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This article investigates and identifies the baseline design and implementation
of the digital baseband architecture for advanced deep space transponders. Trade

studies on the selection of the number of bits for the analog-to-digital converter

(ADO) and optimum sampling schemes are presented. In addition, the proposed
optimum sampling scheme is analyzed in detail. Descriptions of possible implemen-

tations for the digital baseband (or digital front end) and digital phase-locked loop

(DPLL) for carrier tracking are also described.

!. Introduction

Future NASA missions will require cheaper, smaller,

and more energy-efficient spacecraft telecommunication
equipment. These requirements motivated this study on

advanced transponders for deep space applications. Re-

cently, a study [1] has investigated various digital baseband
architectures for future deep space transponders. Three

different architectures were proposed for near-term, inter-

mediate, and long-term solutions. Tile purpose of this ar-

ticle is to investigate and identify the baseline design and
the conceptual implementation of the digital baseband ar-
chitecture for a short-term solution.

The baseline architecture will use advanced digital tech-

nologies and signal-processing techniques for improved

performance along with attractive functionality and adapt-

ability to mission requirements. The identified architec-
ture should also meet the interface constraint to minimize

the cost of the design. The baseline architecture was de-
veloped based on the current configuration of the Cassini

Deep Space Transponder (DST) [2]. The proposed archi-
tecture will maintain the analog IF section and the au-

tomatic gain control (AGC) loop at the first IF mixer

identical to the current Cassini DST. However, the second

IF will be redesigned to ease the digitization of baseband

functions. In addition, the command detector unit (CDU)
function, along with its modifications, will be included as

a whole in the advanced DST. A description of the CDU

and its modifications can be found in [1].

The simplified block diagram of the baseline architec-

ture for the receiver of the DST is shown in Fig. 1. For

this baseline architecture, the analog phase-locked loop
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(APLL) for carrier tracking is replaced by a hybrid dig-

ital phase-locked loop (DPLL) and the ranging signal is
extracted by filtering and turning the signal around with-

out further signal processing (analog turnaround ranging).

To simplify the hardware, the sampling frequency will be

selected so that it is compatible with the sampling rate re-
quirement of the CDU. A detailed description of the base-

line architecture shown in Fig. 1 can also be found in [1].

This article begins with the trade studies for the selec-
tion of the number of bits for the ADC and the optimum

sampling technique. Based on the selected optimum sam-

pling scheme, the implementation of the baseband digital

front end for simplified hardware was analyzed and pro-

posed. Next, preliminary results related to the design and
conceptual implementation of the DPLL for carrier track-

ing are presented and discussed. Finally, the article con-

cludes with a summary of the salient features associated

with this baseline design and direction of future work.

II. Selection of Number of Bits for the ADC

The number of bits required for the ADC at the second

IF will determine the setting of the power for the AGC, the
carrier signal-to-noise (SNR) degradation due to quanti-

zation, and the saturation noise. This section summarizes

the results presented by Nguyen) The carrier SNR degra-

dation due to digitization, A, in the presence of Gaussian
noise, is given by Nguyen 2 as

( PN ( Ps_ -1A= 1+-_5- l+_nj] (1)

where

PN 2 K 2+1 F(K)- :e, --,
a _ v'2r

K2 (1- 2F(K)) (2)+ 12(g-

= (3)

1 T. M. Nguyen, "Selection of the A/D Sampling Frequency and
Number of Bits for the Advanced Transponder," JPL Interof-

fice Memorandum 3313-92-024 (internal document), Jet Propul-
sion Laboratory, Pasadena, California, April 20, 1992, revised

May 18, 1992.

2 Ibid.

1
K = N (4)

LF

1 JK° (-_---_)r(zO = e du (5)

Note that (PN/O n) denotes the quantization noise plus

saturation noise-to-carrier signal power ratio; (Ps/P=) de-
notes input carrier power-to-noise power ratio; No is the

one-sided input noise power density; Fs is the sampling
frequency; M = 2N-l, where N is the number of bits

(including sign); and LF is the loading factor defined as
follows:

LF = rms amplitude of the total input signal (6)
ADC saturation voltage

The optimum values for K for various values of N have

been calculated in [3], and the corresponding optimum
LF as a function of N is depicted in Fig. 2. From the

optimum values of N and LF found in Fig. 2, one can cal-

culate the corresponding values of (Pg/cr 2) using Eq. (2).

