
TDA ProgressReport42-114

s _

August 15, 1993

N94-14383
m o

Formal Functional Test Designs With a Test

Representation Language

J. M. Hops

RadioFrequencyand MicrowaveSubsystemsSection

This article discusses the application of the category-partition method to the

test design phase of hardware, software, or system test development. The method

provides a formal framework for reducing the total number of possible test cases to

a minimum logical subset for effective testing. An automatic tool and a formal lan-

guage have been developed to implement the method and produce the specification
of test cases.

I. Introduction

The focus of this article is on how the category-partition

method, a method for specifying functional tests [4], can

be applied to the test design phase of the testing life cycle,

a required part of any DSN implementation task. Before

describing the method itself, the requirements for the test

design phase need to be clearly defined, as well as how they
fit into the JPL Software Management Standard) This

discussion can be found below, in Section II.

Section III centers on some methods often used in the

test design phase. The category-partition method is de-
scribed in detail. Included in this section are the back-

ground of the method, a step-by-step description of how
to implement it, and a demonstration of the method ap-

plied to a simple example.

The subsequent section, Section IV, introduces the Test

Representation Language (TRL). TRL is a formal lan-

guage for specifying test designs that have been created

1 JPL Software Management Standards Package, Version 3.0, JPL
D-4000 (internal document), Jet Propulsion Laboratory, Pasadena,
California, December 1988.

with the category-partition method and a computer tool
for automatically generating test cases from the formal

specification. The example from Section III is presented

using the TRL format.

The conclusions in Section V provide some insight into

the results that have been achieved and offer some sug-

gestions for further study and data collection that may
be necessary to assess the contribution of the TRL tool

developed and the category-partition method used.

II. Problem Definition

A. Testing Life Cycle

In the field of software engineering, one is often faced

with the challenge of creating an integrated, working sys-

tem based on inadequate and meager requirements. The

waterfall life cycle for software development, wherein re-

quirements are systematically refined, architectural and

detail design established, code written, and then the sys-
tem tested, has become one of the accepted methods for

dealing with the ambiguities and vagueness of the original

requirements. The testing portion of this development life
cycle, however, is not so clearly defined or widely accepted.

154

https://ntrs.nasa.gov/search.jsp?R=19940009910 2020-06-16T21:36:06+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42790929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Figure 1 depicts the testing life cycle used in the devel-

opment projects for the DSN. This life cycle is described in
the JPL Software Management Standard 2 and is similar to

the software development standard adopted by the Depart-

ment of Defense, DOD-STD-2167A [2]. Table 1 defines the

acronyms used in Fig. 1, along with the title of the docu-

ment each acronym stands for, the phase in the testing life

cycle during which the document is used or produced, and
finally, whether a description of the document's contents

is in the JPL Software Management Standard 3 and [2].

As noted in both Fig. 1 and Table 1, a key component

is missing from the standards--a definition of the input,

output, and purpose of the test design phase. This gap

between the requirements for testing, produced in the test

requirements analysis phase, and the detailed test proce-

dures, produced in the test specification phase, is the phase

during which the category-partition method can be most

useful. The test design phase is explored in detail in the

following section.

B. Test Design Phase

The dictionary definition of the word "design" is to con-

ceive and to devise for a specific purpose. During the test

design phase, the "specific purpose" that the test engineer

is concerned with is meeting the test objectives and re-

quirements determined in the test requirements analysis

phase; what the test engineer is trying "to conceive and to

devise" are the necessary and sufficient ways of validating
the functional and performance requirements of the entire

system. Therefore, the purpose of the test design phase is

to conceive and specify the environmental and system at-

tributes that verify requirements and meet test objectives

for each test requirement in the test plan and for each

requirement in the functional and software requirements
documents.

Based on this definition of the purpose, the input to
this phase is relatively simple to identify. It is

(1) The test objectives as documented in the subsystem
integration and test plan and/or the software test

plan

(2) The functional and performance requirements and
system design as documented in the software spec-
ification documents or the functional and software

requirements documents

(3) Any other pertinent design or requirements infor-
mation that may be available, such as interface

2 Ibid.
3 Ibid.

agreements and the preliminary software operator's
manual

The output from the test design phase to the next
phase, however, is not so easy to identify. The products

to be developed are ways to validate requirements, which

will be referred to as test designs. These designs are not

expected to be test procedures specified to enough detail

to be run by an operations engineer or possibly a qual-

ity assurance engineer; the test procedures written to that
detail will eventually be written in the subsequent phase

of the testing life cycle, the test specification phase. The

test designs can have some ambiguity in the sequence of

steps, the testing range of certain parameters, or the actual

testing steps themselves.

