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PREFACE

This report is the second of the two volume documentation for

the bearing analysis computer program SASHBEAN. This volume,

Volume II, provides the details of the underlying mathematical

formulation, analysis, and solution algorithms used for this

computer program. A separate volume, Volume I, provides the

detailed instructions required to successfully install and

effectively use the software for the design and analysis of

single row, angular contact, spherical roller bearings.

All efforts involved in the development of this software and its

documentation were performed by McGill Manufacturing, Emerson

Power Transmission Corporation. This work was done as part of

the Advanced Rotorcraft Transmission (ART) Program to advance

the state-of-the-art in helicopter transmissions. The ART

program was funded by the U.S. Army Aviation Systems Command

(AVSCOM) and managed cooperatively by the AVSCOM Propulsion
Directorate and the NASA Mechanical Systems Technology Branch,

both located at the NASA Lewis Research Center, Cleveland, Ohio.

This work was done under a sub-contract to Sikorsky Aircraft

Division of United Technologies Corporation, the prime

contractor, under NASA contract NAS3-25423.

Technical direction for this project was provided by Sikorsky

Aircraft's representatives Mr. C.H. Keller, Jr. and

Mr. J.G. Kish, the Task Manager of the project. The

government's technical representatives for this work were

Dr. R.C. Bill, ART Program Manager and Mr. T.L. Krantz, Project

Manager for the Sikorsky ART contract.

The activities performed at McGill Manufacturing were directed

by Mr. D.M. Michaels, Project Manager for the sub-contracted

project. Analytical and technical support was provided by

Mr. J.S. Porter, Mr. R.H. Barber, Mr. C.A. Kruse,

Mr. G.A. Satkamp, Mr. A.K. Aggarwal and Mr. W.D. Nutt. Drawing

and drafting aid were provided by Mr. D. Wisch and

Mr. T. Peterson. Typing and word processing were done by

Ms. C. Dodrill and Ms. B. Richards.



LIST OF SYMBOLS

a

b --

c =

C =

CF =

d =

dc =

D =

E =

e =

F =

f =

GM i=

h =

H =

Ix =

ly

IZ

i

J

1

K

Semi-major axis of the contact ellipse (in)

Dimensionless material parameter for EHD analysis

Semi-minor axis of the contact ellipse (in)

Specific heat of a material (Btu/ibm. °F)

Initial clearance between a roller-raceway laminae (in)

Centrifugal force acting on each roller (ib)

Distance (in)

Diametral clearance (in)

Roller diameter, maximum (in)

Young's modulus of elasticity (psi)

Equivalent modulus of elasticity (psi)

Poisson's ratio of a material

External load on the bearing (radial/axial) (ib)

Friction force at a sliding contact (Ib)

Gyroscopic moment acting on each roller (in-lb)

EHD film thickness, minimum (in)

Rate of heat generation (Btu/hr)

Moment of Inertia of a roller about it's

longitudinal axis (in-lb sec 2)

Moment of Inertia of a roller about it's transverse

axis (in-lb sec 2)

Ring ID; i = 1 for inner; i = 2 for outer

Roller ID; 1 s j s Z

Lamina ID; 1 s 1 s F

Material constant in the load-deformation relationship

for a lamina contact
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n

L-10 =

LP =

M =

N =

=

p =

p =

Pe =

Pm

Pc

Q

q

r

R

S

t

T

U

0

V

W
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7,

Roller length (in)

L-10 life of a raceway (million revolutions)

Lubricant parameter of the lubricant (sec)

Total pitching moment acting on a roller (in-lb)

Rotational speed of the bearing (rpm)

Total number of loaded laminae at a raceway

Mass density of a material (ibm/in 3)

Resultant roller load (radial/axial) (ib)

.Equivalent" roller load at a roller-raceway

contact (ib)

"Mean" raceway load for all rollers (ib)

Basic dynamic capacity of a raceway (ib)

Normal load at a lamina contact (ib)

Normal load per unit length for a line contact (ib)

Radius of curvature of the contacting surface (positive

for a convex surface, negative for a concave surface)

Crown radius of roller or raceway

Contact stress (psi)

Time (sec)

Viscous torque of the lubricating fluid (in-lb)

Mean entrainment velocity (in/sec)

Dimensionless speed parameter for EHD analysis

Tangential velocity of a rotating point (in/sec)

Total width of cage rails (in)

Width of each lamina (in)

Dimensionless load parameter for EHD analysis

Total number of rollers in the bearing
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Gree_____kLetters

7 --

F --

=

!

=

8

E

n k

n

a

Q =

=

Roller azimuth angle (radians), 0 s _ s 2_

Shear stress (psi)

Total number of lamina for a roller

Normal approach at a line contact (in)

Ring deflection, relative (in)

Roller angular displacement (pitching) (in/in)

Initial contact angle of the bearing (radians)

Operating contact angle of a lamina at

the raceway (radians)

D.CosS/_ (bearing geometry parameter)

Roller deflection (radial/axial) (in)

Kinematic viscosity of the lubricant (cStokes)

(@ operating temperature and atmospheric pressure)

Absolute viscosity of the lubricant (ib.sec/in 2)

(@ operating temperature and atmospheric pressure)

Surface finish, RMS (in)

Lubrication film parameter from EHD analysis

Angular velocity of rotation (rad/sec)

Coefficient of sliding friction

Special Characters

Weibull slope

Material factor in the load-deformation

relationship for a line contact

Pressure-Viscosity coeff, of the lubricant (in2/ib)
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f

Pitch diameter of the bearing (in)

Basic dynamic capacity reduction factor

in fatigue life equation

Empirical factor based on bearing type and it's

lubrication system.

Indicates functional relationship

a

brg =

c =

cg =

cr =

elf =

fl =

i =

j =

1 =

m =

max =

mean =

min =

o =

r =

tr =

Axial direction

For the complete bearing

Composite

For cage/retainer

For cage rails

Effective

For lubricating fluid

Ring number; i = 1 for inner, i = 2 for outer

Roller number; 1 s j s Z

Lamina number; 1 s 1 s F

Roller mid-plane

Maximum value

Mean value

Minimum value

Any roller

Radial direction

Transition point
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i. 0 INTRODUCTION

Spherical roller bearings, known for their high load carrying

capacity along with their ability to perform under conditions of
misalignments and shaft deflections, have conventionally been
restricted to "low" to "moderate" speed applications. Speeds to

the order of 5000 rpm or 0.25 million DN have typically [17] been

considered as the upper limits for this class of bearings.

The higher coefficient of friction exhibited by a spherical roller

bearing, as compared to that of an "equivalent" size cylindrical

roller bearing, has been one of the main deterrents for the

former's use in high speed applications. In these bearings, the

close conformity of roller and raceway spherical crowns, while

lending the bearing its self-aligning and high load capacity, also
results in relative sliding at he concentrated contacts, resulting

in the higher overall coefficients off rolling friction for the

bearing.

