
TDA Progress Report 42-114
August15,1993

N94-14379

Estimating the Size of Huffman Code Preambles
R. J. McEliece

Communications Systems Research Section

T. H. Palmatier

California Institute of Technology

In this article, data compression via block-adaptive Huffman coding is consid-

ered. The compressor consecutively processes blocks of N data symbols, estimates
source statistics by computing the relative frequencies of each source symbol in the

block, and then synthesizes a Huffman code based on these estimates. In order to

let the decompressor know which Huffman code is being used, the compressor must

begin the transmission of each compressed block with a short preamble or header
file. This file is an encoding of the list n = (nl,n2,... ,nm), where ni is the length
of the ttuffman codeword associated with the ith source symbol. A simple method

of doing this encoding is to individually encode each ni into a fixed-length binary
word of length log21, where 1 is an a priori upper bound on the codeword length.

This method produces a maximum preamble length of mlog21 bits. The object of
this article is to show that, in most cases, no substantially shorter header of any

kind is possible.

I. Introduction

Huffman data compression is optimal for sources with

known statistics ([4], Chapter 10). However, in adaptive
implementations, in which the Huffman code is determined

empirically by the data, the recipient of the compressed
data will not know which code is being used. One way for

the transmitter to identify the code is to prefix the encoded
data with an ordered list of the codeword lengths being

used. The receiver can then synthesize a variable-length

code with these lengths, using a prearranged algorithm.

(For example, the decoder can use a "greedy" algorithm,
in which the shortest codewords are generated first, then

the next shortest words, etc.) The object of this article

is to demonstrate that, in many cases, this simple scheme

is near optimal, by showing that any scheme for specify-

ing the code will use almost as many bits as the simple

preamble scheme just described.

Throughout, it will be assumed that both the compres-
sor and decompressor know that there are m codewords,
and that each codeword has a maximum length of I. One

such bound can be obtained by observing that no codeword

in a Huffman code with m words can be longer than m- 1.

However, in many situations, this bound can be improved

upon. For example, suppose the compressor works by par-

titioning the source sequence into blocks of N symbols, and
then estimates the source statistics as Pi = N_/N, where

Ni denotes the number of times the ith source symbol oc-
curs in the block. A Huffman code for the pi's is then syn-

thesized and used to compress the block. The maximum

9o

https://ntrs.nasa.gov/search.jsp?R=19940009906 2020-06-16T21:35:58+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42790933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Huffman codeword length corresponds to the least proba-

bility in the source probability table, which is at least 1/N.

In a recent paper [2], Abu-Mostafa and McEliece showed

that the longest Huffman codeword has a maximum length

of 1.44 log 2 p-1 for a source whose smallest probability is
p, and that no better bound is possible. Thus, for an adap-

tive Huffman scheme, each Huffman codeword will have a

maximum length of 1.441og 2 N, which is often consider-

ably smaller than m - 1.

In the simple scheme, the code preamble will be an or-

dered list (nl,n2,... ,nm), where ni is the length of the
Huffman codeword for the ith symbol, and m is the num-

ber of symbols in the source alphabet. Since ni < i, for

i = 1, 2,..., m, each ni can be represented by a [log 2/l-
bit binary word, the length of the preamble in bits will

be m['log 2/]. In a slightly more sophisticated scheme, the
list (nl, n2,..., nm) can be regarded as an l-ary represen-

tation of a large integer and converted to binary, which

will require at most [log 21 rn] = [m log 2/] bits. In either
case, one can say that the simple preamble requires around

m log 21 bits.

On the other hand, if N(m, l) denotes the total number

of lists (nl, ns,..., nm) that can possibly occur as length
lists for Huffman codes whose codeword lengths are at
most l, then at least log s N(m, l) bits are needed to spec-

ify one of them. In the next section it will be shown that

log s N(m, l) is near m log 1 in many cases, which implies
that any scheme for specifying the Huffman code must use

almost as many bits as the simple preamble scheme.

II. Main Result

It is well-known ([4], Chapter 10) that the codeword
lengths in a Huffman code must satisfy the Kraft-

McMillan equation

m

_2-"' = 1 (1)
i=l

In this section, an estimate will be obtained for the num-

ber of ordered solutions of Eq. (1), where each ni is fur-

ther restricted to lie in the range 1 < ni < 1. For fu-

ture reference, denote this number by N(m,l). A first
observation is that since there are l possible values for

each of the ni's, then N(m,l) < Im. Equivalently, if

one defines B(m, l) = log s N(m, l) (the number of bits re-

quired to specify an arbitrary ordered solution to Eq. (1),

if 1 _< nl _< l), one has

B(m, t) < m log s 1 (2)

In a sense, the object of this article is to show that the

upper bound in Eq. (2) is quite good; thus, in the rest

of the section, lower bounds on B(m,l) will be consid-

ered. The key to these bounds is the observation that if

n = (nl,..., nm) is a particular solution to Eq. (1), any
permutation of the components of n will also be a solution.

