 for the routines involved.

ERROR: OVER LIMIT ON NUMBER OF RELATED DATA SETS

Fatal The materials characterization model allows up to 5 related data sets.
Check file RELATD to determine if more than 5 related data sets were

specified. The parameter MAXSIET must be increased. Refer to Section
7.3.1.3 for the routines involved.

ERROR: OVER NUMBER OF POINTS LIMIT IN SPECIFIC MATERIAL

Fatal The materials characterization model cannot accept more than 50 S/N

points in the specific material data set. Check file DCTHCD for the total
number of points in the specific data set declared, or there may be more
than 50 S/N points with an incorrect total declaration. If more than 50 points
are desired, the parameter MAXDAT must be increased. Refer to Section
7.3.1.3 for the routines involved.

ERROR: OVER REGION LIMIT IN RELATED MATERIAL 'J'

Fatal No more than 3 life regions are allowed, and an attempt has been
made to place some S/N data in a region number greater than 3. Check file
RELATD for an invalid region number immediately following the stress ratio
value in the data set indicated.

ERROR: OVER REGION LIMIT IN SPECIFIC DATA SET

Fatal No more than 3 life regions are allowed, and an attempt has been made to
place some S/N data in a region number greater than 3. Check file DCTHCD
for an invalid region number immediately following the sb'ess ratio value.

ERROR: POSTERIOR INTERVAL IN REGION 'L' IS INCONSISTENT WITH POINT
POSTERIOR IN REGION 'L-I'

Fatal Check file DUMP to verify that the point posterior value of m in region
'L-I' is greater than the upper bound of the posterior credibility range in

region 'L'. This error indicates a violation of the concavity assumption.

ERROR: POSTERIOR INTERVAL IN REGION 'L' IS INCONSISTENT WITH THE
POSTERIOR INTERVAL IN REGION 'L-I'

Fatal Check file DUMP to verify that the lower bound of the posterior
credibility range of m in region 'L-I' is greater than the upper bound of the
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posterior credibility range of m in region 'L'. The data should be checked

for consistency.

ERROR: PRIOR ON M INCORRECTLY SPECIFIED IN 'L'
Fatal The number of points for the specified prior range on m in the indicated

region has been incorrectly specified. Check file DCTHCD to verify that the
number of points indicated for each range has an integer value of 0, 1, or 2.

ERROR: STRESS-TIME HISTORY TOO LARGE
Fatal No more than 24,000 points are allowed for a reference time history,
and an attempt has been made to use a larger history. Check file DCTHCD

for a value of NRAN larger than 24,000.

ERROR: SXY > - 0 IN REGION 'L'
Fatal During the linear regression calculations for the region indicated, the
resulting value of the sample covariance Sxywas found to be non-negative.

This suggests that the data is specified erroneously or is inadequate for
analysis, since life increasing with increasing stress contradicts the true

fatigue behavior of materials.

ERROR: TOO FEW POINTS FOR REGRESSION IN REGION 'L'
Fatal The materials characterization model does not have the required mini-

mum number of points in the region indicated to perform a linear regression.
ff there are no related data sets, then there must be at least 3 points in each

region. If there are N related data sets, then the total number of points in
each region (specific and related combined) must be at least N + 3.

IMPOSSIBLE M RANGE IN REGION 'L'
Fatal Concavity constraints during the random m selection have required an

impossible range on m for the region indicated. Take note of all input
parameters for this run, and consult Sections 4.1.5.1, 4.1.5.2, and 7.3 to aid
in identification of the cause of this error.

NOTE: E(m) IS NOT IN THE POSTERIOR RANGE ON m IN REGION 'L'
Warning This means that the estimate of m based on the SIN data only, in
the region indicated, is outside the range indicated by the specified con-
straints on m and C.

PROGRAM EXECUTION TERMINATED
Fatal This message is produced by routine TRMNAT and follows all other

fatal messages.
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WARNING: LAMBDA < .16 DURING OVALITY CALCULATIONS

Warning During the ovality effect calculations, the resulting value of A, Equa-
tions 2-74 through 2-77, was found to be less than 0.16. This suggests that

the following stress calculations may be invalid.

6.1.7 Summary of Input/Output Files

Input Files

DCTHCD

This file is opened in DCTHCE It contains all parameters for the run options; driver
distributions; engineering analysis parameters; and the specific and exogenous
materials input, including yield and ultimate strengths (psi), stress ratio, SIN data
points, life (cycles) boundaries, region information, coefficient of variation constraint,
C, and prior ranges on the materials shape parameter m for each region.

RELATD

This file is opened in subroutine INFAGG. It contains the related material data input,
including yield and ultimate strengths (psi), stress ratio, S/N data points, and region
information.

User Specified
These are the reference time history files and are opened in DCTHCF. They contain

the time histories generated by program NBSIN.

Output Files

DCTHCO

This file is opened in DCTHCF. It contains the echo of the information contained in
DCTHCD, and provides the simulated failure distribution B-life information. 13

RELATO

This file is opened in subroutine INFAGG.
contained in RELATD.

It contains the echo of the information

DUMP
This file is opened in DCTHCF. It contains the results of the information aggregation
portion of the materials model calculations, such as Io and Jo; the point estimates of

13 A B-life is the value of accumulated operatin_ time to failure at a failure probability
specified as a percent; e.g., B.1 is the failure ttme at a probability of 0.001 or 0.1%.
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m and C; posterior credibility ranges for m; and a list of the estimated values for all

S/N curve parameters. See Section 4.1.

IOUTPR
This file is opened in DCTHCF. It contains information on the particular run that is not
echoed to DCTHCO and the data dump provided when the variable lOUT is equal to

10 (materials characterization calculations), 15 (Monte Carlo simulation and driver
transformation calculations), 20 (rainflow cycle counting and damage accumulation

calculations), or 25 (stress analysis calculations).

LOWLIF
This file is opened in DCTHCF. It contains the first one percent of the calculated lives

used by the software described in Section 4.2 to calculate a, fl, and 0, the parameters

of the Bayesian prior failure distribution.

6.1.8 HEXHCF Program

The HEXHCF program was used to analyze high cycle fatigue failure of the HPOTP

heat exchanger coil small tube outlet. The dynamic load input for the program
consists of narrow-band, sinusoidal, and aerodynamic reference time histories.
These reference time histories are generated using the program NBSIN. The output

of HEXHCF includes the simulated B-lives and a list of the lowest one percent of lives.
The list of lives may be used as input to the regression programs of Section 4.2 to
compute the parameters of the Bayesian prior failure distribution. This prior distribu-
tion and success/failure data are used as input to the Bayesian updating program

BAYES to derive a posterior failure distribution.

6.1.9 How To Use Program HEXHCF

The program HEXHCF is intended to be run in batch (i.e., background) mode.
HEXHCF requires two input data files: HEXHCD and RELATD. The materials char-
acterization model portion of the program requires both files for all runs, even when
no related S/N data is used. HEXHCF also uses a set of load data files containing
the reference time histories. The names of the load data files must be defined by the

user. The file HEXHCD contains the analysis control parameters, driver distributions,

engineering analysis parameters, and specific and exogenous materials information.
The file RELATD contains the related materials information. A complete description

of the input data for the HEXHCD and RELATD data files is given in Section 6.1.10.

The results from the HEXHCF program are written to five output files: HEXHCO,

RELATO, DUMP, IOUTPR, and LOWLIE HEXHCO contains the echo of the informa-
tion in HEXHCD, the results of any stress ratio transformations performed on specific

materials data, and the results of the simulation. RELATO contains the echo of the
information in RELATD and the results of any stress ratio transformations performed
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on related materials data. The results of the materials characterization calculations
are primarily given in DUMR These calculations include point and interval estimates
for S/N curve parameters m and C, posterior credibility ranges for m, and an estimate
of the median S/N curve. File IOUTPR contains an echo of the analysis parameters

and, if requested, a dump of intermediate calculations. If the program terminates
prematurely, an error message will be printed in the IOUTPR file. A list of error
messages and possible remedies for the problems is given in Section 6.1.13. LOWLIF
contains the first one percent of the lives of the simulated failure distribution.

6.1.10 Description of Input Data Flies

Annotated examples of the complete data file format structure for HEXHCD and
RELATD are presented in Figures 6-5 and 6-2, respectively. The data lines of the input
files are given in boxes, with a description of each data line located adjacent to each
box. The specific input parameters of Figure 6-5 are individually defined in Section
6.1.10.1. Input parameter values given in Figures 6-2 and 6-5 are not necessarily
those used in the application case study of Section 3.2.

The input data is read by free format statements from files HEXHCD and RELATD.
Thus, the numbers may be provided sequentially on a line up to 80 characters in
length, with each number separated by a blank character or comma. Each number
may also be on a separate line in the file. However, it is recommended that the input
format suggested in Figure 6-5 be followed whenever possible.

6.1.10.1 Input File HEXHCD
The required data for the HEXHCD file is divided into the four blocks shown in Figure

6-3: analysis parameters, driver information, load and geometry, and materials
information. The analysis parameters block contains the analysis parameters and the
keys to select the program options. The driver information block contains the
parameters that define the driver distributions. The number of dynamic loads, the
magnitudes of the dynamic loads, the load file names, the static loads, and duct
geometry are given in the load and geometry block. The materials information block
contains the specific material S/N data, including the yield and ultimate strengths,
stress ratio, S/N data points, life region boundaries, and materials characterization

model parameter constraints.

The input parameters are described below by using the following convention: the
input variable names are indicated by BOLD UPPERCASE letters; the variable types
are specified as character [CHR], integer [INT], real [RE], and double precision real
[DRE]; the function of the variable is _ and followed by a description and a
list of options, when appropriate; the program and file names are indicated by
UPPERCASE letters. A consistent set of units is given in parentheses for specifying
dimension, load, and stress input parameters. All character strings must be enclosed
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675

0
1
2OOOO
2

0
0
5

Decimal equivalent of percentages for BJives

J0.0001 0.0005 0.001 0.005 0.01

Random number seed

Output dump controller
Inner loop size
Outer loop size

Type of S/N variation
Request for truncated Normal median S/N curve
Controls materials process variation
Number of B-lives

Weld offset two Beta distribution information

0.06 0.06 0.00 0.00 0.0 0.0

0.00 0.00 0.00 0.00 0.0 0.0

1.00

Outer diameter weld axial stress concentration factor Beta distribution Information

11.oo1.oo 0.00 0.00 o.o o.o I
Inner diameter weld axial stress concentration factor Beta distribution information

Jl.20 3.50 0.1304 o.sss2 10. 10. I

Duct inside diameter Beta distribution Information

Io.,8= o._mso.so 0.5oo.s 20. I
Wall thickness Beta distribution information

I 0.0113 0.0157 0.27273 0.27273 0.5 20. J

2.00 2.00 0.15 1.00
2.00 2.00 0.20 1.00

486. 666. 29. 56.5
799. 908. 49.5 48.

3808. 4177. 69. 69.

Narrow-band random load scale factor
Sinusoidal load scale factor

Inner wall temperature Normal distribution Information
Outer wall temperature Normal distribution information
Internal pressure Normal distribution Information

Figure 6-5 Format for File HEXHCD
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0.50 1.50
0.80 1.20

0.80 1.20
0.90 1.10
0.80 1.20

0.60 1.40
-1.38629 0.95166
3

Dynamic aerodynamic load scale factor
Static aerodynamic load scale factor

Dynamic stress analysis accuracy factor
Aerodynamic stress analysis accuracy factor
Weld offset accuracy factor
Neuber's rule accuracy factor

Damage accumulation model accuracy factor
Number of dynamic loads

Static aerodynamic load: P, Mr My, Mz, Vy,Vz

I 0.00 0.00 -0.07214 0.00 0.00 0.00 J

Dynamic loads: file name, load type, P, Mx, My, M z, Vy, Vz

'NBM3' 1 0.00 0.00 0.00
'SIN1' 2 0.027374 0.000451 0.001621

'AER01' 3 0.00 0.00 0.00

0.355475 0.00 0.00

0.082116 0.205288 0.005789
0.07179 0.00 0.0

1.0

3640.
2

180.

1.0
0.0
20001
29000000.

0.615
0.693

0.753

0.813
0.873
0.933

0.993
1.029

1.053
1.053

6

21.95

55.77

144.85

322.73

1945.90

50688.0

1.0 1.0 1.0

8.8E-06 0.30

2.00
4.80

7.20

9.60

12.50
15.80
20.00

24.00

30.00
200.00

0.001

0.002

0.005

0.010

0.050

0.660

Other fatigue stress concentration factors

External pressure, Po
Critical duct location

Angular position about the duct circumference,

Reference time history period, T
Noise filter

Number of points in reference time histories
E, <z,v

The 10 points of the
piecewise linear

Fk vs. R/t curve

Number of segments in ¢r_vs. e curve

al Cl, el

o2 e2, • 2

G3_3, e3

0'4_:4, e4

% e5, e5

o"6 • 6, e6

Figure 6-5 Format for File HEXHCD (Cont'd)
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DescdptionofspecificmaterialS/Ndataset

I '70F_321STAINLESSSTEELALLOY-WELDED' I

Specificmaterialsinformation:yieldandultimatestrengths,numberofdatadivisions,andtotalnumber
of pointsindataset

127 . , 13 I
Specific materials Information for each data division: number of points in data division, stress ratio, and

40000. 1000.

40000. 2000.

40000. 3000.

40000. 4000.

4O000. 50O0.

40000. 6000.

30000. 23000.

30000. 66000.

25000. 72000.

25000. 190000

20000. 789000.

20000. 1070000.

20000. 1450000.

0.00
1 0
1.0E + 36

0.00
0 0.000 0.000

$1, N1

$2, N2

$3, N3

S4,N4
S5, N5

Ss,N6
ST,N7
Ss,N8
Sg,N9
$10, N10

$11, Nll

$12, N12

$13, N13
Stress tensile point
Number of life regions with and without data

Life boundary
C constraint

Prior information m

[ 0.00

I0.00

0.00 0.00 J Bayesian prior distdbution information

0.00 J Materials process variation Information

Figure 6-5 Format for File HEXHCD (Cont'd)
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by 'single quotes'. The user is reminded about the difference between the number
"0" and the letter "O" when preparing the input files.

Analysis Parameters Block

RAND

[DRE]

Random number seed

Needed by HEXHCF's built-in random number generator.

lOUT

[INT]

Output dump controller
HEXHCF has the ability to write intermediate calculations to file IOUTPR. The following

integer values control the "dump" of HEXHCF's calculation.

lOUT = 0

lOUT = 10

lOUT = 15

lOUT = 20

lOUT = 25

NLIFE

[INTJ

no Intermediate calculation output

materials characterization model calculations

driver sampling

cycle counting and damage accumulation calculations

stress analysis calculations

Inner loop number
Size of the inner loop of the Monte Carlo (MC) simulation. A positive value is required.

NHYPER

[INT]

Outer loop number
Size of the outer loop of the MC simulation. The program requires a positive value.

VARY

[INT]
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Type of SIN variation TM

Controls the type of stochastic variation to be included in the materials
terization model SIN curve.

VARY = 0 no variation will be Included

VARY. = I allows only Intdnslc materials variation

VARY = 2 allows Uniform variation of the materials model shape parameter m
and intrinsic materials variation

VARY = 3 allows truncated Normal variation of the materials model shape
parameter m and intdnsic materials variation

charac-

NMED

[INT]

Request for truncated Normal median S/N curve TM

If VARY = 3, then NMED controls the calculation of the empirical median S/N curve.

NMED = 0 no median curve calculation is required

NMED = 1 median curve calculation is required

MPROC

[INT]

Controls materials process variation
Controls the inclusion of materials process variation (heat-to-heat variation). Process
variation in materials is discussed in Section 2.1.2.3.

MPROC = 0 no variation to be included

MPROC -- 1 variation is to be included

NBLIFE

[INT]

Number of B-lives
The number of B-lives to be provided from the simulated distribution of life. A B-life
is the value of accumulated operating time to failure at a failure probability specified

as a percentage; e.g., B. 1 is the failure time at a probability of 0.001 or 0.1%. NBUFE

must be non-negative and cannot exceed 10.

14 A discussion of the possible stochastic specifications of the materials model shape
parameter in is given in Pages 2-13 through 2-I4.

15 The median S/N curve for the truncated Normal distribution is discussed on Page 2-15.
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BLFPER(1) BLFPER(2)... BLFPER(NBUFE)
[RE] [RE] [RE]

B-life percentages
The decimal equivalent of the percentages at which the B-lives are required; e.g., if

the B.1 life is desired, then BLFPER = 0.001. A total of NBLIFE percentages must

be provided. The percentage cannot exceed 50% (BLFPER _< 0.50).

Driver InformaUon Block

WOFFA WOFFB WOFFR1 WOFFR2 WOFFT1 WOFFT2

[RE] [RE] [RE] [RE] [RE] [RE]

WOFFC WOFFD WOFFR3 WOFFR4 WOFFT3 WOFFr4

[RE] [RE] [RE] [RE] [RE] [RE]

WOFFE

[RE]

Weld offset Beta distribution information

WOF F in Equation 2-73 is the weld offset and may be characterized by two Beta

distributions. The "first two lines are the two Beta distributions, one per line. See

Section 2.1.3.1 and Equation 2-54 for defining parameters for setting up a Beta driver

distribution. The first two parameters are the lower and upper bounds, respectively,

for WOFF. The next two parameters are the lower and upper bounds for the Uniform

distribution on p. Similarly, the last two parameters describe the Uniform distribution

on 8. The third line is the decimal equivalent percentage weight for the first Beta
distribution and must be between 0.00 and 1.00.

WOFFA

WOFFB

WOFFR1

WOFFR2

WOFFTI

WOFFT2

WOFFC

WOFFD

WOFF lower bound of Beta distribution 1

WOFF upper bound of Beta distribution 1

p Uniform distdbution lower bound of Beta distribution 1 of WOFF

p Uniform distribution upper bound of Beta distribution I of WOFF

e Uniform distribution lower bound of Beta distribution 1 of WOFF

8 Uniform distdbution upper bound of Beta distdbution I of WOFF

WOFF lower bound of Beta distribution 2

WOFF upper bound of Beta distdbution 2
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WOFFR3

WOFFR4

WOFFT3

WOFFT4

WOFFE

p Uniform distribution lower bound of Beta distdbution 2 of WOFF

p Uniform distdbutlon upper bound of Beta distribution 2 of WOFF

8 Uniform distribution lower bound of Beta distribution 2 of WOFF

(9Uniform distribution upper bound of Beta distdbution 2 of WOFF

decimal equivalent percentage weight occurrlng in Beta distribution 1
of the weld offset, WOFF

KWODA KWODB KWODR1 KWODR2 KWODT1 KWODT2

[RE] [RE] [RE] [RE] [RE] [RE]

Outer diameter weld axial stress concentration factor Beta distribution information
The outer diameter weld axial stress concentration factor is characterized by a B=ta
distribution. See Section 2.1.3.1 and Equation 2-54 for defining parameters for setting

up a Beta driver distribution. The first two parameters are the lower and upper
bounds, respectively, for the outer diameter weld axial stress concentration factor.
The next two parameters are the lower and upper bounds for the Un'rform distribution
on p. Similarly, the last two parameters describe the Uniform distribution on 0. The
outer diameter weld axial stress concentration factor is used to calculate KT1 in

Equation 2-68.

KWODA outer diameter weld axial stress concentration factor lower bound of
Beta distdbutlon

KWODB outer diameter weld axial stress concentration factor upper bound of
Beta distribution

KWODR1 p Uniform distribution lower bound of Beta distribution of outer
diameter weld axial stress concentration factor

KWODR2 p Uniform distribution upper bound of Beta distribution of outer
diameter weld axial stress concentration factor

KWODT1 8 Uniform distdbution lower bound of Beta distribution of outer
diameter weld axial stress concentration factor

KWODT2 8 Uniform distribution upper bound of Beta distribution of outer
diameter weld axial stress concentration factor

KWlDA KWIDB KWlDR1 KWlDR2 KWlDT1 KWIDT2

[RE] [RE] [RE] [RE] [RE] [RE]

Inner diameter weld axial stress concentration factor Beta distribution information

The inner diameter weld axial stress concentration factor is characterized by a Beta
distribution. See Section 2.1.3.1 and Equation 2-54 for defining parameters for setting
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up a Beta driver distribution. The first two parameters are the lower and upper
bounds, respectively, for the inner diameter weld axial stress concentration factor.
The next two parameters are the lower and upper bounds for the Uniform distribution
on p. Similarly, the last two parameters describe the Uniform distribution on 0. The

inner diameter weld axial stress concentration factor is used to calculate Kn in
Equation 2-68.

KWlDA

KWIDB

KWIDR1

KWlDR2

KWIDT1

KWIDT2

inner diameter weld axial stress concentration factor lower bound of
Beta distribution

inner diameter weld axial stress concentration factor upper bound of
Beta distdbution

p Uniform distdbution lower bound of Beta dlstdbution of inner
diameter weld axial stress concentration factor

p Uniform distribution upper bound of Beta distdbution of inner
diameter weld axial stress concentration factor

0 Uniform distribution lower bound of Beta distribution of inner
diameter weld axial stress concentration factor

0 Uniform distdbution upper bound of Beta distribution of inner
diameter weld axial stress concentration factor

DIA DIB DIR1 DIR2 DIT1 DIT2

[RE] [RE] [RE] [RE] [RE] [RE]

Duct inside diameter Beta distribution information

Di (in.) the duct inside diameter is used to calculate Ri in Equation 2-68 and is
characterized by a Beta distribution. See Section 2.1.3.1 and Equation 2-54 for
defining parameters for setting up a Beta driver distribution. The first two parameters
are the lower and upper bounds, respectively, for the duct inside diameter. The next
two parameters are the lower and upper bounds for the Uniform distribution on p.
Similarly, the last two parameters describe the Uniform distribution on 0.

DIA

DIB

DIR1

DIR2

DIT1

DIT2

Di lower bound of Beta distribution

D i upper bound of Beta distribution

p Uniform distribution lower bound of Beta distribution of Di

p Uniform distribution upper bound of Beta distdbution of Di

0 Uniform distribution lower bound of Beta distribution of Di

0 Uniform distribution upper bound of Beta distdbution of Di
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THICA THICB THICR1 THICR2 THICT1 THICT2

[RE] [RE] [RE] [RE] [RE] [RE]

Wall thickness Beta distribution information

t (in.) the duct wall thickness is used to calculate the area and calculate R o in Equation
2-68 and is characterized by a Beta distribution. See Section 2.1.3.1 and Equation

2-54 for defining parameters for setting up a Beta driver distribution. The first two

parameters are the lower and upper bounds, respectively, for the wall thickness. The

next two parameters are the lower and upper bounds for the Uniform distribution on

p. Similarly, the last two parameters describe the Uniform distribution on 0.

THICA

THICB

THICR1

THICR2

THICT1

THICT2

t lower bound of Beta distribution

t upper bound of Beta distribution

p Uniform distribution lower bound of Beta distribution of t

p Uniform distribution upper bound of Beta distribution of t

0 Uniform distribution lower bound of Beta distribution of t

0 Uniform distribution upper bound of Beta distribution of t

LAMNA LAMNB LAMNC LAMND

[RE] [RE] [RE] [RE]

Narrow-band random load scale factor distribution information

This line contains the parameters to define the narrow-band random load scale factor

ZD,_o,e in Equation 2-81. See Section 2.1.3.2 on load scale factors for a detailed

description of the parameters k, coefficient of variation C, and strain gage factor d.

LAMNA lower bound of Uniform distribution of k for the narrow-band random
load scale factor

LAMNB upper bound of Uniform distribution of k for the narrow-band random
load scale factor

LAMNC coefficient of variation C for the narrow-band random load scale factor

LAMND strain gage factor d for the narrow-band random load scale factor

LAMSA LAMSB LAMSC LAMSD

[RE] [RE] [RE] [RE]
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Sinusoidal load scale factor distribution information

This line contains the parameters to define the sinusoidal load scale factor Zo=,,j=_.

in Equation 2-81. See Section 2.1.3.2 on load scale factors for a detailed description

of the parameters k, coefficient of variation C, and strain gage factor d.

LAMSA

LAMSB

LAMSC

LAMSD

lower bound of Uniform distribution of k for the slnusoidal load scale
factor

upper bound of Uniform distribution of k for the sinusoidal load scale
factor

coefficient of variation C for the sinusoidal load scale factor

strain gage factor d for the sinusoidal load scale factor

TIMUA TIMUB TISIGA TISlGB

[RE] [RE] [RE] [RE]

Inner wall temperature Normal distribution information
Ti (°R) the inner wall temperature is used to calculate the temperature difference

across the wall of the duct, AT (°R) in Equation 2-70, and is characterized by a Normal
distribution.

TIMUA

TIMUB

TISIGA

TISIGB

/_ Uniform distribution lower bound of Normal distribution of

/_ Uniform distribution upper bound of Normal distribution of T/

a Uniform distribution lower bound of Normal distribution of T/

_rUniform distribution upper bound of Normal distribution of T/

TOMUA TOMUB TOSlGA TOSlGB

[RE] [RE] [RE] [RE]

Outer wall temperature Normal distribution information
TO (°R) the outer wall temperature is used to calculate the temperature difference
across the wall of

distribution.

TOMUA

TOMUB /_

TOSIGA (7

TOSIGB o

the duct, AT (OR) in Equation 2-70, and is characterized by a Normal

Uniform distribution lower bound of Normal distribution of To

Uniform distribution upper bound of Normal distribution of To

Uniform distribution lower bound of Normal distribution of TO

Uniform distribution upper bound of Normal distribution of To
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PCMUA PCMUB PCSIGA PCSIGB

[RE] [RE] [RE] [RE]

Inner wall pressure Normal distribution information
pj (psi) in Equation 2-68. This is the inner wall pressure and it is characterized by a
Normal distribution.

PCMUA

PCMUB

PCSIGA

PCSIGB

/_ Uniform distribution lower bound of Normal distribution of Pi

/_ Uniform distribution upper bound of Normal distribution of Pi

<7Uniform distribution lower bound of Normal distribution of pl

a Uniform distribution upper bound of Normal distribution of Pi

AERDA AERDB

[RE] [RE]

Dynamic aerodynamic load scale factor distribution information
ZD_o in Equation 2-81. This is the dynamic aerodynamic load scale factor and it is

characterized by a Uniform distribution.

AERDA dynamic aerodynamic load scale factor Uniform distribution lower
bound

AERDB dynamic aerodynamic load scale factor Uniform distdbution upper
bound

AERSA AERSB

[RE] [RE]

Static aerodynamic load scale factor distribution information
,_.ST_e_o in Equation 2-81. This is the static aerodynamic load scale factor and it is

characterized by a Uniform distribution.

AERSA static aerodynamic load scale factor Uniform distribution lower bound

AERSB static aerodynamic load scale factor Uniform distribution upper bound

DSTRA DSTRB

[RE] [RE]
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The dynamic stress analysis accuracy factor Uniform distribution information
ZOYN,tr in Equation 2-81. This is the dynamic stress analysis accuracy factor and it is

characterized by a Uniform distribution.

DSTRA dynamic stress analysis accuracy factor Uniform distribution lower
bound

DSTRB dynamic stress analysis accuracy factor Uniform distribution upper
bound

ASTRA ASTRB

[RE] [RE]

Aerodynamic stress analysis accuracy factor Uniform distribution information
_._RO,v in Equation 2-81. This is the aerodynamic stress analysis accuracy factor and

it is characterized by a Uniform distribution.

ASTRA aerodynamic stress analysis accuracy factor Uniform distribution
lower bound

ASTRB aerodynamic stress analysis accuracy factor Uniform distribution
upper bound

LAMWA .LAMWB

[RE] [RE]

Weld offset accuracy factor Uniform distribution information
A.oFF in Equation 2-73. This is the weld offset eccentricity stress
accuracy factor and it is characterized by a Uniform distribution.

LAMWA Jl,OFF Uniform distribution lower bound

LAMWB _OFF Uniform distribution upper bound

concentration

NEUBA NEUBB

[RE] [RE]

Neuber's Rule accuracy factor Uniform distribution information
_.neuin Equation 2-89. This is the Neuber's Rule accuracy factor and it is characterized
by a Uniform distribution.

NEUBA Neuber's Rule accuracy factor Uniform distribution lower bound

NEUBB Neuber's Rule accuracy factor Uniform distribution upper bound
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GAMA GAMB

[RE] [RE]

Damage accumulation model accuracy factor distribution information
This line contains the Uniform distribution bounds in Ioge space for the damage

accumulation model accuracy factor Zo_-n in Equation 2-91. See Section 2.2.1.4 for a

discussion of the damage accumulation calculations.

GAMA lower bound on damage accumulation accuracy factor

GAMB upper bound on damage accumulation accuracy factor

Load and Geometry block

NLOAD

[IN'I']

Number of dynamic loads
Total number of dynamic or time-varying loads. NLOAD cannot exceed 16.

PSTAT TSTAT MSTAT(1) MSTAT(2) VSTAT(1) VSTAT(2)

[RE] [RE] [RE] [RE] [RE] [RE]

Static loads

This line contains the six beam-end force components due to static aerodynamic

loads.

