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In Reed-Solomon codes and all other maximum distance separable codes, there

is an intrinsic relationship between the size of the symbols in a codeword and the

length of the codeword. Increasing the number of symbols in a codeword to im-

prove the efficiency of the coding system thus requires using a larger set of symbols.
However, long Reed-Solomon codes are difficult to implement and many commu-

nications or storage systems cannot easily accommodate an increased symbol size,

e.g., M-ary frequency shift keying (FSK) and photon-counting pulse-position mod-
ulation demand a fixed symbol size. This article describes a technique for sharing

redundancy among many different Reed-Solomon codewords to achieve the effi-

ciency attainable in long Reed-Solomon codes without increasing the symbol size.
The article presents techniques both for calculating the performance of these new
codes and for determining their encoder and decoder complexities. These complex-

ities are usually found to be substantially lower than conventional Reed-Solomon

codes of similar performance.

I. Introduction

This article examines a new class of codes derived from

Reed-Solomon codes that captures the essential power of

long Reed-Solomon codes even though the symbol size re-
mains small. In most cases, the decoding complexity also

remains small. One explanation of the increased perfor-

mance of longer Reed-Solomon codes in a communications

or storage system is that for a given rate they have a higher
minimum distance. However, this rationale applies rigor-

ously only when the symbol error probability is minute.
Another explanation for the performance of long Reed-
Solomon codes is that as sequences become longer the law

of large numbers begins to take hold, e.g., very long code-

1Work supported under a contract between Johns Hopkins Univer-
sity and JPL.

words are likely to have the typical number of errors. An
elaboration of this statement will serve as a good intro-

duction to the fundamental concept in this article.

A Reed-Solomon code that experiences independent er-

rors with symbol error probability e and erasure probabil-

ity f must have a rate less than 1 - 2e - f, the expected
fraction of parity check symbols required, if the probabil-

ity of its failing to decode is to be low. For a given decoder
failure probability, the longer the code, the more closely
its redundancy can approach this value. Any size code will

have a 50 percent chance of correct decoding if its distance

is exactly equal to one more than the expected number of

erasures plus twice the expected number of errors. A very

long code will operate in the region where the law of large

numbers applies and experience a sudden, precipitous drop
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in theprobabilityof decoderfailureastheamountof re-
dundancyprovidedincreasesfromlessthan1- 2e- f to

greater than 1 - 2e - f. A shorter code will experience

a more gradual drop. Figure 1 shows an example of a
5-bit extended Reed-Solomon code operating over the in-

dependent symbol erasure channel with 1 percent symbol
erasure probability.

If a 5-bit Reed-Solomon code experiences an indepen-

dent symbol erasure rate of 1 percent, and if the proba-

bility of decoder failure must be less than 5 x 10 -6, then
the code must able to correct 5 erasures. The probability

of having six or more erasures, E3_(0.01,06), is actually
7.24 × 10 -7. There is, however, less than a 0.4 percent

chance of having more than two erasures in a codeword.

Thus, there is the possibility of sharing among many dif-
ferent codewords the three parity check symbols that are

needed only 0.4 percent of the time. One way of achiev-

ing this would be through a return channel over which the
receiver informs the transmitter of the particular code-

words that require the extra parity checks. The trans-

mitter computes all five parity checks, but, in the begin-

ning, sends over the channel only the first two. The re-

ceiver attempts decoding of the shortened codewords by

declaring the symbols that were not sent to be erasures.

Then, E29(0.01,3) = 0.0030 of these shortened codewords

will fail to decode. (Since this example is using the era-
sure channel, the probability of incorrect decoding is unde-

fined.) The receiver then requests the extra parity checks
for those few words that failed to decode. The decoder

failure probability is unchanged from the original system,

but only 2.009 parity checks per codeword are required

on average, i.e., the average number of parity checks per

codeword has been cut by more than half.

The essential concept in this article is that the same

type of parity check sharing can be accomplished without
the reverse channel. The next section will show how this is

accomplished by completing the introductory example and

will explain techniques for computing the performance of
codes used on the erasure channel.