Indeed, if gj denotes the multiplicity of the integer j as a
component of n, then there are exactly

m) m!= (3)
gl,g_, ...,gl gx!g2! "'gl!

distinct solutions to Eq. (1) that can be generated by per-

muting the components of n. For example, with m = 4,

I = 3, the unordered solution (1,3,3,3,3) to Eq. (1)
yields 5 ordered solutions, and the unordered solution

(2, 2, 2, 3, 3) yields 10 unordered solutions, so that
B(5, 3) = 15.

As a first step towards the general results, consider so-

lutions to Eq. (1) with no restrictions on I. Since the

longest word in a Huffman code with m words is m- 1,

this is equivalent to taking ! = rn - 1. In this case, the up-
per bound in Eq. (2) is mlogs(m- 1). On the other hand,

the particular unordered solution (1, 2, 3,..., m- 2, m- 1,

m - 1) to Eq. (1) yields, upon permutation of its com-
ponents, m[/2 ordered solutions, so that B(m, m - 1) >

log 2 m[/2. Thus

logs(m!/2) _< B(m,m - 1) _< mlogs(m - 1) (4)

It follows from Stirling's approximation to the factorial

([3], Section 1.2.11) that

lim log(m!/2) - 1
,,-_oo m log(m- 1)

which means that for large rn, B(m,m- 1) -_ mlog2m

(see Theorem I, below).

For restricted solutions to Eq. (1), i.e., cases when
I < m - 1, one can do something very similar. The idea

is again to find a particular solution to Eq. (1) with as

many distinct permutations as possible. To facilitate the

discussion, now rewrite Eq. (1) as

l

Zg 2- = I (5)
./=0

91

where gj denotes the multiplicity of the integer j in the
list n = (nl,..., n,0. The goal is to maximize the multi-

nomial coefficient of Eq. (3), subject to Eq. (5).

The following construction yields a family of particular

solutions to Eq. (5), for which the multinomiai coefficient

of Eq. (3) is relatively large, and which therefore provides

reasonably good lower bounds for B(m,l). For a given
value of l, choose integers u, r, and s such that

3<u<I-2, l<r<u-2, 1<s<21--2 (6)

Now define g0,gl,-.. ,gt as follows:

go = "" = g1--1 = 0

gr _ 8

1"gr+l = "'" = gu-1 = --8

gu= 2r--s+l

gu+l = ""= gl-1 = 2r--S--1

gt = 2(21- - s - 1) (7)

It is then routine but tedious to verify algebraically that

Eq. (5) holds. However, it is much easier to see that this
is true by visualizing a binary tree with g1 external nodes

at level j, for j = 0, 1,...,i. Figure 1 is such a tree, for

! = 7, u = 5, r = 2, and s = 1. In general, such a tree has

I

m=_gj=s+(2 r-s)(l+l-r)-(l-u)
/=0

(8)

external nodes. For example, in Fig. 1 there are m = 17

external nodes. It thus follows that for any choice of l, u,

r, and s satisfying (6), the numbers (go,..., gz) defined in

EQ. (7) give a particular solution to Eq. (5), and so

B(m,l) > log2 (m)-- gl, g2, • • •, gt

where m is given by Eq. (8).

For example, since there are m = 17 external nodes on

the Fig. 1 tree, it follows that

17) = 33.00B(17, 7) >_ log 2 1,3,3,4,2,4

On the other hand, from Eq. (2), B(17,7) < 161og27 =

44.92 so that, at least on a logarithmic scale, the particular

solution to Eq. (5) represented by the binary tree depicted

in Fig. 1, together with its permutations, accounts for a
substantial fraction of the total number of ordered solu-

tions to the Kraft-McMillan [Eq. (1)].

The same kind of thing happens in general. That is,

the largest multinomial coefficient of the form of Eq. (3),

where the gj's are given by Eqs. (6) and (7), is nearly

always close to m log 2 I. To see why this is so, one further
specializes the solution to Eq. (5) given by Eq. (7). First,

notice that Eq. (8) implies that

m < 2r(l+ 1- r) (9)

Choose r to be the least integer such that Eq. (9) holds.

Second, having chosen r, notice that Eq. (8) implies that

m_< s + (2" - s)(l + 1- r) (10)

Thus, choose s to be the largest integer that Eq. (6) holds.

Explicitly,

[2_(1 + 1 - r) - r9[(11)
s= L i=; 3

Finally, having chosen both r and s, u is determined by

Eq. (8), i.e.,

u = m + t - s - (21-- s)(t + 1 - r) (12)

In this way, the numbers u, r, and s are uniquely deter-

mined by m and l, as are the gj's in Eq. (7), which in
turn define the multinomial coefficient of Eq. (3). Define

the logarithm of this multinomial coefficient as B_(m, I).