New concepts in materials, manufacturing techniques, lubricants,

component design and design tools are causing revolutions in

bearing performance, and spherical roller bearings are no

exception. Spherical roller bearings are now being designed and

developed for high load and/or high speed applications including

aerospace applications.

One such design has been developed by McGill Manufacturing, under

a sub-contract from Sikorsky Aircraft Company, as part of an

ARMY/NASA sponsored ART project. The bearing, approaching 1.15

million DN, has been tested under full load and full speed
conditions.

The trend towards lightweight, high speed, and high performance

applications, with increased requirements of reliability and

safety, has also placed a great deal of emphasis on the ability to

accurately analyze and predict the performance of any suggested

design. Such rigorous bearing analysis is no longer restricted by

the availability of main frame and mini computers. With the

phenomenal development in the power and speed of desk top personal
computers, such detailed analysis is now practical on personal

computers.

The McGill computer program, SASHBEAN, based on the mathematical
formulation described in this report, provides a sophisticated

analytical tool to design, analyze, and predict the operating

characteristics of single row, angular contact (including zero

degree contact angle) spherical roller bearings under high speed

conditions.



2.0 FORMULATION OF MATHEMATICAL MODEL

To simulate the dynamic performance characteristics of a bearing,

the mechanics of internal motions, load and stress distributions,

lubricant flow, sliding friction, and heat generation have to be

modeled mathematically and solved for the given parameters of

bearing geometry, material, empirical factors, and external load

and speed environment.

When the bearings involved are of special design, incorporating

non-conventional materials, and operating under extreme

conditions, these mathematical models, with few simplifying

assumptions, no longer allow hand calculations. Computer programs

running on high speed digital computers and employing efficient
numerical solution techniques are often required to solve such

complex mathematical models.

The mathematical model that forms the basis of the computer

program SASHBEAN is described in detail in the following sections.



3.0 LOAD DISTRIBUTION ANALYSIS

As in any bearing analysis, a major effort involves modeling and

solving for the bearing's load distribution among its rolling

elements for the given load and speed environment. The loading of

the rings at many rolling elements poses a statically

indeterminate problem and is often complicated to solve. The

problem is further complicated when the high speed dynamic loads

on the rolling elements, namely centrifugal forces and gyroscopic

moments, are not negligible and are fully considered.

A method, referred to here as the "LAMINA" method, has been

employed to solve for the load distribution in the bearing under
the combined environment of externally applied loads and high

speed dynamic forces. In this technique the roller is divided
into a number of slices (laminae), the slicing planes being normal

to the roller axis. Similarly each raceway is also considered to

be made up of an equal number of laminae. As the deformation at

any concentrated contact is very small, it is further assumed that

the inter-facial shear between a loaded lamina and an adjoining

non-loaded lamina is negligible and that the loaded lamina deforms

independently of the non-loaded one under normal loading.

3.1 COORDINATE SYSTEM AND SIGN CONVENTION

Consider a single row, (non-zero) angular contact spherical roller

bearing as shown in Figure i. Let he outer ring be stationary and

the inner ring rotating for this formulation. In a real life

situation, if the outer was rotating or both inner and outer were

rotating, the same formulation will hold as the roller dynamic

loads are estimated based on the actual rotational speed of the

two rings.

The rollers are numbered 1 through Z sequentially in the clockwise

direction and equally spaced, as shown, The azimuth (angular)

location of roller #I is considered as 0.0 degrees and the same

increases in the clockwise direction with the roller number.

Therefore, the azimuth angle, 4, of any roller, j, is given by,

@j = 2_(j-l)/Z,
I_< j _< Z (3.1)

Let the radial load on the bearing be acting along the Y-axis,

with roller #i being directly under the load as shown in Figure I.

The relative radial deflection of the rings is thus positive along

the positive direction of the radial load.

An axial load, applied either at he inner or outer ring, is

positive when the two rings are pressed into each other. Accord-

ingly, the relative axial deflection of rings is positive when

i0



this deflection causes the rings to move axially towards each

other. An axial deflection causing the rings to move away from

each other, from the zero end-play position, is thus in the

negative direction. A positive axial load, acting along the

X-axis is also shown in Figure i.

Due to the self-aligning ability of a spherical roller bearing,

any external moment loading, if present, is not considered.
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3.2 CONTACT LOAD-DEFORMATION RELATIONSHIP

For a cylindrical body of finite length, L, when pressed on to a

plane surfaced body of infinite extension, the normal approach,

_, between the axis of the cylinder and a distant point in the

supporting body is approximately given by,

= 4.36E_7[E2-7q-9L -I] (3.2)

where _ is a factor based on the materials of the two contacting

bodies and q is the normal force per unit length of the contact-

ing cylinder. Appendix E describes in detail the computations
for the material factors for different contacting materials.

If the effective length, L_== of the roller is subdivided
, 0 • ,_

(sllced) in F lamlnae (sllcesi, each of width w, then equation

(3.2) can be rewritten as,

6 = 4.36E-7[E2"7q'9(Fw) "I]

or (_i.iiw. 89 )

Q=
(KF" Ii)

(3.3)

where K = (4.36E-7_2"7) I'II is another constant and Q = q.w is

the total normal force at a lamina contact.

3.3 INITIAL CLEARANCES BETWEEN ROLLER-RACEWAY LAMINAE

Due to the difference in the radii of curvatures of roller and

raceway crown profiles, there exists varying initial clearances
between the roller and raceway laminae. When the bearing is

loaded, the contact of a roller lamina, I, with that of a raceway

lamina takes place only after this initial clearance is removed.

Figure 2 shows the relative position of a roller, j, with respect
to the two raceways when the bearing is held together with zero
radial and axial deflection of the rings. As the roller is sub-

divided into F lamina, each of width w, the initial clearances at

any lamina, i, can be determined from geometry as follows,

Ci,l = Ro_(Ro2_dl2)M-[Ri-(Ri2-dl2)M], 1 s 1 s F & i=I,2 (3.4)

Where d I = w(l-i m) is the distance of the lamina, i, from the
roller mid-plane, im being the roller's mid-lamina.

Having established the contact load-deformation relationship and
the initial clearances present between the roller and raceway

laminae, the load distribution analysis then reduces to determin-

ing the relative axial and radial deflections of the rings when

in equilibrium under the externally applied loads and the inter-
nal forces. For these ring deflections, each roller has to be in

12



operating equilibrium under the contact forces at raceways and

the dynamic loads.

As the loading of the rings at the many rolling element points

poses a statically indeterminate problem, further complicated by
the inclusion of the dynamic loads in the model, an iterative

solution scheme has been deployed to solve this load distribution

problem.