Additionally, each test design should directly imply or

specify a group of test cases. The test cases should have

specific values for environmental and/or system parame-

ters that have an effect on how the system under test will
behave. Each of the test cases should also include the

expected response or behavior of the system.

With this in mind, the output of the test design phase
can be stated as follows:

(1) Test

(a)

(b)

(c)

(d)

(2) Test

(a)

design specifications that

Are traceable to test objectives and functional

and/or software requirements

Directly imply or specify a group of test cases

that can be individually executed but share the

same setup procedures

Identify the environmental and system features
that are to be set or observed to control and

determine the behavior of the system

Pass criteria for the group of test cases, and

cases that specify

The environmental and/or system parameters

and system states that should exist before the
test case is executed

(b) The test action or step to be taken to initiate
the system behavior

(c) The expected system behavior after the action
has been taken

155



In the following sections, methods for determining the

test designs and for automatically producing the documen-

tation for the test cases are presented.

III. Method of Solution

A. Test Design Methods

There are many ways to create test designs that meet
the needs of a certain project. Four of these methods are

discussed below: the representative set method, the ad

hoc method, the all-permutations method, and finally the

category-partition method.

A common method for determining the number and

contents of the test designs and test cases that should be

transformed into test procedures is selecting a representa-

tive set of normal conditions and parameters that prove

that the system works and meets requirements. On a

project using this method, the emphasis will be on demon-

strating that the system works rather than testing the sys-
tem to detect failures, but the repeatability of the test

procedures and the traceability to the requirements being
tested is generally good.

On projects that are particularly short of time, money,

and personnel, the test design phase is almost totally

skipped. In this case, the test design method can be char-
acterized as ad hoc. The ad hoc test case selection process

is particularly prone to missing important aspects of the

system behavior that could help determine where the prob-

lems are. The emphasis on a project using this method is

almost always on getting the system out the door. Trace-

ability to requirements is often poor. And most devastat-

ing of all, test repeatability is sacrificed; when a failure

eventually occurs and the problem solved, it is very diffi-
cult to verify that the fix was correct because the condi-

tions that caused the failure cannot be repeated.

Though not often seen, another method for selecting

test designs and cases is a brute force method of analyz-

ing all permutations of system parameter values. With

this method, the test designs and cases are easily traced

to requirements and test objectives, but it takes a lot of
time and effort to analyze each permutation and decide

which ones are valid and which ones are meaningless. This

method allows the test engineer to find test cases that

lie on the extreme boundary of the valid input space and

therefore is good for error detection.

A recommended method for determining test designs is

the category-partition method [4]. This method combines

the benefits of choosing normal cases with the error ex-

posing properties of the all-permutations method. Trace-

ability can be maintained quite easily by creating a test

design for each test objective in the test plan. By using an
automatic tool to create the test cases based on the test

design, the subsequent effort to transform the test cases

into test procedures is simplified. The method allows the

rapid elimination of undesired test cases from considera-

tion and easy review of test designs by peer groups.

Section III.B discusses the category-partition method in

general and is followed by Section IV, which presents the

Test Representation Language (TRL) that can be used to

implement the method and produce the test cases using
the TRL tool.

B. Category-Partition Method

1. Background. The category-partition method was
first presented by Ostrand and Balcer in 1988 [4]. A follow-

on article in 1989 [1] discussed a test specification language
and a tool for the automatic generation of test scripts that

could be compiled and executed in the test environment

that they had set up at Siemens Corporate Research. As

pointed out in these two articles, the category-partition

method is a way of analyzing the functional and software

requirements of a system in order to determine test cases

to be run. The method relies exclusively on the test engi-

neers' reading of the requirements and design documents

and their judgment of exactly which test cases should be
selected for procedure development. If a formal require-

ments specification language is used to document the re-

quirements and design, other methods may be more use-

ful, such as the ones described in the article by Richard-

son et al. [5]. However, it is not often that the test en-

gineer is presented with a functional requirements docu-
ment or a software requirements document that is writ-

ten this formally. Therefore, a structured method, such

as the category-partition method, is needed to provide a

systematic approach to developing test specifications from
informal representations of the required system behavior.

The following sections discuss the steps in the category-

partition method. The steps have been organized differ-

ently from the procedure discussed in the primary refer-

ences, [4] and [1]. The organization of steps presented
below has proven useful in communicating the method to

the test engineers on JPL projects.

2. Steps in the Category-Partltlon Method. The

category-partition method consists of the following four

steps:

156



(1) Functional decomposition

(2) Category analysis

(3) Partition value analysis

(4) Partition constraint analysis

Each of these steps is discussed in the following sections.

a. Step 1: Functional Decomposition. The first step

in the category-partition method is functional decomposi-
tion. The purpose of this step is to decompose the specifi-

cation and/or requirements into functional units that can
be tested independently. A secondary purpose of this step

is to identify the parameters that affect the behavior of

the system for each functional unit.