PSTAT

TSTAT

MSTAT(1)

MSTAT(2)

VSTAT(1)

VSTAT(2)

P Obs) in Equation 2-68, the static axial load component

Mx (in.-tbs) in Equation 2-72, the static torsional load component

My (in.-Ibs) in Equation 2-68, the static moment load component about
the y axis

Mz (in.-ibs) inEquation 2-68, the static moment load component about
the z axis

Vy Obs) in Equation 2-72, the static shear load component along the y
axis

Vz (Ibs) in Equation 2-72, the static shear load component along the z

axis
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LDNAME(I) TYPE(I) P(I) T(I) M(1,1) M(2,1) V(1,1) V(2,1)

[CHR] [INT] [RE] [RE] [RE] [RE] [RE] [RE]

Dynamic loads
This line contains the dynamic load file names, load types, and the six components
of the beam-end force magnitudes. A total of NLOAD lines must be specified (i.e.,

the value of I goes from 1 to NLOAD).

LDNAME(I) File names containing the reference time history for load I. The file
name cannot be more than six characters long and must be enclosed
by single quotes.

TYPE(I) Load-type of load I, used to assign the appropriate load scale factor
TYPE(I) = 1 Narrow-band random load
TYPE(I) = 2 Sinusoidal load
TYPE(I) = 3 Dynamic aerodynamic load

P(I) P 0bs) inEquation 2-68, the dynamic axial load magnitude for load I

T(I) Mx (in.4bs) in Equation 2-72, the dynamic torsional load magnitude for
load I

M(1,1) My (in.4bs) in Equation 268, the dynamic moment load magnitude
about the y axis for load I

M(2,1) Mz (in.4bs) in Equation 2-68, the dynamic moment load magnitude
about the z axis for load I

V(1,1) Vy 0bs) in Equation 2-72, the dynamic shear load magnitude along the
y axis for load I

V(2,1) Vz 0bs) in Equation 2-72, the dynamic shear load magnitude along the
z axis for load I

KGOD KGID KT(2,1) KT(2,2)

[RE] [RE] [RE] [RE]

Fatigue stress concentration factors
Geometric axial and hoop fatigue stress concentration factors. The geometric axial
stress concentration factors are used to calculate the total axial stress concentration

factor, KT1 in Equation 2-68, by the multiplication of the geometric factors KGOD and
KGID, and the weld factors KWOD and KWlD, specified above.

KGOD

KGID

KT(2,1)

KT(2,2)

outer diameter axial geometric stress concentration factor

inner diameter axial geometric stress concentration factor

outer diameter hoop stress concentration factor, KT2 in Equation 2-69

inner diameter hoop stress concentration factor, K72 in Equation 2-69
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PCO
[RE]

External pressure
Po (psi) in Equation 2-68. This is the outer wall pressure.

LOCAT

[INT]

Critical location
Critical location of interest on the duct wall.

LOCAT = 1 outer wall

LOCAT = 2 Inner wall

ANGLE

[RE]

Critical angle
(degrees) in Equation 2-68. This is the angle measured counterclockwise from the

Z-direction to the critical circumferential location of the duct.

PERIOD

[RE]

Period

T (sec) in Equation 2-91. This is the period of the reference time histories, and it is

required so that life may be provided in seconds.

TRUNC

[RE]

Noise filter

Value (psi) used to filter out the insignificant cycles in the composite stress-time history
during rainflow cycle counting.

NRAN

[RE]

Number of history points
Number of points in the reference time history files for the dynamic loads. NRAN
cannot exceed 24,000.

6-60



EM COEXP NU

[RE] [RE] [RE]

Materials information

This line contains the elastic modulus, thermal expansion, and Poisson's ratio.

EM E (psi) in Equation 2-70, Young's modulus of elasticity

COEXP a (/OR)in Equation 2-70, the coefficient of thermal expansion

NU v in Equation 2-70, the materials Poisson's ratio

FK(I) RT(I)

[RE] [RE]

Fk versus R/t curve

Fk versus R/t points for each segment of the curve are used by Equation 2-73 in the

weld offset eccentricity stress concentration calculations. A block of 10 segments

must be provided (i.e., the value of I goes from 1 to 10). Both FK and RT must be

positive and increase with increasing I (i.e., I = 1 is the lower bound of the first

segment and I = 10 is the upper bound of the last segment).

FK(I) Fk(RIt ) value

RT(I) R/t value

NUMSEG

[INT]

Number of segments
The number of piecewise linear segments in the stress-strain versus strain curve
required by Equation 2-88.

SE(J) E(J)

[RE] [RE]

Stress-strain versus strain curve

aE versus e points for each segment of the a vs. c curve are used in the Neuber's Rule

calculations in Equations 2-88 and 2-89. A block of NUMSEG lines must be provided

(i.e., the value of J goes from 1 to NUMSEG). Both SE and E must be positive and
increase with increasing J as HEXHCF assumes that the J = 0 point is at the origin.
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SE(J)

E(J)

value of the product of stress and strain, oe, at the upper end of the
Jth segment of the stress-strain versus strain curve

value of the strain e at the upper end of the Jth segment of the stress-
strain versus strain curve

Materials InformaUon Block

DESCRP(O)

[CHR]

Description of specific material S/N data set
Name and test environment for the specific material SIN data. This is a character

string no more than 40 characters long, enclosed by single quotes.

FTY FTU NDIV NPTS(O)

[RE] [RE] [INT] [INT]

Specific materials information
Yield strength, ultimate strength, number of divisions of data, number of points in SIN
data set. The data may be divided when they are assigned to a different life region
or have different stress ratios. NPTS (0) cannot exceed fifty. The next two data sets

have to be provided for each data division.

FTY

FTU

NDIV

NPTS(0)

yield strength corresponding to the specific material data set (psi)

ultimate strength corresponding to the specific material data set (psi)

number of data divisions for the specific material data set

total number of points inthe specific material SIN data set

NUM RATIO REG

[INT] [RE] [INT]

Materials information for each data division of the specificS/N data set
Number of points, stress ratio, and the life region of interest for each data division.
This line must be provided for each data division.

NUM number of S/N data points inthe data division

RATIO stress ratio for the data in the data division

REG life region number to be assigned to the data in the data division
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RAWSTR(I,0) RAWNF(I,0)

[RE] [RE]

Specific material S/N data points
Stress versus fatigue life data points for each data division. A block of NUM lines

must be specified (i.e., the value of I goes from 1 to NUM). This block must be

provided for each data division.

RAWSTR(I,0) stress value (psi)

RAWNF(I,0) fatigue lifevalue (cycles)

SZERO

[RE]

Tensile point is

Stress tensile point S o (psi). Must be non-negative. A value of zero indicates no

tensile point. For HCF applications, this aspect of the materials model has been

disabled, however, a value of SZERO must be provided.

NUMREG NNODAT

[INT] [INT]

Data regions 17

Number of life regions that are data-determined and not data-determined. NUMREG
+ NNODAT cannot exceed three. NUMREG must be 1, 2, or 3, and NNODAT must

be non-negative, and should be 0 or 1.

NUMREG number of life regions determined by data

NNODAT number of life regions (to the right) not determined by data

NBND(L)

[RE]

Life Boundaries is

The upper boundaries of the life regions are specified (cycles). The value of L goes

from ZROREG to the total number of regions (equal to NUMREG + NNODAT). If a

iS Extension of the S/N curve to the left is discussed on Page 2-17.

17 Extension of the S/N cuve to the right is discussed on Page 2-17.

18 Life region boundaries are discussed on Page 2-15.

6-63



non-zero tensile point is specified, then ZROREG = 0 else ZROREG = 1. The
program expects the upper bound of the last life region to be 10 =, a proxy for o=.

CZERO

[BE]

Prior information on coefficient of variation of fatigue stren_th 19

Information in the form of a constraint on the coefficient of variation of fatigue strength

C for the specific material S/N data set. Value must be non-negative and a value of
zero indicates that CZERO is not in use.

MPNT(L) MZERO(1,L) MZERO(2,L.)

[IN'l'] [RE] [RE]

Prior information on the materials shape parameter m2°

The number of MZERO values in each life region, and the lower and upper bound for

the range of m. The value of L goes from I to (NUMREG + NNODAT). If VARY -
3 is specified (truncated Normal distribution on m), then a prior range of m must be
specified for each region.

MPNT(L) The number of points, 0, 1, or 2, (no pdor on m, a point prior on m, or
a prior over a range of m, respectively) in MZERO( ) for each region.

MZERO(1,L) The lower bound on the range of m or the value of the point pdor for m.

MZERO(2,L) The upper bound on the range of m. Program requires that the value
be zero if a point prior for m is specified.

DELTA(L) MO(L) SIGMA2(L)

[RE] [RE] [RE]

Information on the Bayesian prior distribution for the truncated Normal distribution 21

If VARY = 3, then the materials model uses the truncated Normal distribution. The
truncated Normal distribution requires some prior information on the Normal distribu-

tion parameters because a Bayesian analysis is performed. The information is

required for each life region. The value of L goes from I to (NUMREG + NNODAT).

19 The impficit constraint on the materials shape parameter provided by prior information
on the coefficient of variation ot tadgue strength is discussed on Pages 2-12 through 2-13.

20 The explicit constraint on the materials shape parameter provided by prior information
on the materials shape parameter is discussed on Page 2-12.

21 Specification of the Bayesian prior distribution for the truncated Normal case is
(fiscnssed on Page 2-14.
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DELTA(L)

MO(L)

SIGMA2(L)

The shapeparameter_ of the Bayesianpdo_distdbutionisusedto
computethe Bayesianposteriordistributionparameters.Valuemust
be non-negative,a valueof zero indicatesa diffusepriordistribution.

Locationparametermo of the Bayesian pdordistributionof the shape
parameterm. Mustbe positive. Requiredwhen DELTA(L)is non-zero.

o 2, the knownvarianceof In(fatiguelife), VOnN I InS). Mustbe non-
negative.

KRATIO LAMN

[RE] [RE]

Materials process variation information
If MPROC = 1, then specfication of KRATIO and LAMN is required. KRATIO is ZK,
the ratio MED K'/MED K where MED K* is the median value over all heats for the stress

(psi) at a life of one cycle, and MED K is the median value for the specific S/N data for
the stress (psi) at a life of one cycle. LAMN is the ratio of the variance of In(life)
conditional on stress over all heats to the intrinsic materials variation for the given S/N
data conditional on stress. Process variation in materials is discussed in Section
2.1.2.3.

6.1.10.2 Input File RELATD
The input data for file RELATD, which contains the related materials information, 22

is given below. The data format is similar to that used to specify the S/N data in the
specific materials information block in the HEXHCD file.

NSETS

lINT]

Number of related data sets

Number of related material S/N data sets. The following data groups have to be
repeated as a block for each data set. The value of J varies from 1 to NSETS. If
there is no related data, then file RELATD will only contain the number "0". NSETS
cannot exceed five.

DESCRP(J)

[CHR]

22 Related S/N data is discussed on Page 2-7.
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Description of related material S/N data sat
Name and test environment for related material S/N date set J. This is a character

string no more than 40 characters long, enclosed by single quotes.

FrY FTU ND|V NPTS(J)

[RE] [RE] [INT] [INT]

Related materials information
Yield strength, ultimate strength, number of dMsions of data, number of points in S/N data
set. The data may be divided when they are assigned to a different life region or have
different stress ratios. If all data has a stress ratio of -1.0, then the yield and ultimate

strengths are not required, but zero values must be specified as placeholders. NPI"S(J)
cannot exceed fifty. The next two data sets have to be provided for each data division.

FTY

FTU

NDIV

NPTS(J)

yield strength corresponding to related material data set J (psi)

ultimate strength corresponding to related material data set J (psi)

number of data dMsions for related material data set J

total number of points in related material SIN data set J

NUM RATIO REG

[IN'r] [RE] [INT]

Materials information for each data division of the related S/N date set

Number of points, stress ratio, and the life region of interest for each date division.
This line must be provided for each data division.

NUM number of SIN data points in the data division

RATIO stress ratio for the data in the data division

REG life region number to be assigned to the data in the data division

RAWSTR(I,J) RAWNF(I,J)

[RE] [RE]

Related material S/N date points
Stress versus fatigue life date points for each data division.
must be specified (i.e., the value of I goes from 1 to NUM).

provided for each data division.

RAWSTR(I,J) stress value (psi)

RAWNF(I,J) fatiguelifevalue(cycles)

A block of NUM lines
This block must be
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6.1.10.3 Reference Time History Files
The data format for the reference time history files is given below. There must be

NLOAD files with the same names, as specified by LDNAME(I) in file HEXHCD.
Reference time histories are typically generated by program NBSIN described in
Sections 4.5, 6.6, and 7.7.

STRHIS(I,J)
[RE]

The points of the Ith reference time history
The points of the time history specified by LDNAME(I). The data is entered one point

per line for J = 1, ..., NRAN.

6.1.11 Options and Capabilities

HEXHCF is a Monte Carlo simulation program which generates a sequence of

component lives for a particular failure mode, where life is defined as the accumulated
operating time at failure. The simulation has a double-loop structure with NHYPER
outer loops and NLIFE inner loops. The simulation size is dependent on the failure
probability at which a life estimate is desired and the precision desired. For the HEX
application, single-loop runs with NHYPER = 20,000 and NLIFE = 1 were used to
characterize component reliability, and single-loop runs with NHYPER = 1000 and
NLIFE = 1 were used for the marginal analysis to assess the importance of drivers.

During a run, it may be desirable to "hold" a driver at a fixed value. This may be
the nominal or median value of the driver. This is done for drivers with a Beta or a

Uniforr,] distribution by merely specifying both the upper and lower bounds to be the
desired value. For drivers with a Normal distribution, the standard deviation o, or

coefficient of variation C, is set at zero and the mean M is set at the desired value.

The procedure of holding certain drivers at fixed values while letting the other drivers
vary according to their probability distributions may be used for driver variation
sensitivity studies. That is, the effect on life of driver variation may be evaluated by
letting it vary while holding other drivers at fixed values. Each driver variation
sensitivity was determined in the case studies of this report with the intrinsic variation
of the fatigue life of the material included (VARY = 1).

A printout of intermediate calculations in various parts of the program may be
obtained via the lOUT option. This output will be printed in the IOUTPR file. It is
recommended that such output not be requested when the simulation size is large
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Figure 6-6 Detail of the HPOTP Heat Exchanger Coil Small Tube
Outlet Near Weld 3

since the information will be dumped during every simulation loop. The NMED option

provides for calculation of an empirical median S/N curve if the truncated Normal
distribution is employed. 23 In this case, the median S/N curve is based on the

empirical median m from all the shape parameters used in the simulation. The
MPROC option activates the computations for the process variation feature of the
materials characterization model, as discussed in Section 2.1.2.3.

6.1.12 Code Execution Example

The following example run of the HCF analysis code HEXHCF was carried out with
random variation of all drivers for the HPOTP heat exchanger coil small tube outlet.

In this example run, 1000 lives were simulated (NLIFE - 1 times NHYPER = 1000)

by using Uniform shape parameter variation, VARY = 2 and NMED -- 0; and no
materials process variation, MPROC = 0. The B-lives 24 to be provided are B.1, B.2,
B.3, B.4, B.5, B.6, B.7, B.8, B.9, and B1 (NBLIFE = 10, BLFPER(1) = 0.001,

BLFPER(2) = 0.002, BLFPER(3) - 0.003, BLFPER(4) = 0.004, BLFPER(5) =
0.005, 8LFPER(6) -- 0.006, BLFPER(7) - 0.007, BLFPER(8) - 0.008, BLFPER(9)
= 0.009, BLFPER(10) = 0.01). The user may refer to Section 2.2.1.5 for additional
information on the engineering analysis and to Section 3.2 for the results of the case

study for this component.

Figure 6-6 shows the component in detail and the location of the critical weld,

designated as r_. The external pressure PCO is 3640 psi. All geometric axial and

The truncated Normal distribution for the materials model shape parameter rn is
discussed on Page 2-14.

_,4 A B-life is the value of accmnulated operatin_ time to failure at a failure probability
specified as a percent; e.g., B.1 is the failure ttme at a probability of 0.001 or 0.1%.
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hoop stress concentration factors are one, KGOD = KGID = KT(2,1) = KT(2,2) =
1.0. The elastic modulus EM is 2.9x107, the coefficient of thermal expansion COIEXP

is 8.8x10 -6, and Poisson's ratio NU is 0.30 for the material.

The drivers for the HCF failure of weld 3 are as follows:

DRIVER DISTRIBUTION

1. Weld Offset

2. KT Weld Factors
3. inner Diameter
4. Wall Thickness

5, Random & Sine Load Scale Factors
6. Row Conditions

7. KT Weld Offset Eccentdcity Accuracy
8. Neuber's Rule Accuracy

9. Dynamic Aerodynamic Load Scale Factor
10. Static Aerodynamic Load Scale Factor

11. Dynamic Stress Analysis Accuracy Factor
12. Aerodynamic Stress Analysis Accuracy Factor
13. Damage Accumulation Model Accuracy

Beta
Beta

Beta
Beta
Normal

Normal

Uniform
Uniform
Uniform

Uniform
Uniform

Uniform
Uniform

The rationale for the specification of the driver distributions is given in Section 3.2.2.
The weld offset was held at 6% by fixing the upper and lower bounds of the distribution
at WOFFA = WOFFB = 0.06.

In addition to the static loads, there were one narrow-band random load, one
sinusoidal load, and one dynamic aerodynamic load. The three dynamic loads
(NLOAD = 3) used here are a subset of the significant loads for this component. The
procedure for identifying the significant loads is described in Sections 2.2.1.5, 2.3. 7,
and 3.A.2.5. The three reference time histories are in the files named NBM3, SIN1,

and AERO1, and the contents of these input files are given below. The reference time

histories have five points (NRAN = 5) and represent 0.00025 seconds (PERIOD =
0.00025) of the loading. The reference time histories used for the case studies of the

HEX coil small tube outlet given in Section 3.2 consisted of 17,800 points. Shorter
histories are used here to permit their inclusion in this example. The critical location
is the inner wall (LOCAT = 2) at a circumferential position of ANGLE = 85 °.

Thirteen S/N data points, NUM = 13 with a stress ratio of - 1.0 (RATIO = - 1.0) are
provided. The number of regions with data, NUMREG, is 1, and there are no regions to
the right without data, NNODAT = 0. The data is in one division, NDIV = 1, and the total
number of points is thirteen, NPTS(0) = 13. No related data is provided. Thus, the
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RELATD file is empty, except for a single entry to indicate NSETS = 0. If further

explanation of file HEXHCD is required, refer to Section 6.1.10.1 and Figure 6-5.

The echo of the input data is in the output file HEXHCO. The simulated B-lives are
also given for the component. For instance, the B.1 life is 4.5x10 9 seconds. This
value is different from the B.1 life obtained during the case study of this component

as given in Section 3.2.4 because the number and size of the reference time histories
and the number of simulation trials have been reduced to facilitate the example run.

There are only three time histories with just five points each used here, and therefore
they do not properly represent the loads. Also, the Fk versus R/t curve is only an

example curve.

The IOUTPR file gives an echo of the analysis parameters. The dump parameter
lOUT is zero; therefore, no other output is in this file. The LOWLIF file contains the
lowest one percent of the 1000 simulation lives. Finally, the DUMP file contains the
results of the materials characterization model information aggregation calculations. 2s

Input File - HEXHCD

675

0

1

1000

2

0

0

10

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.06

0.00

1.00

1.00

1.20

0.1885

0.0113

0.06 0.00 0.00 0.0 0.0

0.00 0.00 0.00 0.0 0.0

1.00 0.00 0.00 0.0 0.0

3.50 0.1304 0.5652 10. 10.

0.1915 0.50 0.50 0.5 20.

0.0157 0.27273 0.27273 0.5 20.

2S The information aggregation calculations are discussed on Pages 2-6 through 2-14.
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2.00 2.00

2.00 2.00

486 • 666 •

799 • 908 •

3808 • 4177 •

0.50 1.50

0.80 1.20

0.80 1.20

0.90 1.10

0.80 1.20

0.60 1.40

0.15 1.00

0.20 1.00

29. 56.5

49.5 48.

69 • 69 •

-1.38629 0.95166

3

0.00 0.00 -0.07214

'NBM3 ' 1 0.00 0.00

'SIN1' 2 0.027374 0.000451

'AEROI' 3 0.00 0.00

1.0 1.0 1.0 1.0

3640.

2

85.

0.00025

0.0

5

29000000. 8.8E-06 0.30

0.615 2.00

0.693 4.80
0.753 7.20

0.813 9.60

0.873 12.50

0.933 15.80

0.993 20.00

1.029 24.00

1.053 30.00

1.053 200.00

6

21.95

55.77

144.85

322 •73

1945.90

50688.0

'70 F, 321

27900. 76800.

13 -1.0 1

40000. 1000.

40000. 2000.

40000. 3000.

40000. 4000.

40000. 5000.

0.001

0.002

0.005

0.010

0.050

0.660

STAINLESS

1

0.00 0.00 0.00

0.00 0.355475 0.00 0.00

0.001621 0.082116 0.205288 0.005789

0.00 0.07179 0.00 0.00

STEEL ALLOY - WELDED'

13
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40000.

30000.

30000.

25000.

25000.

20000.

20000.

20000.
0.00

1 0

1.0E+36

0.00

0

6000.

23000.

66000.

72000.

190000.
789000.

1070000.

1450000.

0.000 0.000

Input Flle- RELATD

Input Flle - NBM3

0.9396865670744

0.9325857187916

1.132583595703

1.378186790842
1.546197891515

Input Flle - SIN1

-0.9766760261059

-0.9310621841538

-0.8625225012037

-0.7727446517203

-0.6639392643142

Input File - AERO1

-1.202208564616

-2.176997589958

-2.250379923423

-1.314959553996

-0.5704567649678
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Output File - HEXHCO

Copyright (C) 1990, California Institute of Technology. U.S. Governmont

Sponsorship under NASA Contract NAS7-918 is acknowledged.

INPUT DATA

DRIVERS

WELD OFFSET (%)

K WELD (OD)

X WELD (ID)

INNER DIAMETER

WALL THICKNESS

_(o.o6, 0.06)
Be(0.00, 0.00)

TEST = 1.00

Be(l.00, 1.00)

Be(1.20, 3.50)

Be(0.1885, 0.1915)

Be(0.0113, 0.0157)

PARAMETER DISTRIBUTIONS

RHO THETA

U(0.00000, 0.00000) U( 0.0, 0.0)

U(0.00000, 0.00000) U( 0.0, 0.0)

U(0.00000, 0.00000) U( 0.0, 0.0)

U(0.13040, 0.56520) U(10.0, 10.0)

U(0.50000, 0.50000) U( 0.5, 20.0)

U(0.27273, 0.27273) U( 0.5, 20.0)

LAMBDA RANDOM

LAMBDA SINE

k: U(2.00000, 2.00000)

COEFFICIENT OF VARIATION: 0.150

STRAIN GAGE FACTOR: 1.0000000

k: u(2.00000, 2.00000)

COEFFICIENT OF VARIATION: 0.200

STRAIN GAGE FACTOR: 1.0000000

INNER TEMPERATURE

OUTER TEMPERATURE

INNER PRESSURE

_J

NORMAL: U( 486.0, 666.0)

NORMAL: U( 799.0, 908.0)

NORMAL: U(3808.0, 4177.0)

SIGMA

U( 29.0, 56.5)

U( 49.5, 48.0)

U( 69.0, 69.0)

DYNAMIC AERO LOAD FACTOR

STATIC AERO LOAD FACTOR

DYNAMIC STRESS ANALYSIS

U( 0.50000, 1.50000)

U( 0.80000, 1.20000)

U( 0.80000, 1.20000)
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AERO STRESS ANALYSIS

LAMBDA KOFF

NEUBERS RULE

DAMAGE MODEL ACCURACY

U( 0.90000, 1.10000)

U( 0.80000, 1.20000)

U( 0.60000, 1.40000)

U(in 0.25000, in 2.59001)

LOADS INPUT

P LOADS T LOADS M2 LOADS M3 LOADS V2 LOADS V3 LOADS

(LBS) (ZN.-LBS) (n_.-LBS) (rS.-LBS) (LBS) (LBS)

STATIC AERO

0.000000 0.000000 -0.072140 0.000000 0.000000 0.000000

NBM3

0.000000 0.000000 0.000000 0.355475 0.000000 0.000000

SIN1

0.027374 0.000451 0.001621 0.082116 0.205288 0.005789

AEROI

0.000000 0.000000 0.000000 0.071790 0.000000 0.000000

GEOHETRIC AND OTHER INPUT

K GEOM (OD)

K GEOM (ID)

K HOOP (_)

K HOOP (ID)

EXTERNAL PRESSURE, PSI

ANALYSIS LOCATION

ANGLE THETA (DEGREES)

STRESS-TIME HISTORY PERIOD, SEC

STRESS-TIME HISTORY NOISE FILTER, PSI

1.00

1.00

1.00

1.00

3640.

2

85.0

0.00

0.0
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NUMBER OF TIME-VARYING LOADS

NUMBER OF POINTS IN HISTORIES

ANGLE THETA (RADIANS)

ELASTIC MODULUS, PSI

COEFF OF THERMAL EXPANSION

POISSONS RATIO

3

5

1.48

0.290E+08

0.88000000E-05

0.300

STRESS-STRAIN CURVE INPUT

MAXIMUM NUMBER OF SEGMENTS

STRESS-STRAIN PRODUCT STRAIN VALUES

21.95 0.00100

55.77 0.00200

144.85 0.00500

322.73 0.01000

1945.90 0.05000

50688.00 0.66000

6

MATERIAL INPUT

DESCRIPTION: 70 F,

YIELD STRENGTH

ULTIMATE STRENGTH

NUMBER OF POINTS

321 STAINLESS STEEL ALLOY - WELDED

0.27900E+05

0.76800E+05

13

ORIGINAL S/N STRESS TRANSFORMED S/N
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STRESS LIFE RATIO REGION STRESS

0.40000E+05 1000. -1.00 1 0.40000E+05

0.40000E+05 2000. -1.00 1 0.40000E+05

0.40000E+05 3000. -1.00 1 0.40000E+05

0.40000E+05 4000. -1.00 1 0.40000E+05

0.40000E+05 5000. -1.00 1 0.40000E+05

0.40000E+05 6000. -1.00 1 0.40000E+05

0.30000E+05 23000. -1.00 1 0.30000E+05

0.30000E+05 66000. -1.00 1 0.30000E+05

0.25000E+05 72000. -1.00 1 0.25000E+05

0.25000E+05 190000. -1.00 1 0.25000E+05

0.20000E+05 789000. -1.00 1 0.20000E+05

0.20000E+05 1070000. -1.00 1 0.20000E+05

0.20000E+05 1450000. -1.00 1 0.20000E+05

LIFE

1000.

2000.

3000.

4000.

5000.

6000.

23000.

66000.

72000.

190000.

789000.

1070000.

1450000.

THERE IS 1 REGION(S) WITH DATA

AND 0 REGION(S) TO THE RIGHT WITHOUT DATA

THE UPPER BOUND(S) OF THE REGION(S) ARE (CYCLES):

0.100E+37

EXOGENOUS INFORMATION

CONSTRAINT ON COEFFICIENT OF VARIATION, C:

EXPLICIT CONSTRAINT ON m FOR EACH REGIONt

REGION # OF POINTS LOWER BOUND

1 0 0.0000

0.0000

UPPER BOUND

0.0000

B LIVES: EMPIRICAL

0.00100 0.447327E+10

0.00200 0.104092E+11

0.00300 0.191086E+11

0.00400 0.208025E+11

0.00500 0.398571E+11

0.00600 0.662463E+11

0.00700 0.824330E+11

0.00800 0.959502E+11
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0.00900 0.983484E+11

0.01000 0.103062E+12

0.50000 0.374265E+15

Output File - RELATO

NUMBER OF DATA SETS: 0

NOTE- ALL Kt ASSUMED TO BE 1.0

TRANSFORMED DATA

Output File - DUMP

Copyright (C) 1990, California Institute of Technology. U.S. Government

sponsorship under NASA Contract NAS7-918 is acknowledged.

RESULTS OF INFORMATION AGGREGATION CALCULATIONS

95% CONFIDENCE INTERVALS ON C AND m FOREACH REGION

REGIONs 1 Io - ( 0.047421050, 0.113658400)

Jo - ( 7.136659000, 9.595363000)

POINT ESTIMATES OF C AND m FOR EACH REGION

REGION E(C) E(m)

1 0.066941450 8.366011

POSTERIOR CREDIBILITY RANGE ON m FOR EACH REGION

REGION IAYRER BOUND UPPER BOUND

1 7.1367 9.5954

PARAMETER VALUES FOR MEDIAN S/N CURVE
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NUMBER OF REGIONS: 1 E(BETAo) ,, 19.5380

REGION m K LIFE BOUND

1 8.36601 0. 10528E+06 0. 100E+37

E(k) ,, 11.5536

STRESS BOUND

0. 00000E+00

Output File- IOUTPR

RANDOM NUMBER SEED "

IOUT (MATCHR- 10, _CF- 15, THWELD ,, 25) -

INNER LOOP SIZE =

OUTER LOOP SIZE =

TYPE OF S/N VARIATION DESIRED ,,

NORMAL MEDIAN CURVE (0 - NO, 1 - YES) ,,

MATERIALS PROCESS VARIATION DESIRED

(0 - NO, 1 - YES) =

Output Flle - LOWLIF

1 0.100000E-02 0.447327E+10

2 0.200000E-02 0.104092E+11

3 0.300000E-02 0.191086E+11

4 0.400000E-02 0.208025E+11

5 0.500000E-02 0.398571E+11

6 0.600000E-02 0.662463E+11

7 0.700000E-02 0.824330E+11

8 0.800000E-02 0.959502E+II

9 0.900000E-02 0.983484E+11

10 0.100000E-01 0.103062E+12

675.000000000000

0

1

1000

2

0

0

6.1.13 Error Messages and Possible Remedies

The following messages, when applicable, will appear in file IOUTPR. These
messages are primarily generated by the materials characterization model (MATCHR)
portion of HEXHCF. An error message stating that a limit has been exceeded will
require that the user increase those limits, as directed, and reviewing or consulting
Section 7.3.1.3 is desirable. The messages are listed in alphabetical order for the
convenience of the user.