OUTER
/

RI

INNER

/

R(

FIGURE 2
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3.4 THE ITERATIVE SOLUTIO________N

The bearing rings are assigned a small but known set of relative

radial and axial deflections. Let these deflections be _a and _r

respectively. For the given ring deflections, __= and __,_ we then
determine the radial, axial, and angular deflectlons of each

roller by satisfying its equilibrium under radial, axial forces

and pitching (misaligning) moments. This is also done using an
iterative scheme as described below.

A roller, j, at azimuth _ is assigned a given set of axial,

radial and angular displacements as shown in Figure 3. Let _,

Ea, and er be this roller's angular, axial, and radial displace-
ments respectively. From geometry, for the given ring and roller

displacements, we can now write expressions for the normal ap-

proach at each lamina as represented below,

_i,j,l = I(Ge°metry'_a '#rc°s_'Ea'er'_) - Ci, 1 (3.5)

where Ci, 1 is the initial clearance at this lamina contact.

DISPLACED ROLLER
POSFION

ORIGINAL ROLLER
POSI_ON

I

I

Ii

ROLLER
RADIAL DEFL.

/1

i
!

I

--F ROLLER PITCHING(ANGULAR DEFL.)

Y

ROLLER
AXIAL DEFL.

FIGURE 3
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A positive and non-zero 6 i _,i then indicates a loaded lamina
_ L _= = _ _ '_re the number of loaded laminae, for

con_acs. ±L _I _ _ 2, _
the roller, j, _ the inner and outer respectively, we can set up

the roller equilibrium equations In the axial, radial, and angu-

lar directions as follows:

For the equilibrium of this roller in the axial direction,

w .89

i. llcos_i, (3.6)_i,j,l j,l
Pa,i, j K_i,j -II I=I

For the equilibrium of this roller in the radial direction,

w .89

1.11sinai, (3 7)6i,j, 1 j,l "
Pr,i, j K_i,j -ll i=I

For the equilibrium of this roller in the angular direction,

w -89

E _i, j, ll'lldl (3.8)

Mi'j K_i,j -II i=I

Where S_ _ lliS the contact angle at the raceway, i, roller, j,
and lami_: .

With the contact forces and moments now known for roller, j, its

(dynamic) equilibrium condition is then established as follows:

a. Check equilibrium of this roller in axial direction:

IF I (Pa,2,j - Pa,l,j) I > Allowed Tolerance (3.9)

THEN adjust this roller's axial deflection and start over for

this roller.

b. ELSE Check equilibrium of this roller in radial direction:

CF I • Allowed Tolerance (3.10)
IF I (Pr,2,j - Pr,l,j)

THEN adjust this roller's radial deflection and start over for

this roller.

c. ELSE check equilibrium of this roller's pitching moments:

IF I (M2,j + MI, j) - GMI • Allowed Tolerance (3.11)

THEN adjust this roller's angular displacement and start over for

this roller.

ELSE the roller, j, is found to be in equilibrium for the given

15



axial, radial and angular roller displacements.

This process is then repeated for all rollers in the bearing and

their equilibrium positions determined. In actual programming,

taking advantage of the bearing symmetry about a plane through

the bearing axis, only a part of the actual number of rollers are

solved.

With the equilibrium forces for all the rollers in the bearing

now known for the assigned ring deflections, the overall bearing

equilibrium equations against the externally applied radial and
axial loads are then set up as follows,

(a) Check bearing equilibrium in the radial direction:

IF Pr, i, jC°s_j - F r > Allowed Tolerance
j_-

(3.12)

THEN adjust rings' relative radial displacement and start over a

complete new iteration.

(b) ELSE check bearing equilibrium in the axial direction:

IF

Z

T-IPaj__ ,2,j
- Fal > Allowed Tolerance

(3.13)

THEN adjust rings' relative axial displacement and start over a

complete new iteration.

ELSE equilibrium of the bearing is established under the given

loading environment for these ring deflections.

The normal loads and deflections at each lamina contact are thus

known for this (equilibrium) state of the bearing.

A graphical representation (flow chart) of the iterative scheme
for this load distribution analysis is shown in Figure 4.

16
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4.0 CONTACT STRESS ANALYSIS

4.0 MAXIMUM AND MEAN CONTACT STRESSES

Having determined the normal forces at each lamina contact, both
at inner and outer raceways, the level of contact stresses and

areas are then estimated. The simplified formulation of Hertz

contact stress analysis for line contacts has been used. The

roller and the raceway laminae (slices) are considered as two

cylinders of equal length (lamina width), pressed against each
other under a known normal load. As the contact deformation at

any lamina contact is very small compared to the overall body
dimensions, the laminae interface shear is assumed to be negligi-

bly small and thus neglected. A typical arrangement of two

parallel cylinders of equal lengths pressed against each other
under a normal force is shown in Figure 5. The half width of the

lamina line contact, b, as shown in Figure 5, is given by,

Q (eo+ei) ]Mbi = [ ..... 4.1)
_W(ro-l+ri -I)

where eo and _i are elastic constants of the two bodies based on
the respective values of modulus of elasticity and Poisson's

ratio of their materials, r o and r_ are the radii (with proper

signs as per sign convention) of t_e roller and raceway laminae

respectively as shown in Figure 5. The maximum and mean contact
stresses are then given by,

Sma x = (2Q) / (_wb) (4.2)

Smean = (Q) / (2wb) = _Smax/4 (4.3)

In the computer program, the contact width, maximum and mean
contact stresses are computed at each lamina contact. The maxi-

mum of maximum and the maximum of mean contact stresses of all

the loaded lamina of the roller, j, at the inner raceway are

taken as this roller's maximum and mean contact stresses at the

inner contact.

Similarly, the maximum and mean contact stresses of this roller
at the outer contact are given by the maximum of maximum and the

maximum of mean lamina stresses at the outer contacts.

18
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4.2 STRESS CONCENTRATION DUE TO EDGE LOADING

If for a roller, any of its "edge" laminae are in contact with

the raceway and thus loaded, its (roller's) contact ellipse may

not be fully contained on it's effective length and is truncated

at the loaded edge. Due to stress concentration, the level of

contact pressure at such edge laminae is thus expected to be

higher than that calculated by the above Hertz analysis.

A user specified stress concentration factor is thus applied

(multiplied) to these edge laminae normal loads. Accordingly,
the calculated Hertz contact stresses at these laminae contacts

also get adjusted by this stress concentration factor. Factors
of the order of 1.5 - 2.0 are typically used.

After applying the stress concentration factors, the maximum of
maximum and the maximum of mean laminae contact stresses for each

roller both at the inner and outer raceways, are also printed out

in the program output file.

4.3 CONTACT ELLIPSE DIMENSIONS

Cumulative width of the loaded laminae of a roller at the inner

contacts gives us the major axis of the roller's contact ellipse

at this raceway. The width of the line contact at the most

heavily loaded lamina of this roller at the same raceway gives us

the minor axis of the contact ellipse.