The requirement space is subdivided into subgroups,

which may or may not overlap in some aspect. Each sub-

group clearly identifies the requirements being tested and

the input, output, and environmental parameters that af-
fect how the system meets the requirements. The types of

parameters that should be considered are user input, in-

put from external interfaces, environmental input, output

to another (observable) portion of the system, output to
a user or external interface, output to the environment or

state of the system, or maybe even the sequence of events.

Note that there will be times when some of the parameters

are not explicitly stated in the requirements specification,

and therefore implicit parameters will have to be deter-
mined.

For an example, assume the following requirement spec-

ification has been decomposed from the requirement space:

Sort an integer array either in ascending or descending or-

der. The parameters mentioned explicitly in this require-

ments statement are the array and an indication of sort

order. Implicitly, however, the result of the sort operation
is also a parameter for this requirement.

The next step of the procedure is to further analyze the

parameters identified and determine the characteristics, or

categories, of the parameters that affect program or system
execution.

b. Step 2: Category Analysis. The second step in the

category-partition method is category analysis. The work

done in the previous step, identifying functional units and

explicit and implicit parameters, is carried further by de-

termining the properties or subproperties of the parame-
ters that would make the system behave in different ways.

The test engineer should analyze the requirements and de-

termine the features or categories of each parameter and

how the system may behave if the category were to vary

its value. If the parameter undergoing refinement were a

data item, then categories of this data item may be any of

its attributes, such as type, size, value, units, frequency of

change, or source.

Choosing the array from the example in step 1 for fur-

ther refinement, the categories that may be derived from

the specification are array size, the values in the array,

and, because the functional unit is a sorting function, the

arrangement of the values in the array.

As can be seen, the original requirement statement said

nothing about the valid range of array size. This step,

along with the next one, tends to point out deficiencies

in the requirements specification. The test engineer will
have to work closely with the author of the requirements

and the designers in order to resolve the ambiguities and
uncertainties that surface from this analysis.

c. Step 3: Partition Value Analysis. After all the cate-

gories for the parameters of the functional unit have been
determined, the next step is to partition each category's

range space into mutually exclusive values that the cat-

egory can assume. In choosing partition values, the fo-
cus should be on error-exposing values. The discussion

on boundary value testing in Myers' book [3] and reveal-

ing subdomains in the article by Weyuker and Ostrand [6]

should prove useful as references.

The partition values should include all possible kinds

of values, especially the ones that will maximize error de-

tection. Important values to look for are boundary values,

extremal and nonextremal values, values that represent

special cases or interactions, and valid and invalid values.

Returning to the example and using the category array
size for illustration, the five partition values are

(1) 0

(2) 1

(3) 2 to the Upper bound minus 1

(4) Upper bound

(5) Greater than the Upper bound

It can be seen that 0 and Greater than the Upper bound

represent error conditions that the sort function will have

to process, while I and Upper bound represent special cases

or boundary values. All the values between _ and the

Upper bound minus I (inclusive) have been grouped to-

gether because the sorting function is expected to behave
the same in this range; an error in processing that occurs

for a particular value in this range should occur for all the

157



values in this range. It is left up to the test specification
phase of the testing life cycle to determine the exact, or

random, values that should be used to verify this partition

in the test procedure.

The fact that two of the five values in this example

have already been identified as being representative of er-

ror conditions gives one a head start on the next step of

the category-partition method.

d. Step _: Partition Constraint Analysis. The pur-

pose of this final step is to refine the test design specifi-

cation so that only the technically effective and economi-

cally feasible test cases are implied. There are three types
of constraints defined in the category-partition method as

described in [4]: errors, limits, and conditions.

An error constraint applied to a partition value is used

to indicate that the partition value represents an exception

state that the system under test should note and report

without processing any further. Partition values of this

type need to be tested in one test case but no more, due

to the way exceptions are usually handled. Examples of

partition values that should have error constraints are 0
and Greater than the Upper bound in the category of array
size.

A limit constraint is for limiting the number of times

a partition value will be used in the resulting test cases.
Limit constraints can be applied to a test design in order

to control the actual number of test cases implied. When

economic feasibility, as in restricted time and resources, is
a factor in the test execution, the limit constraint will help

the test engineer to eliminate some of the test cases that
seem redundant. In the above example, the test engineer

may want to limit the number of times that an array size

of Upper bound is used.

The remaining type of constraint is the conditional con-

straint. Determining these types of constraints is where

the majority of the intellectual effort is spent. This part

of the analysis specifies which partition values from one

category can be used with the partition values of another

category. Conditional constraints are specified in pairs:

preconditions and postconditions. Preconditions are states
or conditions that must co-occur for a particular partition

value to be used in a test case; postconditions are the states

or conditions that are set when a partition value is used.