ERROR: BAD VALUE FOR DELTA OR VALUE OF MO INCONSISTENT WITH
DELTA IN REGION 'L'

Fatal This error can occur during the use of the truncated Normal variation

option of the materials characterization model for two reasons. First, the
value of _ may be negative. Second, a value of _ was specified, but the

value for mo is not positive. Check file HEXHCD.

6 - 78



ERROR: CANNOT OPEN FILE, 'filename' DOES NOT EXIST

Fatal HEXHCF attempted to open the indicated file, however the file did not
exist. Check the directory for existence of the file and also check file

HEXHCD for correct spelling of the filename.

ERROR: Co TOO LOW

Fatal The constraint, Co, imposed on the coefficient of variation of fatigue

strength is inconsistent with the observed SIN data.

ERROR: EXCEEDED LIMIT ON DEGREES OF FREEDOM IN CHI-SQUARE

TABLE, IN REGION 'L'
Fatal As implemented, the credibility interval calculations can handle no
more than 150 degrees of freedom, and the amount of data in the region in-

dicated requires more. The Z2 tables of routine INTRVL must be increased.
See Sections 4.1.3.6 and 7.3.1.3 for more information.

ERROR: EXCEEDED LIMIT ON NUMBER OF REGIONS
Fatal The materials characterization model can handle no more than 3 life

regions. Check file HEXHCD because the sum of the number of regions
with data and the number of regions without data is greater than 3.

ERROR: INVALID LOCATION SPECIFICATION

Fatal LOCAT can only have the integer value 1 or 2.
the value used.

Check file HEXHCD for

ERROR: INVALID RESPONSE TO NORMAL MEDIAN CURVE QUESTION

Fatal NMED can only have the integer value 0 or 1. Check file IOUTPR for
the value used.

ERROR: INVALID TYPE OF MATERIALS PROCESS VARIATION DESIRED

Fatal MPROC can only have the integer value 0 or 1. Check file IOUTPR for
the value used.

ERROR: INVALID TYPE OF SIN VARIATION DESIRED

Fatal VARY can only have the integer value 0, 1, 2, or 3.
for the value used.

Check file IOUTPR

ERROR: INVALID VALUE FOR RATIO: 'RATIO'
Fatal An invalid value for the stress ratio has been declared for the specific

material data set. Only values between -1.0 and + 1.0 inclusive, are pos-
sible. Check file HEXHCD.
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ERROR: INVAUD VALUE OF RATIO: 'RATIO'
Fatal An invalid value for the stress ratio has been declared for a related

material data set. Only values between -1.0 and + 1.0 inclusive, are pos-
sible. Check file RELATD.

ERROR: LOAD INCORRECTLY TYPED

Fata/ TYPE(I) can only have the integer value 1, 2 or 3. Check file HEXHCD
for the value used.

ERROR: NO INTERSECTION BETWEEN Jo AND Mc
ERROR: NO INTERSECTION BETWEEN Jo AND Mo
ERROR: NO INTERSECTION BETWEEN Jo, Mo, AND Mc
ERROR: NO INTERSECTION BETWEEN Mo AND Mc

Fatal These errors indicate that the specified C constraint and/or prior

credibility range on m do not agree with each other and/or the observed
S/N data.

ERROR: NORMAL VARIATION REQUIRES A PRIOR RANGE ON M

Fatal The truncated Normal variation option of the materials characterization
model requires a prior range on m. The number of points for the prior

range on m has been incorrectly specified. Check file HEXHCD to verify
that the number of points indicated for each range has an integer value of 1
or 2.

ERROR: NUMBER OF POINTS PER DIVISION INCORRECTLY SPECIFIED IN SET 'J'
Fatal The materials characterization model has been given conflicting infor-

mation about the number of points in one of the related SIN data sets.
Check file RELATD to compare for each related data set the total number of
points declared with the sum of the numbers of points in each data division.

ERROR: NUMBER OF POINTS PER DIVISION INCORRECTLY SPECIFIED IN
SPECIFIC DATA SET

Fatal The materials characterization model has been given conflicting infor-

mation about the number of points in the specific S/N data set. Check file
HEXHCD, since the total number of points in the specific data set declared
and the sum of the numbers of points in each data division do not agree.

ERROR: OVERALL PRIOR RANGE INCORRECTLY SPECIFIED IN REGION
WITHOUT DATA

Fatal The prior credibility range on m in one of the regions without data has
been incorrectly specified. Check file HEXHCD to verify that either more
regions without data have been indicated than intended or that the number

6-80



of points in the prior on m in a region without data has been incorrectly
specified. Only the integer value O, 1, or 2 is acceptable.

ERROR: OVER LIMIT ON NUMBER OF POINTS IN SET 'J'
Fatal The materials characterization model cannot accept more than 50 S/N

points in any related material data set. Check file RELATD for the total num-
ber of points in each related data set declared, or there may be more than
50 S/N points with an incorrect total declaration. It is suggested that the
number of S/N data points in each related set be recounted. If more than
50 points are desired, the parameter MAXDAT must be increased. Refer to
Section 7.3.1.3 for the routines involved.

ERROR: OVER LIMIT ON NUMBER OF RELATED DATA SETS
Fatal The materials characterization model allows up to 5 related data sets.
Check file RELATD to determine if more than 5 related data sets were

specified. The parameter MAXSET must be increased. Refer to Section
7.3.1.3 for the routines involved.

ERROR: OVER NUMBER OF POINTS LIMIT IN SPECIFIC MATERIAL

Fatal The materials characterization model cannot accept more than 50 S/N

points in the specific material data set. Check file HEXHCD for the total
number of points in the specific data set declared, or there may be more
than 50 S/N points with an incorrect total declaration. If more than 50 points
are desired, the parameter MAXDAT must be increased. Refer to Section
7.3.1.3 for the routines involved.

ERROR: OVER REGION LIMIT IN RELATED MATERIAL 'J'

Fatal No more than 3 life regions are allowed, and an attempt has been
made to place some S/N data in a region number greater than 3. Check file
RELATD for an invalid region number immediately following the stress ratio
value in the data set indicated.

ERROR: OVER REGION LIMIT IN SPECIFIC DATA SET

Fata/ No more than 3 life regions are allowed, and an attempt has been made to

place some S/N data in a region number greater than 3. Check file HEXHCD
for an invalid region number immediately following the stress ratio value.

ERROR: POSTERIOR INTERVAL IN REGION 'L' IS INCONSISTENT WITH POINT

POSTERIOR IN REGION 'L-I'
Fatal Check file DUMP to verify that the point posterior value of m in region

'L-I' is greater than the upper bound of the posterior credibility range in
region 'L'. This error indicates a violation of the concavity assumption.
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ERROR: POSTERIORINTERVAL IN REGION 'L' IS INCONSISTENT WITH THE

POSTERIOR INTERVAL IN REGION 'L-I'
Fatal Check file DUMP to verify that the lower bound of the posterior

credibility range of m in region 'L-I' is greater than the upper bound of the
posterior credibility range of m in region 'L'. The data should be checked

for consistency.

ERROR: PRIOR ON M INCORRECTLY SPECIFIED IN 'L'
Fatal The number of points for the specified prior range on m in the indicated

region has been incorrectly specified. Check file HEXHCD to verify that the
number of points indicated for each range has an integer value of 0, 1, or 2.

ERROR: STRESS-TIME HISTORY TOO LARGE
Fatal No more than 24,000 points are allowed for a reference time history,

and an attempt has been made to use a larger history. Check file HEXHCD
for a value of NRAN larger than 24,000.

ERROR: SXY > - 0 IN REGION 'L'
Fatal During the linear regression calculations for the region indicated, the
resulting value of the sample covariance Sx),was found to be non-negative.

This suggests that the data is specified erroneously or is inadequate for
analysis, since life increasing with increasing stress contradicts the true

fatigue behavior of materials.

ERROR: TOO FEW POINTS FOR REGRESSION IN REGION 'L'
Fatal The materials characterization model does not have the required mini-

mum number of points in the region indicated to perform a linear regres-
sion. If there are no related data sets, then there must be at least 3 points in

each region. If there are N related data sets, then the total number of points in
each region (specific and related combined) must be at least N + 3.

IMPOSSIBLE M RANGE IN REGION 'L'

Fatal Concavity constraints during the random m selection have required an

impossible range on m for the region indicated. Take note of all input
parameters for this run, and consult Sections 4.1.5.1, 4.1.5.2, and 7.3 to aid
in identification of the cause of this error.

NOTE: E(m) IS NOT IN THE POSTERIOR RANGE ON m IN REGION 'L'
Warning This means that the estimate of m based on the SIN data only, in
the region indicated, is outside the range indicated by the specified con-
straints on m and C.
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PROGRAM EXECUTIONTERMINATED
Fatal This message is produced by routine TRMNAT and follows all other
fatal messages.

THE VALUE PRODCT EXCEEDED STRESS-STRAIN CURVE

Waming The maximum stress has exceeded the stress-strain curve provided
for the Neuber's rule calculation. The program has assumed the curve to
end at the ultimate strength and hence assigned a value of unity for damage

(the part has failed). If this message is believed to be in error, check the
stress-strain curve provided in file HEXHCD, and/or check that all units for
stress, strain, elastic modulus, geometric parameters, etc., are consistent.

6.1.14 Summary of Input/Output Files

Input Files

HEXHCD

This file is opened in HEXHCF. It contains all parameters for the run options; driver
distributions; engineering analysis parameters; and the specific and exogenous
materials input, including yield and ultimate strengths (psi), stress ratio, S/N data
points, life (cycles) boundaries, region information, coefficient of variation constraint,
C, and prior ranges on the materials shape parameter m for each region.

RELATD

This file is opened in subroutine INFAGG. It contains the related material data input,
including yield and ultimate strengths (psi), stress ratio, SIN data points, and region
information.

User Specified
These are the reference time history files and are opened in HEXHCF. They contain
the time histories generated by program NBSIN.

Output Files

HEXHCO

This file is opened in HEXHCF. It contains the echo of the information contained in
HEXHCD, and provides the simulated failure distribution B-life information. _

26 A B-life is the value of accumulated operating time to failure at a failure probability
specified as a percent; e.g., B.1 is the failuretune at a probabilityof 0.001 or 0.1%.
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RELATO

This file is opened in subroutine INFAGG.
contained in RELATD.

It contains the echo of the information

DUMP
_=---'_"_eis opened in HEXHCE It contains the results of the information aggregation
portion of the materials model calculations, such as Io and Jo; the point estimates of

m and C; posterior credibility ranges for m; and a list of the estimated values for all
S/N curve parameters. See Section 4.1.

IOUTPR
This file is opened in HEXHCF. It contains information on the particular run that is not
echoed to HEXHCO and the data dump provided when the variable lOUT is equal to

10 (materials characterization calculations), 15 (Monte Carlo simulation and driver
transformation calculations), 20 (rainflow cycle counting and damage accumulation

calculations), or 25 (stress analysis calculations).

LOWLIF
This file is opened in HEXHCF. It contains the first one percent of the calculated lives
used by the software described inSection 4.2 to calculate a,/_, and e, the parameters
of the Bayesian prior failure distribution.
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Section 6.2

Low Cycle Fatigue Analysis User's Guide

6.2.1 TRBPWA Program

A user's guide for running the low cycle fatigue (LCF) analysis code TRBPWA is
given here. The LCF analysis for the ATD Disk is discussed in Section 2.2.2.2, the
program description and flowcharts are presented in Section 5.2, and the code

structure and listing are provided in Section 7.2.

The TRBPWA program was used to analyze the low cycle fatigue failure of the
ATD-HPFTP second stage turbine disk. The output of TRBPWA includes the simulated
B-lives and a list of the lowest one percent of lives. The list of lives may be used as
input to the regression programs of Section 4.2 to compute the parameters of the
Bayesian prior failure distribution. This prior distribution and success/failure data are
used as input to the Bayesian updating program BAYES to obtain a posterior failure
distribution.

6.2.2 How To Use Program TRBPWA

The program TRBPWA is intended to be run in batch (i.e., background) mode.
TRBPWA requires two input data files: TRBPWD and RELATD. The materials charac-
terization model portion of the program requires both files for all runs, even when no
related S/N data is used. The file TRBPWD contains the analysis control parameters,

driver distributions, engineering analysis parameters, and specific and exogenous
materials information. The file RELATD contains the related materials information. A

complete description of the input data for the TRBPWD and RELATD data files is given
in Section 6.2.3.

The results from the TRBPWA program are written to five output files: TRBPWO,
RELATO, DUMP, IOUTPR, and LOWLIE TRBPWO contains the echo of the information
in TRBPWD, the results of any stress ratio transformations performed on specific
materials data, and the results of the simulation. RELATO contains the echo of the
information in RELATD and the results of any stress ratio transformations performed
on related materials data. The results of the materials characterization calculations

are primarily given in DUMR These calculations include point and interval estimates
for S/N curve parameters m and C, posterior credibility ranges for m, and an estimate
of the median S/N curve. File IOUTPR contains an echo of the analysis parameters
and, if requested, a dump of intermediate calculations. If the program terminates
prematurely, an error message will be printed in the IOUTPR file. A list of error
messages and possible remedies for the problems is given in Section 6.2.6. LOWUF
contains the first one percent of the lives of the simulated failure distribution.
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6.2.3 Description of Input Data Files

Annotated examples of the complete data file format structure for TRBPWD and
RELATDare presented in Figures 6-7 and 6-2, respectively. The data lines of the input

files are given in boxes, with a description of each data line located adjacent to each
box. The specific input parameters of Figure 6-7 are individually defined in Section
6.2.3.1. Input parameter values given in Figures 6-2 and 6-7 are not necessarily those

used in the appliction case study of Section 3.3.

The input data is read by free format statements from files TRBPWD and RELATD.
Thus, the numbers may be provided sequentially on a line up to 80 characters in

length, with each number separated by a blank character or comma. Each number
may also be on a separate line in the file. However, it is recommended that the input
format suggested in Figure 6-7 be followed whenever possible.

6.2.3.1 Input File TRBPWD
The required data for the TRBPWD file is divided into the four blocks shown in Figure

6-3: analysis parameters, driver information, load and geometry, and materials
information. The analysis parameters block contains the analysis parameters and the

keys to select the program options. The driver information block contains the
parameters that define the driver distributions. The parametric sensitivity information,
the stress concentration factors, and the nominal stresses are given in the load and

geometry block. The materials information block contains the specific material S/N
data, including the yield and ultimate strengths, stress ratio, the S/N data points, life

region boundaries, and materials characterization model parameter constraints.

The input parameters are described below by using the following convention: the

input variable names are indicated by BOLD UPPERCASE letters; the variable types
are specified as character [CHR], integer [INT], real [RE], and double precision real

[DRE]; the function of the variable is IJ11dg.dJD_and followed by a description and a
list of options, when appropriate; the program and file names are indicated by
UPPERCASE letters. A consistent set of units is given in parentheses for specifying
dimension, load, and stress input parameters. All character strings must be enclosed

by 'single quotes'. The user is reminded about the difference between the number
u0" and the letter "O" when preparing the input files.
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675
0

100
2OO
50

2
0
0

5__.__

Decimal

Random number seed

Value of output dump controller

Inner loop size
Outer loop size

Symmetry number
Type of S/N variation
Request for truncated Normal median S/N curve
Controls materials process variation
Number of B-lives

equivalent of percentages for B-lives

I 0.0001 0.0005 0.001 0.005 0.01 J

&Tf two Beta distribution information

-200. 200. 0.50 0.50 0.0 0.0
200. 500. 0.00 0.00 10. 10.

0.95

37592. 507.

0.80000 1.20000

0.95000 1.05000

1.41 2.18 159807. 38600.

1915. 0.91325 4.4435

14749. 0.04 0.07 101.72

Rotational speed Normal distribution Information

Uniform distribution bounds for /1.Kd

Uniform distribution bounds for _Kt

Kd, Kt, SMo (psi), o_o (rpm)

Smo (psi), Crnf, Cm (psi/=F)

SGo (psi), CG1, CG2, CG (psi/'F)

Description of specific material S/N data set

I 'PWA HPFTP 2NDTURBINE DISK' I

Specific materials information: yield and ultimate strengths, number of data divisions, and total number
of points in data set

I 00000. 198000. 1 9 I

Figure 6-7 Format for File TRBPWD
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Specific materials information for each data division: number of points in data division, stress ratio, and
life region

9 -1.0 1 I

160000. 600.

160O00. 700.

160000. 1000.

140000. 4800.

130000. 3700.

130000. 4300.

120000. 3800.

120000. 11000.

110000. 40000.

198000.
1 0

500.
1.0E + 36
0.00

0 0.00 0.000

$1, N1

S2,N2
$3, N3

$4, N4

Ss,Ns
S6,N6
S7,N7
S8, N8

Sg.N9
Stress tensile point
Number of life regions with and without data

Life boundary of region 0
Life boundary of region 1
C constraint

Prior information on m

I o0o 0oo oooI Bayesian pdor distributionInformation

I 0.00 0.00 I Materials process variation information

Figure 6-7 Format for File TRBPWD (Cont'd)
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AnalysEs Parameters Block

RAND

[DRE]

Random number seed

Needed by TRBPWA's built-in random number generator.

lOUT

[INT]

Output dump controller

TRBPWA has the ability to write intermediate calculations to file IOUTPR. The following
integer values control the "dump" of TRBPWA's calculations.

lOUT = 0 no intermediate calculation output

lOUT = 10 materials characterization model calculations

lOUT -- 15 driver samrding and driver transformation calculations

NLIFE

[INT]

Inner loop number
Size of the inner loop of the Monte Carlo (MC) simulation. A positive value is required.

NHYPER

[INT]

Outer loop number
Size of the outer loop of the MC simulation. The program requires a positive value.

NSYM

[INT]

Symmetry number
The number of modeling units in the component. A positive value is required.

VARY

[IN'r]
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Type of S/N variation 27

Controls the type of stochastic variation to
terization model S/N curve.

VARY = 0

VARY = 1

VARY = 2

VARY = 3

NMED

[IN'T]

be included in the materials charac-

no variation will be included

allows only intrinsic materials variation

allows Uniform variation of the materials modal shape parameter m
and intrinsic materials variation

allows truncated Normal variation of the materials model shape
parameter m and intrinsic materials variation

Request for truncated Normal median S/N curve 2s

If VARY = 3, then NMED controls the calculation of the empirical median S/N curve.

NMED = 0 no median curve calculation is required

NMED = 1 median curve calculation is required

MPROC

[INT]

Controls materials process variation
Controls the inclusion of materials process variation (heat-to-heat variation). Process
variation in materials is discussed in Section 2.1.2.3.

MPROC = 0 no variation to be Included

MPROC = 1 variation is to be Included

NBUFE

[IN'I]

Number of B-lives

The number of B-lives to be provided from the simulated distribution of life. A B-life is
the value of accumulated operating time to failure at a failure probability specified as

a percentage; e.g., B.1 is the failure time at a probability of 0.001 or 0.1%. NBLIFE
must be non-negative and cannot exceed 10.

A discussionof the possiblestochasticspecificationsof the materials model shape
parameter m is given in Pages 2-13 through 2-14.

28 The median S/N curve for the truncated Normal distn'bution is discussed on Page 2-I5.
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BLFPER(1) BLFPER(2) ... BLFPER(NBUFE)

[RE] [RE] [RE]

B-life percentages
The decimal equivalent of the percentages at which the B-lives are required; e.g., if

the B.1 life is desired, then BLFPER = 0.001. A total of NBBFE percentages must

be provided. The percentage cannot exceed 50% (BLFPER _< 0.50).

Driver Information Block

DELTA DELTB DELTR1 DELTR2 DELl"r1 DELTr2

[RE] [RE] [RE] [RE] [RE] [RE]

DELTC DELTD DELTR3 DELTR4 DELTr3 DELl"r4

[RE] [RE] [RE] [RE] [RE] [RE]

DELTE

[RE]

t_T t two Beta distribution information

_T r (°F) in Equation 2-95 is the deviation from the nominal coolant fluid temperature

and is characterized by two Beta probability distributions. The first two lines are the

two Beta distributions, one per line. See Section 2.1.3.1 and Equation 2-54 for defining

parameters for setting up a Beta driver distribution. The Beta distribution format

consists of six parameters. The first two parameters are the lower and upper bounds,

respectively, for _T r. The next two parameters are the lower and upper bounds for

the Uniform distribution on p. Similarly, the last two parameters describe the Uniform

distribution on e. The third line is the decimal equivalent percentage weight for the
first Beta distribution and must be between 0.00 and 1.00.

DELTA

DELTB

DELTRI

DELTR2

DEL'I'I'I

DELTT2

DELTC

ATf lower bound of Beta distribution 1

&Tf upper bound of Beta distribution 1

p Uniform distribution lower bound of Beta distribution I of ATf

p Uniform distribution upper bound of Beta distribution 1 of ATf

8 Uniform distribution lower bound of Beta distribution 1 of &Tf

8 Uniform distribution upper bound of Beta distribution 1 of &Tf

ATf lower bound of Beta distribution 2
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DELTD

DELTR3

DELTR4

DELTT3

DELTT4

DELTE

ATf upper bound of Beta distribution 2

p Uniform distribution lower bound of Beta distribution 2 of &Tf

p Uniform distribution upper bound of Beta distribution 2 of &Tf

e Uniform distribution lower bound of Beta distribution 2 of &Tf

8 Uniform distribution upper bound of Beta distribution 2 of &Tf

decimal equivalent percentage weight occurring in Beta distribution 1
of the deviation from nominal coolant fluid temperature, ATf

SPDMU SPDSIG

[RE] [RE]

Rotational speed Normal distribution information
The rotational speed variation is characterized by a NormalCy, o 2) distribution. The

mean/_ is equal to the expected operating speed of the turbopump, and the standard
deviation o is obtained from the engine performance balance. Both the mean and

standard deviation are in rpm.

SPDMU mean/_ of Normally distributed speed

SPDSIG standard deviation o of Normally distributed speed

LAMKDA LAMKDB

[RE] [RE]

Kd accuracy factor Uniform distribution information

_,K,, in Equation 2-103. This is the Kd accuracy factor, and it is characterized by a
Uniform distribution.

LAMKDA Kd accuracy factor Uniform distribution lower bound

LAMKDB Kd accuracy factor Uniform distdbution upper bound

LAMKTA LAMKTB

[RE] [RE]

Kt accuracy factor Uniform distribution information

ZKt in Equation 2-103. This is the Kt accuracy factor, and it is characterized by a
Uniform distribution.

6 - 92



LAMKTA

LAMKTB
Kt accuracyfactor Uniformdistributionlowerbound

Kt accuracyfactor Uniformdistributionupperbound

Load and Geometry Block

KD KT SMM REFSPD

[RE] [RE] [RE] [RE]

Stress concentration factors and parametric sensitivity analysis information for the
mechanical stress

The line contains the two stress concentration factors from the engineering analysis:
Kd in Equation 2-102 is the adjustment factor for the 2-D analyses; Kt in Equation 2-92

is the local stress concentration factor; SMo (psi) in Equation 2-94 is the nominal
mechanical stress due to rotor speed effects only; and mo is the nominal or reference

speed (rpm) corresponding to all nominal stress values.

STM CMF CM

[RE] [RE] [RE]

Parametric sensitivity analysis information for the thermal stress due to metal
temperature
The line contains Smo (psi) in Equation 2-97, the nominal stress due to metal

temperature only (at the nominal speed and nominal coolant fluid temperature); Cmf
in Equation 2-95, the sensitivity of metal temperature to deviation from the nominal

coolant fluid temperature; and Crn (psi/°F) in Equation 2-97, the sensitivity of stress to
variation of metal temperature/tT m in Equation 2-95 due to deviation from nominal

coolant fluid temperature.

SG CG1 CG2 CG

[RE] [RE] [RE] [RE]

Parametric sensitivity analysis information for the thermal stress due to thermal
_radient
The line contains SGo (psi) in Equation 2-98, the nominal stress due to the thermal
gradient only (at the nominal speed, nominal coolant fluid temperature, and nominal
thermal gradient); CG1 and CG2 in Equation 2-96 are coefficients characterizing the

sensitivity of the thermal gradient to deviation from nominal coolant fluid temperature;
and CG (psi/_F) in Equation 2-98 is the sensitivity of stress to variation of thermal

gradient due to deviation from nominal coolant fluid temperature.
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Materials InformaUon Block

DESCRP(O)

[CHR]

Description of specific material SIN data set
Name and test environment for the specific material SIN data. This is a character string

no more than 40 characters long, enclosed by single quotes.

FrY FTU NDIV NPTS(0)

[RE] [RE] [IN]'] [IN'r]

Specific materials information
Yield strength, ultimate strength, number of divisions of data, number of points in S/N

data set. The data may be divided when they are assigned to a different life region or
have different stress ratios. If all data has a stress ratio of -1.0, then the yield and

ultimate strengths are not required, but zero values mustbe specified as placeholders.

NPTS(0) cannot exceed fifty. The next two data sets have to be provided for each
data division.

FTY

FTU

NDIV

NPTS(O)

yield strength corresponding to the specific material data set (psi)

ultimate strength corresponding to the specific material data set (psi)

number of data dMsions for the specific material data set

total number of points in the specific material S/N data set

NUM RATIO REG

[INT] [RE] [INT]

Materials information for each data division of the specific SIN data set

Number of points, stress ratio, and the life region of interest for each data division.

This line must be provided for each data division.

NUM number of S/N data points in the data division

RATIO stress ratio for the data inthe data division

REG life region number to be assigned to the data in the data division

RAWSTR(I,0) RAWNF(I,0)

[RE] [RE]
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Specific material SIN data points
Stress versus fatigue life data points for each data division. A block of NUM lines must
be specified (i.e., the value of I goes from 1 to NUM). This block must be provided
for each data division.

RAWSTR(I,0) stress value (psi)

RAWNF(I,0) fatigue life value (cycles)

SZERO

[RE]

Tensile point 29

Stress tensile point So (psi). Must be non-negative. A value of zero indicates no tensile

point.

NUMREG NNODAT

[IN'I] [iNT]

Data regions 3°

Number of life regions that are data-determined and not data-determined. NUMREG
+ NNODAT cannot exceed three. NUMREG must be 1, 2, or 3, and NNODAT must

be non-negative, and should be 0 or 1.

NUMREG number of life regions determined by data

NNODAT number of life regions (to the right) not determined by data

NBND(L)
[RE]

Life Boundaries 31

The upper boundaries of the life regions are specified (cycles). The value of L goes
from ZROREG to the total number of regions (equal to NUMREG + NNODAT). If a
non-zero tensile point is specified, then ZROREG = 0 else ZROREG = 1. The
program expects the upper bound of the last life region to be 1036, a proxy for oo.

2g Extension of the S/N curve to the left is discussed on Page 2-17.

30 Extension of the S/N curve to the right is discussed on Page 2-17.

31 Life region boundaries are discussed on Page 2-15.
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CZERO

[RE]

Prior information on coefficient of variation of fatigue strength _

Information in the form of a constraint on the coefficient of variation of fatigue strength

C for the specific material SIN data set. Value must be non-negative and a value of
zero indicates that CZERO is not in use.

MPNT(L) MZERO(1,L) MZERO(2,L)

[INT] [RE] [RE]

Prior information on the materials shape parameter m33

The number of MZERO values in each life region, and the lower and upper bound for

the range of m. The value of L goes from 1 to (NUMREG + NNODAT). If VARY -

3 is specified (truncated Normal distribution on m), then a prior range of m must be

specified for each region.

MPNT(L) The number of points, 0, 1, or 2 (no prior on m, a point prior on m, or a
prior over a range of m, respectively), in MZERO( ) for each region.

MZERO(1,L) The lower bound on the range of m or the value of the point prior for m.

MZERO(2,L) The upper bound on the range of m. Program requires that the value
be zero if a point prior for m is specified.

DELTA(L) MO(L) SlGMA2(L)

[RE] [RE] [RE]

Information on the Bayesian prior distribution for the truncated Normal distribution 34

If VARY = 3, then the materials model uses the truncated Normal distribution. The

truncated Normal distribution requires some prior information on the Normal distribu-

tion parameters because a Bayesian analysis is performed. The information is

required for each life region. The value of L goes from 1 to (NUMREG + NNODAT).

DELTA(L) The shape parameter 6 of the Bayesian prior distribution is used to
compute the Bayesian posterior distribution parameters. Value must
be non-negative, a value of zero indicates a diffuse prior distribution.