The axial distance of the most heavily loaded lamina mid-plane

from the roller mid-plane, being called as the eccentricity of

the contact ellipse, is also computed and written out for each

roller.

The contact ellipse major axis, minor axis, and eccentricity for

each roller at the outer raceway contacts are also determined in

a similar fashion and printed out.

4.4 MAXIMUM SUB-SURFACE SHEAR STRESS AND DEPTH

As the material below a concentrated contact is also in a state

of stress and the rolling contact fatigue failures have been

known to originate from these subsurface points, the magnitude

and depth of this subsurface shear stress is also of importance

to a bearing analyst.

By considering the stresses caused by the normal contact load and

further application of the principles of elasticity theory, Jones

[ii] has presented the expressions for the three principal

stresses occurring at a point along the Z-axis, any depth below

the contact surface as shown in Figure 6.

20



Since the surface contact pressure is maximum along the Z-axis,

the three principal stresses must also attain their maximum

values along the same axis. The maximum shear stress is then

given by half of the maximum difference between any two principal
stresses. The depth of this point (of maximum shear stress) can

also be determined.

For simplicity, the graphical method suggested by Jones [Ii] has

been used for these estimations. The graph presented in refer-

ence [ll], as shown in Figure 7, gives the maximum shear stress

and its depth of occurrence as a function of contact ellipse

dimensions ratio b/a.

With the contact ellipse dimensions and the maximum contact

pressure known for each roller-raceway contact, the maximum sub-
surface shear stress and its depth, are directly read from the

graph of Figure 7, in the computer program. For a complete
discussion on this topic and the derivation of underlying equa-

tions, the reader is referred to Jones [Ii] and Harris [9].
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4.5 ROLLER NORMAL LOADS AND OPERATING CONTACT ANGLES

The contact angle of the most heavily loaded lamina of a roller
at the inner is taken as the operating contact angle of this

roller at the inner raceway. Similarly, the contact angle of the

most heavily loaded lamina of this roller at the outer is taken

as the operating contact angle of this roller at the outer race-

way.

The summation of the components of a roller lamina loads at the

inner contacts, along the contact angle of the most heavily

loaded lamina at this raceway, gives the roller-inner contact

normal load for this roller. Similarly, the roller-outer normal

load for this roller is given by the summation of lamina load

components along the contact angle of the most heavily loaded
lamina at the outer.

22



5.0 EHD ANALYSIS

Grubin's equation [23] has been used for EHD film thickness

estimation at each lamina contact. This is due to the fact that

the ASME recommended life adjustment curve for EHD lubrication is

also based on computations using the same equation as given below:

hmin = 1.95Req(0) 8/ll(_)8/ll(_)-I/ll (5.I)

where,

hmi n = Minimum thickness of the EHD film (in)

Re" = (RiRo)/(Ri±Ro) is the .equivalent" radius of the two
coBtacting surfaces. The plus sign is for external contacts

(both surfaces convex) and minus for the internal contacts

(surface with larger radius of curvature is concave)

0 = (naU)/(EReq) is the dimensionless speed parameter

= (gE) is the dimensionless material parameter

= Q/(_ReqW) is the dimensionless load parameter

U = _(Uo+U i) is the mean entrainment velocity (in/sec)

M[l-eo 2 l-e?]= + is the ,,equivalent" modulus of

u Eo Ei _ elasticity (psi)

Rewriting (5.1) with definitions of various parameters, we get,

hmin = 1.95Req(naqU/Req) 8/ll(Q/_ReqW)-i/ll (5.2)

Furthermore, in equation (5.2) the two lubricant properties, n a

and G can be combined into one parameter, known as Lubricant

Parameter (LP), as defined below,

LP = 1011nag (5.3)

This Parameter combines both pressure and temperature-viscosity

characteristics of the lubricant and thus contains lubricant's

entire contribution to the formation of EHD film. Mobil, for

example, publishes this data for their premium lubricating oils.

Lubricant properties in the above formulation are expected at the

temperature of contacting surfaces at the EHD film inlet region.
As the oil film is very thin, it is believed that it quickly

attains the inlet surface temperature. If this surface tempera-

ture is unknown and cannot be easily determined, the oil outlet

temperature or the average of the inlet and outlet temperatures

may be used as a good approximation.
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6.0 FATIGUE LIFE ESTIMATION

A method, referred to here as "Equivalent Roller Loads" method,

has been used for the estimation of raceways' L-10 fatigue lives.

In this method, the nonuniform and skewed load distribution along

the roller length, as expected in high speed spherical roller

bearings, is accounted for by first calculating what is being

termed as "Equivalent" roller loads. These are computed from the
roller's individual lamina loads at a raceway using the product

law of probability.

According to this law, the probability of survival of the entire

raceway is the product of the probabilities of survival of each
individual lamina (slice). Using the roller "Equivalent" loads

at a raceway then allows the use of formulation developed for

estimating the L-10 fatigue life of a roller-raceway under radial
load with line contact. Harris [9] describes in detail the

derivations for the equation used and presented here for calcu-

lating the roller "Equivalent" loads, from the known normal

lamina loads, Qi,j,l' as follows:

= F7/9 [ I=F 19/2 ]2/9Pe i,j _ _i,j, (6.1)
' I=I

Pe being the "equivalent" roller-raceway normal contact load at
raceway, i, and roller, j,. The fatigue lives of inner and outer

raceway are then given by,

L-10 = (Pc/Pm)4 million revolutions

Where Pc is the Basic Dynamic capacity of the raceway and Pm is
the "mean" roller load at this raceway. Pc for inner and outer

raceways are given by,

(1_8)29/27

Pc,l = 49500(£)
(1+8) 1/4

(1+8)29/27

PC,2 = 49500(g)
(1-8)1/4

2/9

(D) 29/27 (Leff) 7/9 (Z) -i/4
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(D) 29/27 7/9 -1/4(Lef f) (Z)

(6.2a)

(6.2b)

Where equation (6.2a) is for the inner and equation (6.2b) is for

the outer raceway. £ is a Bearing Dynamic Capacity reduction

factor based on the bearing type and is a user input to the

program. Typically, for angular contact spherical roller bear-

ings, £ lies between 0.60 and 0.85.

The "mean" roller-raceway load, Pm' is the quartic mean of the
roller "equivalent" loads at this raceway and is given by,
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z °l= Z Pe,i j
Pm, i j=l '

i/4
for the rotating raceway

I/4&

for the stationary raceway

(6.3)

[_ Z 4R] (6.4)= _ Pe i,j
Pro,i j=i '

The L-10 fatigue lives of the raceways are then given by,

L_I0 i = (Pc,i/Pm, i )4 ; i = 1,2 (6.5)

The L-10 fatigue life of the complete bearing may then be deter-

mined using the law of probability as follows,

-& + L_I02-R )-I/a (6.6)
L-10brg = (L-101

In the computer program, the overall bearing life is computed and

printed out, both before and after applying the lubrication and
"material life adjustment factors to the computed raceway lives.