!1. Codes for Erasure Correction

The parity check symbols will be shared among a set

of codewords by using the same Reed-Solomon encoder

that produced them. The third, fourth, and fifth parity

symbols from 27 different codewords will be fed back into
the encoder to form the vertical codewords shown in Fig. 2.

None of the symbols intersected by both Reed-Solomon

codewords is sent over the channel. In fact, only the first

four parity check symbols of the vertical codewords will
be sent over the channel; the fifth symbol of each of the
vertical codewords will be discarded.

Now that the scheme for sharing parity check symbols

among the codewords has been precisely described; its op-
eration will be proven by showing that the decoder fail-

ure probability of the horizontal codewords has decreased.
Consider a horizontal codeword that has more than two

erasures and so has failed to decode. The probability

that three or more of the remaining horizontal codewords

have also failed to decode is E26(0.0030, 3) = 6.67 x 10 -5.

Should this event occur, decoder failure can be declared

since doing so will contribute only (0.003)(6.67 x 10 -5) =
2 x 10 -7 to the overall probability of failure to decode.

The probabilities multiply since the initial failure of a sin-

gle codeword is independent of the success or failure of any
or all of the others.

If the 26 other codewords have only two failures among

them, then each of the vertical codewords will decode if
no more than one channel erasure has occurred in its set

of four parity symbols, i.e., the symbols actually sent over

the channel. The probability of more than one channel era-

sure in a set of four is E4(0.01,2) = 0.0006. Thus, if three
horizontal codewords have failed, the vertical codewords

will fail independently with probability 0.0006; this num-

ber is an upper bound on the erasure rate experienced by

the rightmost three symbols of each horizontal codeword
if failure has not already been declared.

An upper bound on the failure of each horizontal code-

word is thus obtained by assuming independent erasures

on all symbols with a 0.01 rate for the first 29 and a 0.0006
rate for the last three and then adding 2 x 10 -v to account

for the probability of declaring vertical codeword failure.

This bound is negligibly less than the original failure prob-

ability based on a uniform 1 percent erasure rate. The
complexity increase at the encoding end is 3/27, since for

every set of 27 codewords, three more will be needed. The
decoder complexity increase will never be more than 6/27,

the fractional contribution of the vertical codewords plus

the fractional contribution of the three possible horizontal

redecodings. The average work performed by the decoder
can, of course, be less, e.g., often complete decoding can

be accomplished without using the vertical codewords and

so their information may simply be discarded.

III. Single Field Codes for Error Correction

This section will explain the design of single stage
combined Reed-Solomon codes for the independent sym-

bol error channel by presenting an example based on the
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NASA Standard (255,223) code. The channel error rate is

2 percent which produces a decoder failure probability of

E255(0.02, 17) = 1.9 x 10-s; this is almost equal to the de-
sign symbol error rate in the Voyager spacecraft communi-

cations system. For implementation economy, the vertical
and horizontal codewords will again be identical. The first

16 redundant symbols of each horizontal codeword will be
sent over the channel in the conventional manner. The

remaining 16 will be incorporated into vertical codewords

as shown in Fig. 3. The probability that one of the hor-
izontal codewords will have more than eight errors, and

so fail, is E239(0.02, 9) = 0.0528. The structure of Reed-
Solomon codes guarantees that almost all of these excess

error patterns can be recognized, i.e., the probability of
incorrect decoding of one of the horizontal codewords is

negligible [1]. The 223 information symbols of the vertical
codewords will thus experience an erasure rate of 0.0528.

Consider a codeword that has experienced 9 or more er-

rors. The probability of 28 or more of the other codewords

failing is E222(0.0528, 28) = 2.00669 x 10 -5. If 29 or more
of the horizontal codewords have failed, the decision not

to attempt decoding of the vertical codewords contributes

(0.0528)(2.00669 x 10 -5) = 1 x 10 -6 to the failure prob-
ability of each of the horizontal codewords. The decision
never to attempt decoding of the vertical codewords with

more than 28 declared erasures is quite sound in this case

since it keeps the error probability of the vertical code-

words negligible [1].