The implicit constraint on the mate.rials shape parameter provided by prior information
on the coefficient ot variation ot tattgue strength is discussed on Pages 2-12 through 2-13.

The explicit constraint on the materials shape parameter provided by prior information
on the materials shape parameter is discussed on Page 2-12.

Specification of the Bayesian prior distribution for the truncated Normal case is
discussed on Page 2-14.
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MO(L)

SIGMA2(L)

Locationparametermo of theBayesianpriordistributionof the shape
parameter m. Mustbe positive.Requiredwhen DELTA(L)is non-zero.

a 2, the knownvarianceof In(fatigure/#e),V (InN I InS). Mustbe non-
negative.

KRATIO LAMN

[RE] [RE]

Materials process variation information
If MPROC = 1, then specification of KRATIO and LAMN is required. KRATIO is ,1.K,
the ratio MED K*/MED K where MED K* is the median value over all heats for the stress

(psi) at a life of one cycle, and MED K is the median value for the specific S/N data for
the stress (psi) at a life of one cycle. LAMN is the ratio of the variance of In(life)
conditional on stress over all heats to the intrinsic materials variation for the given S/N
data conditional on stress. Process variation in materials is discussed in Section
2.1.2.3.

6.2.3.2 Input File RELATD
The input data for file RELATD, which contains the related materials information, 3s

is given below. The data format is similar to that used to specify the S/N data in the
specific materials information block in the TRBPWD file.

NSETS

liNT]

Number of related data sets

Number of related material S/N data sets. The following data groups have to be
repeated as a block for each data set. The value of J varies from 1 to NSETS. If there
is no related data, then file RELATD will only contain the number "0". NSETS cannot
exceed five.

DESCRP(J)

[CHR]

Description of related material SIN data set
Name and test environment for related material S/N data set J. This is a character

string no more than 40 characters long, enclosed by single quotes.

35 Related S/N data is discussed on Page 2-7.
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FTY FTU NDIV NPTS(J)

[RE] [RE] [INT] [INT]

Related materials information

Yield strength, ultimate strength, number of divisions of data, number of points in SIN

data set. The data may be divided when they are assigned to a different life region or
have different stress ratios. If all data has a stress ratio of -1.0, then the yield and

ultimate strengths are not required, but zero values must be specified as placeholders.

NPTS(J) cannot exceed fifty. The next two data sets have to be provided for each
data division.

FTY

FTU

NDIV

NPTS(J)

yield strength corresponding to related material data set J (psi)

ultimate strength corresponding to related material data set J (psi)

number of data divisions for related material data set J

total number of points in related material S/N data set J

NUM RATIO REG

lINT] [RE] [INT]

Materials information for each data division of the related S/N data set

Number of points, stress ratio, and the life region of interest for each data division.

This line must be provided for each data division.

NUM number of S/N data points in the data division

RATIO stress ratio for the data in the data dMsion

REG life region number to be assigned to the data in the data division

RAWSTR(I,J) RAWNF(I,J)

[RE] [RE]

Related material S/N data points
Stress versus fatigue life data points for each data division. A block of NUM lines must

be specified (i.e., the value of I goes from 1 to NUM). This block must be provided

for each data division.

RAWSTR(I,J) stress value (psi)

RAWNF(I,J) fatigue life value (cycles)
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6.2.40ptlons and Capabllltles

TRBPWA is a Monte Carlo simulation program which generates a sequence of
component lives for a particular failure mode, where life is defined as the accumulated

operating time at failure. The simulation has a double-loop structure with NHYPER
outer loops and NUFE inner loops. The simulation size is dependent on the failure
probability at which a life estimate is desired and the precision desired. For the ATD
Disk application, single-loop runs with NHYPER = 20,000 and NUFE = 1 were used
to characterize component reliability, and single-loop runs with NHYPER = 1000 and
NLIFE - 1 were used for the marginal analysis to assess the importance of drivers.

During a run, it may be desirable to "hold" a driver at a fixed value. This may be the
nominal or median value of the driver. This is done for drivers with a Beta or a Uniform

distribution by merely specifying both the upper and lower bounds to be the desired
value. For drivers with a Normal distribution, the standard deviation o is set at zero,

and the mean/_ is set at the desired value.

The procedure of holding certain drivers at fixed values while letting the other drivers
vary according to their probability distributions may be used for driver variation
sensitivity studies. That is, the effect on life of driver variation may be evaluated by
letting it vary while holding other drivers at fixed values. Each driver variation sensitivity
was determined in the case studies of this report with the intrinsic variation of the
fatigue life of the material included (VARY = 1).

A printout of intermediate calculations in various parts of the program may be
obtained via the lOUT option. This output will be printed in the IOUTPR file. It is
recommended that such output not be requested when the simulation size is large
since the information will be dumped during every simulation loop. The NMED option
provides for calculation of an empirical median S/N curve if the truncated Normal
distribution is employed. 3s In this case, the median S/N curve is based on the empirical

median m from all the shape parameters used in the simulation. The MPROC option
activates the calculations for the process variation feature of the materials charac-
terization model, as discussed in Section 2.1.2.3.

36 The truncated Normal distribution for the materials model shape parameter m is
discussed on Page 2-14.
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6.2.5 Code Execution Example

The following example run of the LCF analysis code for the ATD-HPFTP second
stage turbine disk was carried out with random variation of all drivers. In this example
run, 20,000 lives were simulated (NUFE = 1 times NHYPER = 20,000) by using
Uniform shape parameter variation, VARY = 2 and NMED = 0; no materials process
variation, MPROC = 0, and a symmetry number of NSYM = 50. The B-lives _' to be

provided are B.1, B.2, B.3, B.4, B.5, B.6, B.7, B.8, B.9, and B1 (NBLIFE = 10,
BLFPER(1) = 0.001, BLFPER(2) = 0.002, BLIFPER(3) = 0.003, BLFPER(4) =
0.004, BLFPER(5) = 0.005, BLFPER(6) = 0.006, BLFPER(7) = 0.007, BLFPER(8)
= 0.008, BLFPER(9) = 0.009, BLFPER(10) = 0.01). The user may refer to Section
2.2.2 for additional information on the engineering analysis and to Section 3.3 for the

results of the case study for this component.

The drivers for LCF failure of the disk are as follows:

DRIVER DISTRIBUTION

1. &Tf Two Betas

2. oJ Normal

3. _t_ Uniform

4. _K, Uniform

The rationale for the specification of the driver distributions is given in Section 3.3.2.

The materials information consists of nine S/N data points, NUM = 9. The S/N data
has a stress ratio of 0.05, but no stress ratio correction is required for use with the
driver transformation so a stress RATIO of -1.0 has been indicated. The number of

regions with data, NUMREG, is 1, and there are no regions to the right without data,
NNODAT = 0. The data is in one division, NDIV = 1, and the total number of points

is nine, NPTS(0) = 9. No related data is provided. Thus, the RELATD file is empty,

except for a single entry to indicate NSETS = 0. No stress tensile point is used,
SZERO = 0, so only one life region upper boundary must be defined, NBND(0) =

1.0E36. If further explanation of file TRBPWD is required, refer to Section 6.2.3.1 and

Figure 6- 7.

The echo of the input data is in the output file TRBPWO. The simulated B-livas are
also given for the component. For instance, the B.1 life is 121 cycles. The IOUTPR file
gives an echo of the analysis parameters. The dump parameter lOUT is zero;

37 A B-life is the value of accumulated opcratiz_ time to failure at a fagute probab;l;ty
specked as a percent; e.g., B.1 is the faJ]m'e t,me at a probabgity of 0.001 or 0.1%.
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therefore, no other output is in this file. The LOWLIF file contains the lowest one
percent of the 20,000 simulation lives, Finally, the DUMP file contains the results of
the materials characterization model information aggregation calculations. 38

Input File - TRBPWD

675

0

1

20000

50

2

0

0

10

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010

-200. 200. 0.50

200. 500. 0.00

0.95

37592. 507.

0.80000 1.20000

0.95000 1.05000

1.41 2.18 159807. 38600.

1915. 0.91325 4.4435

14749. 0.04 0.07 101.72

'PWA HPFTP 2ND TURBINE DISK'

00000. 198000. 1 9

9 -1.0 1

160000. 636.

160000. 677.

160000. 1019.

140000. 4743.

130000. 3824.

130000. 4163.

120000. 3749.

120000. 11349.

110000. 39600.

0.50 0.0 0.0

0.00 10.0 10.0

38 The information aggregation calculations are discussed on Pages 2-6 through 2-14.
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0.

1 0

1.0E+36

0.00

0 0.000 0.000

Input File - RELATD

0

Output File - TRBPWO

Copyright (C) 1990, california Institute of Technology. U.S. Government

Sponsorship under NASA Contract NAS7-918 is acknowledged.

INPUT DATA

DRIVERS

DELTA Tf Be(-200.0, 200.0)

Be( 200.0, 500.0)

TEST = 0.95

SPEED (RPM) NORMAL: MEAN - 37592.

LAMBDA Kd U( 0.80000, 1.20000)

LAMBDA Kt U( 0.95000, 1.05000)

PARAMETER DISTRIBUTIONS

RBO THETA

U(0.50000, 0.50000) U( 0.0, 0.0)

U(0.00000, 0.00000) U(10.0, 10.0)

STAND. DEV. = 507.

STRESS ADJUSTMENT, Kd

OTHER LOADS INPUT

1.410

STRESS CONCENTRATION, Kt 2.180

MECHANICAL STRESS (PSI)

ROTATIONALSPEED (RPM)

159807.0

38600.
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STRESS DUE TO METAL TEMPERATURE (PSI)

SENSITMTY OF METAL TEMPERATURE TO DELTA Tf

SENSITIVITY OF STRESS DUE TO Tmetal (PSI/F)

1915.0

0.91325

4.44

STRESS DUE TO THERMAL GRADIENT (PSI)

SENSITIVITY OF THERMAL GRADIENT TO DELTA Tf

FOR DELTA Tf < 0

FOR DELTA Tf >_ 0

SENSITIVITY OF STRESS DUE TO THERM. GRAD. (PSI/F)

14749.0

0.040

0. 070

101.72

MATERIAL INPUT

DESCRIPTION:

YIELD STRENGTH

ULTIMATE STRENGTH

NUMBER OF POINTS

PWA HPFTP 2ND TURBINE DISK

0.00000E+00

0.19800E+06

9

ORIGINAL S/N STRESS

STRESS LIFE RATIO REGION

0.16000E+06 636. -1.00 1

0.16000E+06 677. -1.00 1

0.16000E+06 1019. -1.00 1

0.14000E+06 4743. -I.00 1

0.13000E+06 3824. -1.00 1

0.13000E+06 4163. -1.00 1

0.12000E+06 3749. -1.00 1

0.12000E+06 11349. -1.00 1

0.11000E+06 39600. -1.00 1

TRANSFORMED S/N

STRESS LIFE

0.16000E+06 636.

0.16000E+06 677.

0.16000E+06 1019.

0.14000E+06 4743.

0.13000E+06 3824.

0.13000E+06 4163.

0.12000E+06 3749.

0.12000E+06 11349.

0.11000E+06 39600.

THERE IS i REGION (S) WITH DATA

AND 0 REGION (S) TO THE RIGHT WITHOUT DATA

THE UPPER BOUND(S) OF THE REGION(S) ARE (CYCLES):
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0.100E+37

EXOGENOUS INFORMATION

CONSTRAINT ON COEFFICIENT OF VARIATION, C=

EXPLICIT CONSTRAINT ON m FOR E_H REGION:

REGION # OF POINTS LOWER BOUND

1 0 0.0000

0.0000

UPPER BOUND

0.0000

B LIVES • EMPIRICAL

0.00100 0.121108E+03

0.00200 0.155309E+03

0.00300 0.180471E+03

0.00400 0.200357E+03

0.00500 0.214710E+03

0.00600 0.230961E+03

0.00700 0.251356E+03

0.00800 0.263503E+03

0.00900 0.281120E+03

0.01000 0.288462E+03

0.50000 0.411175E+04

Output File - RELATO

NUMBER OF DATA SETS: 0

NOTE: ALL KtASSUMEDTOBE 1.0

TRANSFORMED DATA

Output File - DUMP

Copyright (C) 1990, california Institute of Technology. U.S. Government

Sponsorship under NASA Contract NAS7-918 is acknowledged.
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RESULTS OF INFORMATION AGGREGATION CALCULATIONS

95% CONFIDENCZ INTERVALS ON C ANDmFOREACH REGION

REGION: 1 Io = ( 0.036692030, 0.112948100)

Jo - (5.734418000,11.972310000)

POINT ESTIMATES OF C ANDm FOR EACHREGION

REGION E(C} E(m)

1 0.055495330 8.853366

POSTERIOR CREDIBILITY RANGE ON m FOR EACH REGION

REGION LOWER BOUND UPPER BOUND

1 5.7344 11.9723

PARAMETER VALUES FOR MEDIAN S/N CURVE

NUMBER OF REGIONS: 1 E(BETAo) = 22.9860 E(k) = 12.7338

REGION m K LIFE BOUND STRESS BOUND

1 8.85337 0.34214E+06 0.100E+37 0.00000E+00

Output File - IOUTPR

RANDOM NUMBER SEED = 675.000000000000

IOUT (MATCHR = I0, TRBPNA = 15) = 0

INNER LOOP SIZE = 1

OUTER LOOP SIZE = 20000

SYMMETRY NUMBER- 50

TYPE OF S/N VARIATION DESIRED - 2

NORMAL MEDIAN CURVE (0 - NO, 1 - YES) = 0

MATERIALS PROCESS VARIATION DESIRED

(0 - NO, 1 - YES) = 0

6 - 105



Output File - LOWLIF

1 0.500000E-04

2 0.100000E-03

3 0.150000E-03

4 0.200000E-03

5 0.250000E-03

6 0.300000E-03

7 0.350000E-03

8 0.400000E-03

9 0.450000E-03

10 0.500000E-03

11 0.550000E-03

12 0.600000E-03

13 0.650000E-03

14 0.700000E-03

15 0.750000E-03

16 0.800000E-03

17 0.850000E-03

18 0.900000E-03

19 0.950000E-03

20 0.100000E-02

21 0.105000E-02

22 0.110000E-02

23 0.115000E-02

24 0.120000E-02

25 0.125000E-02

26 0.130000E-02

27 0.135000E-02

28 0.140000E-02

29 0.145000E-02

30 0.150000E-02

31 0.155000E-02

32 0.160000E-02

33 0.165000E-02

34 0.170000E-02

35 0.175000E-02

36 0.180000E-02

37 0.185000E-02

38 0.190000E-02

39 0.195000E-02

40 0.200000E-02

41 0.205000E-02

42 0.210000E-02

43 0.215000E-02

44 0.220000E-02

45 0.225000E-02

15.2292

30.8418

34.1021

39.0600

51.4226

53.2745

58.0043

65.5637

71.9857

75.1110

75.8070

89.4144

103.456

104.278

105.559

107.647

107.784

114.712

116.542

121.108

124.069

124.429

124.546

129.185

131.056

132.799

133.245

133.803

134.375

136.029

136.142

146.670

149.321

149.350

149.919

152.232

152.349

152.559

152.949

155.309

155.585

156.888

157.319

158.105

158.928
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46 0.230000E-02

47 0.235000E-02

48 0.240000E-02

49 0.245000E-02

50 0.250000E-02

51 0.255000E-02

52 0.260000E-02

53 0.265000E-02

54 0.270000E-02

55 0.275000E-02

56 0.280000E-02

57 0.285000E-02

58 0.290000E-02

59 0.295000E-02

60 0.300000E-02

61 0.305000E-02

62 0.310000E-02

63 0.315000E-02

64 0.320000E-02

65 0.325000E-02

66 0.330000E-02

67 0.335000E-02

68 0.340000E-02

69 0.345000E-02

70 0.350000E-02

71 0.355000E-02

72 0.360000E-02

73 0.365000E-02

74 0.370000E-02

75 0.375000E-02

76 0.380000E-02

77 0.385000E-02

78 0.390000E-02

79 0.395000E-02

80 0.400000E-02

81 0.405000E-02

82 0.410000E-02

83 0.415000E-02

84 0.420000E-02

85 0.425000E-02

86 0.430000E-02

87 0.435000E-02

88 0.440000E-02

89 0.445000E-02

90 0.450000E-02

91 0.455000E-02

92 0.460000E-02

93 0.465000E-02

94 0.470000E-02

95 0.475000E-02

159.245

160.929

161.168

163.429

164.862

166.070

168.230

169.043

169.055

174.029

175.739

176.429

176.966

178.398

180.471

180.738

181.203

181.368

182.887

184.505

184.510

184.919

185.591

185.607

186.154

191.204

191.649

193.389

195.028

195.336

197.925

198.473

199.333

199.871

200.357

203.074

206.303

207.010

207.449

207.492

207.952

208.420

209.027

209.282

209.696

210.907

211.559

211.829

212.364

212.551
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96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

0.480000E-02

0.485000E-02

0.490000E-02

0.495000E-02

0.500000E-02

0.505000E-02

0.510000E-02

0.515000E-02

0.520000E-02

0 .525000E-02

0.530000E-02

0.535000E-02

0.540000E-02

0.545000E-02

0.550000E-02

0.555000E-02

0.560000E-02

0.565000E-02

0.570000E-02

0.575000E-02

0.580000E-02

0.585000E-02

0.590000E-02

0.595000E-02

0.600000E-02

0.605000E-02

0.610000E-02

0.615000E-02

0.620000E-02

0.625000E-02

0.630000E-02

0 .635000E-02

0 .640000E-02

0.645000E-02

0.650000E-02

0.655000E-02

0.660000E-02

0.665000E-02

0.670000E-02

0.675000E-02

0.680000E-02

0.685000E-02

0.690000E-02

0.695000E-02

0.700000E-02

0.705000E-02

0.710000E-02

0.715000E-02

0.720000E-02

0.725000E-02

213.054

213.175

214.526

214.554

214.710

215.661

215.751

216.391

216.600

217.116

217.569

217.849

219.640

219.643

220.485

221.658

222.904

223.053

224.775

225.854

227.973

228.482

228.934

230.314

230.961

231.353

232.023

232.187

234.333

234.820

236.077

236.604

237.671

238.349

239.269

239.967

240.050

242.428

244.809

245.703

248.848

250.122

250.135

251.327

251.356

251.544

252.696

252.731

252.826

254.045
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146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

0.730000E-02

0.735000E-02

0.740000E-02

0.745000E-02

0.750000E-02

0.755000E-02

0.760000E-02

0.765000E-02

0.770000E-02

0.775000E-02

0.780000E-02

0.785000E-02

0.790000E-02

0.795000E-02

0.800000E-02

0.805000E-02

0.810000E-02

0.815000E-02

0.820000E-02

0.825000E-02

0.830000E-02

0.835000E-02

0.840000E-02

0.845000E-02

0.850000E-02

0.855000E-02

0.860000E-02

0.865000E-02

0.870000E-02

0.875000E-02

0.880000E-02

0.885000E-02

0.890000E-02

0.895000E-02

0.900000E-02

0.905000E-02

0.910000E-02

0.915000E-02

0.920000E-02

0.925000E-02

0.930000E-02

0.935000E-02

0.940000E-02

0.945000E-02

0.950000E-02

0.955000E-02

0.960000E-02

0.965000E-02

0.970000E-02

0.975000E-02

255

255

258

259

259

260

260

261

261

261

262

262

262

263

263

264

264

264

264

265

269

271

272

273

274

274

275

278

279

280

280

280

280

280

281

281

281

281

281

283

283

283

283

284

284

284

284

285

285

285

.588

.936

.845

.559

.613

.046

.628

.008

.185

.531

.128

.237

.727

.178

.503

.066

.301

.491

.728

.586

.652

.928

.150

.784

.667

.995

.158

.007

.032

.049

.089

.380

.779

.885

.120

.155

.284

.394

.707

.283

.324

.371

.556

.575

.579

.692

.880

.136

.480

.854
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196 0.980000E-02 285.907

197 0.985000E-02 286.616

198 0.990000E-02 287.837

199 0.995000E-02 288.408

200 0.100000E-01 288.462

6.2.6 Error Messages and Possible Remedies

The following messages, when applicable, will appear in file IOUTPR. These
messages are primarily generated by the materials characterization model (MATCHR)

portion of TRBPWA. An error message stating that a limit has been exceeded will
require that the user increase those limits, as directed, and reviewing or consulting
Section 7.3.1.3 is desirable. The messages are listed in alphabetical order for the

convenience of the user.

ERROR: BAD VALUE FOR DELTA OR VALUE OF MO INCONSISTENT WITH

DELTA IN REGION 'L'
Fatal This error can occur during the use of the truncated Normal variation

option of the materials characterization model for two reasons. First, the
value of & may be negative. Second, a value of (5 was specified, but the

value of m o is not positive. Check file TRBPWD.

ERROR: CO TOO LOW
Fatal The constraint, C O, imposed on the coefficient of variation of fatigue

strength is inconsistent with the observed S/N data.

ERROR: EXCEEDED LIMIT ON DEGREES OF FREEDOM IN CHI-SQUARE

TABLE, IN REGION 'L'
Fatal As implemented, the credibility interval calculations can handle no
more than 150 degrees of freedom, and the amount of data in the region in-

dicated requires more. The Z2 tables of routine INTRVL must be increased.
See Sections 4.1.3.6 and 7.3.1.3 for more information.

ERROR: EXCEEDED LIMIT ON NUMBER OF REGIONS
Fatal The materials characterization model can handle no more than 3 life

regions. Check file TRBPWD because the sum of the number of regions
with data and the number of regions without data is greater than 3.

ERROR: INVALID RESPONSE TO NORMAL MEDIAN CURVE QUESTION
Fatal NMED can only have the integer value 0 or 1. Check file IOUTPR for

the value used.
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ERROR: INVALID TYPEOF MATERIALSPROCESSVARIATION DESIRED
Fatal MPROC can only have the integer value 0 or 1. Check file IOUTPR for
the value used.

ERROR: INVALID TYPE OF SIN VARIATION DESIRED

Fatal VARY can only have the integer value 0, 1, 2, or 3. Check file IOUTPR
for the value used.

ERROR: INVALID VALUE FOR RATIO: 'RATIO'

Fatal An invalid value for the stress ratio has been declared for the specific
material data set. Only values between -1.0 and + 1.0 inclusive, are pos-
sible. Check file TRBPWD.

ERROR: INVALID VALUE OF RATIO: 'RATIO'
Fatal An invalid value for the stress ratio has been declared for a related

material data set. Only values between -1.0 and + 1.0 inclusive, are pos-
sible. Check file RELATD.

ERROR: NO INTERSECTION BETWEEN Jo AND Mc
ERROR: NO INTERSECTION BETWEEN Jo AND Mo

ERROR: NO INTERSEGTION BETWEEN Jo, Mo, AND Mc
ERROR: NO INTERSECTION BETWEEN Mo AND Mc

Fatal These errors indicate that the specified C constraint and/or prior
credibility range on m do not agree with each other and/or the observed
S/N data.

ERROR: NORMAL VARIATION REQUIRES A PRIOR RANGE ON M

Fatal The truncated Normal variation option of the materials characterization
model requires a prior range on m. The number of points for the prior range
on m has been incorrectly specified. Check file TRBPWD to verify that the
number of points indicated for each range has an integer value of 1 or 2.

ERROR: NUMBER OF POINTS PER DIVISION INCORRECTLY SPECIFIED IN SET 'J'

Fatal The materials characterization model has been given conflicting infor-
mation about the number of points in one of the related S/N data sets.
Check file RELATD to compare for each related data set the total number of

points declared with the sum of the numbers of points in each data division.

ERROR: NUMBER OF POINTS PER DIVISION INCORRECTLY SPECIFIED IN
SPECIFIC DATA SET

Fatal The materials characterization model has been given conflicting infor-
mation about the number of points in the specific S/N data set. Check file
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TRBPWD,since the total number of points in the specific data set declared

and the sum of the numbers of points in each data division do not agree.

ERROR: OVERALL PRIOR RANGE INCORRECTLY SPECIFIED IN REGION
WITHOUT DATA

Fatal The prior credibility range on m in one of the regions without data has
been incorrectly specified. Check file TRBPWD to verify that either more

regions without data have been indicated than intended or that the number
of points in the prior on m in a region without data has been incorrectly
specified. Only the integer value 0, 1, or 2 is acceptable.

ERROR: OVER LIMIT ON NUMBER OF POINTS IN SET 'J'
Fatal The materials characterization model cannot accept more than 50 S/N

points in any related material data set. Check file RELATD for the total num-
ber of points in each related data set declared, or there may be more than
50 S/N points with an incorrect total declaration. It is suggested that the
number of S/N data points in each related set be recounted. If more than 50

points are desired, the parameter MAXDAT must be increased. Refer to
Section 7.3.1.3 for the routines involved.

ERROR: OVER LIMIT ON NUMBER OF RELATED DATA SETS
Fatal The materials characterization model allows up to 5 related data sets.
Check file RELATD to determine if more than 5 related data sets were

specified. The parameter MAXSET must be increased. Refer to Section
7.3.1.3 for the routines involved.

ERROR: OVER NUMBER OF POINTS LIMIT IN SPECIFIC MATERIAL
Fatal The materials characterization model cannot accept more than 50 S/N

points in the specific material data set. Check file TRBPWD for the total num-
ber of points in the specific data set declared, or there may be more than 50
S/N points with an incorrect total declaration. If more than 50 points are
desired, the parameter MAXDAT must be increased. Refer to Section
7.3.1.3 for the routines involved.

ERROR: OVER REGION LIMIT IN RELATED MATERIAL 'J'

Fatal No more than 3 life regions are allowed, and an attempt has been

made to place some S/N data in a region number greater than 3. Check file
RELATD for an invalid region number immediately following the stress ratio
value in the data set indicated.
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ERROR: OVER REGION LIMIT IN SPECIFIC DATA SET

Fatal No more than 3 life regions are allowed, and an attempt has been
made to place some S/N data in a region number greater than 3. Check file

TRBPWD for an invalid region number immediately following the stress ratio
value.

ERROR: POSTERIOR INTERVAL IN REGION 'L' IS INCONSISTENT WITH POINT
POSTERIOR IN REGION 'L-I'

Fatal Check file DUMP to verify that the point posterior value of m in region
'L-I' is greater than the upper bound of the posterior credibility range in
region 'L'. This error indicates a violation of the concavity assumption.

ERROR: POSTERIOR INTERVAL IN REGION 'L' IS INCONSISTENT WITH THE
POSTERIOR INTERVAL IN REGION '1.-1'

Fatal Check file DUMP to verify that the lower bound of the posterior
credibility range of m in region 'L-I' is greater than the upper bound of the
posterior credibility range of m in region 'L'. The data should be checked for

consistency.

ERROR: PRIOR ON M INCORRECTLY SPECIFIED IN 'L'

Fatal The number of points for the specified prior range of m in the indicated
region has been incorrectly provided. Check file TRBPWD to verify that the
number of points indicated for each range has an integer value of 0, 1, or 2.

ERROR: SXY > = 0 IN REGION 'L'

Fatal During the linear regression calculations for the region indicated, the

resulting value of the sample covariance S_ was found to be non-negative.
This suggests that the data is specified erroneously or is inadequate for
analysis, since life increasing with increasing stress contradicts the true
fatigue behavior of materials.

ERROR: TOO FEW POINTS FOR REGRESSION IN REGION 'L'

Fatal The materials characterization model does not have the required mini-
mum number of points in the region indicated to perform a linear regres-
sion. If there are no related data sets, then there must be at least 3 points in
each region. If there are N related data sets, then the total number of points
in each region (specific and related combined) must be at least N + 3.

IMPOSSIBLE M RANGE IN REGION 'L'

Fatal Concavity constraints during the random m selection have required an
impossible range on m for the region indicated. Take note of all input
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parameters for this run, and consult Sections 4.1.5.1, 4.1.5.2, and 7.3 to aid
in identification of the cause of this error.

NOTE: E(m) IS NOT IN THE POSTERIOR RANGE ON m IN REGION 'L'
Warning This means that the estimate of m based on the S/N data only, in
the region indicated, is outside the range indicated by the specified con-
straints on m and C.

PROCESS EXECUTION TERMINATED
Fatal This message is produced by routine TRMNAT and follows all other

fatal messages.

6.2.7 Summary of Input/Output Files

Input Files

TRBPWD

This file is opened in TRBPWA. It contains all parameters for the run options; driver
distributions; values for nominal stresses and their associated parametric sensitivity
coefficients; and the specific and exogenous materials input, including yield and
ultimate strengths (psi), stress ratio, S/N data points, life (cycles) boundaries, region
information, coefficient of variation constraint, C, and prior ranges on the materials

shape parameter m for each region.

RELATD
This file is opened in subroutine INFAGG. It contains the related material data input,
including yield and ultimate strengths (psi), stress ratio, S/N data points, and region
information.

Output Files

TRBPWO

This file is opened in TRBPWA. It contains the echo of the information contained in
TRBPWD, and provides the simulated failure distribution B-life information. 39

RELATO

This file is opened in subroutine INFAGG. It contains the echo of the information
contained in RELATD.