Using the calculated (PN/¢r 2) together with Eq. (1), one
can calculate the carrier SNR degradation due to digi-

tization. The results are plotted in Fig. 3 for 0 dB-tIz

< Ps/No < 50 dB-Hz and 1 MHz < Fs < 36 MHz. Note

that for 0 dB-Hz < Ps/No < 50 dB-Hz and 1 MHz < Fs
< 36 MHz, one has: 1 + Ps/Pn _ 1. Using this approxi-

mation, the results are shown in Fig. 3.

Therefore, to achieve the digitization with a degrada-
tion in carrier SNR of less than 0.1 dB and to meet the

required dynamic range of 6N dB for the input carrier

signal, the required number of bits is N > 4 bits. In ad-
dition, the higher the number of bits that one selects, tile

less susceptible to interference the signal will be. 3 Conse-
quently, the required number of bits for the ADC should
be selected such that 4 bits < N < 8 bits.

III. Optimum Sampling Scheme

A. Review of Current Sampling Techniques

Currently, there are several techniques for sampling

the band-pass signals [4]: in-phase and quadrature (I&Q)

baseband sampling with analog quadrature, I&Q sampling

with analog Hilbert transform, band-pass sampling with

3 j. Berner, "Number of Bits Required in Block-V ADC," JPL In-

teroffice Memorandum 3338-90-048 (internal document), Jet
Propulsion Laboratory, Pasadena, California, March 26, 1990.
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digital quadrature mixers, and band-pass sampling with

digital Hilbert transform. Based upon the investigation in
[4], the band-pass sampling technique with digital quadra-

ture mixers is recommended (see Fig. 5) for the baseline

design of the advanced transponder because of the follow-

ing reasons:

(1) There are no phase and amplitude imbalances be-

cause the mixing is done in digital domain.

(2) The digital low-pass filter (LPF) using a finite-

impulse response (FIR) filter provides constant

group delay that is very important for ranging and

Doppler information.

(3) Only one ADC is required.

(4) If the sampling period is exactly 1�4Fir, then the
reference of I&Q components reduces to an alternat-

ing sequence.

It will be shown later that the hardware implementation

can be simplified by using the last property with some

modification. Before describing how to implement the

"digital front end" for the advanced transponder, the dig-
ital front end needs to be defined.

The digital front end of the transponder (see Figs. 1 and

4) is designed to accept an IF analog signal and output dig-
ital baseband I&Q components for further processing by

the remainder of transponder. The purpose of the digital
front end is to provide the transponder with a demodula-

tion capability from an IF-to-baseband digital signal.

B. Conceptual Implementation of the Digital Front

End

To implement the digital front end (see Fig. 4), one
must set up the criteria for selecting both the optimum

sampling frequency and the analog IF. First, there are sev-
eral criteria for selecting the optimum sampling frequency,

namely,

(1) The hardware implementation should be simple.

(2) The sampling frequency should be sufficiently high
to meet the required number of samples per symbol

for the CDU and the carrier tracking loop.

(3) The sampling frequency should be sufficiently high
to prevent aliasing of the baseband signal with the

images that occur at the sampling rate.

(4) The sampling frequency selected should meet the
current specification of the analog-to-digital (A/D)

technology with reasonable cost..

Based on these criteria, the sampling frequency, Fs,

must be selected to satisfy the following conditions [5-7]:

Fs > 2BW (7)

2((1+1) FIr---

(s)

where BW is the bandwidth of the band-pass signal in

hertz, Fir is the center of the IF band, and l is a positive

integer. In order to simplify the hardware implementation,

one chooses equality in Eq. (7) and an odd integer for I in

EQ. (8):

Fs = 2vBW (9)

BW
nFs = FIr - T (10)

where p > 1 and n = (I+ 1)/2.