6.1 LIFE ADJUSTMENT FACTOR FOR LUBRICATION

In the computer program, the hmi n is estimated at each concen-
trated lamina contact using the user specified data on lubricant

properties at the expected surface temperatures. The minimum of
the minimum EHD film thicknesses at each raceway is then used for

calculating the film parameter, _, at that raceway. The composite
rms surface finish of the two surfaces is calculated from their

individual rms surface finishes as follows:

Gc,i = (002 + 6i2)M ; i = i, 2 (6.7)

The film parameter, /, for a raceway is then given by,

_i = hmin, i/Gc,i (6.8)

The ASME recommended curve for life adjustment factors has been

extended for lower values of _ (down to _ = 0.I) and used for

reading the raceway life adjustment factors for lubrication. The
extension of the original ASME curve for lower values of _ is

based on the collected test and field data from Sikorsky. This

extended ASME curve has been coded into the computer program

using cubic splines interpolation and is shown in Figure 8.
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For I s _ s I0 the life adjustment factor, L/L-10, is returned

as per the curve shown in figure 8. For _ < 0.I, a value of 0.27

is returned and for _ > i0, L/L-10 factor of 3.02 is returned.

The computer program prints out both the estimated and adjusted

raceways and bearing lives in the program output file.

6.2 LIFE ADJUSTMENT FACTOR FOR CONSTRUCTION MATERIAL

An appropriate life adjustment factor, based on the construction

material of the bearing components, is supplied by the program

user. This factor is directly multiplied to the calculated L-10

lives of the bearing raceways along with the life adjustment

factors due to lubrication. The adjusted raceway lives are then

used in equation (6.6) to estimate the adjusted bearing life.
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7.0 INTERNAL MOTIONS AND SPEEDS

With the operating equilibrium position of each roller in the

bearing now known, the average cage and roller rotation speeds

are estimated as described below.

7.__!1 CAG_____EROTATION SPEED

Assuming no skidding at the concentrated roller-raceway contacts,

the cage tangential velocity is taken as the average of the

tangential velocities of the most heavily loaded points of the
,controlling" rollers at the inner and outer contacts. The
rollers loaded both at the inner and outer raceways are consid-

ered as the rollers ,controlling" the cage rotation. The rollers

loaded only at one raceway are, on the other hand, considered as

,,controlled" (orbited) by the rotating cage.

Consider the operating position of the roller, j, at the inner

raceway as shown in Figure 9. Let A be the contact center (most

heavily loaded point) and r I be the radial distance of point A
from the bearing axis as shown. If 01 is the contact angle of

roller, j, at point A, then from geometry

rl = (AP)Cos_ 1 (7.1)

Where AP = OP - 0A is also determined from geometry. The tangen-

tial velocity of the point A, when lying on the inner raceway, is

then given by, (7.2)
v I = Qlrl

Similarly for the most heavily loaded point A at the outer race-

way contact for this roller, as shown in Figure i0, we can write:

r2 = (AP)Cos_ 2 (7.3)

and
v2 = Q2r2 (7.4)

Where AP is now given by AP = 0P + OA and is once again deter-

mined from geometry.

Then, for no gross slip, taking the cage tangential velocity due

to roller, j, as the average of the tangential velocities

v I and v 2 we get,

Vcg = _(Vl + v2 ) = _(_Qcg ) (7.5)

The cage rotation speed due to roller, j, is then given by,

Qcg,j = (Vl + v2 )/_
(7.6)
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If Zef f is the number of rollers loaded at both raceways, thus
controIling the cage rotation, the expected average cage rotation

speed is taken as the arithmetic mean of the cage speeds due to
each of the controlling rollers as given by,

Z f

Qcg = ( _ 6cg,j )/Zeff
j=l

(7.7)

7.2 ROLLER ROTATION SPEEDS

Assuming pure rolling at the most heavily loaded points at the
inner and outer contacts, the rotational speed of a roller, j, is

taken as the average of the two speeds imparted to this roller by

the two raceways.

Once again considering the contact of a roller, j, at the inner

as shown in Figure 9. The radial distance of point A, the most

heavily loaded point, from the roller axis is given by,

ro,l = (OA) Cos(SI_S) (7.8)

For no slip at this point, the rotational speed of the roller due

to the inner raceway contact, is then given by,

Qo,lro_l = (_l.Qcg) r I (7.9)

Similarly, by considering the contact of the same roller at the

outer, as shown in Figure i0, we can write,

ro,2 = (OA) Cos(___2) (7.10)

and

Qo,2ro,2 = (Q2_Qcg) r2 (7.11)

Where Qo 2 is the rotational speed of the jth roller due to the

outer raceway contact.

The average of two roller speeds, due to inner rotation (Q_ 1 )

and outer rotation (Qo 2 ) as given by equations (7.9) and _$.11),

gives us a good estimate of the expected roller rotational speed.

Therefore, for the roller, j,

Qo = M(Qo,I + Qo, 2) (7.12)

This is true for all the rollers loaded at both raceways. For

the rollers loaded at one raceway only, the rotational speed is

taken as the speed imparted by the contacting raceway, assuming a

pure rolling at the most heavily loaded point of this contact.
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8.0 RELATIVE SLIDING AT CONCENTRATED CONTACTS

Having determined the rotational speeds of the bearing cage about

the bearing axis, and of each roller about its own axis, we can
now estimate the magnitude and direction of expected relative

sliding at each concentrated contact.

8.__!1 INNER RACEWAY CONTACTS

Let Oxyz be a local coordinate system with origin at 0 as shown

in Figure 9. The y-axis being perpendicular and into the plane

of paper. For a point (x,y,z), lying on the contact ellipse of
this roller at the inner raceway, the y coordinate is negligible

as compared to x and z coordinates. This is due to the fact that
the contact ellipse has a high ellipticity, its minor axis being

very small compared to its major axis.