ZO A B-life is the value of accumulated operatix_ time to fail urc._ a f.ail_.e probab_ty
specified as a percent; e.g., B.1 is the failure tnne at a prooability ox u.uul or u.l_.
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DUMP
This file is opened in TRBPWA. It contains the results of the information aggregation
portion of the materials model calculations, such as !o and Jo; the point estimates of

m and C; posterior credibility ranges for m; and a list of the estimated values for all
S/N curve parameters. See Section 4.1.

IOUTPR

This file is opened in TRBPWA. It contains information on the particular run that is not
echoed to TRBPWO and the data dump provided when the variable lOUT is equal to

10 (materials characterization calculations), or 15 (Monte Carlo simulation and driver
transformation calculations).

LOWLIF

This file is opened in TRBPWA. It contains the first one percent of the calculated lives
used by the software described in Section 4.2 to calculate a, fl, and 0, the parameters
of the Bayesian prior failure distribution.
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Section 6.3

Materials Characterization User's Guide

The user's guide for running the materials characterization model code MATCHR

is given here. The materials characterization model is discussed in Section 2.1.2, the
program description and flowcharts are presented in Section 4.1, and the code
structure and listing are provided in Section 7.3.

6.3.1 MATCHR Program

The MATCHR program is used to facilitate the characterization of a materials data
set before performing probabilistic failure modeling. The output of MATCHR includes
point and interval estimates of various S/N curve parameters and posterior credibility
ranges for m.

The application case studies of Section 3 used the stress formulation of the
materials characterization model. The strain formulation is included here for com-

pleteness.

6.3.2 How To Use the Stress Formulation Option of Program MATCHR

The program MATCHR is intended to be run in batch (i.e., background) mode.
MATCHR requires two input data files: SPECFD and RELATD. The program requires
both files for all runs, even when no relatedS/N data is used. The file SPECFD contains

the analysis control parameters and specific and exogenous materials information.
The file RELATD contains the related materials information. A complete description of

the input data for the SPECFD and RELATD data files is given in Section 6.3.3.

The results from the MATCHR program are written to four output files: SPECFO,
RELATO, DUMP, and IOUTPR. SPECFO contains the echo of the information in

SPECFD and the results of any stress ratio transformations performed on specific
materials data. RELATO contains the echo of the information in RELATD and the

results of any stress ratio transformations performed on related materials data. The
results of the materials characterization calculations are primarily given in DUMR
These calculations include point and interval estimates for S/N curve parameters m
and C, posterior credibility ranges for m, and an estimate of the median S/N curve.
File IOUTPR contains an echo of the analysis parameters, the randomly selected S/N
curve, the resulting life at the user-provided stress level and, if requested, a dump of
intermediate calculations. If the program terminates prematurely, an error message
will be printed in the IOUTPR file. A list of error messages and possible remedies for
the problems is given in Section 6.3.10.
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6.3.3 Descrlptlon of the Stress Formulatlon Input Data Flles

Annotated examples of the complete data file format structure for SPECFD and

RELATD are presented in Figures 6-8 and 6-9, respectively. The data lines of the input
files are given in boxes, with a description of each data line located adjacent to each
box. The specific input parameters of Figures 6-8 and 6-9 are individually defined in
Sections 6.3.3.1 and 6.3.3.2. Input parameter values given in Figures 6-8 and 6-9 are
not necessarily those used in the application case studies of Section 3.

The input data is read by free format statements from files SPECFD and RELATD.
Thus, the numbers may be provided sequentially on a line up to 80 characters in

length, with each number separated by a blank character or comma. Each number
may also be on a separate line in the file. However, it is recommended that the input
format suggested in Figures 6-8 and 6-9 be followed whenever possible.

6.3.3.1 Input File SPECFD
The required data for the SPECFD file is divided into the two blocks shown in Figure

6-10: analysis parameters and materials information. The analysis parameters block
contains the analysis parameters and the keys to select the program options. The
materials information block contains the specific material S/N data, including the yield

and ultimate strengths, stress ratio, the S/N data points, life region boundaries, and
materials characterization model parameter constraints.

The input parameters are described below by using the following convention: the
input variable names are indicated by BOLD UPPERCASE letters; the variable types
are specified as character [CHR], integer [INT], real [RE], and double precision real
[DRE]; the function of the variable is _ and followed by a description and a
list of options, when appropriate; the program and file names are indicated by
UPPERCASE letters. A consistent set of units is given in parentheses for specifying
dimension, load, and stress input parameters. All character strings must be enclosed

by 'single quotes'. The user is reminded about the difference between the number
"0" and the letter "O" when preparing the input files.

Analysls Parameters Block

RAND

[DRE]

Random number seed

Needed by MATCHR's built-in random number generator.

6-118



675

0
1
2

0
0

75000.

Random number seed

Output dump controller
Stress formulation is to be used

Type of S/N variation
Request for truncated Normal median S/N curve

Controls materials process variation
Value of stress used in life calculation

Description of specific material SIN data set

I '-320 HOURGLASS + STRAIGHT' I

Specific materials Information: yield and ultimate strengths, number of data divisions, and total number
of points in data set

1178600. 220400. 1 20 I

Specific materials Information for each data division: number of points in data division, stress ratio, and
life region

I 20 0.05 1 I

Figure 6-8 Format for File SPECFD
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150000. 65000.

140000. 261000.

120000. 265000.

16O0OO. 377O0O.

e ,ocx .
110000. 2175000.

100000. 4198000.

105000. 5053000.

92000. 9210000.

95000. 9667O00.

150000. 418000.

140000. 732000.

130000. 740000.

12OOOO. 859OOO.

110000. 1181000.

1OOOOO. 4O2000O.

92000. 5917000.

94000. 6522000.

90OO0. 68910OO.

86000. 4460000.

0.00

1 0
1.0E + 36

0.00
2 3.596 5.874

S1, N1

S2,N2
S3,N3
$4, N4

$5, N5

S6, N6

S7, N7

S8, N8

Sg,N9
$10, NlO

$11, Nll

$12, N12

$13, N13

S14, N14

$15, N15

$16, N16

$17, N17

$18, N18

$19, N19

S2o,N2o
Stress tensile point
Number of life regions with and without data

Life boundary
C constraint
Prior information on m

I 0.0 0.0 0.0 J Bayesian prior distribution information

I 0.0 0.0 J Materials process variation information

Figure 64 Format for File SPECFD (Cont'd)
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I'_ Number of related data sets

Description of related material S/N data set

I'I"ITANIUMI -423F_ 0.14Fe' I

Related materials information: yield and ultimate strengths, number of data divisions, and total number
of points in data set

I 201700. 215300. 2 10 I

Related materials information for data division 1: number of points in data division, stress ratio, and life

region

4 0.10 1 J

140000. 38000.

130000. 30000.

130000. 713000.

1300OO. 310000.

6 0.10 2

120000. 72000.

110000. 3224000.

100000. 910000.

100000. 3230000.

120000. 665000.

110000. 56000.

S 1, N 1

$2, N2

s3,N3
S.,N.
Number of, points in division 2, stress ratio, region

S5, N 5

ss,N6
ST,N7
Ss, N 8

sg,N9
Sl0, N10

Figure 6-9 Format for File RELATD

ANALYSIS PARAMETERS

MATERIALS INFORMATION

Figure 6-10 Data Blocks for Input File
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lOUT

[ir r]

Output dump controller
MATCHR has the ability to write intermediate calculations to file IOUTPR. The following

integer values control the =dump" of MATCHR's calculations.

lOUT = 0 no Intermediate calculation output

lOUT = 10 materials characterization model calculations

NCOMPS

[INT]

Controls materials characterization formulation

MATCHR has the ability to produce stochastic realizations of both stress/life and
strain/life curves. The materials information block described below depends on the

value of NCOMPS chosen. This section describes the NCOMPS -- 1 case,

NCOMPS = 1 stress formulation

NCOMPS = 2 strain formulation

VARY

[INT]

Type of SIN variation 4°

Controls the type of stochastic variation to be included in the materials charac-

terization model S/N curve.

VARY = 0

VARY = 1

VARY = 2

VARY = 3

NMED

[INT]

no variation will be included

allows only intrinsicmaterials variation

allows Uniform variation of the materials model shape parameter m
and intrinsic materials variation

allows truncated Normal variation of the materials model shape
parameter m and intrinsic materials variation

4o A discussion of the possible stochastic specifications of the materials model shape
parameter m is given in Pages 2-13 through 2-14.
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Request for truncated Normal median S/N curve 41

If VARY - 3, then NMED controls the calculation of the empirical median SIN curve.

NMED = 0

NMED = 1

no median curve calculation is required

median curve calculation is required

MPROC

[INT]

Controls materials process variation

Controls the inclusion of materials process variation (heat-to-heat variation). Process
variation in materials is discussed in Section 2.1.2.3.

MPROC = 0 no variation to be included

MPROC = 1 variation is to be Included

STRESS

[RE]

Value of stress

MATCHR will provide a value of life (cycles) corresponding to the user-provided value
of stress (psi). The life value will be calculated from the stochastic S/N curve resulting
from the value of RAND provided. STRESS must be a positive number.

Materials Information Block

DESCRP(0)
[CHR]

Description of specific material S/N data set
Name and test environment for the specific material S/N data. This is a character string
no more than 40 characters long, enclosed by single quotes.

FTY FTU NDIV NPTS(0)

[RE] [RE] [INT] [INT]

41 The median S/N curve for the truncated Normal distribution is discussed on Page 2-15.
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Specificmaterials information
Yield strength, ultimate strength, number of divisions of data, number of points in SIN

data set. The data may be divided when they are assigned to a different life region or
have different stress ratios. If all the data has a stress ratio of -1.0, then the yield and

ultimate strengths are not required, but zero values must be specified as placeholders.

NPTS(0) cannot exceed fifty. The next two data sets have to be provided for each

data division.

FrY

FTU

NDIV

NPTS(0)

yield strength corresponding to the specific material data set (psi)

ultimate strength corresponding to the specific material data set (psi)

number of data dMsions for the specific material data set

total number of points in the specific material S/N data set

NUM RATIO REG

[INT] [RE] [INT]

Materials information for each data division of the specific SIN data set

Number of points, stress ratio, and the life region of interest for each data division.

This line must be provided for each data division.

NUM number of S/N data points in the data division

RATIO stress ratio for the data in the data dMsion

REG life region number to be assigned to the data in the data division

RAWSTR(I,0) RAWNF(I,0)

[RE] [RE]

Specific material SIN data points
Stress versus fatigue life data points for each data division. A block of NUM lines must

be specified (i.e., the value of I goes from 1 to NUM). This block must be provided

for each data division.

RAWSTR(I,O) stress value (psi)

RAWNF(I,O) fatigue lifevalue (cycles)

SZERO

[RE]
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Tensile point 42

Stress tensile point SO (psi). Must be non-negative. A value of zero indicates no tensile

point.

NUMREG NNODAT

[INT] [INT]

Data regions _

Number of life regions that are data-determined and not data-determined. NUMREG

+ NNODAT cannot exceed three. NUMREG must be 1,2, or 3, and NNODAT must

be non-negative, and should be 0 or 1.

NUMREG number of life regions determined by data

NNODAT number of life regions (to the right) not determined by data

NBND(L)

[RE]

Life Boundaries '_

The upper boundaries of the life regions are specified (cycles). The value of L goes

from ZROREG to the total number of regions (equal to NUMREG + NNODAT). If a

non-zero tensile point is specified, then ZROREG = 0 else ZROREG = 1. The

program expects the upper bound of the last life region to be 103s, a proxy for oo.

CZERO

[RE]

Prior information on coefficient of variation of fatigue strength '_

Information in the form of a constraint on the coefficient of variation of fatigue strength

C for the specific material S/N data set. Value must be non-negative and a value of
zero indicates that CZERO is not in use.

42 Extension of the S/N curve to the left is discussed on Page 2-17.

43 Extension of the S/N curve to the right is discussed on Page 2-17.

44 Life region boundaries are discussed on Page 2-15.

45 The implicit constraint on the materials shape parameter provided by prior information
on the coefficient of variation of fatigue strength is discussed on Pages 2-12 through 2-13.
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MPNT(L) MZERO(1,L) MZERO(2,L)
[IN'l] [RE] [RE]

Prior information on the materials shape parameter m 46

The number of MZERO values in each life region, and the lower and upper bound for

the range of m. The value of L goes from 1 to (NUMREG + NNODAI"). If VARY =

3 is specified (truncated Normal distribution on m), then a prior range of m must be

specified for each region.

MPNT(L) The number of points, 0, 1, or 2 (no prior on m, a point prior on m, or
a prior over a range of m, respectively), in MZERO( ) for each region.

MZERO(1,L) The lower bound on the range of m or the value of the point prior for m.

MZERO(2,L) The upper bound on the range of m. Program requires that the value
be zero if a point prior for m is specified.

DELTA(L) MO(L) SlGMA2(L)

[RE] [RE] [RE]

Information on the Bayesian prior disldbu_on for the truncated Normal distrib_on 47

If VARY - 3, then the materials model uses the truncated Normal distribution. The

truncated Normal distribution requires some prior information on the Normal distribu-

tion parameters because a Bayesian analysis is performed. The information is

required for each life region. The value of L goes from 1 to (NUMREG + NNODA'r).

DELTA(L) The shape parameter 6 of the Bayesian prior distribution is used to
compute the Bayesian posterior dlstrlbution parameters. Value must
be non-negative, a value of zero indicates a diffuse prior distribution.

MO(L) Location parameter rno of the Bayesian pdor distribution of the shape
parameter rn. Must be positive. Required when DELTA(L) is non-zero.

SlGMA2(L) o 2, the known variance of In(fatigue life), V (In N I In S). Must be non-

negative.

KRATIO LAMN

[RE] [RE]

4e The explicit constraint on the mate.ri_.., shape parameter provided by prior information
on the materials shape parameter ts discussed on Page 2-12.

47 Spcci_cation of the Bayesian prior distribudon for the truncated Normal case is
discussed on Page 2-14.
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Materials process variation information
If MPROC -- 1, then specification of KRATIO and LAMN is required. KRATIO is ,1._(,
the ratio IVIEDK'/MED K where MED K* is the median value over all heats for the stress

(psi) at a life of one cycle, and IVIEDK is the median value for the specific S/N data for
the stress (psi) at a life of one cycle. LAMN is the ratio of the variance of In(life)
conditional on stress over all heats to the intrinsic materials variation for the given SIN
data conditional on stress. Process variation in materials is discussed in Section

2.1.2.3.

6.3.3.2 Input File RELATD
The input data for file RELATD, which contains the related materials information, 48

is given below. The data format is similar to that used to specify the S/N data in the
specific materials information block in the SPECFD file. '

NSETS

[INT]

Number of related data sets

Number of related material S/N data sets. The following data groups have to be

repeated as a block for each data set. The value of ,I varies from 1 to NSETS. If there
is no related data, then file RELATD will only contain the number "0". NSETS cannot
exceed five.

DESCRP(J)
[CHR]

Description of related material S/N data set
Name and test environment for related material S/N data set d. This is a character

string no more than 40 characters long, enclosed by single quotes.

FrY FTU NDIV NPTS(J)

[RE] [RE] [INT] [INTJ

Related materials information

Yield strength, ultimate strength, number of divisions of data, number of points in S/N
data set. The data may be divided when they are assigned to a different life region or
have different stress ratios. If all the data has a stress ratio of - 1.0, then the yield and
ultimate strengths are not required, but zero values must be specified as placeholders.

4e Related S/N data is discussed on Page 2-7.
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NPTS(J) cannot exceed fifty. The next two data sets have to be provided for each
data division.

FTY

FTU

NDn/

NPTS(J)

yield strength corresponding to related material data set J (psi)

ultimate strength corresponding to related material data set J (psi)

number of data dlvlslonsfor related material data set J

total number of polnts In related material S/N data set J

NUM RATIO REG

[INT] [RE] [ONT]

Materials ir_formation for each data division of the related S/N data set

Number of points, stress ratio, and the life region of interest for each data division.
This line must be provided for each data division.

NUM number of SIN data points in the data division

RATIO stress ratio for the data in the data division

REG life region number to be assigned to the data in the data division

RAWSTR(I,J) RAWNF(I,J)

[RE] [RE]

Related material S/N data points
Stress versus fatigue life data points for each data division. A block of NUM lines must
be specified (i.e., the value of I goes from 1 to NUM). This block must be provided
for each data division.

RAWSTR(I,J) stress value (psi)

RAWNF(I,J) fatigue life value (cycles)

6.3.4 Options and Capabllltles of the Stress Formulatlon

MATCHR is a Monte Carlo simulation program which generates a stochastic

realization of an SIN curve based on data and exogenous information. A printout of
intermediate calculations in various parts of the program may be obtained via the

IOUT option. This output will be printed in the IOUTPR file. It is recommended that
such output not be requested when the NMED option is used since the information
will be dumped during every SIN curve selection. The NMED option provides for
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calculation of an empirical median S/N curve if the truncated Normal distribution is
employedJ e In this case, the median S/N curve is based on the empirical median m
from all the shape parameters used in the simulation. The MPROC option activates
the computations for the process variation feature of the materials characterization
model, as discussed in Section 2.1.2.3.

6.3.5 Code Executlon Example for the Stress Formulatlon

The following example run of the stress formulation of the materials characterization
model code MATCHR was carried out by using Uniform shape parameter variation,

VARY = 2, and no process variation MPROC = 0. The data set consists of twenty
SIN data points, NUM = 20 with a stress ratio of 0.05 (RATIO - 0.05). No tensile
point is used, SZERO = 0. The number of regions with data, NUMREG, is 1, and
there are no regions to the right without data, NNODAT = 0. The data is in one
division, NDIV = 1, and the total number of points is twenty, NPTS(0) = 20. No
constraint on the coefficient of variation of fatigue strength is provided, CZERO = 0.

An explicit range on rn in region one is included (MPNT(1) = 2, MZERO(1,L) = 3.00,
and MZERO(2,L) = 5.00). No related data is provided. Thus, the RELATD file is
empty, except for a single entry to indicate NSETS = 0. If further explanation of files

SPECFD and RELATD is required, refer to Sections 6.3.3.1 and 6.3.3.2, and Figures
6-8 and 6-9, respectively.

The echo of the input data is in the output file SPECFO. The DUMP file contains the
results of the materials characterization model information aggregation calculations, s°
Finally, the IOUTPR file gives an echo of the analysis parameters, the randomly
selected S/N curve, and the resulting life at STRESS = 75,000 psi. The dump
parameter lOUT is zero; therefore, no other output is in this file.

Input File - SPECFD

675

0

1

2

0

0

75000.

'-320 HOURGLASS + STRAIGHT'

178600. 220400. 1 20

20 0.05 1

150000. 65000.

49 The truncated Normal distribution for the materials model shape parameter m is
discussed on Page 2-14.

50 The information aggregation calculations are discussed on Pages 2-6 through 2-15.
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140000. 261000.

120000. 265000.

160000. 377000.

130000. 694000.

110000. 2175000.

100000. 4198000.

105000. 5053000.

92000. 9210000.

95000. 9667000.

150000. 418000.

140000. 732000.

130000. 740000.

120000. 859000.

110000. 1181000.

100000. 4020000.

92000. 5917000.

94000. 6522000.

90000. 6891000.

86000. 4460000.

0.00

1 0

1 •0E+36

0.00

2 3.00 5.00

Input Flle - RELATD

0

Output File - SPECFO

copyright (C) 1990, California Institute of Technology. U.S. Government

sponsorship under NASA Contract NAS7-918 is acknowledged.

MATERIAL INPUT

DESCRIPTION:

YIELD STRENGTH

ULTIMATE STRENGTH

NUMBER OFPOINTS

-320 HOURGLASS + STRAIGHT

0.17860E+06

0.22040E+06

20

6-130



ORIGINAL S/N STRESS

STRESS LIFE RATIO REGION

0.15000E+06 65000. 0.05 1

0.14000E+06 261000. 0.05 1

0.12000E+06 265000. 0.05 1

0.16000E+06 377000. 0.05 1

0.13000E+06 694000. 0.05 1

0.11000E+06 2175000. 0.05 1

0.10000E+06 4198000. 0.05 1

0.10500E+06 5053000. 0.05 1

0.92000E+05 9210000. 0.05 1

0.95000E+05 9667000. 0.05 1

0.15000E+06 418000. 0.05 1

0.14000E+06 732000. 0.05 1

0.13000E+06 740000. 0.05 1

0.12000E+06 859000. 0.05 1

0.11000E+06 1181000. 0.05 1

0.10000E+06 4020000. 0.05 1

0.92000E+05 5917000. 0.05 1

0.94000E+05 6522000. 0.05 1

0.90000E+05 6891000. 0.05 1

0.86000E+05 4460000. 0.05 1

TRANSFORMED S/N

STRESS LIFE

0.11086E+06 65000.

0.99773E+05 261000.

0.79814E+05 265000.

0.12280E+06 377000.

0.89449E+05 694000.

0.70802E+05 2175000.

0.62353E+05 4198000.

0.66510E+05 5053000.

0.55964E+05 9210000.

0.58323E+05 9667000.

0.11086E+06 418000.

0.99773E+05 732000.

0.89449E+05 740000.

0.79814E+05 859000.

0.70802E+05 1181000.

0.62353E+05 4020000.

0.55964E+05 5917000.

0.57532E+05 6522000.

0.54416E+05 6891000.

0.51374E+05 4460000.

THERE IS 1 REGION(S} WITH DATA

AND 0 REGION(S} TO THE RIGHT WITHOUT DATA

THE UPPER BOUND(S) OF THE REGION(S) ARE (CYCLES):

0.100E+37

EXOGENOUS INFORMATION

CONSTRAINT ON COEFFICIENT OF VARIATION, C:

EXPLICIT CONSTRAINT ON m FOR EACH REGION:

REGION # OF POINTS LOWER BOUND

1 2 3.0000

0.0000

UPPER BOUND

5.0000

Output File - RELATO

NUMBER OF DATA SETS:
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NOTE: ALL Kt ASSUMED TO BE 1.0

TRANSFORMED DATA

Output File - DUMP

Copyright (C) 1990, california Institute of Technology. U.S. Government

sponsorship under NASA Contract NAS7-918 is acknowledged.

RESULTS OF INFORMATION AGGREGATION CALCULATIONS

95% CONFIDENCE INTERVALS ON C AND m FOREACH REGION

REGION: 1 Io = ( 0.092758540, 0.181539600)

Jo = ( 3.596348000, 5.874000000)

POINT ESTIMATES OF C AND m FOR EACH REGION

REGION E(C) E(m)

1 0.122759400 4.735174

POSTERIOR CREDIBILITY RANGE ON m FOR EACH REGION

REGION LOWER BOUND UPPER BOUND

1 3.5963 5.0000

PARAMETER VALUES FOR MEDIAN S/N CURVE

NUMBER OF REGIONS= I E(BETAo) =

REGION m K

8.6103

LIFE BOUND

E(k) = 14.5351

STRESS BOUND
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i 4.29817 0.21044E+07 0.100E+37 0.00000E+00

SELECTED VALUES OF S/N CURVE PARAMETERS

NUMBER OF REGIONS: 1 BETAo = 9.3521

REGION m K LIFE BOUND STRESS BOUND

1 4.59492 0. 16956E+07 0. 100E+37 0. 00000E+00

PHI = 0.963788

Output File - IOUTPR

RANDOM NUMBER SEED: 675.000000000000

OUTPUT DUMP CONTROLLER: 0

NUMBER OF COMPONENTS: 1

TYPE OF S/N VARIATION DESIRED

(0-NONE; 1-INTRINSIC; 2-UNIFORM; 3-NORMAL): 2

MEDIAN CURVE FOR NORMAL TYPE

VARIATION DESIRED (0 - NO, i - YES): 0

MATERIALS PROCESS VARIATION DESIRED

(0 - NO, I - YES): 0

VALUE OF STRESS: 75000.0

NUMBER OF REGIONS: IPHI: 0.963788

REGION: 1 STRESS BOUND: 0.000000

BIGK(L): 0.169564E+07 MM(L): 4.59492

STRESS = 75000.0 LIFE = 0.140987E+07

6.3.6 HowTo Use the Strain Formulation Option of Program MATCHR

The program MATCHR is intended to be run in batch (i.e., background) mode.
MATCHR requires two input data files: SPECFD and RELATD. The program requires
both files for all runs, even when no relatedS/N data is used. The file SPECFD contains

the analysis control parameters and specific and exogenous materials information.
The file RELATD contains the related materials information. A complete description of
the input data for the SPECFD and RELATD data files is given in Section 6.3. 7.
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The results from the MATCHR program are written to four output files: SPECFO,

RELATO, DUMP, and IOUTPR. SPECFO contains the echo of the information in
SPECFD. RELATO contains the echo of the information in RELATD. The results of the
materials characterization calculations are primarily given in DUMR These calculations

include point and interval estimates for S/N curve parameters mp and m E, posterior

credibility ranges formp and m E, and an estimate of the median S/N curve. File IOUTPR
contains an echo of the analysis parameters, the randomly selected S/N curve, the

resulting life at the user-provided strain level and, if requested, a dump of intermediate
calculations. If the program terminates prematurely, an error message will be printed
in the IOUTPR file. A list of error messages and possible remedies for the problems

is given in Section 6.3.10.

6.3.7 Description of the Strain Formulation Input Data Files

Annotated examples of the complete data file format structure for SPECFD and

RELATD are presented in Figures 6-11 and 6-12, respectively. The data lines of the
input files are given in boxes, with a description of each data line located adjacent to
each box. The specific input parameters of Figures 6-11 and 6-12 are individually
defined in Sections 6.3. 7.1 and 6.3. 7.2.

The input data is read by free format statements from files SPECFD and RELATD.
Thus, the numbers may be provided sequentially on a line up to 80 characters in
length, with each number separated by a blank character or comma. Each number

may also be on a separate line in the file. However, it is recommended that the input
format suggested in Figures 6-11 and 6-12 be followed whenever possible.

6.3.7.1 Input File SPECFD
The required data for the SPECFD file is divided into the two blocks shown in Figure

6-10: analysis parameters and materials information. The analysis parameters block
contains the analysis parameters and the keys to select the program options. The
materials information block contains the specific material S/N data, including plastic

and elastic strain components, the S/N data points, tensile test points, and materials
characterization model parameter constraints.

The input parameters are described below by using the following convention: the
input variable names are indicated by BOLD UPPERCASE letters; the variable types
are specified as character [CHR], integer [INT], real [RE], and double precision real
[DRE]; the function of the variable is _ and followed by a description and a
list of options, when appropriate; the program and file names are indicated by
UPPERCASE letters. A consistent set of units is given in parentheses for specifying
dimension, load, and strain input parameters. All character strings must be enclosed

by 'single quotes'. The user is reminded about the difference between the number
"0 mand the letter "Omwhen preparing the input files.
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675
0
2
2

0
0

1.5

Random number seed

Output dump controller
Strain formulation is to be used

Type of S/N variation
Request for truncated Normal median S/N curve
Controls materials process variation
Value of strain used in life calculation

Description of specific material S/N data set

I 'H2/HIGH PRESSURE/HIGH TEMPERATURE' I

Specific materials information: number of given plastic/alastic decomposed strain points, total number
of strain points, and the number of tensile test points

4 7 1 I

1.8 105 0.475

1.5 260 0.27

1.3 600 0.18

1.0 1950 0.115

1.49 186

1.47 190

2.02 55

4.17

0 0.00 0.00

0 0.00 0.00

1.325

1.23

1.12

0.885

S1,N1, Sp1,SE1

S2,N2, SE2
S3,N3, SE3
S4, N4, Sp4, SE4

S5, N5

s6,N6
ST,N7
Tensile point

Prior information on mp

Prior information on mE

0.00 0.00 0.00 I Bayesian prior distribution information on mp0.00 0.00 0.00 I Bayesian prior distribution information on mE

I 0.0 0.0 I Materials process variation information

Figure 6-11 Format for File SPECFD
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I"_Number of related data sets

Description of related material SIN data set

'INERT/MIXED PRESS/HIGH TEMPERATURE' I

Related materlals information: number of given plastic/elastic decomposed strain points, total number
of strain points, and the number of tensile test points

12 12 2 I

1.8 202

1.2 980

0.8 4000

1.476 340

2.25 185

0.78 5000

1.47 350

2.0 240

1.05 1870

2.05 296

1.48 700

1.05 2000

13.07

8.72

0.35 1.45

0.135 1.045

S1,N1,Sp1,SE1

S2,N2,S_, S_
S3,N3
S4,N4
Ss,Ns
S6,N6
ST,N7
Ss,N8
SR,N9
$10, NlO

$11, Nll

$12, N12
Tensile point 1

Tensile point 2

Figure 6-12 Format for File RELATD
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Analysis Parameters Block

RAND

[DRE]

Random number seed

Needed by MATCHR's built-in random number generator.

lOUT

[IN'r]

Outputdump controller

MATCHR has the ability to write intermediate calculations to file IOUTPR. The following
integer values control the "dump" of MATCHR's calculations.

lOUT = 0 no Intermediate calculation output

lOUT = 10 materials characterization model calculations

NCOMPS

[INT]

Controls materials characterization formulation

MATCHR has the ability to produce stochastic realizations of both stress/life and

strain/life curves. The materials information block described below depends on the
value of NCOMPS chosen. This section describes the NCOMPS = 2 case.

NCOMPS = 1 stress formulation

NCOMPS = 2 strain formulation

VARY

[iN'r]

Type of S/N variation 51

Controls the type of stochastic variation to be included in the materials charac-
terization model $/N curve.