To illustrate their use, a slightly more involved example is
discussed.

Starting with the category of array size and the parti-
tions determined in the previous step, the types of condi-

tions that are expressed by each partition value are ana-

lyzed. It can be seen that the values represent three sep-
arate conditions:

(1) "Error occurs" (for partition values of 0 and Greater

than Upper bound)

(2) "Size is normal" (for partition values of e to Upper
bound minus I and for Upper bound)

(3) "Size represents a degenerate array" (for an array

size of 1)

Clearly, if everything else is set appropriately, the valid

partition values of the category result will be dependent
on these conditions. Assume the following four partition

values were identified in step 3 for the result category: er-

ror notification, array unchanged, array in ascending or-

der, and array in descending order. A precondition for the

result error notification is that the postcondition "Error
occurs" has been set. For the values of array in ascending

order and array in descending order, the postcondition of
"size is normal" must have been set before these values

could be used in a valid test case. The result of array

unchanged could possibly be a result of many conditions,
one of which is that the array size is 1, where the "size

represents a degenerate array."

3. Example Application of Category-Partltlon

Method. Table 2 provides the results of the method ap-

plied to the example that has been discussed throughout

the previous sections of this article.

IV. Test Representation Language (TRL)

The TRL was developed to implement the category-

partition method. When used during the test design phase

of the testing life cycle, the TRL files will form concise and

uniform representations of the test designs for the func-

tional testing of the system.

The TRL tool that implements the TRL language pro-

cesses the ASCII formatted TRL files and produces ASCII
formatted result files that document the individual test

cases implied by the test design. The TRL tool documents

the description, categories, and partition values to be used

in each test case as they were documented in the input file.

Each TRL file is created and changed with an ASCII editor

and therefore can be easily modified to adapt to changes

in functional specifications. The resulting test cases can

be used during engineering tests of the system under test
to verify preliminary procedures and functions while work

continues in the test specification phase on transforming

the test cases into formal detailed test procedures.

158



The TRL tool was written in the C programming lan-

guage and can be ported to any platform; the SUN/
SPARC and DOS environments are the computer plat-

forms on which it currently runs. This tool differs from

the one described in [1] in that the TRL tool is a general

permutation control language that can be used in any en-

vironment; the output of the TRL tool is ASCII files that
can be used for documentation rather than an executable

test script, as in [1].

A. TRL Language Definition

The TRL provides a way to describe many test cases
with one TRL file. The language consists of 1 comment

character, 11 key words, 2 field demarcation characters, a

logical AND character, and a logical NOT character. The
processing rules for the key words, comments, and fields

appear in the following sections, and a summary of the

Test Representation Language appears in the Appendix.

1. Special Characters. There are five special char-
acters in the TRL character set.

(1) Comment character = asterisk (*)

(2) Start field character = open bracket (D

(3) End field character = close bracket (])

(4) Logical AND character = comma (,)

(5) Logical NOT character = exclamation point (!)

The asterisk is for initiating a comment line, which is

a line defined by the comment character appearing as the

first non-white-space character on a line in the TRL file.
The start field character and end field character are for

specifying the beginning and ending of a partition con-
straint field. Partition constraint fields are discussed in

Section IV.A.3.

The logical AND character and the logical NOT char-

acter are for specifying a logical relation inside a partition
value constraint field that is used for setting conditional

constraints.

2. Line Key Words. There are two types of key

words in the TRL: line key words and field key words. To

be recognized as valid, the line key word should be the

first word on a line. These key words are used to initiate a

description of the test designs (DESCRIPTION), indicate

the beginning of the categories and partitions (PARAME-

TERS), indicate a certain type of category (TYPE), spec-

ify the name of a category (NAME), set error message

text (MESSAGE), and indicate the start of the block that

describes the partition value and constraints of each cat-

egory (SAMPLES). The line key words are, respectively:
DESCRIPTION, PARAMETERS, TYPE, NAME, MES-

SAGE, and SAMPLES.

3. Field Key Words. The field key words are used

in the partition value constraint fields to either describe a

partition value (LABEL) or to specify the constraints de-

termined during step 4 of the category-partition method.

The field key words for setting labels and constraints are:

SET, IF, LIMIT, ERROR, and LABEL.

A partition value constraint field is associated with a

particular partition value by its physical location in the
partition value block. A line in this block consists of the

partition value text followed by zero or more constraint
fields. The constraint fields can extend beyond the physi-

cal line of the TRL file, but the partition value text cannot.

Partition value constraint fields are started by the start

field character (D and ended by the end field character (]).