If a vertical codeword has 28 erasures, then the prob-

ability of its not decoding successfully is E32(0.02, 3) =

0.0257. Thus, each of the horizontal codewords will ex-

perience an independent symbol erasure rate of no more
than 0.0257 on the last 16 symbols if an excess of erasures

has not already caused vertical codeword failure to be de-

clared. The failure probability of the horizontal codewords

has again improved since the drop in the error (now era-

sure) rate experienced by the last 16 symbols more than
offsets the 10 -6 chance of decoder failure caused by an

excess of erasures in the vertical codewords.

The average redundancy of each codeword in the block

is 16 + 16(32/223) = 18.29, which gives a code rate for
the block of 223/(223 + 18.29) = 0.9242. The rate of a
10-bit Reed-Solomon code that experiences a 2 percent

symbol error rate and is able to achieve the same failure

probability is 0.917.

The encoder complexity increase produced by using the

scheme shown in Fig. 3 will be the fractional increase in

the number of codewords required, 16/223, just as it was

in the ease of erasure. The decoder may now, however,

experience a decrease in complexity since it never needs to

cope with the situation where more than 28 of the horizon-
tal codewords have more than eight errors. The design of
Reed-Solomon decoders often exploits the typically small

number of errors per codeword by making the decoding
time a random variable and employing a buffer. However,

the scheme presented here allows an explicit upper bound

on the required buffer size. This decoder simplification is

another reason for declaring failure before exhausting all

possibility of success.

Sections II and III have presented techniques for analyz-

ing the decoder failure probabilities of single-stage arrays
of codes when the symbol error rate is known. The essen-

tial technique used in those sections was the division of
the vertical codeword failure mechanisms into two groups:
those that affect the entire block of codewords and those

that affect each codeword independently. For economy of

expression, the division was made complete by the use of
a union bound. A more refined horizontal decoder failure

probability estimate would have to consider all different
possible numbers of erasures in the vertical codewords; the

methods involved are straightforward but lengthy exten-

sions of the arguments in Sections II and III.

IV. Optimum-Distance Single Field Codes

The approach of Sections II and III was to take an ex-

isting coding system and improve its rate without substan-
tially increasing its complexity. The total distance of the

entire code block never factored into the design because the
channel error and erasure rates were substantial. However,

the designs developed did maintain the free distance of the
entire block. This section considers to what extent the

number of redundant symbols in a block of crossed max-

imum distance separable (MDS) codes can be reduced if

the only requirement is that a minimum distance be main-
tained for the entire block. This section will present opti-

mum constructions for single- and double-error correcting

codes. In addition to quiet communications channels, such
low distance codes are important for disk drive arrays and

computer memory applications. The techniques used can
be extended to higher distances; however, different con-
structions not based on crossed sets of MDS codes can

yield higher rates when the distance is greater than five.

Nevertheless, [3] shows that other types of multilevel codes
may still be useful for high distance applications because

of their economy of implementation and adaptability to
channel error statistics.

Figure 4 shows a means of constructing a single-error
or double-erasure correcting code with (N - 2) 2 informa-

tion symbols and three redundant symbols out of length
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N Reed-Solomon codes. The distance of the code is most

easily demonstrated by the erasure decoding algorithm. If

the two possible erasures are in different horizontal code-

words, then the first vertical codeword will experience two
erasures and will decode. Each of the two horizontal code-

words with an erasure will receive one symbol of redun-

dancy from the first vertical word and, so, will be able to

decode. The second vertical codeword provides for the case
where both erasures occur in the same horizontal code-

word. Thus, since the code can correct two erasures, it
has distance three.