VARY = 0 no variation will be included

VARY = 1 allows only intrinsic materials variation

VARY = 2 allows Uniform variation of the materials model shape parameters mp

and mE and intrinsicmaterials variation

51 A discussion of the possible stochastic specifications of the materials model shape
parameters mp and mE is given in Pages 2-13 through 2-14.
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VARY -- 3 allowstruncatedNormalvariationof the materialsmodal shape
parametersmpand mEand intrinsicmaterialsvariation

NMED

[INT]

Request for truncated Normal median S/N curve s2

If VARY - 3, then NMED controls the calculation of the empirical median S/N curve.

NMED = 0 no mediancurvecalculationis required

NMED -- 1 mediancurvecalculationisrequired

MPROC

[INT]

Controls materials process variation
Controls the inclusion of materials process variation (heat-to-heat variation). Process
variation in materials is discussed in Section 2.1.2.3.

MPROC = 0 no variation to be included

MPROC = 1 variationisto be included

STRAIN

[RE]

Value of strain
MATCHR will provide a value of life (cycles) corresponding to the user-provided value
of strain (%). The life value will be calculated from the stochastic S/N curve resulting
from the value of RAND provided. STRAIN must be a positive number.

Materials Information Block

DESCRP(0)

[CHR]

Description of specificmaterial SIN data set
Name and test environment for the specific material SIN data. This is a character string
no more than 40 characters long, enclosed by single quotes.

NDC(0) NPTS(0) NTENS(0)
[INT] [INT] [INT]

s2 The median S/N curve for the truncated Normal distributionis discussed on Page 2-15.
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Specific materials information
Number of user-provided plastic/elastic decomposed strain points, number of points

in S/N data set, and the number of tensile test points.

NDC(0) Number of strain/life points with user-provided plastic and elastic com-
ponents. At least three points must be provided to use the strain for-
mulation of the materials characterization model.

NPTS(0) Total number of points in the specific material S/N data set. Cannot ex-
ceed ftfty.

NTENS(0) Number of tensile test data points. Cannot exceed five.

RAWSTR(I,0) RAWNF(I,O) SP(I,O) SE(I,O)

[RE] [RE] [RE] [RE]

Specific material decomposed S/N data points
Strain versus fatigue life data points with user-provided plastic and elastic strain

components. A block of NDC(0) lines must be specified (i.e., the value of I goes from

1 to NDC(O)).

RAWSTR0,0)

RAWNF(I,0)

sP0,O)

SE(I,O)

strain value (%)

fatigue life value (cycles)

plastic strain component (%)

elastic strain component (%)

RAWSTR(I,0) RAWNF(I,0)

[RE] [RE]

Specific material S/N data points
Strain versus fatigue life data points. A block of (NPTS(0) - NDC(0)) lines must be

specified.

RAWSTR(I,0) strain value (%)

RAWNF(I,0) fatigue life value (cycles)

TNSlLE(O,M)

[RE]

Tensile points

Plastic strain tensile points Sp (%). A block of NTENS(0) lines must be specified (i.e.,

the value of M goes from 1 to NTENS(0)). Inclusion of the tensile data is discussed
in Section 2.1.2.2.
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MPNTP(1) MZEROP(1,1) MZEROP(2,1)
[IN'l] [RE] RE]

MPNTE(1) MZEROE(1,1) MZEROE(2,1)
[INT] [RE] [RE]

Prior information on the materials shape parameters mp and mEs3

The number of MZEROP values for the plastic component, the lower and upper bound

for the range of rap, the number of MZEROE values for the elastic component, and

the lower and upper bound for the range of m E. If VARY = 3 is specified (truncated

Normal distribution on mp and mE), then prior ranges of mp and m E must be specified.

MPNTP(1) The number of points, 0, 1, or 2 (no pdor on mp, a point pdor on rnp,
or a prior over a range of rap, respectively), in MZEROP( ) for the plas-

tic strain component.

MZEROP(1,1) The lower bound on the range of mp or the value of the point prior for

mp.

MZEROP(2,1) The upper bound on the range of mp. Program requires that the value
be zero if a point prior for rnp is specified.

MPNTE(1) The number of points, 0, 1, or 2 (no prior on mE, a point prior on mE,
or a prior over a range of mE, respectively), in MZEROE( ) for the elas-
tic strain component.

MZEROE(1,1) The lower bound on the range of mE or the value of the point prior for

mE•

MZEROE(2,1) The upper bound on the range of mE. Program requires that the value

be zero if a point pdor for mE is specified.

DELTAP(1) MOP(l) SIG2P(1)

[RE] [RE] [RE]

DELTAE(1) MOE(1) SIG2E(1)

[RE] [RE] [RE]

53 The explicit constraint on the materials shape parameter provided by prior information
on the materials shape parameter is discussed onPage 2-12.
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Information on the Bayesian prior distributions for the truncat_ Normal distribution s4

If VARY - 3, then the materials model uses the truncated Normal distribution. The
truncated Normal distribution requires some prior information on the Normal distribu-

tion parameters because a Bayesian analysis is performed. The information is
required for both plastic and elastic strain components.

DELTAP(1) The shape parameter 6p of the Bayesian pdor distribution is used to
compute the Bayesian posterior distribution parameters. Value must
be non-negative, a value of zero Indicates a diffuse pdor distdbution.

MOP(l) Location parameter mop of the Bayesian pdor distribution of the shape

parameter mp. Must be positive. Required when DELTAP(1) is non-
zero.

SIG2P(1) ap 2, the known variance of ln(fatigue life), V (in N i inSp), for the pias .
tic strain components. Must be non-negative.

DELTAE(1) The shape parameter 6E of the Bayesian prior distribution is used to
compute the Bayesian posterior distribution parameters. Value must
be non-negative, a value of zero indicates a diffuse prior distribution.

MOE(1) Location parameter moE of the Bayesian prior distribution of the shape
parameter mE. Must be positive. Required when DELTAE(1) is non-
zero.

SlG2E(1) aE 2, the known variance of In(fatigue life), V (In N I In SE), for the elas-

tic strain components. Must be non-negative.

KRATIO LAMN

[RE] [RE]

Materials process variation information
If MPROC = 1, then specification of KRATIO and LAMN is required. KRATIO is ,t_,,

the ratio MED K*/MED K where MED K* is the median value over all heats for the strain

(%) at a life of one cycle, and MED K is the median value for the specific S/N data for
the strain (%) at a life of one cycle. LAMN is the ratio of the variance of In(life)
conditional on strain over all heats to the intrinsic materials variation for the given S/N
data conditional on strain. Process variation in materials is discussed in Section
2.1.2.3.

54 Specification of the Bayesian prior distribution for the truncated Normal case is
discussed on Page 2-14.
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6.3.7.2 Input File RELATD
The input data for file RELATD,which contains the related materials information,ss

is given below. The data format is similar to that used to specify the S/N data in the

specific materials information block in the SPECFD file.

NSETS

[tNT]

Number of related data sets
Number of related material S/N data sets. The following data groups have to be

repeated as a block for each data set. The value of J varies from I to NSETS. If there
is no related data, then file RELATD will only contain the number =0". NSETS cannot

exceed five.

DESCRP(J)
[CHR]

Description of related material SIN data set
Name and test environment for related material S/N data set J. This is a character

string no more than 40 characters long, enclosed by single quotes.

NDC(J) NPTS(J) NTENS(J)

[INT] [INT] [INT]

Related materials information

Number of user-provided plastic/elastic decomposed strain points, number of points
in S/N data set, and the number of tensile test points.

NDC(J) Number of strain/life points with user-provided plastic and elastic com-
ponents for related material data set J.

NPTS(J) Total number of points in related material S/N data set J. Cannot ex-
ceed fifty.

NTENS(J) Number of tensile test data points for related material data set J. Can-
not exceed five.

RAWSTR(I,J) RAWNF(I,J) SP(I,J) SE(I,J)

[RE] [RE] [RE] [RE]

55 Related S/N data is discussed on Page 2-7.
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Related material decomposed S/N data points
Strain versus fatigue life data points with user-provided plastic and elastic strain
components. A block of NDC(J) lines must be specified, i.e., the value of I goes from
I to NDC(J).

RAWSTR(,,J)

RAWNF(I,J)

SP(I,J)

SE(I,J)

strain value (%)

fatigue lifevalue (cycles)

plastic strain component (%)

elastic strain component (%)

RAWSTR(I,J) RAWNF(I,J)

[RE] [RE]

Related material S/N data points
Strain versus fatigue life data points. A block of (NPTS(J) - NDC(J)) lines must be
specified.

RAWSTR(I,J) strain value (%)

RAWNF(I,J) fatigue life value (cycles)

TNSlLE(J,M)
[RE]

Tensile points

Plastic strain tensile points Sp (%). A block of NTENS(J) lines must be specified, i.e.,

the value of M goes from 1 to NTENS(J). Inclusion of tensile data is discussed in
Secion 2.1.2.2.

6.3.8 Options and Capabilities of the Strain Formulation

MATCHR is a Monte Carlo simulation program which generates a stochastic
realization of an S/N curve based on data and exogenous information. A printout of
intermediate calculations in various parts of the program may be obtained via the
lOUT option. This outputwill be printed in the IOUTPR file. It is recommended that
such output not be requested when the NMED option is used since the information
will be dumped during every S/N curve selection. The NMED option provides for
calculation of an empirical median S/N curve if the truncated Normal distribution is
employed, s6 In this case, the median S/N curve is based on the empirical median

56 The truncated Normal distribution for the materials model shape parameters rnp and
mE is d_cussed on Page 2-14.
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mp and mE from all the shape parameters used in the simulation. The MPROC option
activates the computations for the process variation feature of the materials charac-
terization model, as discussed in Section 2.1.2.3.

6.3.9 Code Execution Example for the Strain Formulation

The following example run of the strain formulation of the materials characterization
model code MATCHR was carried out by using Uniform shape parameter variation,

VARY = 2, and no process variation MPROC = 0. The data set consists of four data

points with given plastic and elastic strain components, NDC(0) - 4, the total number
of strain/life points is seven, NPTS(0) - 7, and the number of tensile points,

NTENS(0), is one. No explicit ranges on mp and m E are provided (MPNTP -

MZEROP(1) = MZEROP(2) - MPNTE = MZEROE(1) - MZEROE(2) = 0). No
related data is provided. Thus, the RELATD file is empty except for a single entry to
indicate NSETS = 0. If further explanation of files SPECFD and RELATD is required,

refer to Sections 6.3.7.1 and 6.3.7.2, and Figures 6-11 and 6-12.

The echo of the input data is in the output file SPECFO. The DUMP file contains the
results of the plastic/elastic strain decomposition and the materials characterization
model information aggregation calculations. 57 Finally, the IOUTPR file gives an echo

of the analysis parameters, the randomly selected S/N curve, and the resulting life at
STRAIN = 1.5%. The dump parameter lOUT is zero; therefore, no other output is in
this file.

Input File - SPECFD

675

0

2

2

0

0

1.5

'H2/HI_ P_SSURE/HIGH TEMPERATURE'

4 7 1

1.8 105

1.5 260

1.3 600

1.0 1950

1.49 186

1.47 190

2.02 55

4.17

0.475 1.325

0.27 1.23

0.18 1.12

0.115 0.885

57 The information aggregation calculations are discussed on Pages 2-6 through 2-14.
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0 0.00 0.00

0 0.00 0.00

Input File - RELATD

Output File - SPECFO

Copyright (C) 1990, California Institute of Technology. U.S. Governamnt

Sponsorship under NASA Contract NAS7-918 is acknowledged.

MATERIAL INPUT

DESCRIPTION:

NUMBER OF DECOMPOSED STRAIN POINTS:

NUMBER OF POINTS IN SPECIFIC DATA SET:

NUMBER OF TENSILE TEST POINTS:

H2/HIGH PRESSURE/HIGH TEMPERATURE

4

7

1

TOTAL STRAIN LIFE

1.8000 105.

1.5000 260.

1.3000 600.

1.0000 1950.

1.4900 186.

1.4700 190.

2.0200 55.

PLASTIC STRAIN

0.47500

0.27000

0.18000

0.11500

ELASTIC STRAIN

1.32500

1.23000

1.12000

0.88500

TENSILE DATA

4.17000

EXOGENOUS INFORMATION
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EXPLICIT CONSTRAINT ON mp

NUMBER OF POINTS IN RANGE: 0

LOWER BOUND UPPER BOUND

0.0000 0.0000

EXPLICIT CONSTRAINT ON me

NUMBER OF POINTS IN RANGE: 0

LCWER BOUND UPPER BOUND

0.0000 0.0000

Output File - RELATO

NUMBER OF DATA SETS : 0

Output File - DUMP

Copyright (C) 1990, California Institute of Technology. U.S. Government

sponsorship under NASA Contract NAS7-918 is acknowledged.

RESULTS OF STRAIN DECOMPO6ITION AND INFORMATION AGGREGATION CALC"JLATIONS

95% CONFIDENCE INTERVAL AND POINT ESTIMATE OF

FOR GIVEN PLASTIC COMPONENTS

Jop = ( 1.300915000, 2.791690000) mp = 2.046302

RESULTS FOR GIVEN PLASTIC COMPONENT DATA

PARAMETER VALUES FOR MEDIAN S/N CURVE

m K E(k)

2.04630 0.44105E+01 1.4721
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95% CONFIDENCE INTERVAL AND POINT ESTIMATE OF me

FOR GIVEN ELASTIC COMPONENTS

Joe - ( 2.411092000, 11.447510000) me - 6.929300

RESULTS FOR GIVEN ELASTIC COMPONENT DATA

PARAMETER VALUES FOR MEDIAN S/N CURVE

m K E(k)

6.92930 0.27148E+01 0.9925

ESTIMATED STRAIN DECOMPOSITION

SPECIFIC MATERIAL

DESCRIPTION: H2/HIGH PRESSURE/HIGH TEMPERATURE

NUMBER OF DATA POINTS: 8

LIFE TOTAL STRAIN PLASTIC STRAIN ELASTIC STRAIN

105. 1.8000 0.47500 1.32500

260. 1.5000 0.27000 1.23000

600. 1.3000 0.18000 1.12000

1950. 1.0000 0.11500 0.88500

186. 1.4900 0.31553 1.17447

190. 1.4700 0.30950 1.16050

55. 2.0200 0.58607 1.43393

1. 6.7367 4.17000 2.56673

RELATED MATERIALS

NUMBER OF DATA SETS :
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RESULTS OF INFORMATION AGGREGATION

95% CONFIDENCE INTERVAL AND POINT ESTIMATE OF

FOR ESTIMATED PLASTIC COMPONENTS

Jop = ( 1.958583000, 2.176915000) mp = 2.067749

POSTERIOR CREDIBILITYRANGE ON mpFORESTIMATEDPLASTIC COMPONENTS

mp = ( 1.9586, 2.1769)

RESULTS FOR ESTIMATED PLASTIC COMPONENT DATA

PARAMETER VALUES FOR MEDIAN S/N CURVE

m K E(k)

2.06775 0.41636E+01 1.4170

95% CONFIDENCE INTERVAL AND POINT ESTIMATE OF me

FOR ESTIMATED ELASTIC COMPONENTS

Joe = ( 6.173140000, 8.136055000) me = 7.154597

POSTERIOR CREDIBILITY RANGE ON me FOR ESTIMATED ELASTIC COMPONENTS

me = ( 6.1731, 8.1361)

RESULTS FOR ESTIMATED ELASTIC COMPONENT DATA

PARAMETER VALUES FOR MEDIAN S/N CURVE

m K E(k)

7.15460 0.25704E+01 0.9371
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TOTAL STRAIN E(BETAO) = 25.5248

SELECTED VALUES OF S/N CURVE PARAMETERS

NUMBER OF REGIONS: I BETAO -

REGION m K

1 2. 11391 0.39587E+01

21.1961

LIFE BOUND

0.100E+37

STRESS BOUND

0.00000E+00

SELECTED VALUES OF S/N CURVE PARAMETERS

NUMBER OF REGIONS: 1 BETAo =

REGION m K

1 6.55215 0.27405E+01

23.5854

LIFE BOUND

0.100E+37

STRESS BOUND

0.00000E+00

PHI = 0.957870 Z = 1.00000

Output File - IOUTPR

Kp: 3.95868

Ke: 2.74054

PHI = 0.957870

STRAIN: 1.50000

RANDOM NUMBER SEED:

OUTPUT DUMP CONTROLLER:

NUMBER OF COMPONENTS:

TYPE OF S/N VARIATION DESIRED

(0-NONE; 1-INTRINSIC; 2-UNIFORM; 3-NORMAL):

MEDIAN CURVE FOR NORMAL TYPE

VARIATION DESIRED (0 - NO, 1 - YES):

MATERIALS PROCESS VARIATION DESIRED

(0 - NO, I - YES):

VALUE OF TOTAL STRAIN:

Mp: 2.11391

Me: 6.55215

Z: 1.00000

LIFE: 187.393

675.000000000000

0

2

2

0

0

1.50000
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6.3.10 Error Messages and Possible Remedies

Ti_e following messages, when applicable, will appear in file IOUTPR. An error
message stating that a limit has been exceeded will require that the user increase
those limits, as directed, ancl reviewing or consulting Section 7.3.1.3 is desirable. The

messages are listed in alphabetical order for the convenience of the user.

DERIVATIVE EQUAL TO ZERO
Fatal, Strain Formulation During the iterative solution to calculate life, a value
of life was obtained which resulted in a zero value for the derivative of the

function, implying multiple solutions. Take note of all input parameters for
this run and consult Sections 4.1.9 and 7.3 to aid in identification of the

cause of this error.

ERROR CODE INCORRECTLY SPECIFIED
Fatal, Strain Formulation This indicates a program error during the life cal-
culation. Take note of all input parameters for this run and consult Sections
4.1.9 and 7.3 to aid in identification of the cause of this error.

ERROR: BAD VALUE FOR DELTA OR VALUE OF MO INCONSISTENT WITH

DELTA IN REGION 'L'
Fatal, Stress Formulation This error can occur during the use of the trun-
cated Normal variation option of the materials characterization model for
two reasons. First, the value of (_may be negative. Second, a value of _ was

specified, but the value for m o is not positive. Check file SPECFD.

ERROR: BAD VALUE FOR DELTAE OR VALUE OF MOE INCONSISTENT WITH

DELTAE
Fatal, Strain Formulation This error can occur during the use of the truncated
Normal variation option of the materials characterization model for two
reasons. First, the value of (tE may be negative. Second, a value of &E Was

specified, but the value for moE is not positive. Check file SPECFD.

ERROR: BAD VALUE FOR DELTAP OR VALUE OF MOP INCONSISTENT WITH

DELTAP
Fatal, Strain Formulation This error can occur during the use of the truncated
Normal variation option of the materials characterization model for two
reasons. First, the value of &p may be negative. Second, a value of (Ip was

specified, but the value for mop is not positive. Check file SPECFD.

ERROR: Co TOO LOW
Fatal, Stress Formulation The constraint, Co, imposed on the coefficient of

variation of fatigue strength is inconsistent with the observed SIN data.
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ERROR: EXCEEDED LIMIT ON DEGREES OF FREEDOM IN CHI-SQUARE
TABLE, IN REGION 'L'

Fatal As implemented, the credibility interval calculations can handle no
more than 150 degrees of freedom, and the amount of data in the region in-
dicated requires more. The Z2 tables of routine INTRVL must be increased.
See Sections 4.1.3.6 and 7.3.1.3 for more information.

ERROR: EXCEEDED LIMIT ON NUMBER OF REGIONS
Fatal, Stress Formulation The materials characterization model can handle

no more than 3 life regions. Check file SPECFD because the sum of the
number of regions with data and the number of regions without data is
greater than 3.

ERROR: EXCEEDED MAXIMUM NUMBER OF POINTS DUE TO ADDITION OF
TENSILE DATA IN DATA SET 'J'

Fatal, Strain Formulation The materials characterization model cannot accept
more than 50 points in any S/N data set. The combination of strain/life data
with tensile test data will be greater than 50 points for the data set indicated.
'0' indicates the specific data set. Check files SPECFD and RELATD for the

number of points in the data set. If more than 50 points are desired, the
parameter MAXDAT must be increased. Refer to Section 7.3.1.3 for the
routines involved.

ERROR: EXCEEDED MAXIMUM NUMBER OF POINTS IN RELATED DATA SET 'J'

Fatal, Strain Formulation The materials characterization model cannot accept
more than 50 S/N points in any related material data set. Check file RELATD
for both the number of given decomposed strain points and the number of
total strain points in the related data set indicated. One of these two num-
bers has been declared to be greater than 50. If more than 50 points are
desired, the parameter MAXDAT must be increased. Refer to Section
7.3.1.3 for the routines involved.

ERROR: EXCEEDED MAXIMUM NUMBER OF POINTS IN SPECIFIC MATERIAL
DATA SET

Fatal, Strain Formulation The materials characterization model cannot accept
more than 50 S/N points in the specific material data set. Check file
SPECFD for both the number of given decomposed strain points and the
number of total strain points in the specific data set. One of these two num-
bers has been declared to be greater than 50. If more than 50 points are
desired, the parameter MAXDAT must be increased. Refer to Section
7.3.1.3 for the routines involved.
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ERROR: EXCEEDED MAXIMUM NUMBER OF RELATEDDATA SETS
Fatal, Strain Formulation The materials characterization model allows up to 5
related data sets. Check file RELATD to determine if more than 5 related

data sets were specified. The parameter MAXSET must be increased. Refer
to Section 7.3.1.3 for the routines involved.

ERROR: EXCEEDED MAXIMUM NUMBER OF TENSILE POINTS IN RELATED

DATA SET 'J'
Fatal, Strain Formulation The materials characterization model cannot accept
more than 5 tensile test points in any related material data set. Check file
RELATD for the number of tensile test data points in the related data set indi-

cated. If more than 5 points are desired, the parameter MAXTNS must be
increased. Refer to Section 7.3.1.3 for the routines involved.

ERROR: EXCEEDED MAXIMUM NUMBER OF TENSILE POINTS IN SPECIFIC

MATERIAL DATA SET
Fatal, Strain Formulation The materials characterization model cannot accept
more than 5 tensile test points in the specific material data set. Check file
SPECFD for the number of tensile test data points. If more than 5 points are

desired, the parameter MAXTNS must be increased. Refer to Section
7.3.1.3 for the routines involved.

ERROR: INVALID RESPONSE TO NORMAL MEDIAN CURVE QUESTION
Fatal NMED can only have the integer value 0 or 1. Check file IOUTPR for
the value used.

ERROR: INVALID TYPE OF MATERIALS PROCESS VARIATION DESIRED
Fatal MPROC can only have the integer value 0 or 1. Check file IOUTPR for
the value used.

ERROR: INVALID TYPE OF S/N VARIATION DESIRED
Fatal VARY can only have the integer value 0, 1, 2, or 3. Check file IOUTPR

for the value used.

ERROR: INVALID VALUE FOR RATIO: 'RATIO'
Fatal, Stress Formulation An invalid value for the stress ratio has been
declared for the specific material data set. Only values between - 1.0 and
+ 1.0 inclusive, are possible. Check file SPECFD.
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ERROR: INVALIDVALUE OF RATIO: 'RATIO'

Fatal, Stress Formulation An invalid value for the stress ratio has been
declared for a related material data set. Only values between -1.0 and
+ 1.0 inclusive, are possible. Check file RELATD.

ERROR: NO INTERSECTION BETWEEN Jo AND Mc
ERROR: NO INTERSECTION BETWEEN Jo AND Mo

ERROR: NO INTERSECTION BETWEEN Jo, Mo, AND Mc
ERROR: NO INTERSECTION BETWEEN Mo AND Mc

Fatal These errors indicate that the specified C constraint and/or prior
credibility range on m do not agree with each other and/or the observed
SIN data.

ERROR: NORMAL VARIATION REQUIRES A PRIOR RANGE ON M

Fatal, Stress Formulation The truncated Normal variation of the materials

characterization model requires a prior range on m. The number of points
for the prior range on m has been incorrectly specified. Check file SPECFD
to verify that the number of points indicated for each range has an integer
value of 1 or 2.

ERROR: NORMAL VARIATION REQUIRES PRIOR RANGES ON Mp AND Me
Fatal, Strain Formulation The truncated Normal variation of the materials

characterization model requires prior ranges on mp and m E. The number of

points for the prior range on mp or mE has been incorrectly specified. Check
file SPECFD to verify that the number of points indicated for each range has
an integer value of I or 2.

ERROR: NUMBER OF POINTS PER DIVISION INCORRECTLY SPECIFIED IN SET 'J'

Fatal, Stress Formulation The materials characterization model has been

given conflicting information about the number of points in one of the re-
lated S/N data sets. Check file RELATD to compare for each related data
set the total number of points declared with the sum of the numbers of
points in each data division.

ERROR: NUMBER OF POINTS PER DIVISION INCORRECTLY SPECIFIED IN
SPECIFIC DATA SET

Fatal, Stress Formulation The materials characterization model has been
given conflicting information about the number of points in the specific S/N
data set. Check file SPECFD, since the total number of points in the specific
data set declared and the sum of the numbers of points in each data
division do not agree.
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ERROR: OVERALLPRIORRANGE INCORRECTLY SPECIFIED IN REGION

WITHOUT DATA
Fatal, Stress Formulation The prior credibility range on m in one of the

regions without data has been incorrectly specified. Check file SPECFD to
verify that either more regions without data have been indicated than in-
tended or that the number of points in the prior on m in a region without
data has been incorrectly specified. Only the integer value 0, 1, or 2 is ac-

ceptable.

ERROR: OVER LIMIT ON NUMBER OF POINTS IN SET 'J'
Fatal, Stress Formulation The matedals characterization model cannot ac-

cept more than 50 S/N points in any related material data set. Check file
RELATD for the total number of points in each related data set declared, or

there may be more than 50 S/N points with an incorrect total declaration. It

is suggested that the number of S/N data points in each related set be
recounted. If more than 50 points are desired, the parameter MAXDAT
must be increased. Refer to Section 7.3.1.3 for the routines involved.

ERROR: OVER LIMIT ON NUMBER OF RELATED DATA SETS
Fatal, Stress Formulation The materials characterization model allows up to
5 related data sets. Check file RELATD to determine if more than 5 related

data sets were specified. The parameter MAXSET must be increased. Refer
to Section 7.3.1.3 for the routines involved.

ERROR: OVER NUMBER OF POINTS LIMIT IN SPECIFIC MATERIAL
Fatal, Stress Formulation The materials characterization model cannot ac-

cept more than 50 S/N points in the specific material data set. Check file
SPECFD for the total number of points in the specific data set declared, or

there may be more than 50 S/N points with an incorrect total declaration. If
more than 50 points are desired, the parameter MAXDAT must be in-
creased. Refer to Section 7.3.1.3 for the routines involved.

ERROR: OVER REGION LIMIT IN RELATED MATERIAL 'J'

Fatal, Stress Formulation No more than 3 life regions are allowed, and an at-

tempt has been made to place some S/N data in a region number greater
than 3. Check file RELATD for an invalid region number immediately follow-

ing the stress ratio value in the data set indicated.

ERROR: OVER REGION LIMIT IN SPECIFIC DATA SET
Fatal, Stress Formulation No more than 3 life regions are allowed, and an at-

tempt has been made to place some S/N data in a region number greater
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than 3. Check file SPECFD for an invalid region number immediately follow-
ing the stress ratio value.

ERROR: POSTERIOR INTERVAL IN REGION 'L' IS INCONSISTENT WITH POINT
POSTERIOR IN REGION 'L-I'

Fatal, Stress Formulation Check file DUMP to verify that the point posterior
value of m in region '1.-1' is greater than the upper bound of the posterior
credibility range in region 'L'. This error indicates a violation of the concavity
assumption.

ERROR: POSTERIOR INTERVAL IN REGION 'L' IS INCONSISTENT WITH THE
POSTERIOR INTERVAL IN REGION 'L-I'

Fatal, Stress Formulation Check file DUMP to verify that the lower bound of
the posterior credibility range of m in region 'L-I' is greater than the upper
bound of the posterior credibility range of m in region 'L'. The data should
be checked for consistency.

ERROR: PRIOR ON M INCORRECTLY SPECIFIED IN 'L'

Fatal The number of points for the specified prior range on m in the indicated
region has been incorrectly specified. Check file SPECFD to verify that the

number of points indicated for each range has an integer value of 0, 1, or 2.

ERROR: SXY > = 0 IN REGION 'L'

Fatal During the linear regression calculations for the region indicated, the

resulting value of the sample covariance Sxywas found to be non-negative.
This suggests that the data is specified erroneously or is inadequate for the
analysis, since life increasing with increasing stress contradicts the true
fatigue behavior of materials.

ERROR: TOO FEW POINTS FOR REGRESSION IN REGION 'L'

Fatal The materials characterization model does not have the required mini-
mum number of points in the region indicated to perform a linear regres-
sion. If there are no related data sets, then there must be at least 3 points in
each region. If there are N related data sets, then the total number of points

in each region (specific and related combined) must be at least N + 3.