As previously mentioned, partition value text cannot

start with the comment character (*) and cannot contain

any start or end field characters, (D or (]).

B. Example Application of Category-Partition

Method with TRL

In this section, the same example from Section III.B.2

will be discussed, but this time TRL will be used. To avoid

confusion, the procedures for creating a test design using

TRL are referred to as stages, and the procedures for im-

plementing the category-partition method are referred to

as steps. These stages will be performed for each func-

tional unit and/or test objective in the system under test.

1. TRL Stage 1: Unconstrained Representa-

tion. The first stage in the TRL procedure is to create
an unconstrained representation of the test design. This

is accomplished by performing the first three steps in the

category-partition method.

(1) Step 1: functional decomposition (Section III.B.2.a)

(2) Step 2: category analysis (Section III.B.2.b)

(3) Step 3: partition value analysis (Section III.B.2.c)

As for creating a TRL file, the following TRL key words
and information should be created:

(1) DESCRIPTION key word and the description block.
Create a description block that contains the require-

ments to be tested, the pass criteria to be used, and

any other information pertinent to the test design.

159



(2) PARAMETERS key word. Start the parameter

specification block.

(3) TYPE key words and NAME key words. For each
type of parameter and category identified in step 2 of
the category-partition method, create a TYPE and

NAME specification in the TRL file.

(4) SAMPLES key words and the partition values. For
each category, add in the unconstrained partition

values that the category can assume during a test.

Note that the example in Fig. 2 with the unconstrained

representation would produce 1440 test cases.

2. TRL Stage 2: Error Constrained Represen-
tation. The second stage of this process is to add in the

error indicators and the message descriptions. This corre-

sponds to a portion of the fourth step, partition constraint

analysis, in the category-partition method.

The following key words and information should be
added to the TRL file:

(1) ERROR field key words. For each partition value
that should raise an exception during testing, create

an [ERROR] field and add it to the test design.

(2) MESSAGE key word and error message list block.
For each ERROR field, make sure there is a corre-

sponding error message in a message list block.

See the example for TRL stage 4 for an illustration.
When the error indicators are added to the three partition

values as indicated below, 651 test cases result (Table 3).

3. TRL Stage 3: Condition Constrained Repre-
sentation. The third stage of test design creation using

TRL is probably the most difficult and time consuming.

Adding in the conditional statements to make sure that
only the technically feasible combinations of partition val-

ues get produced in the resulting test cases often takes

many iterations. Investigating exactly which combinations
are valid when used together, and what the expected out-

put of the system should be, can expose many inconsisten-
cies and undocumented requirements.

This stage, similar to the previous one, corresponds to
the fourth step in the category-partition method. The

purpose of this stage is to determine the precondition and

postcondition pairs that describe the behavior of the sys-
tem under test.

To modify the existing TRL file so that the conditions

are expressed, the SET and IF field key words must be

added. There will be some occasions where the addition

of "don't care" partition values, or even the addition of

repeat partition values with different conditional fields at-
tached, will be necessary in order to produce the optimum

set of resulting test cases.

The following key words and information should be
added to the TRL file:

(1) SET field key words and postconditions. For each
partition value that should cause a postcondition to
exist if it is used in a test case, create a postcondition

value and append it to the inside of the [SET] field.

Use a logical AND character (,) to separate multiple

postconditions being set for the same partition value.

(2) IF field key words and preconditions. For each par-
tition value that is valid only when combined with

a particular partition value in another category, ap-

pend the condition value to the inside of the [IF]
field. Use a logical AND character (,) to separate

nmltiple preconditions to be applied to tile same par-
tition value. A logical NOT character (!) in front of

a condition expresses that a condition should NOT

exist in order for the particular partition value to be

used in a resulting test case.

Again, the reader should refer to the stage 4 discussion
in Section IV.B.4 for an example that has preconditions

and postconditions. Before the LIMIT fields are added to
the TRL file in stage 4, the TRL results file contains 32 test

cases, which together represent the complete functionality
of the requirement being tested ill this functional unit.

The purpose of the fourth stage is to reduce the number
of test cases even further so that testing of this functional

unit takes less resources.

4. TRL Stage 4: Limit Constraint Representa-
tion. This final stage of TRL file development produces
the limit constrained representation of the test design. The

purpose of the LIMIT field is to specify how many times
a partition value can be used in the resulting set of test

cases. Setting these limit values corresponds to the last

step, or substep, of the category-partition method, where
the remaining partition value constraints are determined.

Also included in this stage is the labeling of the parti-

tion values. The purpose of the labels is to provide tlle test

engineer, who is performing the tests or transforming the
test cases into detailed procedures, as much information

about the test case as possible. The labels recommended

are ones that describe the partition value in terms of its

range, such as "normal," 'qow boundary," "high out-of-

bounds," etc.