Thus, from the foregoing discussion

B(m, t) > B'(m, 0

For example, if m = 20 and l = 8, the least value of r

satisfying Eq. (9) is r = 2. Then from Eq. (ll), one finds

that s = 1, and from Eq. (12), that u = 6. Thus from

Eq. (7), go = gl = 0, g2 = 1, g3 = g4 = g5 = 3, g6 = 4,

gr = 2, gs = 4. Finally

92

20 I = 43.15B'(20,8) = log 2 1,3,3,3,4,2,4

as compared to the upper bound of Eq. (2) B(20,8) <

20log 2 8 = 60.

A theorem will next be presented to illustrate what

happens if 1 is a fixed fraction of m (e.g., l = 13m and

m --* co), to further substantiate the claim that the upper

bound in Eq. (2) is usually fairly tight.

Theorem 1. For any fixed 13, with 0 < fl < 1, there

are positive constants K1 and K2 (dependent on t3 but in-

dependent of m) such that for sufficiently large m,

mlog 2 m-K2m <_ B(m,flm) <_ mlog_m- Klm (13)

B(m'13m) >-l°g2 (gl,.m..,gJ) -> l°gm_

- (i - r) log 2r[- log 2 TM [

-,_ mlogm - (1 + 131og 2r!)m + O(log m)

which gives a lower bound of the form promised in Eq. (13).

In conclusion, some brief remarks about the constants

in Eq. (13) will be provided. When fl = 1, i.e., when there

are no restrictions on the length of the codewords, then

the lower bound derived in Eq. (4) implies

B(m, m - 1) _> m log_ m - log_ em= m log 2 m - 1.4427m "

Proof: The upper bound from Eq. (2), mlog13m, is
asymptotically given by

mlog_m = mlogm - logfl-lm

which proves the upper bound in Eq. (13), with Kx =

log 2 fl-1

To obtain an asymptotic lower bound on B(m,13m),
the reasoning is as follows. For suffÉciently large m, the

smallest integer solution r to Eq. (9) (using I = tim) is

r = r(fl) = [log 2 fl-l] + 1 (14)

which is a constant, independent of m. Note then from

Eq. (7) that

gj<_2 r forj=r,r+l,...,l-1

gt <_ 2r+l

Thus

() m,m >gl,. .. ,gl

This means that one can estimate B(m,_m) using Stir-

ling's formula, as follows:

for sufficiently large m. On the other hand, [1] shows that

T,n, the total number of unordered solutions to Eq. (1),

satisfies log 2 Tm/m _ A = 1.794 But the total number

of ordered solutions to Eq. (1) cannot exceed m!Tm, which

means (by Stirling's formula)

e

B(m, m - 1) < m log 2 m - log 2 _m = m log 2 m - 0.5994m

For general 13, from the proof of Theorem 1, it follows
that K1 can be taken to be

K1(13) = log _- 1 (15)

and that K2 can be taken as

K2(/3) = 1 + 131og2(2"!) (16)

where r is given by Eq. (14). Using the same method, but
with a little more work, K2 can be improved. Indeed, it
can be shown that

K_(/3) = 1 + alog(2" - s)! + (13 - a) log(2" - s - 1)!

where

93

a=_-(1 [b_-_rlJ /

For example, with/_ = 1/3, Eqs. (15) and (16) give

K1(1/3) = 1.58, K2(1/3)= 1.908

The determination of the best possible constants in

Eq. (13) is an interesting and important unsolved prob-
lem.

References

[1] D. W. Boyd, "The Asymptotic Number of Solutions of a Diophantine Equation

from Coding Theory," J. Comb. Theory, vol. (A) 18, pp. 210-215, 1975.

[2] Y. S. Abu-Mostafa and R. J. McEliece, "Maximal Codeword Lengths in
Huffman Codes," The Telecommunications and Data Acquisilion Progress Re-

port, 42-110, vol. April-June 1992, Jet Propulsion Laboratory, Pasadena, Cali-

fornia pp. 188-193, August 15, 1992.

[3] D. E. Knuth, The Art of Computer Programming, vol. 1: Fundamenlal Algo-

rithms, Reading, Massachusetts: Addison-Wesley, 1968.

[4] R. J. McEliece, The Theory of Information and Coding, Reading, Massachusetts:
Addison-Wesley, 1977.

94

3

4 5

Fig. 1. A high entropy binary tree, for m -- 17,
! = 7. (Here u = 5, r = 2, ands = 1. Refer
to Eq. (7).) The level of each external vertex Is
indicated.

95