IMPOSSIBLE M RANGE IN REGION 'L'

Fatal, Stress Forrnu/ation Concavity constraints during the random m selec-
tion have required an impossible range on m for the region indicated. Take
note of all input parameters for this run, and consult Sections 4.1.5.1,
4.1.5.2, and 7.3 to aid in identification of the cause of this error.
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NCOMPS INCORRECTLYSPECIFIED
Fatal NCOMPS can only have the integer values I or 2. Check file IOUTPR
for the value used.

NO CONVERGENCE AFTER SPECIFIED NO. ITERATION STEPS
Fatal, Strain Formulation This error occurred during the life calculation. The
iterative solution did not converge after the maximum of 1000 iterations al-
lowed. The variable lEND of routine GTUF2 must be increased.

NOTE: E(m) IS NOT IN THE POSTERIOR RANGE ON m IN REGION 'L'
Warning This means that the estimate of m based on the SIN data only, in
the region indicated, is outside the range indicated by the specified con-
straints on m and C.

PROGRAM EXECUTION TERMINATED
Fatal This message is produced by routine TRMNAT and follows all other

fatal messages.

6.3.11 Summary of Input/Output Files

Input Files

SPECFD
This file is opened Jn MATCHR. It contains all parameters for the run options and the
specific and exogenous materials input, including yield and ultimate strengths (psi),
stress ratio, S/N data points, life (cycles) boundaries, region information, coefficient
of variation constraint, C, and prior ranges on the materials shape parameter m for

each region or strain component.

RELATD
This file is opened in subroutine INFAGG or DECOMR It contains the related material

data input, including yield and ultimate strengths (psi), stress ratio, SIN data points,

and region information.

Output Flles

SPECFO
Thisfileis openedin MATCHR. It containstheecho oftheinformationcontainedin
SPECFD.
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RELATO

This file is opened in subroutine INFAGG or DECOMR
information contained in RELATD.

It contains the echo of the

DUMP

This file is opened in MATCHR. It contains the results of the information aggregation

portion of the materials model calculations, such as Io and Jo; the point estimates of
m and C; posterior credibility ranges for rn; estimated strain decomposition; and a list
of the estimated values for all S/N curve parameters. See Section 4.1.

IOUTPR

This file is opened in MATCHR. It contains information on the particular run that is not
echoed to SPECFO and the data dump provided when the variable lOUT is equal to
10.
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Section 6.4

Prior Distribution Parameter Estimation User's
Guide

6.4.1 BFIT Program

The user's guide for running the prior failure distribution parameter ,B estimation
code BFIT is given here. The pertinent methodology is discussed in Section 2.1.1.
The program description and flowcharts are presented in Section 4.2.2, and the code
structure and listing are provided in Section 7.4.1.

The program BFIT was used to estimate the parameter/Y of the prior failure
distribution produced by appropriate Probabilistic Failure Modeling (PFM) of this

report.

6.4.2 How To Use Program BFIT

The program BFIT is intended to run in batch (i.e.i background) mode. BFIT

requires two input files: BFITD and LOWLIE File BFITD contains the indices which
define the data base used to estimate ,B. The file LOWLIF contains the failure times
generated by the PFMs. A complete description of the input data for the BFITD and
LOWLIF data files is given in Section 6.4.3.

The results from the BFIT program are written to two output files: BFITO and
IOUTPR. BFITO contains the estimate b for the parameter/5'. File IOUTPR contains,
if requested, a dump of intermediate calculations.

6.4.3 Description of the Input Data Files

Annotated examples of the complete data file format structure for BFITD and

LOWLIF are presented in Figures 6-13 and 6-14, respectively. The data lines of the
input files are given in boxes with a description of each data line located adjacent to
each box. The specific input parameters of Figures 6-13 and 6-14 are individually
defined in Sections 6.4.3.1 and 6.4.3.2. Input parameter values given in Figures 6-13
and 6-14 are not necessarily those used in the application case studies of Section 3.

The input data is read by free format statements from files BFITD and LOWLIR
Thus, the numbers may be provided sequentially on a line up to 80 characters in
length, with each number separated by a blank character or comma. Each number
may also be on a separate line in the file. It is recommended that this input format be
followed whenever possible.
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0 I Output dump controller20 100 200 Indices for first and last life for linear regression and number of lives in LOWUF

Figure 6-13 Format for File BF1TD

1 5.E-5 2531849.474236

2 1.E-4 3245429.147959

3 1.5E-4 3491943.38476

4 2. E-4 3807060.913539

5 2.5E-4 3903086.793213

196 9.8E-3 56611082.90833

197 9.85E-3 56827320.11307

198 9.9E-3 57986738.95375

199 9.95E-3 59037352.04528

200 1.E-2 59300005.83862

i

1, F(N1), N 1

2, F(N2), N2

3, F(N3), N3

4, F(N4), N4

5, F(N5), N 5

196, F(N196), N196

197, F(N197), N197

198, F(N198), N198

199, F(N199), N199

200, F(N200), N200

Figure 6-14 Format for File LOWLIF

6.4.3,1 Input File BFITD
The input parameters are described below by using the following convention: the

input variable names are indicated by BOLD UPPERCASE letters; the variable types
are specified as integer [INT], and double precision real [DRE]; the function of the
variable is _ and followed by a description and a list of options, when

appropriate; the program and file names are indicated by UPPERCASE letters.

lOUT

[tNT]

Output dump controller
BFIT has the ability to write intermediate calculations to file IOUTPR.

integer values control the "dump" of BFIT's calculations.

The following
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lOUT = 0

lOUT = 10

regression parameters only

regression and parameter estimation calculations

START END M

[IN'l] [IN'I] [INT]

Analysis Indices
This line contains indices necessary to perform the regression. START is the index
of the first element of LIFE(I) to be used in the linear regression to estimate 8. END
is the index of the last element of LIFE(I) to be used in the linear regression to estimate

/_. M is the total number of lives provided in file LOWLIE 1 _<START < END _< M

6.4.3.2 Input File LOWLIF
The data format for the failure times file is given below.

I FOFN LIFE(I)

[INT] [DRE] [DRE]

Failure time data

The failure times generated by a PFM. The data is entered as FOFN, LIFE(I) pairs,
one pair per line for I = 1, ..., M, where FOFN and LIFE are F(Ni) and N i of Equation

2-9, respectively.

6.4.4 Options and Capabilities

BFIT is a parameter estimation program which utilizes a linear least squares
algorithm to estimate the parameter/_ of the prior failure distribution. The program
requires a list of failure times and their associated failure probabilities. The results
consist of the estimate b of the prior failure distribution parameter/_. A printout of

intermediate calculations in various parts of the program may be obtained via the

lOUT option. This output will be printed to the IOUTPR file. It is recommended that
such output not be requested when the lOUT = 10 option is used since the
information will include all intermediate calculations for the regression.

6.4.5 Code Execution Example

The following example run of the prior failure distribution parameter estimation code
BFIT was carried out with two hundred failure times, M = 200, provided in file LOWLIF.

The linear regression to obtain # was performed by using failure times 20 through
200, START = 20 and END = 200. The dump parameter lOUT is zero, hence only

important regression information is in file IOUTPR. If further explanation of files BFITD
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or LOWLIF is required, refer to Sections 6.4.3.1 and 6.4.3.2, and Figures 6-13 and
6-14, respectively. The results of the parameter estimation were written to file BFITO

with/_ = 1.85889.

Input File - BFITD

0

20 200 200

Input File- LOWLIF

11

2,

3,

4,

5,

6,

7,

8,

9,

10,

11,

12,

13,

14,

15,

16,

17,

18,

19,

20,

21,

22,

23,

24,

25,

26,

27,

28,

29,

30,

31,

32,

33,

34,

35,

36,

37,

5.E-5, 12128.88138813

1.E-4, 13234.06413769

1.5E-4, 13777.54886666

2.E-4, 18290.37461814

2.5E-4, 18688.80786339

3.E-4, 35612.77878656

3.5E-4, 47497.8018622

4.E-4, 51934.74438263

4.5E-4, 52518.78716911

5.E-4, 53559.43637382

5.5E-4, 53645.49702172

6.E-4, 54851.2225929

6.5E-4, 57513.3189619

7.E-4, 68077.77118247

7.5E-4, 68827.25275096

8.E-4, 72556.30877838

8.5E-4, 72749.52158307

9.E-4, 75602.449978

9.5E-4, 76079.32580619

1.E-3, 78598.59366489

1.05E-3, 79316.56449927

1.1E-3, 82143.75077125

1.15E-3, 82459.303944

1.2E-3, 84409.93934894

1.25E-3, 86330.18444186

1.3E-3, 86743.17312626

1.35E-3, 90236.36829336

1.4E-3, 93683.69936791

1.45E-3, 94648.94058573

1.5E-3, 101180.6660291

1.55E-3, 101450.4345774

1.6E-3, 101805.4813387

1.65E-3, 104639.8405719

1.7E-3, 105079.5788451

1.75E-3, 105698.9303809

1.8E-3, 106926.2200427

1.85E-3, 107110.0748629
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38,

39,

40,

41,

42,

43,

44,

45,

46,

47,

48,

49,

50,

51,

52,

53,

54,

55,

56,

57,

58,

59,

60,

61,

62,

63,

64,

65,

66,

67,

68,

69,

70,

71,

72,

73,

74,

75,

76,

77,

78,

79,

80,

81,

82,

83,

84,

85,

86,

87,

1 •9E-3,

1 •95E-3,

2 .E-3,

2 •05E-3,

2 •1E-3,

2 •15E-3,

2.2E-3,

2 •25E-3,

2 •3E-3,

2 •35E-3,

2.4E-3,

2 •45E-3,

2 •5E-3,

2 •55E-3,

2 .6E-3,

2 •65E-3,

2 •7E-3,

2.75E-3,

2 •8E-3,

2 •85E-3,

2.9E-3,

2.95E-3,

108928.2182923

110807.9962046

111315.1131887

112452.429632

112522.1441635

112566.1271853

114118.8313652

118605.4464924

123988.2200704

125049.3278475

125198.1377061

127014.5169407

127189.082832

127449.4762093

127965.2958514

131569.2337822

132797.2842955

136704.5445851

137844.3304032

141256.2032728

144686.6792343

148943.931824

3.E-3,

3.05E-3,

3 •1E-3,

3.15E-3,

3.2E-3,

3.25E-3,

3 •3E-3,

3.35E-3,

3.4E-3,

3.45E-3,

3 •5E-3,

3.55E-3,

3 •6E-3,

3 •65E-3,

3 •7E-3,

3.75E-3,

3.8E-3,

3.85E-3,

3.9E-3,

3.95E-3,

151889.7604185

152443.9680104

152765.4826451

153737.6240023

154504.6006673

154893.5260934

155058.0613059

155438.4523919

155765.0458041

157231.8488651

157322.0032301

157334.6878786

159217.4797218

159237.7883244

160089.2553861

162368.3235312

162966.4870006

165577.9580924

167679.8559978

169605.2253805

•E-3, 171396.0255256

•05E-3, 173056.8659963

•1E-3, 173264.2555491

•15E-3, 175317.5358395

•2E-3, 175759.5842457

.25E-3, 176485.1745216

.3E-3, 179077.8791186

.35E-3, 180140.9776735
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88,

89,

90,

91,

92,

93,

94,

95,

96,

97,

98,

99,

100,

101,

102,

103,

104,

105,

106,

107,

108,

109,

110,

111,

112,

113,

114,

115,

116,

117,

118,

119,

120,

121,

122,

123,

124,

125,

126,

127,

128,

129,

130,

131,

132,

133,

134,

135,

136,

137,

4.4E-3, 180774.5060422

4.45E-3, 181698.2378063

4.5E-3, 185495.3261302

4.55E-3, 186106.5667858

4.6E-3, 186124.7899641

4.65E-3, 186311.4320637

4.7E-3, 187524.7074411

4.75E-3, 189345.7559455

4.8E-3, 191669.5592815

4.85E-3, 191968.5642588

4.9E-3, 193410.6184889

4.95E-3, 195233.4752379

5.E-3, 196417.5350341

5.05E-3, 196837.5590899

5.1E-3, 197201.7233965

5.15E-3, 197313.5075424

5.2E-3, 197856.3835949

5.25E-3, 198039.3329058

5.3E-3, 198703.016903

5.35E-3, 199455.6751859

5.4E-3, 200800.8736717

5.45E-3, 201363.7000791

5.5E-3, 201974.7490392

5.55E-3, 203514.9107572

5.6E-3, 203591.7954022

5.65E-3, 204767.3596533

5.7E-3, 208227.3979182

5.75E-3, 209245.5653271

5.8E-3, 209552.5166912

5.85E-3, 209789.741835_

5.9E-3, 210264.9017463

5.95E-3, 210742.9422861

6.E-3, 211162.3206324

6.05E-3, 211226.3769278

6.1E-3, 211585.9292961

6.15E-3, 213303.6603755

6.2E-3, 213739.4638384

6.25E-3, 213767.5927345

6.3E-3, 214182.6618133

6.35E-3, 215428.2841933

6.4E-3, 216000.03853

6.45E-3, 216823.8859702

6.5E-3, 218007.4191103

6.55E-3, 218110.4781512

6.6E-3, 219108.985075

6.65E-3, 220507.7721362

6.7E-3, 221886.4454467

6.75E-3, 221973.6356509

6.8E-3, 221984.7199964

6.85E-3, 223075.4707179
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138,

139,

140,

141,

142,

143,

144,

145,

146,

147,

148,

149,

150,

151,

152,

153,

154,

155,

156,

157,

158,

159,

160,

161,

162,

163,

164,

165,

166,

167,

168,

169,

170,

171,

172,

173,

174,

175,

176,

177,

178,

179,

180,

181,

182,

183,

184,

185,

186,

187,

6.9E-3, 223499.3480405

6.95E-3, 224020.3497587

7.E-3, 224333.6221698

7.05E-3, 224471.6622662

7.1E-3, 224877.0230508

7.15E-3, 225518.4058553

7.2E-3, 225545.2069757

7.25E-3, 226004.390243

7.3E-3, 226567.1316152

7.35E-3, 227728.1156545

7.4E-3, 229415.1208135

7.45E-3, 233295.4723347

7.5E-3, 233938.9524359

7.55E-3, 233993.51553

7.6E-3, 234762.8256886

7.65E-3, 235095.1047653

7.7E-3, 235458.7336267

7.75E-3, 235552.6222209

7.8E-3, 236536.8532418

7.85E-3, 237723.0244822

7.9E-3, 238018.3933596

7.95E-3, 238720.7945104

8.E-3, 239973.244866

8.05E-3, 240023.6488295

8.1E-3, 240752.0413359

8.15E-3, 241656.369868

8.2E-3, 242247.9964353

8.25E-3, 245561.0195976

8.3E-3, 246197.8431254

8.35E-3, 246764.8000842

8.4E-3, 247077.518534

8.45E-3, 247518.8531417

8.5E-3, 247687.7147611

8.55E-3, 248238.3713404

8.6E-3, 248619.9877746

8.65E-3, 248625.3856967

8.7E-3, 249933.4362827

8.75E-3, 250021.4723994

8.8E-3, 250120.5415177

8.85E-3, 250951.611891

8.9E-3, 251170.1497572

8.95E-3, 251829.1388452

9.E-3,

9.05E-3,

9.1E-3,

9.15E-3,

9.2E-3,

9.25E-3,

9.3E-3,

9.35E-3,

252075.203504

253434.9835603

253949.9140215

254855.9036281

254872.2306311

255055.0616528

255161.0192462

255291.4438788
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188, 9.4E-3, 257137.0946024

189, 9.45E-3, 257501.2014016

190, 9.5E-3, 258966.2579515

191, 9.55E-3, 259012.6451334

192, 9.6E-3, 259100.0649377

193, 9.65E-3, 259289.3837005

194, 9.7E-3, 259768.1414826

195, 9.75E-3, 259810.4523777

196, 9.8E-3, 260177.6916228

197, 9.85E-3, 260620.4330979

198, 9.9E-3, 261403.8795405

199, 9.95E-3, 262929.5666654

200, 1.E-2, 263349.9495276

Output Flle -BFITO

copyright (c) 1990, California Institute of Technology. U.S.

Sponsorship under NASA Contract NAS7-918 is acknowledged.

Gover-_nt

The solution is

Beta: .1858893E+01

Output File- IOUTPR

MEANX -

SX2 =

B=

12.1168219315321

0.102189088449329

1.85889309575318

MEANY - -5.34883972165613

SXY = 0.189958590979769

LNC = -27.8727163526519

6.4.6

Input Files

BFITD

This file is opened in BFIT.
least squares algorithm.

LOWLIF

This file is opened in BFIT.

Summary of Input/Output Files

It contains the indices which define the data base for the

It contains the failure times produced by a PFM.
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Output Files

BFITO
This file is opened in BFIT. It provides the results of the parameter estimation.

IOUTPR

This file is opened in BFIT. It contains the data dump provided when the variable lOUT
is equal to 10.

6.4.7 ABTFIT Program

The user's guide for running the prior failure distribution parameter estimation code
ABTFIT is given here. The pertinent methodology is discussed in Section 2.1.1. The
program description and flowcharts are presented in Section 4.2.3, and the code
structure and listing are provided in Section 7.4.2.

The program ABTFIT was used to estimate the parameters a and e, given # of the

prior failure distribution produced by the Probabilistic Failure Modeling (PFM) of this
publication.

6.4.8 How to Use Program ABTFIT

The program ABTFIT is intended to run in batch (i.e., background) mode. ABTFIT
requires two input files: PARAMS and LOWLIE File PARAMS contains the analysis
indices, the initial parameter values and scale factors required for the parameter
estimation. The file LOWLIF contains the failure times generated by the PFMs. A
complete description of the input data for the PARAMS and LOWLIF data files is given
in Section 6.4.9.

The results from the ABTFIT program are written to three output files: ABTOUT,
BAYESD and IOUTPR. ABTOUT contains the estimated parameters and the number
of iterations involved. BAYESD contains the estimated parameters in the format
required by programs LZERO and BAYES. File IOUTPR contains, if requested, a
clump of intermediate calculations.

6.4.9 Description of the Input Data Files

Annotated examples of the complete data file format structure for PARAMS and

LOWLIF are presented in Figures 6-15 and 6-14, respectively. The data lines of the
input files are given in boxes with a description of each data line located adjacent to
the box. The specific input parameters of Figures 6-15 and 6-14 are individually
defined in Sections 6.4.9.1 and 6.4.9.2. Input parameter values given in Figures 6-14
and 6-15 are not necessarily those used in the application case studies of Section 3.
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20

20 200 200

2.75D6 0.0014434 1.80
1.0 1.0 1.0D-4

I Output dump controller

Indices for first and last life for the regression and
the number of lives in LOWLIF

Initial guesses for 8 and a, and the given value of/_

Scaling factors for 8, a, and the lives

Figure 6-15 Format for File PAl:tAMS

The input data is read by free format statements from files PARAMS and LOWLIE
Thus, the numbers may be provided sequentially on a line up to 80 characters in
length, with each number separated by a blank character or comma. Each number
may also be on a separate line in the file. It is recommended that this input format be
followed whenever possible.

6.4.9.1 Input File PARAMS
The input parameters are described below by using the following convention: the

input variable names are indicated by BOLD UPPERCASE letters; the variable types
are specified as integer [INT], and double precision real [DRE]; the function of the
variable is _ and followed by a description and a list of options when

appropriate; the program and file names are indicated by UPPERCASE letters.

lOUT

[tNT]

output dump controller
ABTFIT has the ability to write intermediate calculations to file IOUTPR. The following

integer values control the "dump" of ABTFIT's calculations.

lOUT = 0 no intermediate calculation output

lOUT = 10 parameter estimation calculations

lOUT = 20 nonlinear regression iteration trace

START END MTOT

[tNT] [tNT] [INT]

Analysis Indices
This line contains indices necessary to perform the regression. START is the index

of the first element of LIFE(I) to be used in the regression to estimate a and 0. END
is the index of the last element of LIFE(I) to be used in the regression to estimate a
and 0. MTOT is the total number of lives provided in file LOWLIE 1 < START < END

_< MTOT
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XGUESS(1) XGUESS(2) B
[DRE] [DRE] [DRE]

Initial guesses and fl

Initial guesses of the parameters 8 and a, and the estimate of/_ provided by the user.
See Section 2.1.1 for a discussion on obtaining initial guesses for 8 and a.

XSCALE(1) XSCALE(2) LSCALE

[DRE] [DRE] [DRE]

Scaling factors

Scaling factors for the parameters e and a required by DUNLSJ, and the life scaling
factor. The answer is insensitive to the required parameter scaling factors. In the
absence of other information, provide a value of 1.0 for the parameter scaling factors,
and one over the Bl-life ss for the life scaling factor.

6.4.9.2 Input File LOWLIF

The data format for the failure times file is given below.

I FOFN BFE(I)

[INT] [DRE] [DRE]

Failure time data

The failure times generated by a PFM. The data is entered as FOFN, LIFE(I) pairs,
one pair per line for I = 1, ..., MTOT, where FOFN and LIFE are F(N_) and N i of
Equation 2-10, respectively.

6.4.10 Options and Capabilities

ABTFIT is a parameter estimation program which utilizes a nonlinear least squares
algorithm to estimate the parameters a and 8 of the prior failure distribution, given ft.
The program requires a list of failure times and their associated failure probabilities.
The results consist of the prior failure distribution parameters and the number of
iterations required for the nonlinear least squares algorithm. The estimated
parameters are also written to file BAYESD in the appropriate format for the assurance
calculation program LZERO and the Bayesian program BAYESo A printout of inter-

sO A B-life is the value of the failureparameter (e.g., time) at a failure probability specified
as a percent: e.g., B.1 is the failure time at a probabilityof 0.001 or 0.1%.
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mediate calculations in various parts of the program may be obtained via the lOUT

option. This output will be printed to the IOUTPR file. It is recommended that such
output not be requested when the lOUT = 10 option is used since the information
will include all intermediate calculations for each iteration. However, the lOUT = 20

option provides information on the convergence of the nonlinear least squares portion
of ABTFIT.

6.4.11 Code Execution Example

The following example run of the prior failure distribution parameter estimation code
ABTFIT was carried out with two hundred failure times, MTOT = 200, provided in file
LOWLIE The nonlinear regression to obtain a and 0 was performed using failure times

20 through 200, START = 20 and END = 200. The iteration trace was requested,
lOUT = 20 and written to file IOUTPR. The value of B provided by the user was
1.85889309575318. 59 No parameter scaling was used, XSCALE(1) = XSCALE(2)
= 1. The Bl-life is on the order of 104 so a life scaling factor of LSCALE -- 10"4was

used. Section 2.1.1 describes how to choose initial values for 0 and a:

80 =/_.0ol = (16450"6) 1"8s_ = 6.8780 x 107

XGUESS(1) = (N.ool • LSCALE) b "- (16450.6 x 10 -4) 1o8589

XGUESS(2) = ao = - In .999/In 2 = 0.0014434

= 2.522669

If further explanation of files PARAMS or LOWLIF is required, refer to Sections 6.4.9.1
and 6.4.9.2, and Figures 6-15 and 6-14, respectively.

The results of the parameter estimation were written to file ABTOUT with a =

0.014826, fl -- 1.85889, and 0 = 1.14996x109. The number of iterations required to
estimate a and 0 was 13 with 14 function evaluations and 14 Jacobian evaluations.

Input File - PARAMS

20

20 200 200

2.522669 0.0014434

1.0 1.0 1.0E-4

1.85889309575318

r_ See Section 6.4.5 for the estimate b of,8 provided by program BFIT.
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Input File - LOWBF

11

2,

3,

4,

5,

6,

7,

8,

9,

10,

11,

12,

13,

14,

15,

16,

17,

18,

19,

20,

21,

22,

23,

24,

25,

26,

27,

28,

29,

30,

31,

32,

33,

34,

35,

36,

37,

38,

39,

40,

41,

42,

43,

44,

45,

5.E-5, 2171.08268607

1.E-4, 2274.610282879

1.5E-4, 5397.61433618

2.E-4, 5436.913987152

2.5E-4, 7590.725113991

3.E-4, 8243.513935069

3.5E-4, 9478.598493334

4.E-4, 9592.334153456

4.5E-4, 10961.29979166

5.E-4, 11248.37224586

5.5E-4, 12006.79530942

6.E-4, 12394.79049961

6.5E-4, 12458.42625798

7.E-4, 12615.58511637

7.5E-4, 13077.76799579

8.E-4, 13245.47144751

8.5E-4, 13298.6206169

9.E-4, 13398.09257794

9.5E-4, 14890.87886404

1.E-3, 16450.60402927

1.05E-3, 17930.50652629

1.1E-3, 18318.76045862

1.15E-3, 18616.07977373

1.2E-3, 18825.78120489

1.25E-3, 19031.35540271

1.3E-3, 19896.02557763

1.35E-3, 19896.45621919

1.4E-3, 20283.58254505

1.45E-3, 20716.21926102

1.5E-3, 21090.96928527

1.55E-3, 21771.34472699

1.6E-3, 22473.12998514

1.65E-3, 22483.11184718

1.7E-3, 23031.93757268

1.75E-3, 23576.6407008

1.8E-3, 23744.0658441

1.85E-3, 24557.7138378

1.9E-3, 24806.64062718

1.95E-3, 24983.14710955

2.E-3, 25618.40563241

2.05E-3, 25653.09540362

2.1E-3, 26190.33441654

2.15E-3, 26337.13572945

2.2E-3, 28353.02541956

2.25E-3, 28834.7318554
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46,

47,

48,

49,

50,

51,

52,

53,

54,

55,

56,

57,

58,

59,

60,

61,

62,

63,

64,

65,

66,

67,

68,

69,

70,

71,

72,

73,

74,

75,

76,

77,

78,

79,

80,

81,

82,

83,

84,

85,

86,

87,

88,

89,

90,

91,

92,

93,

94,

95,

2.3E-3,

2.35E-3,

2 •4E-3,

2.45E-3,

2.5E-3,

2 •55E-3,

2.6E-3,

2.65E-3,

2.7E-3,

2.75E-3,

2 •8E-3,

2.85E-3,

2.9E-3,

2.95E-3,

29108.81760869

29162.57978578

29244.09472359

29603.45152701

29632.66087405

30291.34679017

30446.00942229

30493.38478737

30673.46359312

30760.85836022

31007.51798871

32148.98623899

32372.47132738

32390.50914646

3 .E-3,

3 •05E-3,

3 •1E-3,

3 •15E-3,

3.2E-3,

3.25E-3,

3.3E-3,

3.35E-3,

3.4E-3,

3.45E-3,

3.5E-3,

3.55E-3,

3.6E-3,

3.65E-3,

3.7E-3,

3.75E-3,

3 •8E-3,

3 •85E-3,

3.9E-3,

3.95E-3,

4 .E-3,

4.05E-3,

4 •1E-3,

4 •15E-3,

4.2E-3,

4.25E-3,

4.3E-3,

4.35E-3,

4.4E-3,

4.45E-3,

4 •5E-3,

4.55E-3,

4.6E-3,

4.65E-3,

4.7E-3,

4.75E-3,

32844.36090394

33014.88860404

33190.12210164

33270.0824175

34615.02721604

34748.27188751

34872.98895736

35068.65368964

35096.39424284

35281.89190532

35425.55976141

35897.72810911

36560.07826949

36588.46946974

37605.65296311

37978.29169689

39305.80601728

39374.22514173

39490.47963762

39699.64167016

39709.99000531

40508.29704049

41214.003737

41506.81491461

41532.92876058

41622.05616043

42243.61170326

42632.96056193

42744.1434916

43060.05554056

43148.21678663

43425.31080851

43485.79372142

43665.25474881

43679.23619109

44087.79399035
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96,

97,

98,

99,

100,

101,

102,

103,

104,

105,

106,

107,

108,

109,

110,

111,

112,

113,

114,

115,

116,

117,

118,

119,

120,

121,

122,

123,

124,

125,

126,

127,

128,

129,

130,

131,

132,

133,

134,

135,

136,

137,

138,

139,

140,

141,

142,

143,

144,

145,

4.8E-3, 44466.30256251

4.85E-3, 44838.15511878

4.9E-3, 44938.80625138

4.95E-3, 45160.62247766

5.E-3, 45420.16962913

5.05E-3, 45470.65979261

5.1E-3, 45652.11464271

5.15E-3, 46127.71679451

5.2E-3, 46251.00996064

5.25E-3, 46372.88535658

5.3E-3, 47119.6325578

5.35E-3, 47137.13100697

5.4E-3, 48171.37806459

5.45E-3, 48207.11856747

5.5E-3, 48318.70721881

5.55E-3, 48931.61143896

5.6E-3, 49703.44909796

5.65E-3, 49956.33191574

5.7E-3, 50234.61968773

5.75E-3, 50398.55301772

5.8E-3, 50644.56677104

5.85E-3, 51204.9658348

5.9E-3, 52501.46119135

5.95E-3, 52904.03713305

6.E-3, 53010.6194896

6.05E-3, 53167.75826465

6.1E-3, 53357.64587097

6.15E-3, 53468.23112726

6.2E-3, 53929.93276736

6.25E-3, 54082.80324984

6.3E-3, 54293.44219992

6.35E-3, 54346.43533946

6.4E-3, 55234.56773908

6.45E-3, 55326.77795268

6.5E-3, 55585.55479447

6.55E-3, 55938.43019878

6.6E-3, 56350.38162224

6.65E-3, 56711.10774186

6.7E-3, 56817.21030027

6.75E-3, 56967.09611928

6.8E-3, 57346.04643495

6.85E-3, 57566.47058465

6.9E-3, 57613.30154789

6.95E-3, 57832.43925853

7.E-3, 58385.56620338

7.05E-3, 58462.89978311

7.1E-3, 58624.28036547

7.15E-3, 58782.60363557

7.2E-3, 58971.56159982

7.25E-3, 59110.23542496
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146,

147,

148,

149,

150,

151,

152,

153,

154,

155,

156,

157,

158,

159,

160,

161,

162,

163,

164,

165,

166,

167,

168,

169,

170,

171,

172,

173,

174,

175,

176,

177,

178,

179,

180,

181,

182,

183,

184,

185,

186,

187,

188,

189,

190,

191,

192,

193,

194,

195,

7.3E-3,

7.35E-3,

7.4E-3,

7.45E-3,

7.5E-3,

7.55E-3,

7.6E-3,

7.65E-3,

7.7E-3,

7.75E-3,

7.8E-3,

7.85E-3,

7.9E-3,

7 .95E-3,

8 .E-3,

8.05E-3,

8.1E-3,

8.15E-3,

8.2E-3,

8.25E-3,

8.3E-3,

8.35E-3,

8.4E-3,

8.45E-3,

8.5E-3,

8.55E-3,

8.6E-3,

8.65E-3,

8.7E-3,

8.75E-3,

8.8E-3,

8.85E-3,

8.9E-3,

8.95E-3,

59122.95734245

59272.60177966

59324.77926608

59465.20911553

59763.82855003

60154.6430269

60396.64734786

60406.48823455

60515.31715323

61252.11016131

61363.38086049

61453.41837845

61578.69974975

61600.93010134

62563.0930965

63269.80866235

63291.9881826

63950.16419736

63965.346384

64102.87159225

64415.36565053

64541.8794529

65163.69082135

65519.40846814

66120.52340431

66308.5054934

66494.47817761

66554.46816072

66844.66829289

67103.77873876

67345.80119819

67352.66901473

67546.08780309

67603.05652641

9.E-3,

9.05E-3,

9.1E-3,

9.15E-3,

9.2E-3,

9.25E-3,

9.3E-3,

9.35E-3,

9.4E-3,

9.45E-3,

9.5E-3,

9.55E-3,

9.6E-3,

9.65E-3,

9.7E-3,

9.75E,3,

67734.1771025

67883.78039904

68326.94572489

68594.12670141

68746.50091648

69099.14523026

69250.94593986

69337.50660218

69548.02239665

69554.70766341

69635.84059297

70031.91794349

70150.2009716

70318.54906011

70342.87926757

71264.7486166
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196, 9.8E-3, 71823.56061707

197, 9.85E-3, 72118.48961609

198, 9.9E-3, 72605.2876764

199, 9.95E-3, 73300.5780415

200, 1.E-2, 73318.12226789

Output Flle - ABTOUT

Copyright (C) 1990, california Institute of Technology. U.S. Governmont

sponsorship under NASA Contract NAS7-918 is acknowledged.