160



Therefore, the following key words and information
should be added to the test design:

(1) LIMIT field key words. For each partition value that

should only be used a certain number of times, n, in

the resulting test cases, create a [LIMIT n] field.
Note that partition values with an [ERROR] field

are automatically limited to one test case.

(2) LABEL key words and label text. For some or all of
the partition values in the TRL file, add a [LABEL

label_text] field such that the "label_text" provides a

description of the partition value that will be useful

to the other test engineers.

The example given in Fig. 3 produces 24 test cases when
processed by the TRL tool. Figure 4 gives an excerpt of the

first two test cases from the resulting test cases produced

by the TRL tool from the TRL test design documented in

Fig. 3.

V. Conclusion

The purpose of the test design phase is to determine

a set of technically feasible and resource-frugal test cases
that meet the test objectives of the test plans and that

verify the functional requirements of tile system under test.

The category-partition method can be used to determine

test designs that meet this goal.

The Test Representation Language (TRL) and the TRL

computer tool, used to process files written ill the lan-

guage, have proven very useful and efficient in implement-

ing the category-partition method. For one task in par-
ticular at JPL, the Block V Receiver Task, the test cases

that result from the TRL tool are being used to verify tile

system requirements in the engineering testing stage. De-
tailed test procedures are being developed based on the

output of the tool. The TRL tool was also used on the
Microwave Generic Controller Task to help develop the

system and software acceptance test procedures.

As of yet, no objective data have been collected that

can be used to compare the results of the testing process

changes introduced by the use of the TRL tool. IIow-

ever, the qualitative feedback received fi'om both test engi-
neers and software designers is that the category-partition

method and the TRL tool help them engineer tests rather

than just perform tests. The effects of the method and the

tool may be hard to quantify on an ongoing project. A way
could be found to determine these effects if a small, con-

trolled case study were to be initiated where two groups

perform the same job--one using TRL and the category-

partition method and the other using neither.

Work is continuing on enhancing the TRL tool to meet

the needs of the test engineers using it. Some key words

are being added to allow some very fine-tuned control over
which test cases get included in the results.

In summary, the purpose and requirements of the test

design phase of the testing life cycle have been explored
and defined. The category-partition method and the TRL

tool are efficient ways to produce the test designs and re-

sulting test cases needed as input to the following phase

of the testing life cycle. The Test Representation Lan-

guage and the TRL tool can be of use to the test engineer

or programmer no matter what level of testing is being

performed. More effort in gathering the necessary met-
rics would be useful to be able to quantify the benefits

received from implementing this process. If qualitative re-

sults are enough, however, most organizations could profit
from an implementation similar to the TRL tool and the

category-partition method for bridging the gap between
test. requirements and test specifications.

161



References

[1] M. J. Baicer, W. M. Hasling, and T. J. Ostrand, "Automatic Generation of
Test Scripts From Formal Test Specifications," SIGSOFT Software Engineering

Notes, vol. 14, no. 8, pp. 210-218, December 1989.

[2] Military Standard Defense System Software Development, DOD-STD-2167A,
Washington, DC: U.S. Government Printing Office, February 1988.

[3] G. J. Myers, The Art of Software Testing, Wiley Series in Business and Data

Processing, New York: John Wiley and Sons, 1979.

[4] T. J. Ostrand and M. J. Baleer, "The Category-Partition Method for Specifying
and Generating Functional Tests," Communications of the ACM, vol. 31, no. 6,

pp. 676-686, June 1988.

[5] D. J. Richardson, O. O'Malley, and C. Tittle, "Approaches to Specification-
Based Testing," SIGSOFT Software Engineering Notes, vol. 14, no. 8, pp. 86-96,
December 1989.

[6] E. J. Weyuker and T. J. Ostrand, "Theories of Program Testing and the Appli-
cation of Revealing Subdomains," IEEE Transactions on Software Engineering,

vol. SE-6, no. 3, pp. 236-246, May 1980.

162



Appendix

Test Representation Language (TRL) Summary

Character or Key Word

_t

DESCRIPTION

PARAMETERS

NAME

TYPE

SAMPLES

[

]
IF

LIMIT m

LABEL

ERROR n

MESSAGE n

Command line options

Purpose and/or Usage

Indicates a comment line.

Indicates the start of a description block that will be included in test cases.

Indicates the beginning of parameter specifications.

Specifies the name of a parameter or category.

Indicates the type of category.

Indicates the beginning of a samples block defining the partition values and constraints.

Comma (,) is used for logical AND; exclamation point (!) for logical NOT.

Beginning of sample value constraint field.

End of sample value constraint field.