Solving for the sampling frequency in terms of FII_, one

gets

4pFtr
Fs = (11)

(1 + 4np)

for p = 1, Eq. (11) reduces to

4FrF
Fs - -- (12)

(1 + 4,0

where n satisfies the following inequality

n _< 2B[_-

where [x] is the smallest integer that is less than or equal

to z. It should be mentioned that the sampling scheme

proposed is known as the under-sampling scheme. Note
that, in practice, to simplify the I&Q sampling technique

using digital quadrature mixers (see Fig. 5) to the config-

uration shown in Fig. 7(a), the sampling frequency must
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be chosen as 4Flr [8-10]. 4 However, using Eq. (12) one
can avoid selecting a high sampling frequency (and hence

achieve a more energy efficient spacecraft). As an exam-

ple for the proposed under-sampling scheme, let the IF be

5 MHz and the bandwidth of the signal be 36 kHz; then

using Eq. (13), one obtains n _< 69. If one selects n = 6,
then the sampling frequency required for this ease is, from

Eq. (12), Fs = 0.8 MHz. Figures 7(b) and (c) illustrate

and compare the two sampling schemes discussed above.

Secondly, one must select the IF so that the analog cir-

cuitry in the transponder can be designed and built easily.
There are several criteria for selecting the IF, namely,

(1) The quadrature sampling error caused by spectral
bands overlapping [7] must be avoided by selecting
the upper cutoff frequency of the band-pass filter

(BPF) equal to an integer multiple of the bandwidth,
i.e.,

BW

FIE + T = cBW (14)

where c is a positive integer.

(2) For minimum hardware implementation, FIF and
Fs should satisfy Eq. (12).

(3) FIF must be chosen such that the associated band-
pass filter in the analog-mixing and filtering circuitry

is realizable. The passband of this filter must pass

the required number of sidelobes of the command

signal and possibly the highest ranging clock fre-

quency.

(4) FIR must be chosen by taking into consideration the
throughput limitation of the digital filters of the dig-
ital front end.

(5) FIF must be chosen to provide minimum carrier de-

lay variation.

To show that Eq. (12) can be used to select the sampling
frequency for hardware simplification, look at the mathe-

matical model for the uplink signal, S(t):

S(t) = x/'2ffsin ((w + wd)t + 6)(t) + _p) (15)

where

4 M. J. Agan and C. R. Pasqualino, "AMT Modem Digital Front

End," JPL Interoffice Memorandum AMT:331-5-90-0 (internal

document), Jet Propulsion Laboratory, Pasadena, California, Oc-
tober 1990.

p

02 :

o(t) =

m

d(0 =

_SC =

Yn R =

n(o =

total received power

angular carrier frequency

Doppler angular frequency offset

phase modulation = rod(t)sin (wsct)

+ turin(t)

phase offset

command modulation index

command non-return-to-zero (NRZ) data

command subcarrier frequency

ranging modulation index

ranging signal

Without loss of generality, one can set w = wxr =

2_rFiF,Wa = 0,_ = 0, and can expand Eq. (15) to get

s(t) = sin (2 Fxrt)

+ sin (O(/)) cos (2rFiFt)] (16)

The first term in Eq. (16) represents the carrier compo-

nent, and the second is the command signal component.

Assume that the I&Q components of Eq. (15) are ex-

tracted by using analog quadrature mixers as shown in

Fig. 6. If the cutoff frequency of the LPF is such that it re-

jects higher-order harmonics components and passes only
the first harmonic component without distortion, then the

output I&Q components are

1 sin (®(t)) (17)t(t) =

1 cos(O(t)) (18)Q(t) =

Note that Eqs. (17) and (18) have been normalized by
2v/_fi. If one assumes that the ranging signal is off, then

the I(t) and Q(t) shown in Eqs. (17) and (18) become

|

I(t) =2 d(t) sin (msin(wsct)) _ d(t)Jl(m) sin(wsct)

(19)

Q(t) = 2- cos (,n sin(wsct)) _ Jo(m) (20)

n_q



Note that the /-component contains the command infor-

mation and the Q-component contains the amplitude of

the carrier component.