Let the point (x,z) on the contact ellipse lie on the inner

raceway surface. The tangential velocity of this point along the

y-axis is given by,

Vl = _(OP_OE) QICOS_ 1 + x_iSin_l (8.1)

When the same point (x,z) is considered lying on the roller

surface, its tangential velocity along the same axis (y-axis)

would be given by,

Vo = (OE)QoCOS(_i__) + x_oSin(_l__) (8.2)

where OP and OE are determined from the known geometry. The

relative sliding velocity of this point (x,z) is then given by,

Vrel,l = Vl _ Vo (8.3)

8.2 OUTER RACEWAY CONTACTS

Similarly, by considering a point (x,z) on the contact area of a
roller at the outer raceway, as shown in Figure I0, we can write

the expressions for the tangential velocities of this point when

lying on the outer raceway and roller surfaces as follows,

v2 _ (OP+OE)_2Cos_2 + xQ2Sin_2 (8.4)

Vo = _(OE)QoCOS(___2) _ x_oSin(___2 ) (8.5)

Relative sliding velocity of this point (x,z) is then given by,

Vrel,2 = v2 _ Vo (8.3)
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9.0 HEAT GENERATION IN THE BEARING

Total heat generation in a spherical roller bearing comes from
various friction mechanisms occurring during the bearing opera-

tion. These include shear stressing of the EHD oil films due to

the relative sliding motion at the concentrated contacts, viscous

friction torque of the lubricant against the ploughing motion of

the rolling elements through the lubricant, sliding friction at

the cage lands and rails. In a high speed bearing of this type,

the major contribution to the total heat generation, under normal

operating conditions, is due to the sliding friction at the
concentrated contactsunder EHD conditions.

In the formulation for SASHBEAN computer program, heat generation

due to the three mechanisms mentioned above has been considered.

These are described in detail in the following sections.

9.1 DUE TO RELATIVE SLIDING AT CONCENTRATED CONTACTS

To estimate the traction force at the sliding Elastohydrodynamic

contacts, a formulation presented by Allen et. al. [i] has been

used.

9.2 TRACTION COEFFICIENT UNDER EHD CONDITIONS

As per the above model, four parameters, namely - ambient abso-

lute viscosity, pressure-viscosity coefficient, a lubrication

factor (a pseudo coefficient of friction), and a transition shear

stress, can quantify the traction in a sliding EHD contact.
Mathematically stated, the shear stress for a Newtonian fluid in

a concentrated contact under EHD conditions is given by,

T = [naexp(GS)]Vrel/hmi n when T < Ttr and T < _fl S (9.1)

= _fl S when T > Ttr and T > _fl S (9.2)

Where S is the normal contact pressure at a lamina, Ttr being the

transitional shear stress (typically I000 psi), and _f] is the

lubricant factor the pseudo coefficient of friction-_typically

between 0.045 and .075).

Having determined the shear stress (T) in the EHD film at
each lamina contact, the total traction force for the given

lamina contact is then evaluated by integrating the shear stress

over the entire contact area of this lamina contact.

With the relative sliding velocity at each lamina contact already

known, the heat generation due to relative sliding is then given

by the thermal equivalent of the mechanical work done against
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this friction force.

Rate of Work Done = Traction Force x Relative Sliding Velocity

The thermal equivalent of this mechanical work is then taken as

the rate of heat generation in the bearing and is given by,

Rate of Heat Generation = "Rate of Work Done�2.5933

where the factor 2.5933 converts the mechanical work (in-lb/sec)

to equivalent heat units (Btu/hr).

To estimate the sliding friction force at the concentrated con-

tacts under lost lubrication conditions, it is assumed that the

Newtonian viscosity relationship for the fluid shear stress no

longer holds valid. A constant (user supplied) coefficient of
traction coefficient is used for evaluating the sliding friction

forces, the mechanical work done, and the resulting heat genera-

tion at each concentrated contact.

9.3 SLIDING FRICTION AT CAGE GUIDING RAILS/LANDS

The Petroff's equation [25], which provides a good approximation

for the power loss in lightly loaded journal bearings, has been
used to estimate the resisting torque of the lubricant present in

the clearances between the ring lands and the cage rails. Fol-

lowing assumptions have been made for this formulation,

(a) Resultant cage-roller loads are very small.

(b) Cage is properly balanced and while rotating maintains a

uniform gap with the guide ring.

(c) Radial gap between the ring land(s) and the cage rail(s) is

fully flooded with the lubricating fluid.

(d) Viscosity of the lubricating fluid in the gap does not

change appreciably from the bulk of lubricant in bearing

cavities.

The tangential friction force at the cage-ring interface is then

given by,

fcr = _(naWcrDcrlQcg-_il)/(dccr) (9.3)

Where i=l for an inner guided cage and i=2 for an outer guided

cage. Wcr is the total width of the cage rails in sliding contact
with the guide ring rails, Dcr is the mean interface diameter, Qi

is the angular velocity of t_e guiding ring, and dCcr is the
diametral clearance between the guiding ring lands and the cage

rails. The resulting heat generation due to this friction power
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loss is then given by,

Hcr = 0.1928(DcrfcrlQcg-_il)
(9.4)

9.4 VISCOUS FRICTION TOROUE DUE TO LUBRICANT

The viscous drag torque, experienced by the rollers moving

through the lubricant flooded bearing cavities, has been estimat-

ed using the empirical equation suggested by Harris [9] and

Eschmann [5] for high speed bearings as presented below,

Tf I = 1.42E-5¥(nkN) 2/3_ ; nkN > 2000 (9.5)

Where,

TfL = Viscous friction torque of the lubricating fluid (in-lb)

¥ = A factor based on the bearing type and its lubrication

system. As per ref. [9], ¥ = 5 for spherical roller

bearings under oil bath lubrication.

The heat generation in the lubricant due to its viscous friction

torque is then given by the thermal equivalent of the mechanical

work done against this viscous drag. This is given by,

Hf I = 0.0404(N.Tfl ) (9.6)

where the factor of 0.0404 converts the'rate of mechanical work

(in-lb./min) to equivalent rate of heat generation (Btu/hr).
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i0.0 THERMAL ANALYSIS

With the amount of heat generation at different points in the

bearing now known, thermal models are then set up to perform a

steady-state and transient heat transfer analysis. These analy-

ses can predict the expected steady-state and time-transient

temperature maps of various points in a bearing system respec-

tively. Some detailed information about the bearing application,

including its supporting system, dimensional and material data,

lubricant properties, and lubrication system, are required to

prepare the model data for thermal analysis.

A steady-state condition would be one when a certain lubricant
flow rate is maintained through the bearing system. After an

initial "warm up" time, the temperatures at different points of

the bearing and its supporting mechanical system would have

stabilized and there is no further variation in temperatures at

any point throughout the system.

When a ,stabilized" system is subjected to a sudden change in

environment and its steady-state condition disturbed, the system

temperatures would become time variant. One such change of
environment could be the loss of lubricant flow through the

bearing system. A transient heat transfer analysis would be
called for in such a situation to predict the time-temperature

history of various points in the system. This information may
then be used to predict beating's time-to-failure in the event of

lubrication failure.

10.____!METHOD O_FFHEAT TRANSFER ANALYSIS

A method known as ,,Lumped-Heat-Capacity" method has been used for

modeling and analyzing the system for steady-state and transient

temperatures. In this method, the whole system is considered

made up of small elements, with the entire thermal capacity of

each element "lumped" at its center and assuming a uniform tem-

perature distribution throughout the volume of the element.