Field identifier indicating that postcondition constraints are listed in the current field.

Comma (,) is used for logical AND; exclamation point (!) for logical NOT.

Field identifier indicating that the number of test cases involving this partition value

should be limited to m. If m is unspecified, the limit is one test case.

Field identifier indicating that the specified label should be listed for this partition value.

Field identifier indicating that the sample value is an error exit. The error can be specified

using the optional n.

Indicates that a message block follows corresponding to the errors in the partition values.
The message number can be specified using the optional n.

For performing "count only" (-c), writing results into separate files (-s), including

preeonditions/postconditions in output (-p), and including the partition label text in the

output (-1).

163



Table 1. TesUng life cycle Input and output.

Acronym

Sufficiently
Document title Testing described in

life cycle phase standards?

D-4000

TIP

SMP

WPA/WIP

Test

management

FRD

FDD

SRD

SSITP- 1

STP-1

SSD-1

SSD-2

PSOM

SSITP test

designs

STP test

designs

SOM

SSITP-2

STP-2

RDD

PFR/AR

SSITP-3

STP-3

JPL Software Management

Standard

Task implementation plan

Software management plan

Work package agreement/work

implementation plan

Test management plan for

defining procedures of

complete testing cycle

Functional requirements document

Functional design document

Software requirements
document

Subsystem integration and

test plan-l, requirements

Software test plan-l,

requirements

Software specification

document-I, architecture

Software specification

document-2, detail design

Preliminary software

operator's manual

Subsystem integration and

test plan--test designs

Software test plan--

test designs

Software operator's manual

Subsystem integration and

test plan-2, procedures

Software test plan-2,

procedures

Release description document

Problem failure report/

anomaly report

Subsystem integration and

test plan-3, report

Software test plan-3, report

All

Test planning

Test planning

Test planning

Test planning

Test requirements analysis

Test requirements analysis

Test requirements analysis

Test requirements analysis

Test requirements analysis

Test design

Test design

Test design

Test design

Test design

Test specification

Test specification

Test specification

Test execution

Test execution

Test analysis

Test analysis

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No

Yes

Yes

Yes

Yes

Yes

No (phase)

Yes (report)

No (phase)

Yes (report)

164



Table 2. Example of formal funcUonal test design: application of category-parUUon method

(funcUonal unit: sort an Integer array either In ascending or descending order),

Partition constraints: Partition constraints:
Categories Partition values

postcondltions preconditions

Array size

Array values

Value

arrangement

Sort order

Result

0 (array unspecified) SET "error occurs"

1 (degenerate array) SET "size represents a

degenerate array"

2 to upper bound minus 1 SET "size is normal"

Upper bound SET "size is normal"

Greater than upper bound SET "error occurs"

All zero SET "values identical"

All the same but nonzero SET "values identical"

All negative values SET "not identical"

All positive values SET "not identical"

Mixed positive, negative, SET "not identical"

and zeros

Don't care SET "values identical"

Minimum value before

maximum value

Maximum value before

minimum value

Don't care

Unspecified

Ascending order

Descending order

Don't care

Error notification

Array unchanged

Array in ascending order

Array in descending order

SET "error occurs"

SET "ascending order"

SET "descending order"

IF "size is normal"

IF "size is normal"

IF "size is normal"

IF "size is normal"

IF "size is normal"

IF "error occurs" or IF

"size represents a

degenerate array"

IF "not identical"

IF "not identical"

IF "values identical" or IF

"error OCCU_rS"

1F "size is normal"

IF "not identical"

IF "not identical"

IF "values identical" or IF

"error Occurs )'

IF "error occurs"

IF "values identical"

IF "ascending order"

IF "descending order"

Table 3. Stage 2 example of error Indicators

added to parUtion values.

Category Partition value Fields

Array size 0 [ERROR ] ...

Array size Greater than Upper bound [ERROR ] ,..

Sort order Unspecified [ERROR ] ..,

165



TIP

SMP
_ *TEST PLANNING I

WPA/WIP
*TEST MANAGEMENT PLAN

FRD
FDD
SRD

_[ TEST REQUIREMENTS ANALYSIS

SSD- 1
SSD-2 "TEST DESIGN

PSOM

-_ TEST SPECIFICATIONSOM
[

SSlTP-1

STP-'I

*SSITP TEST DESIGNS

*STP TEST DESIGNS

SSITP-2

STP-2

CoDERDD_ TEST EXECUTION PFR/AR

L SSITP°3"TEST ANAL YSIS STP-3

LEGEND: D-4000 INPUT D-4000 PHASE OR OUTPUT *PHASE OR OUTPUT NOT DEFINED IN D-4000

Fig. 1. Testing life cycle.