A sample of the signal expressed in Eq. (16) is obtained

by using the sampling frequency derived in Eq. (12). At

this sampling frequency, one has

t=kTs- k(4n+ 1), k=0,1,2,3,4, ... (21)
4FIr

where Ts denotes the sampling period. Substituting

Eq. (21) into Eq. (16) and evaluating it for
k = 0, 1,2,3,4, ..., one sees that Eq. (16) generates the

following sequence:

2x/_-fisin (O(0)), 2v/-2-ficos (O(Ts)),- 2v_-fisin (O(2Ts)),

- 2v_-ficos(O(3Ts)), 2V_-fisin(O(4Ts)),

cos (O(5Ts)), - _ sin (O(6Ts)),

- ,/Tf cos (O(TTs)), ,/_ shl (e(STs)),

2v_Pcos (O(9Ts)), ...

Taking tlle above sequence and multiplying by tile

{1, 1,--1,--1, 1, 1,--1,--1, 1, 1, ...} sequence, one gets

2x/-2-fisin (O(0)), 2V_-ficos (O(Ts)),v"2Psin (O(2Ts)),

x/_-fi cos (O(3Ts)), _ sin (O(4Ts)),

2v/-2-Pcos (O(5Ts)), v/2P sin (®(6Ts)),

x/2fi cos (®(7Ts)), x/-2-fi sin (®(8Ts)),

2Vr2ficos (®(9Ts)), ...

.Note that this sequence alternates between samples of I(t)

and Q(t) shown in Eqs. (18) and (19) with only a scaling
factor difference. The above sequence can be simply ex-

pressed as

I( O), Q(Ts), I(2Ts ), Q(3Ts), I(4Ts), Q(5Ts),

I(6Ts), Q(7Ts), I(STs), Q(9Ts), ...

Based on these results, the optimum implementation

of the digital front end for the baseline design of the ad-

vanced transponder is shown in Fig. 7. As shown in this

section, using the sampling frequency derived in Eq. (12),

one can simplify the hardware. The hardware simplifica-

tion is exactly the same as for the case when the sampling

frequency is 4FIF [9]5 except when using a lower Fs, and

hence lower power consumption.

IV. Design and Implementation
of the Carrier Tracking Loop

A. Description of the Carrier APLL and

Transformation Techniques

The block diagram of the analog carrier tracking loop
for the Cassini DST is depicted ill Fig. 8. Based on tile cur-

rent design, an architecture of the DPLL for computer sim-
ulation is developed. Presently, the analog carrier tracking

loop is Type I, second order PLL with tile following char-
acteristics:

AK = loop gain = 2.4 x 10 7 (22)

1

B(S) - (1 4. rncS)'rnc = 1.6 x 10 -5
(23)

F(S) -
l + r2S
l+r1S,rl=4707, r_=O.0442 (24)

1

V(S) - (1 4- rv °''o) _" -- 1.0 x 10 -6 (25)

1

K(S) = _ (26)

Note that B(S) is tile typical LPF, F(S) is the loop filter,

V(S) is the rolloff filter of the voltage control oscillator

(VCO), and K(S) is the VCO integrator.

Let G(S) be the transfer function of the analog loop
defined as follows:

5 Ibid.
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G(S) = B(S)F(S)V(S) (27)

From the analog characteristics of the loop, there are four

different techniques (cases 1-4) to design the equivalent

digital loop

(1) Bilinear Transformation Method. This method pre-

serves the phase characteristics in the narrow pass-

band when mapping the APLL into the digital do-

main with high sampling frequency. The map-
ping from analog (S-domain) to digital domain (Z-

domain) can be achieved by direct substitution of
the following equation into the analog transfer func-

tion [11-13]:

points when mapping S-domain to Z-domain. The
relationship between S- and Z-variables is given in

[121:

S- (Z-l) (31)
Ts

Similar to case (2), the equivalent digital transfer
function of the open loop cannot be found by sub-

stituting Eq. (31) directly into the analog transfer
function. The relationship between the analog and

digital transfer function is [12,13]

2 (z - i) (28)
s- Ts (Z + 1)

(2) Impulse-Invariant Transformation Method. This

mapping technique preserves the impulse response

at the sampling points. The relationship between

the S-variable and Z-variable is given by [12,13]

S- (Z-l) (29)
TsZ

tIowever, the corresponding digital transfer func-

tion cannot be obtained by substituting Eq. (28) di-
rectly into the anMog transfer fimction as in case (1)

above. Let g(t) be the impulse response of G(S),

i.e., g(t) = L-I{G(S)}, where L -1 {.} denotes the
inverse Laplace transform of {.}. Thus, the digital

approximation of the analog transfer function G(S)

is given by

GD(Z) = Ts(z{g(t)[t=nTs}) (3o)

where z{.} is the z-transform of {.}. Note that the
analog transfer function G(S) considered in this ar-

ticle is defined in Eq. (27).

(3) Step-Invariant lh'ansformation Method. This

method preserves the step response at the sampling

(32)

where z{.} and G(S) are defined the same as above.

(4) Rational Transformation Method. This mapping
technique is identical to the impulse-invariant trans-

formation technique [11,12].

B. Reeursive Implementation of the Carrier DPLL

To obtain the digital approximation of the carrier
APLL described in Section IV.A, each functional block

in the analog loop, i.e., B(S), F(S), V(S), and K(S),
can be mapped directly into the Z-domain using bilinear

transformation or the composite function B(S)F(S)V(S)

using impulse-invariant (or step-invariant) transformation.

These mappings are accomplished by applying Eqs. (28),
(30), and (32), depending on the type of transformation

used. Following are the recursive implementations of the

digital transfer functions.

1. Recursive hnplelnentation of B(S), F(S), V(S),

and K(S) Using Billnear Transformation. To obtain

the digital approximation of the analog loop using bilinear
transformation, one substitutes Eq. (28) iuto Eqs. (23)-

(26) to get the Z-domain representations for the LPF

B(S), loop filter F(S), VCO rolloff filter V(S), and the

integrator K(S). The results are

(1 + Z -1) (33)
B(Z) = (AooZ_ i + All)
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where

(AoZ - Bo) (34)
F(Z) - (--_IZ--- B,)

Ts(Z + 1)

K(Z)- 2--_-:1_ (35)

A00=l-C0, An=I+C0 (36)

Ao=l+ao, A1 = l+b0, B0 = a0-1, B, =b0-1 (37)

and

2rnc 2r2 2n (38)Co- Ts 'a°=_-s'b°=-_-s

Note that the Z-domain representation for V(S) is exactly

the same as Eq. (33), except that Co is replaced by

2rv
Co = -- (39)

Ts

The digital closed-loop transfer function, H(Z), for this

case is given by

AK(B(Z)F(Z)V(Z)K(Z))

H(Z) = [1 + AK(B(Z)F(Z)V(Z)K(Z))]
(40)

Plots of the analog and digital closed-loop phase and

magnitude responses are shown in Figs. 9(a) and 9(b).

These figures show that for sampling frequencies below

100 kHz, distortions in phase and magnitude can occur
for the digital approximation loop. In addition, the figures

show that for sampling frequencies greater than or equal

to 100 kHz the response of the digital loop approaches that
of the analog counterpart. Hence, the minimum sampling

frequency for this case is 100 kHz. Figures 10(a), (b), and

(c) show the recursive implementation of the LPF B(Z),

integrator If(Z), and loop filter F(Z).

The implementation of the rolloff filter V(Z) is similar

to that of the LPF B(Z).