The solution is

Alpha: .148260E-01

Beta: .185889E+01

Theta: .114996E+10

The number of iterations is 13

The number of function evaluations is 14

The number of Jacobian evaluations is 14

Output Flle - BAYESD

1.85889309575318 1149961573.79229 0.148259825241493D-001

Output Flle- IOUTPR

THETA ALPHA

F 0.252267E+01 0.144340E-02

J 0.252267E+01 0.144340E-02

F 0.603934E+00 0.215062E-02

J 0.603934E+00 0.215062E-02

F 0.106351E+01 0.218638E-02

J 0.106351E+01 0.218638E-02

F 0.162175E+01 0.241767E-02

J 0.162175E+01 0.241767E-02

F 0.246216E+01 0.282142E-02

J 0.246216E+01 0.282142E-02

F 0.421792E+01 0.359085E-02

J 0.421792E+01 0.359085E-02

F 0.806578E+01 0.503005E-02

J 0.806578E+01 0o503005E-02

F 0.188805E+02 0.856260E-02

J 0.188805E+02 0.856260E-02

F 0.311883E+02 0.119779E-01

J 0.311883E+02 0.119779E-01
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F 0.395049E+02 0.141421E-01

J 0.395049E+02 0.141421E-01

F 0.419369E+02 0.147623E-01

j 0.419369E+02 0.147623E-01

F 0.421691E+02 0.148229E-01

j 0.421691E+02 0.148229E-01

F 0.421800E+02 0.148259E-01

J 0.421800E+02 0.148259E-01

F 0.421804E+02 0.148260E-01

J 0.421804E+02 0.148260E.01

6.4.12 Summary of Input/Output Files

Input Files

PARAMS
This file is opened in ABTFIT.

squares algorithms.

It contains the indices and parameters for the least

LOWLIF
This file is opened in ABTFIT. It contains the failure times produced by a PFM.

Output Files

ABTOUT
This file is opened in ABTFIT. It provides the results of the parameter estimation.

BAYESD
This file is opened in ABTFIT. It contains the parameters of the prior failure distribution

for use by programs LZERO and BAYES.

IOUTPR

This file is opened in ABTFIT.
lOUT is equal to 10 or 20.

It contains the data dump provided when the variable

6.4.13 LZERO Program

The user's guide for running LZERO is given here. The program LZERO computes
the value of Zo for a specified assurance level. The resulting value of Zo determines
the reliability function corresponding to that specified assurance level. The pertinent
methodology is discussed in Section 2.1.1. The program description and flowcharts
are presented in Section 4.2.4, and the code structure and listing are provided in
Section 7.4.3. The program LZERO was used to obtain the 95% assurance level

failure curves presented in Section 3.
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Parametersofthefailuredistribution/],8, <z

Is. o o.,,E+,2o. sE lI

Figure 6-16 Formatfor File BAYESD

0
0.95
1.454742E-11

2.0E-11

Outputdump controller
Desiredassurancelevel,A

'1-olowerbound,_lb

_o upperbound, _ub

Figure 6-17 Formatfor FileLDAT

6.4.14 Howto Use Program LZERO

The program LZERO is intended to run in batch (i.e., background) mode. LZERO

requires two input files: BAYESD and LDAT. File BAYESD contains the parameters
of the prior or posterior failure distribution. The file LDAT contains the desired

assurance level, and upper and lower bounds on ,1.o. A complete description of the
input data for the BAYESD and LDAT data files is given below in Section 6.4.15.

The results from the LZERO program are written to two output files: LOUT and

IOUTPR. LOUT contains the ,1.0 corresponding to the desired assurance level. File
IOUTPR contains, if requested, a dump of intermediate calculations.

6.4.15 Description of the Input Data Files

Annotated examples of the complete data file format structure for BAYESD and
LDAT are presented in Figures 6-16 and 6-17, respectively. The data lines of the input
files are given in boxes with a description of each data line located adjacent to each
box. The specific input parameters of Figures 6-16 and 6-17 are individually defined
in Sections 6.4.15.1 and 6.4.15.2. Input parameter values given in Figures 6-16 and
6-17 are not necessarily those used in the application case studies of Section 3.

The input data is read by free format statements from files BAYESD and LDAT. Thus,
the numbers may be provided sequentially on a line up to 80 characters in length,
with each number separated by a blank character or comma. Each number may also
be on a separate line in the file. It is recommended that this input format be followed
whenever possible.
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6.4.15.1 Input File BAYESD
The input parameters are described below by using the following convention: the

input variable names are indicated by BOLD UPPERCASE letters; the variable types
are specified as integer [IN'r], and double precision real [DRE]; the function of the
variable is _; the program and file names are indicated by UPPERCASE

letters.

BETA THETA ALPHA

[DRE] [DRE] [DRE]

Failure distribution parameters
#, 8, and a of Equation 2-1. ]'hey are the parameters of the prior or posterior failure
distribution.

6.4.15.2 Input File LDAT
The data format for the LDAT data file is given below.

lOUT

[INT]

Output dump controller
LZERO has the ability to write intermediate calculations to file IOUTPR. The integer
value of 10 controls the =dump" of LZERO's calculations.

A

[DRE]

Desired assurance level
The user requested assurance level specified as the decimal equivalent percentage.

LAML

[DRE]

Lower bound on ;I.o

Lower bound ZIb on the value of Zo provided by the user.

LAMU

[DRE]

Upper bound on Zo

Upper bound _'ub on the value of Zo provided by the user.
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6.4.16 Optlons and Capabllltles

LZERO is used to calculate ,1.o corresponding to the specified level of assurance.
A printout of intermediate calculations in various parts of the program may be obtained
via the lOUT option. This output will be printed to the IOUTPR file. It is recommended
that such output not be requested when the lOUT = 10 option is used since the
information will include all intermediate calculations for each iteration.

6.4.17 Code Execution Example

The following example run of the assurance calculation code LZERO was carried
out by using the parameters of the Gamma distribution calculated in Sections 6.4.5

and 6.4.11. The dump parameter lOUT is zero, hence nothing is written to file
IOUTPR. We are interested in calculating _-ofor a 95% assurance level (A = 0.95).

As described in Section 4.2.4, the A,o that corresponds to the 95% assurance level is

obtained by using Mueller's iteration method. This method requires bounding values
for Zo. The bounding values for Zo may be obtained by using

-In(1 -F)A.-
N p

which is Equation 2-1 solved for _.. For the probability level F = .001, the B.1 life N =
1.64506 x 104 and ,8 = 1.8588931, the above equation gives a value for Z of

1.454742 x 10-11. Use this value for the lower bound _'lb, and try 2.0 x 10-11 for Zub.

If further explanation of files BAYESD and LDAT is required, refer to Section 6.4.15.1
and 6.4.15.2, and Figures 6-16 and 6-17, respectively.

The results of the assurance calculation were written to file LOUT with Zo =
1.581782 x 10-11, the assurance at ZIb = 0.9488418, and the assurance at Zub =

0.9532446. If Zo is not bounded by _.lb and Zub, LZERO will stop before MueUer's

iteration method begins and provide only the assurances at the upper and lower
bounds in file LOUT. The assurance results for the bounds can then be used to make

subsequent estimates of bounding values for A,o.

Input File - BAYESD

1.85889309575318 1149961573.79229 0.148259825241493D-001

Input File - LDAT

0

0.95

1.454742E-11

2.0E-11
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Output File - LOUT

Copyright (C) 1990, california Institute of Technology. U.S. Government

sponsorship under NASA Contract NAS7-918 is acknowledged.

The Gamma distribution parameters are

Alpha .1482598E-01

Theta .1149962E+ 10

Lambda lower bound .1454742E-10

Lambda upper bound .2000000E-10

Assurance 0.9488418

Assurance 0.9532446

At an assurance level of 0.9500000

The value of lambda is .1581782E-10

6.4.18 Summary of Input/Output Files

Input Files

BAYESD
This file is opened in LZERO. It contains the parameters of the prior or posterior failure

distribution provided by program ABTFIT or BAYES.

LDAT
This--_'fileis opened in LZERO. It contains the desired assurance level and bounding

values for Zo.

Output Files

LOUT
_------_-fileis opened in LZERO and contains the results of the assurance calculations.

IOUTPR
This file is opened in LZERO only when lOUT = 10, and contains the data dump.
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Section 6.5

Bayesian Statistical Procedure User's Guide

6.5.1 BAYES Program

The user's guide for running the Bayesian statistical procedure code BAYES is given
here. The Bayesian statistical procedure is discussed in Section 2.1.1, the program
description and flowcharts are presented in Section 4.3, and the code structure and
listing are provided in Section 7.5.

The BAYES program was used to perform the Bayesian analysis to combine
operating experience with the prior failure distribution obtained from probabilistic
failure modeling. The output of BAYES consists of the parameters of the posterior
failure distribution as given by Equation 2-2.

6.5.2 How To Use Program BAYES

The program BAYES is intended to be run in batch (i.e., background) mode. BAYES
requires one input data file: BAYESD. The file BAYESD contains the parameters of
the prior failure distribution and the operating experience. A complete description of
the input data for the BAYESD data file is given in Section 6.5.3.

The results from the BAYES program are written to two output files: BAYESO and
UBAYES. BAYESO contains the echo of the information in BAYESD and the results

of the Bayesian analysis. UBAYES contains the parameters of the posterior failure
distribution.

6.5.3 Description of the Input Data File

An annotated example of the complete data file format structure for BAYESD is

presented in Figure 6-18. The data lines of the input file are given in boxes with a
description of each data line located adjacent to each box. The specific input
parameters of Figure 6-18 are individually defined in Section 6.5.3.1. Input parameter

values given in Figure 6-18 are not necessarily those used in the application case
studies of Section 3.

The input data is read by free format statements from file BAYESD. Thus, the

numbers may be provided sequentially on a line up to 80 characters in length, with
each number separated by a blank character or comma. Each number may also be
on a separate line in the file. It is recommended that this input format be followed
whenever possible.
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Parameters of the prior failure distribution _, e, a

] 5.70 0.44E+12 0.75E-01 ]

Number of failure and suspension times

12 3 I

123 Failure 1, t1

75 Failure 2, t2

30 Suspension 1, t3

42 Suspension 2, t4

10._._. Suspension 3, t5

Figure 6-111 Format for File BAYESD

6.5.3.1 Input File BAYESD
The required data for the BAYESD file is divided into the two blocks shown in Figure

6-19: prior failure distribution parameters and operating experience. The prior failure
distribution parameters block contains the distribution parameters/_, 0, and a. The

operating experience block contains the number of failure and suspension data points
and the operating times.

PRIOR FAILURE
DISTRIBUTION PARAMETERS

1
OPERATING EXPERIENCE

Figure 6-19 Data Blocks for Input File
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The input parameters are described below by using the following convention: the
input variable names are indicated by BOLD UPPERCASE letters; the variable types
are specified as integer [IN'I] and real [RE]; the function of the variable is
and followed by a description and a list of options when appropriate; the program
and file names are indicated by UPPERCASE letters. The user is reminded about the
difference between the number =0" and the letter =O" when preparing the input files.

Prior Failure Distribution Parameters Block

BETA THETA ALPHA

[RE] [RE] [RE]

Prior distribution parameters

fl, 0, and a of Equation 2-1. They are the parameters of the prior failure distribution.

OperaUng Experience Block

FAIL SUSP

[INT] [INT]

Number of failure and suspension data points
s and n-s of Equation 2-2. They are the number of failure and suspension times.

TYME(I)
[RE]

Operating experience times
A block of (FAIL + SUSP) lines must be provided. First, the failure times are provided,
one per line for I = 1, ..., FAIL lines. Then, the suspension times are provided one
per line for I = (FAIL+ 1), ..., (FAIL+SUSP) lines. BAYES can accept up to 50
operating times.

6.5.4 Options and Capabilities

BAYES is a Bayesian analysis program which combines the operating experience
of a component with the failure distribution obtained from the probabilistic failure
model analysis. The program will accept the operating experience as failure and/or
suspension times. The results consist of the posterior failure distribution and some
B-lives 6° for both the prior and posterior distributions. The parameters of the posterior

SOA B-life is the value of the failureparameter (e.g., time) at a failure probability specified
as a percent: e.g., B.1 is the failure time at a probabilityof 0.001 or 0.1%.
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failure distribution arewritten to file UBAYES in the format required for further updating

as new operating experience becomes available.

6.5.5 Code Execution Example
• 61

The following example run of BAYES utilizes only suspension data. The• 13

parameters of the prior failure distribution are BETA is 5.7, THETA is 4.4x10 , and
ALPHA is 0.075. The data set consists of no failure times and three suspension times

(FAIL = 0, and SUSP = 3). The posterior failure distribution parameters are
contained in file UBAYES and have the values BETA is 5.7, THETUP is 4.42052x1013,

and ALPHUP is 0.075.

Input File - BAYESD

5.70

0 3

30

42

10

0.44E+12 0.75E-01

Output File- BAYESO

copyright (c) 1990, california Institute of Technology. U.S. Government

Sponsorship under NASA Contract NAS7-918 is acknowledged.

BAYESIAN UPDATING SUMMARY

PRIOR DISTRIBUTION POSTERIOR DISTRIBUTION

PARAMETERS:

BETA 5.700000 5.700000

ALPHA 0.750000E-01 0.750000E-01

el The condition for _ failure data requires that it corresponds to the design under
analysis. Typically, a failure is not relevant to evaluation ol reliability because it will lead
to a redesign or a change in operating conditions.
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IJ_MBDA

m

BLIVES

B.01

B.1

B1

0.440000E+12

0.170455E-12

0.173808E+03

0.345447E+02

0.517963E+02

0.784758E+02

0.442052E+12

0.169663E-12

0.173949E+03

0.345729E+02

0.518386E+02

0.785399E+02

OPERATING EXPERIENCE

NUMBER OF SUSPENSIONS:

SUSPENSION TIMES:

3

0.300000E+02

0.420000E+02

0.100000E+02

Output File - UBAYES

5.70000 0.442052E+12 0.750000E-01

6.5.6 Summary of Input/Output Flles

Input Flles

BAYESD

This file is opened in BAYES. It contains the parameters of the prior failure distribution
and the operating experience.
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Output RIN

BAYESO
This file is opened in BAYES. It contains the echo of the information contained in
BAYESD and the results of the Bayesian analysis.

UBAYES
This file is opened in BAYES. It contains the parameters of the posterior failure
distribution.
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Section 6.6

Reference Time History Generation User's Guide

6.6.1 NBSIN Program

The user's guide for running the time history generation code NBSIN is given here.
The narrow-band time history generation is accomplished by means of the AR(1)
process (autoregressive process of order one) discussed in Section 2.1.4. The
program description and flowchart are presented in Section 4.5, and the code
structure and listing are provided in Section 7.7.

The program NBSIN was used to generate the reference narrow-band and accom-
panying sinusoidal reference time histories required in order to construct the stress-

time histories used in the High Cycle Fatigue (HCF) analyses of this report.

6.6.2 How To Use Program NBSIN

The program NBSIN is intended to be run in batch (i.e., background) mode. NBSIN
requires one input data file: NBSIN. File NBSIN contains all parameters required for
time history generation including storage filenames, frequencies, load sets,
amplitudes, and phase angles. A complete description of the input data for the NBSIN
data file is given in Section 6.6.3.

The results from the NBSIN program are written to file IOUTPR and to as many as
twenty-nine user-specified output files. These time history storage files contain the

time histories generated by NBSIN. File IOUTPR, if requested, contains a dump of
the intermediate calculations.

6.6.3 Description of the Input Data Flle

An annotated example of the complete data file format structure for NBSIN is
presented in Figure 6-20. The data lines of the input file are given in boxes, with a
description of each data line located adjacent to each box. The specific input
parameters of Figure 6-20 are individually defined in Section 6.6.3.1. Input parameter
values given in Figure 6-20 are not necessarily those used in the application case
studies of Section 3.

The input data is read by free format statements from file NBSIN. Thus, the
numbers may be provided sequentially on a line up to 80 characters in length, with
each number separated by a blank character or comma. Each number may also be
on a separate line in the file. It is recommended that this input format be followed
whenever possible.
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Generation parameters

1275
0
500
0.05

10

1.0
1.0E + 36

0.0

6 6 6 1 6

Random number seed

Value of output dump controller
f

Damping coefficient,
N

T

Clipping level (no clipping desired)

Phase angle shift, _#
Number of narrow-band and sinusoidal processes

Narrow-band process information

'XP' 1.0 236.

'XT' 1.0 634.

'XM2' 1.0 424.

'XM3' 1.0 386.

'XV2' 1.0 740.

'XV3' 1.0 358.

'YP' 1.0 840.

'YT' 1.0 80O.

'YM2' 1.0 275.

'YM3' 1.0 320.

'YV2' 1.0 1040.

'YV3' 1.0 1011.

'ZP' 1.0 1404.

'ZT' 1.0 1018.

'ZM2' 1.0 1224.

'ZM3' 1.0 1336.

'ZV2' 1.0 1392.

'ZV3' 1.0 1394.

'AERO' 1.0 1780.

FHename 1, ON1,fol

FHename 2, ON2,fo2

Fge name 3, ON3,fo3

File name 4, ON4,fo4

File name 5, oNS, fo5

File name 6, ON6,fo6

File name 7, ON-/,fo7

File name 8, ONS,fob

File name 9, oNg,fo9

File name 10, ON10,fol0

File name 1I, ONI I, fol 1

File name 12, ON12,fo12

File name 13, ONI3, fo13

File name 14, ONI4, fo14

File name 15, ON15,fo15

File name 16, ON16,fo16

File name 17, ON17,fo17

File name 18, ONI8, fo18

FHename 19, ON19,fo19

Sinusoidal process information

'SIN1' 1.0 500.

'SIN2' 1.0 600.

'SIN3' 1.0 1000.

'SIN4' 1.0 1500.

'SIN5' 1.0 1800.

'SIN6' 1.0 200O.

7.4703

90.3813

134.2636

176.7569

-69.0515

82.2972

File name 1, A1, fcl, rP1

File name 2, A2, fc2, rP2

File name 3, A3, fc3, P3

File name 4, A4, fc4, _P4

File name 5, A5, fc5, _°5

File name 6, A6, fc6, P6

Figure 6-20 Format for File NBSIN
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GENERATION PARAMETERS

I

NARROW-BAND PROCESS IINFORMATION

I

SINUSOIDAL PROCESS IINFORMATION

Figure 6-21 Data Blocks for the NBSIN Input File

6.6.3.1 Input File NBSlN

The required data for the NBSIN file is divided into the three blocks shown in Figure
6-21: generation parameters, narrow-band process information, and sinusoidal

process information. The generation parameters block contains the common
parameters and the keys to select the program options. The time history file name,
magnitude, and frequency for each narrow-band process are contained in the
narrow-band process information block. The sinusoidal process information block
contains the time history file name, amplitude, frequency, and phase angle for each
sinusoidal process.

The input parameters are described below by using the following convention: the
input variable names are indicated by BOLD UPPERCASE letters; the variable types

are specified as character [CHR], integer [INT], real [RE], and double precision real
[DRE]; the function of the variable is _ and followed by a description and a
list of options when appropriate; the program and file names are indicated by
UPPERCASE letters. A consistent set of units is given in parentheses for specifying
input parameters. All character strings must be enclosed by 'single quotes'. The
user is reminded about the difference between the number "0" and the letter =O" when

preparing the input files.

Generation Parameters Block

RAND

[DRE]

Random number seed

Needed by NBSIN's built-in random number generator.
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IOUT
[INT]

Output dump controller
NBSIN has the ability to write intermediate calculations to file IOUTPR.
value of 10 controls the "dump" for NBSIN's calculations.

The integer

F

[DRE]

Frequency controllincj time increment
f of Equation 2-58. It is the frequency used to calculate the time increment and it is
usually the maximum of all the narrow-band and sinusoidal frequencies.

XC

[DRE]

Damping Coefficient
of Equation 2-58, the damping coefficient.

N

[IN]']

Number of points per cycle of frequency F
This is used to calculate the time increment. The program requires a positive value, m

LASTr

[DRE]

Length of generated time history
The length of time T in seconds to be simulated by NBSIN. s3

CLIP

[ORE]

Peak clipping level
The user may specify a peak clipping level for the narrow-band time histories. All

peaks having absolute values larger than CLIP will be set equal to CLIP. If no clipping

N is discussed on Page 2-30.

T is discussed on Page 2-30.
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is desired, then set CLIP equal to a number larger than any peaks that are likely to
be generated. CLIP must be positive.

SHIFT

[DRE]

Sinusoidal phase angle shift, _,

The user may specify a phase angle for shifting all sinusoidal processes. The sinusoid

arguments will all be shifted this amount (degrees). If no shifting is desired, then set
SHIFT equal to zero.

NRAND(1) NRAND(2) NRAND(3) NRAND(4) NSIN

[INT] [INT] [INT] [INT] [INT]

Number of narrow-band and sinusoidal time histories

NBSIN can generate up to a total of nineteen narrow-band processes with up to four

loads sets. NBSIN can generate up to ten sinusoidal processes. Non-negative values
are required.

NRAND(1)

NRAND(2)

NRAND(3)

NRAND(4)

NSlN

the number of narrow-bend time histodes in load set 1

the number of narrow-band time histories in load set 2

the number of narrow-bend time histories in load set 3

the number of narrow-bend time histories in load set 4

the number of sinusoidal time histories

Narrow-band Process InformaUon Block

HISNAM(K) SlGMAN(K) FO(K)

[CHR] [DRE] [DRE]

Narrow-band process generation information
A block of NRAND(0) lines must be provided. K goes from 1 to NRAND(0). s4 The

line contains the time history storage file name, aN, and fo. The file name is a character

string up to six characters long enclosed by single quotes, eN of Equation 2-58, is

the magnitude of the narrow-band process, and must be positive. It must be set equal

to 1.0 when a reference time history is being generated, fo (Hz) of Equation 2-58 is

the frequency of the narrow-band process.

e4 The total number of narrow-band time histories, NRAND(0) = NRAND(1) +
NRAND(2) + NRAND(3) + NRAND(4).
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Sinusoidal Process Block

HISNAM(J) A(J) FC(J) PHASE(J)

[CHR] [DRE] [DRE] [DRE]

Sinusoidal process generation information
A block of NSIN lines must be provided. J goes from 1 to NSIN. The line contains

the time history storage file name, A, f=, and _p. The file name is a character string up
to six characters long enclosed by single quotes. A is the amplitude of the sinusoidal

process, and must be positive. It must be sat equal to 1.0 when a reference time
history is being generated, fc (Hz) is the frequency for the sinusoidal process, and

,p (rad) is the phase angle.

6.6.4 Options and Capabilities

NBSIN is a simulation program which can be used to generate reference time
histories for use with the HCF analysis programs DCTHCF and HEXHCF. The
simulation uses AR(1) processes to generate an approximation to a narrow-band
process. The approximation ensures that the spectral density function of the AR(1)
process closely follows the spectral density function of the narrow-band process in
the neighborhood of their peaks. The program also generates sinusoidal processes
at the same time increments for use in composite load HCF cases. For applications

to date, as many as 4 load sets for a total of 19 narrow-band random and 10 sinusoidal
processes have been generated simultaneously with each reference time history

composed of up to 25,000 point s .

The reference time history components have scale factors A = 1 and aN = 1.

Formation of the composite stress-time history by specifying A and oN values takes

place in the Probabilistic Failure Model (PFM). Currently, NBSIN can generate up to
N RAND(0) = 19 narrow-band, in four load sets, and NSlN -- 10 sinusoidal processes

of up to 25,000 points simultaneously.

A printout of intermediate calculations may be obtained via the lOUT option. The
information will be printed in the IOUTPR file. It is recommended that such output not
be requested when the simulation size is large since the information will be dumped

at every time increment.

6.6.5 Code Execution Example

The following example run of NBSIN is a substantially reduced version ofthe HPOTP
main discharge duct HCF analysis reference time history generation. This will
generate two narrow-band processes and one sinusoidal process (NRAND(1) -
NRAND(2) - 1, NRAND(3) - NRAND(4) = 0 and NSIN = 1). The largest of the

6 - 192



three frequencies is 2000 Hz, so this is used for F. The damping coefficient, XC is

0.03333 or 1/30. Ten points per cycle of frequency F are specified (N = 10) together
with a history length T of 5x10-" seconds. No clipping or phase angle shifting is
desired (CLIP = 1036 and SHIFT = 0).

The three processes simulated for this problem are:

TYPE NAME FREQUENCY PHASE ANGLE

1. Narrow-band Axial 1306 NA

2. Narrow-band Moment 498 NA

3. Sinusoid Sin 2000 -13.1221

Since the three component processes are reference time histories, corresponding

o N and A are set equal to one (SlGMAN(1) = SlGMAN(2) = A(1) = 1.0). The

rationale for the specification of the processes is given in Section 3.

The generated reference time histories are in the user-specified output files AXIAL,

MOMENT, and SIN. The dump parameter lOUT is zero; therefore, no output is in file
IOUTPR.

Input File- NBSIN

1275

0

2000

0. 03333

10

0.0005

1.0£+36

0.0

1 1

' AXIAL '

'MOMENT '

'SIN '

0 0 1

1.0 1306.

1.0 498.

1.0 2000. -13.1221

Output File - IOUTPR

Output File - AXIAL

-1.02049947079946

-0.981144655736187

-0.684737677520974

-0.366017655522998

0.158197622376050
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0.364337198737643

0.430778879959374

0.603244733602086

0.680397341762041

0.500667800781674

Output File - MOMENT

-1.88608227754315

-2.01955579985522

-2.15463039452833

-2.21239214023729

-2.16788029353809

-1.92173426909737

-1.69366840411679

-1.74476896203846

-1.59120552672873

-1.29450122918237

Output File - SIN

0.973888469945478

0.921335424736327

0.516863543379789

-0.850326546259054D-001

-0.654449266970346

-0.973888489792803

-0.921335390749091

-0.516863468539960

0.850327417320549D-001

0.654449333071226

6.6.6 Summary of Input/Output Files

Input Files

NBSIN
This file is opened in NBSIN. It contains all parameters required for the time history

generation including storage file names, frequencies, load sets, amplitudes, and
phase angles.

Output Flies

IOUTPR

This file is opened in NBSIN.
lOUT is equal to 10.

It contains the data dump provided when the variable
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User Specified
These are the time history storage files and are opened in NBSIN.
time histories generated by NBSIN.

They contain the
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