166



Example:

DESCRIPTION

Functional Unit:

w

P;_RAMETERS

TYPE

Sort an integer array either in ascending or

descending order.

Input-Categories for Parameter: Array

NAME array size

SAMPLES

0

1

2 to Upper Bound minus 1

Upper Bound

greater than Upper Bound

NAME array values

SAMPLES

all O's

all the same but not 0

all negative

all positive

mixed +/-/0

don't care

NAME value arrangement

SAMPLES

minimum before maximum

maximum before minimum

don't care

TYPE Input-Parameter: Sort Order

NAME sort order

SAMPLES

ascending

descending

unspecified

don't care

TYPE Output to program or change in state

NAME result

SAMPLES

error notification

array unchanged

array in ascending order

array in descending order

* end of file

Fig. 2. Stage 1 example of an unconstrained representation of a test design.

167



)ESCRIPTION

Test Representation for SORT requirement.

File Name: SORT.TRL

Version: 1.5 Errors/Messages/Conditions/Limits/Labels

Last Modified: 9/4/91

Modified By: J. Hops

PARAMETERS

TYPE Input-Categories for Parameter: Array

NAME array size

SAMPLES

• 5 partitions

0 (array unspecified)

I (degenerate array)

2 to Upper Bound minus 1

Upper Bound

greater than Upper Bound

ERROR l]

SET error, dont_care]

LABEL error condition ]

SET size_l, dont care ]

LABEL degenerate array]

SET size_ok ]

LABEL valid]

SET size_ok ]

LABEL valid upper bound]

ERROR 2]

SET error, dont_care]

LABEL invalid array size]

MESSAGE 1
Array size of 0 is invalid or array size is unspecified.

Array size is greater than the Upper Bound of sizes

NAME

SAMPLES
I

array values

5 partitions, i don't care

all O's

all the same but not 0

all negative

all positive

mixed +/-/0

don't care

NAME value arrangement

SAMPLES

[IF slze_ok]

[SET all_same, dont_care]

[IF size ok]

[SET all_same, dont_care]

[IF size_ok] [SET not_identical]

[LIMIT 4]

[IF size_ok] [SET not_identical]

[LIMIT 4]

[IF size ok] [SET not_identical]

[IF !size_ok]

* 2 partitions, 1 don't care

minimum before max [IF size_ok, not_identicall

maximum before min [IF size_ok, not Identlcal]

don't care [IF !not_identical]

TYPE Input-Parameter: Sort Order
NAME sort order

SAMPLES

" 3 partitions, 1 don't care
ascending [IF size ok, not_identlcal] [ SET ascend]

descending [IF size_ok, not_identical] { SET descend]

unspecified [ERROR 3][IF size_ok]
[SET error, dont_care]

don't care [IF dont_care]

MESSAGE
Sort order is not specified

TYPE Output to program or change in state

NAME result
SAMPLES

* 4 partition values
error notification [IF error]

array unchanged [IF dont_care, !not_identical]

array in ascending order [IF ascend, not_identlcal]

array in descending order [IF descend, not_identical]

Fig. 3. Stage 4 example of a TRL test design.

168



Description:

Test Representation for SORT requirement.

File Name: SORT.TRL

Version: 1.5 Errors/Messages/Conditlons/Limits/Labels

Last Modified: 9/4/91

Modified By: J. Hops

**********************************

Case m i

Label: 1.6.3.4.1

?ARAMETERS:

D/De: Input-Categories for Parameter: Array

Category Name: array size
Partition Value: 0 (array unspecified)

Partition Label: error condition

Iteration number: 1

Category Name: array values
Partition Value: don't care

Partition Label: instance value needed to pass error

Category Name: value arrangement

Partition Value: don't care
Partition Label: instance value needed to pass error

Type: Input-Parameter: Sort Order

Category Name: sort order
Partition Value: don't care

Partition Label: instance value needed to pass error

Type: Output to program or change in state

Category Name: result
Partition Value: error notification

Partition Label: instance value needed to pass error

Error #I: Array size of 0 is invalid or array size is unspecified.

**********************************

Case # 2

Label: 2.6.3.4.2

PARAMETERS:

Type: Input-Categories for Parameter: Array

Category Name: array size

Partition Value: 1 (degenerate array)

Partition Label: degenerate array

Category Name: array values
Partition Value: don't care

Partition Label: valid

Category Name: value arrangement
Partition Value: don't care

Partition Label: valid

Type: Input-Parameter: Sort Order

Category Name: sort order
Partition Value: don't care

Partition Label: valid

Type: Output to program or change in state

Category Name: result

Partition Value: array unchanged

Partition Label: valid

No error conditions exist.

Fig. 4. Test case results of a stage 4 example of a TRL test design.

169