The procedure for correcting a single error is slightly

more complex. As before, the first step involves calcu-

lating the information symbols of the vertical codewords

by re-encoding the information in the horizontal code-
words. If there has only been one error, then all of the

symbols in the first vertical codeword except one are cor-

rect. Furthermore, the symbol in the first vertical code-

word coming from the horizontal codeword containing

the error is guaranteed to be incorrect since the first re-
dundant symbol together with the information symbols
of each horizontal codeword form a code of distance 2,

which is single-error detecting. Thus, the decoding of the
first vertical codeword pinpoints the horizontal codeword
with the error. The second vertical codeword can now

be decoded by declaring an erasure in the marked posi-
tion and, so, both redundant symbols will be available to

the damaged horizontal codeword. The construction in

Fig. 4 is asymptotically close to being a perfect code since

[(N- 2)2(N - 1)]/N a approaches one as N becomes large.

Figure 5 shows a construction for a distance five code.

Its efficiency is, however, no better than can be achieved
by concatenating symbols and using double-length Reed-

Solomon codes; its advantage is easy encoding and decod-

ing.

V. Summary and Discussion

The technique presented in this article allows a clear
improvement in code rate of symbol-error-correcting and

symbol-erasure-correcting codes for any given decode fail-

ure probability. Moreover, the computational cost to both

the encoder and decoder is negligible. The only price to be

paid is in interleaving and buffering, i.e., decoding cannot
be completed until all of the codewords in an entire array
are received.

An encoder will customarily use interleaving anyway to

make symbol errors independent. Some number of Reed-
Solomon codewords, e.g., eight 255 symbol codewords for

the Galileo S-band, will be interleaved to form an inter-

leaving block. All codewords in an interleaving block must
come from different arrays to preserve independence. The

amount of storage required at the encoder is not large,

however, since only the vertical redundancy needs to be
saved until the entire interleaved collection of arrays has
been sent.

The overall encoding and decoding cost of the class

of codes presented in this article proves to be substan-

tially superior to that of longer Reed-Solomon codes even

if large and small symbols experience the same error

rate. Real communications channels, e.g., those employing

determinate-state decoding [2], favor small symbols. For
these channels, cannibalistic Reed-Solomon codes can offer

very large improvements.

References

[1] R. J. McEliece and L. Swanson, "On the Decoder Error Probability for Reed-
Solomon Codes," IEEE Transactions on Information Theory, IT-32, pp. 701-703,

September 1986.

[2] O. Collins and M. Hizlan, "Determinate State Convolutional Codes," The

Telecommunications and Data Acquisition Progress Report ,[2-107, vol. July-

September, Jet Propulsion Laboratory, Pasadena, California, pp. 36-56, Novem-
ber 15, 1991.

[3] K. Abdel-Ghaffar and M. Hassner, "Multilevel Codes for Data Storage Chan-
nels," IEEE Transactions on Information Theory, IT-37, pp. 735-741, May 1991.

87



5 PARITY CHECK SYMBOLS REQUIRED

FOR 10 -6 FAILURE TO DECODE

I I

CODEWORD (32 SYMBOLS OF 5 BITS)

[ J

2 PARITY CHECK SYMBOLS REQUIRED
FOR 0.004 FAILURE TO DECODE

Flg. 1. Flve-blt extended Reed-Solomon code.

27 INFORMATION

27 INFORMATION

27 INFORMATION

12345

12345

12345

E239 (0.02,9) = 0.0528

223 INFORMATION 16 PARITY

223 INFORMATION 16 PARITY

223 INFORMATION 16 PARITY

16 PARITY

16 PARITY

16 PARITY

Z Z Z
"n "11 "n
o O O
30 3O -n

o 0 o
z z z

27 INFORMATION

27 INFORMATION 112 3 4 ,51 2 34 5

I%) h) h)

223 INFORMATION 16 PARITY 16 PARITY

Fig. 2. Redundancy sharing.

Fig. 3. Using the NASA Standard (255,223) code.
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Fig. 4. A means of constructing a single-error or

double-erasure correcting code.
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Fig. 5. A construction for s distance five code.
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