In other words, the internal resistance to heat flow within an

element is considered negligibly small compared to its external

resistance to heat flow from the surface to the surrounding

elements. In general, smaller the size of elements/the more realis-

tic these assumptions are for lumped-heat-capacity analysis.

For ease of data preparation, the maximum number of elements for

a single bearing system have been limited to 20 in this program.

The model prepared for the steady-state and transient thermal

analyses of McGILL SB-1231 and SB-1231-I bearings is shown in

Figure Ii. The element and node numbers are marked on the same

figure. The lubricating oil circuit is shown by the dotted lines.
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10.2 STEADY-STATE ANALYSIS

SASHBEAN Computer Program is capable of analyzing and predicting

the steady-state temperature map of an axisymmetric mechanical

system of any cross-section. The mechanical system is first

approximated by an equivalent system comprised of a number of
elements of simple geometries. Each element is then represented

by a node point and its node number. The temperature at this

node point (element) may or may not be known. Heat sources (with

known heat generation rates) are assigned to any nodes represent-

ing the elements of heat generation within the bearing. The
environment surrounding the system, also having heat transfer

with the system, is alsorepresented by one or more nodes. As
mentioned earlier, a maximum of 20 nodes are allowed by the

program to describe the equivalent thermal model.

With the elements and their node points properly selected, the

heat balance equations considering different modes of heat trans-

fer are then set up for each node. Heat transfers by conduction,

free and forced convection, and mass transfer are considered.

Radiation heat transfer, being very small as compared to other

modes in such applications, has been neglected.

Now for a steady state condition to exist, the net flow of heat

to a node i from its surrounding nodes j plus the heat generated

at node i must be equal to zero. This heat balance at node i

results in an algebraic equation with some nodal temperatures as
unknowns. As this condition would be true for all the nodes in

the system, heat balance condition at each node results in an

algebraic equation for that node.

Assuming a linear relationship for free and forced convection

modes, the resulting mathematical model is a system of linear

algebraic equations with the unknown nodal temperatures as the
unknown variables. The analysis then reduces to solving this

system of algebraic equations for the unknown variables.

Consider the heat energy flowing into node i from its surrounding

nodes j. If N is the total number of nodes in the model, then

for the steady state condition to exist,

Net heat flowing into node i = o

or,

n

Qi + Z fl(Tj -Ti) + f2(Tj -Ti) + f3(Tj'Ti) + f4(Tj-Ti) = 0 (i0.i)
J

Where fl' f2' f3' and f4 are the coefficients in respective heat
transfer equations for various modes of heat transfer between the

elements. Volume I of this documentation, the USER'S GUIDE,

provides more details on various modes and their applicable
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equations. Rewriting equation (i0.I) we get,

= _. Fi_ (T_-T i) = 0 ; i = I, nQi
J J

where,

(I0.2)

Fij = fl + f2 + f3 + f4 (i0.3)

Equation (i0.2) represents a system of linear algebraic equations
for 1 s i s N. Depending upon the actual number of surrounding

nodes j interacting with node i, each equation may or may not

have all the unknown variables.

For a node (say node j) with a given (known) temperature, the

heat balance equation for this node is replaced by the equality
T. = T . and the unknown variable T_ substituted for the

k_own,g_en , in the remaining equations of the system.

The Gauss-Jordan numerical scheme, with partial pivoting, has

been deployed to invert the coefficient matrix for the solution

of this system. Reference [3] provides a detailed discussion on
this and other numerical methods.

TRANSIENT ANALYSIS

The formulation for computing the steady-state temperatures was
based on the condition that the net energy transfer into any

node, i, from its surrounding nodes, j, is zero. Therefore, no

further change of element temperatures then took place at this

condition.

For the transient formulation, on the other hand, a net energy

transfer to the node i from its surrounding nodes j takes place

resulting in an increase in the internal energy of the element i.

Precluding any phase changes, this increase in the internal

energy results in a temperature rise for the element i. As each
element volume is considered to have "lumped" capacity at its

node point, the interaction of all the elements thus determines

the behavior of the complete system.

For the mathematical formulation of the transient problem, the

net heat energy into a node i from its surrounding node(s) j in a

very small interval of time (dr) is equated to the energy re-

quired to raise the temperature of the element i to a new value.
Heat transfer by conduction, free and forced convections are

considered. To simulate the lost-lubricant condition no heat

transport by mass transport of the lubricant is now available.
The lubricant nodes in the steady state model are replaced by air

nodes having a forced convective heat transfer with the bearing

elements.

The resulting equation for the node, i, is a linear differential
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equation of first order with a known initial value. The ele-
ment's steady-state temperature, estimated prior to this analy-
sis, is used as the initial value at time t = o.

If the internal energy of an element, i, is expressed in terms of
its specific heat and temperature, its rate of change with time,
t, is equal to the net heat energy gained by the node, i, in the
small interval of time, dt. Therefore we can write that,

dEi dT i

q =- = (ciPiVi) --
dt dt

(I0.4)

Where c is the specific heat, p the mass density, and v the

volume of the element, i, material. Using an explicit finite

difference approximation we can then transform the differential

equation (10.4) into a finite difference equation as follows,

Delta (Ei ) TiP+I- TiP

q = = (ciPiVi) (10.5)
Delta (t) Delta (t)

Where TP and Tp+I are the temperatures of element, i, at time t

and t+Delta(t) respectively.

The total heat gain, q, of this element, i, from the surrounding

elements, j, in the same time interval, Delta(t), by various

modes of heat transfer, is also given by,

q = Qi + Z Fij(Tj p-Tip) (10.6)
J

Therefore by equating (10.5) and (10.6) and solving for TiP+I we

get,

TiP+I = (Qi + _ FijTjP)
J

Delta (t) Delta (t)

+ [I - Z Fij]TiP (10.7)

C i Ci J

Where, C i = ciPiVi is the thermal capacity of the element i.

If TiP is known at time t then TiP+I at time t+Delta(t) can be
determined from equation ii0.7) for the element i. This process

is repeated for each node in the model and this time-marching
solution continues till the desired temperature or time limit is

reached. As mentioned before, the nodal steady-state tempera-

tures are used as the initial values at time t = o.
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APPENDIX - A

VOLUME OF A FULLY CROWNED SPHERICAL ROLLER

Volume of a spherical roller, required in the estimation of

centrifugal force and gyroscopic moment acting on a roller, is

determined using simple integral calculus as follows.