2. Recursive Implementation of the Analog

Transfer Function G(S) and K(S) Using Impulse-
Invariant Transformation. To obtain the equivalent

digital approximation for the integrator K(S), one substi-

tutes Eq. (29) into Eq. (26) to get

ZTs (41)
K(Z)-- (Z-I)

The digital approximation for the analog transfer func-

tion G(S) (see Eq. (27)) is obtained by finding the inverse

Laplace transform of G(S) and then substituting the result

into Eq. (30). Evaluating Eq. (30), one has

{TO O_ 1GD(Z) - Ts 1 - Z-le -aTs + 1 - Z-le -bTs

+ 1 - Z"_le -cTs" (42)

where

rl - r2 (43)
_0 = (7-,_ 7-Rc)(n - 7-v)

7-Rc- 7-2 (44)
°ll "-_(7-RC-- 7-1)(TRC-- 7-V)

w - T_ (45)
°12-'-(7-2- 7-1)(7-v- 7-RC)

and

1 1 1
a=--, b=--, c=-- (46)

rl rRC 7-V

The digital closed-loop transfer function for this case is

given by

AK(GD(Z)K(Z))

H(Z) = [1 + AK(GD(Z)K(Z))]
(47)

From Eq. (47), the plots of the phase and magnitude
responses can be obtained for the digital approximation

loop. Figures ll(a) and ll(b) illustrate the closed-loop

phase and magnitude responses for both analog and digi-

tal loops. The figures show that the response of the digital
loop approximated by using impulse-invariant transforma-

tion is the same as the analog loop when the sampling fre-

quency is higher than or equal to 100 kHz. When the sam-

pling frequency is less than 100 kHz, the digital loop can

encounter serious distortion in both phase and amplitude.

The recursive implementations GD(Z) and If(Z) using

impulse-invariant transformation are shown in Figs. 12(a)

and 12(b).
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3. Recursive Implementation of the Analog

Transfer Function G(S) and K(S) Using Step-
Invariant Transformation. Digital approximations

If(Z) and GD(Z) for K(S) and G(S) using step invari-
ant transformation can be obtained by using Eqs. (31) and

(32). The results are

where

Ts (48)
K(Z)- (Z-l)

l-Z- 1 ]CD(Z) = _o + fll 1 :-Z--T -'_rs

+f12 [1 l-Z-1_- 2-_,-i_-_bTs ]

+f13 [1 1 -Z -1-- Z_ 1-i_- Ts ] (49)

/_0 ---- --0¢0 -_- Otl 0_2a T +-c (5o)

Ot0 (Ii O_2

_1 = ---, 82 = -T'/_a = --- (51)a e

The parameters c_0, al, a, b, and c are defined in Eqs. (43)-

(46), respectively. Again, nq. (47) can be used to evaluate
the closed-loop transfer function for this case. The plots of

the closed-loop transfer functions for both analog and dig-

ital loops are shown in Figs. 13(a) and 13(b). The figures

show that the magnitude response approaches the ana-

log response when the sampling frequency is higher than

or equal to 100 kHz. However, the phase response suf-
fers serious distortion when the sampling frequency is less

than 1 MHz. Thus, in order to achieve the same response

as the analog loop, the digital approximation loop using
step-invariant transformation must be sampled at least at

1 MHz, i.e., this method requires a 10 times higher sam-

pling frequency than the previous methods. The recursive

implementations of GD(Z) and K(Z) using step-invariant

transformation are shown in Figs. 14(a) and 14(b).

V. Conclusions and Future Work

This article presented preliminary results on the design

and implementation of the baseline digital baseband archi-
tecture for future deep space transponders, and also pre-

sented trade studies on: (1) the number of bits required by

the ADC, (2) the sampling and IF for hardware simplifica-

tion, and (3) the optimum sampling technique. A concep-
tual implementation of the proposed optimum sampling

technique was presented and discussed. In addition, the

phase and amplitude responses of digital approximations

of the analog loop were briefly investigated. It was found
that in order to achieve the same closed-loop responses

as the analog counterpart, the step-invariant transforma-
tion method requires a higher sampling frequency than the
other methods.

Furthermore, this article identified various architec-

tures for possible implementation of the digital carrier

tracking loop. The architecture that was found to provide
the smallest phase jitter and fastest response is appropri-

ate for the advanced transponder.
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