Let OXYZ be a coordinate frame of reference with its origin at

the roller center as shown in Figure 12. The coordinates of the

roller crown radius center (0') are then given by x o = 0 and Yo =

.(Ro-D/2 ) . Therefore, the profile of the roller crown can be
represented by the following equation of a circle,

(X_Xo)2 + (y_yo)2 = Ro 2 (A.I)

or, R° 2 (A.2)Y = ( -x2)M + Yo

Now by considering the volume of a roller slice of differential
thickness, dx, at a distance x from the roller mid-plane (as

shown in Figure 12) and integrating it for the full roller length

we get,

V = I dV = _ I Y2 dx

L L

(A.3)

By substituting for y = y(x) from equation (A.2) into equation
(A.3) and integrating w.r.t x we get an expression for the volume

of a fully crowned spherical roller.
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APPENDIX - B

MOMENTS OF INERTIA OF A SPHERICAL ROLLER

Mass Moments Of Inertia (MMOI) of the roller, both about its

longitudinal and transverse axes, are required for the calcula-

tions of gyroscopic moment acting on each roller. The expres-
sions for these have also been derived by considering a roller

slice of differential thickness and integrating over the full

length of a roller, as summarized below.

By referring to Figure 12 and considering the roller slice as
shown, the moments of inertia of the slice about the X, Y, and Z

axes are given by,

di X = _y2dm (B. I)

dIy = dIy, + x2clm = (_Y 2+x2)dm (B.2)

di Z = diz, + x2dm = (_2y2+x2)dm (B.3)

Where dIy, and dI Z, are the moments of inertia of the disk about
a local coordinate axes X'Y'Z', with origin at the disk center

and parallel to the global axes OXYZ as shown in Figure 12. dm
is the mass of the differential disk and is given by,

dm = pdv = p_y2dx (B.4)

p being is the mass density of the roller_mate_ial. Roller's
spherical profile is described by y = (Ro_-X2)n +^Yo as derived

in equation (A.2) of Appendix-A with Yo = -(Mo-u/zj.

By substituting equation (B.4) into equations (B.I), (B.2), and
(B.3) and performing the integration w.r.t, x for x varying from

-L/2 to ÷L/2, we get the expressions for roller's mass moments of

inertia about its longitudinal axis (Ix ) and transverse axes (Iy,

Iz). Due to its symmetry about the X-axis, we get Iy = Iz.
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APPENDIX - C

INITIAL ESTIMATION OF INTERNAL I_OTATIONAL SPEEDS

To estimate the magnitudes of the roller dynamic loads, namely

the centrifugal force and gyroscopic moment, an initial estimate

of the cage rotational speed about the bearing axis and each

roller's rotational speed about its own longitudinal axis was

first made under the following assumptions:

(a) The operating contact angle of each roller is the initial

design contact angle of the bearing. In other words, the contact

ellipse at each concentrated contact is centered about the roller

center.

(b) No gross slip occurs at any concentrated contact.

The tangential velocity of the cage is then given by the mean of

the tangential velocities of contact center points at the inner

and outer raceways. Thus,

Qcg = _[_I (I-8) + Q2 (I+8)] (C.I)
or,

Ncg = M[N I(1-8) + N 2(1+8)] (C.2)

The rotational speed of e_ch roller about its own axis, required

for estimating the gyroscopic moment on each roller, is then

given by,

N o = (_/2D) (1-8) (1+8) (N2-N I) (C.2)
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APPENDIX - D

ROLLER GYROSCOPIC MOTION ANALYSIS

In angular contact spherical roller bearings, the motion of each

roller is very similar to that of a gyroscope. Like a gyroscope

rotor, the roller is rotating (gyroscopic spin) about its own

geometric axis, unparrallel to the bearing axis, and also orbit-

ing (gyroiscopic precession) about the bearing axis along with

the cage. The gyroscopic moments seen by these rollers, often

neglected for low speed and/or low contact angle analyses, become

quite significant in high speed applications and considerably
affects the roller deflections and load distributions.

The formulation for the SASHBEAN Computer Program takes into full

consideration this moment loading of the rollers. The assump-

tions made for the estimation of the magnitude of this moment

acting on each roller are listed below:

(a) The cage has a constant angular velocity of rotation about

its (or bearing) axis as determined in Appendix C.

(b) Each roller has the same constant angular velocity about its

longitudinal axis as determined in Appendix C.

(c) The roller misalignment (pitching) angle at any azimuth
location is negligibly smali when compared to the design

contact angle of the bearing.

(d) The operating contact angle of each roller is the same as

the design contact angle of the bearing.

Consider a roller at any angular location (4) as shown in

Figure 13. Let 0XYZ be a fixed frame of reference with its

origin, O, at the intersection of bearing and roller axes. Let

o'xyz be a rotating system of axes, attached to the roller with

origin at the roller mass center as shown in the same figure. By

considering the roller as a gyroscopic rotor we can see that for

this gyroscope,

Nutation Angle = Roller-Raceway Contact Angle =

Precession Angular Velocity = Roller Orbital Velocity = Qcg

Spin Angular Velocity = Roller Rotational Velocity = Qo

By considering the special case of the gyroscopic motion where S,

_c-' and Qo remain constant, the couple (moment) required on the
ro_ler (the rotor) to sustain this motion is given by,

GM = [Iz(Qo+Qcg Cos_) _ ix(_cgCOS_)]QcgSin_ (D.I)
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This couple, applied to the roller by the raceways, is about an

axis perpendicular to the precession and spin axes of the gyro-

scope. The moment vector is thus directed along the positive y-

axis (perpendicular and pointing into the plane of the paper).

The reaction couple of the roller, resisted by the raceways, is

equal in magnitude and opposite in direction. For a detailed

discussion on the topic and derivation of the above equation, the

reader is referred to reference [2].

7

I

(

!
I ×

!

!

/
!

FIGURE 13

48



APPENDIX - E

LOAD-DEFORMATION RELATIONSHIP AND MATERIAL FACTORS

For a cylindrical body of finite length, when pressed onto a

plane surfaced body of infinite extension, the normal approach
between the axis of the cylinder and a distant point in the

supporting body, first presented by Palmgren et. al. [22], is

approximately given by,

= 4.36E_7[E2.7Q.9/L.8] (E.I)

or
= 4.36E_7[E2.7q.9L.I] (E.2)

where E is a factor based on the materials of the two contacting

bodies and Q = qL is the total normal force pressing the two

bodies together. The material factor • is given by,

(_i+_2) I/3

E = [1.643E+7 -- ] (E.3)

where, El = El/(l-el2) and E2 = E2/(I-e22)"

(a) RELATIONSHI_ FO___RRSTEEL O__NNSTEEL CONTACT:

Let E 1 = 29.0E6 psi, E2 = 29.0E6 psi, e I = 0.30, and e2 = 0.30

We get E2.7 = 1.0. Equation (E.2) then gives us,

= 4.36E_7q.9.L.I (E.4)

(b) RELATIONSHIP FO___RRCERAMIC O__NNSTEE_____LCONTACT:

Let E 1 = 43.0E6 psi, E 2 = 29.0E6 psi, eI = 0.27, and e2 = 0.30

We get _2.7 = 0.872. Equation (E.2) then gives us,

6 = 3.80E-7-q "9-L'I (E.5)
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