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ACCOMPLISHMENTS

During 3/31/92 - 10/31/92 the following summarizes our major accomplishments made under

the NASA grant: NAG-l-1346

Generation of femtosecond pulses from a continuous-wave mode-locked chromium-doped

forsterite (Cr4+:Mg2SiO4) laser has been accomplished. The forsterite laser was actively mode-

locked using an acousto-optic modulator operating at 78 MHz with two Brewster high-dispersion

glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were

routinely generated in the TEM00 mode with 85 mW of continuous power (with 1% output

coupler), tunable over 1230-1280 nm. The shortest pulses of 60-fs pulsewidth were measured.

ABSTRACTS AND PRESENTATIONS

Several papers were published and presented during the covered period of this report:

1. A. Seas, V. Petri_evir, and R. R. Alfano, "Generation of Sub-100-fs Pulses From a

Continuous-Wave Mode-Locked Chromium-Doped Forsterite Laser", postdeadline paper

presented at the Conference on Lasers and Electro-Optics (CLEO), Anaheim, California,

May 11-15, 1992.

2. A. Seas, V. Petri_evir, and R. R. AIfano, "Generation of Sub-100-fs Pulses From a

Continuous-Wave Mode-Locked Chromium-Doped Forsterite Laser", Opt. Lett., Vol. 17,

pp. 937 (1992).

3. V. Petri_evir, A. Seas, and R. R. Alfano, "Novel Cr4+-Based Tunable Solid-State Lasers",

Recent Advances in the Uses Of Light in Physics, Chemistry, Engineering and Medicine,

Daniel L. Akins and Robert R. Alfano, Editors, Proc. SPIE 1599, pp. 209-215 (1992).

4. A. Seas, V. Petri_evir, and R. R. Alfano, "60-fs Chromium-Doped Forsterite

(Cr4+:Mg2SiO4) Laser ", postdeadline paper presented at the International Conference

Ultrafast Phenomena VII, Antibes-Juan les Pins, France, June 8-12, 1992.

5. A. Seas, V. Petricevi 6, and R. R. Alfano, "CW Mode-Locked Chromium-Doped Forsterite

Laser Generates Tunable Sub-100-fs Pulses", presented at the 1992 Annual Meeting of the
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OpticalSocietyof America, Albuquerque,NewMexico,September20-25,1992.

RESEARCU PROGRAM

CHROMIUM-DOPED FORSTERITE LASER GENERATES

FEMTOSECOND PULSES

The generation of femtosecond pulses from a continuous-wave mode-locked chromium-

doped forsterite (Cr4+:Mg2SiO4) laser was accomplished. The forsterite laser was actively mode-

locked using an acousto-optic modulator operating at 76 MHz with two Brewster high-dispersion

glass prisms for intra-cavity chirp compensation. Transform-limited sub-100-fs pulses were

routinely generated in the TEM00 mode tunable over 1230-1280 nm. The shortest pulses of 60-fs

pulsewidth were measured and the for the first time the forsterite laser operated in the self-mode-

locked mode.

The experimental arrangement is shown in Fig. 1. The Brewster-angle-cut forsterite crystal

was placed in a four-mirror, z-fold astigmatically compensated cavity which is widely used for

Ti:sapphire lasers. The combination of mirrors used was: a flat back mirror, two 10-cm-radius

folding mirrors, and a flat output coupler. The transmission of the output coupler was 1% at the

lasing wavelength, while the folding mirrors and the back mirror had reflectivity R=99.9% for the

1200-1300 nm range. The Cr:forsterite crystal used in this study was grown by the Mitsui Mining

& Smelting Company, Japan. The length of the sample was 1 cm and the absorption coefficient at

the pump wavelength of 1064 nm was ct = 0.7224 cm -1. To eliminate the need to chop the pump

beam, the laser crystal was mounted in a copper block and was cooled by a single-stage

thermoelectric cooler. Better thermal contact between the crystal and the copper block was achieved

by wrapping the crystal in an indium foil. The crystal and the copper block were purged by

nitrogen to prevent moisture condensation. The Cr:forsterite crystal was pumped by a continuous-

wave Nd:YAG laser. The pump beam was focused by a 7.5-cm lens through the 10-cm-radius
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foldingmirror into thecrystal.The 1064-nmpumppowerincidenton theforsteritecrystalwas4.7

W. The output of the forsterite laserwas monitored with a fast germaniumdetectorand an

oscilloscope,andthepulsewidthwasmeasuredwith areal-timeautocorrelator.The bandwidthof

themode-lockedforsteritelaserwasmeasuredusinga leadsulfide(PbS)detectorcoupledto a 50-

cmJarrelAsh monochromator,equippedwith 10-gtmslits.

CW Nd:YAG LASER /,_

BS M1 AOM BF M \

AUTOCORRELATOR_ _ ,g" [

I It_..I /

 lj- J
M 3

[]
M 4

Fig. 1. Schematic diagram of the experimental arrangement for the actively mode-

locked operation of the Cr:forsterite laser: L/2, half-wave plate for 1064 rim;

L, focusing lens; MI, output mirror, M2, M 3, 10-cm-radius folding mirrors;

M 4, back mirror; AOM, acousto-optic modulator; BF, birefringent tuning

plate; BS, beam splitter; P1 and P2, Schott SF 14 glass prisms.

Actively mode-locked operation of the forsterite laser was achieved when the acousto-optic

modulator was inserted in the cavity. Mode-locking was observed when the length of the cavity

was adjusted to a length of-1.97 m corresponding to the frequency of the acousto-optic modulator

(76 MHz). When the prisms are not part of the cavity a stable train of 6-ps pulses was obtained
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with abandwidth-pulsewidthproductof 1.34indicatingthatthepulseswerechirped.

To compensatefor thedispersion,a pair of high-dispersionSchottSF 14glassBrewster

prisms wereinserted in thecavity. A pair of prismswasexpectedto introducenegativegroup-

velocity dispersion,without increasingthecavity loss.Thedistancebetweentheprismswasvaried

until the shortestpulse width were measured,while maintaining the total lengthof thecavity

constant.

Theinsertionof thepairof SF14prismsin thecavity resultedin asignificant reductionof

pulsewidth. We observed two distinct regimes where the forsterite laser would produce

femtosecondpulses.In thefirst regimewehadcompensationof GVD introducedby theforsterite

crystal. The shortestpulsesmeasuredin this casehadduration of 900 fs FWHM and spectral

width of 1.9nmFWHM. Figure2 (a)showstheautocorrelationtraceof thepulsewidthandfigure

2 (b) showsthecorrespondingspectrumfor the900fs pulses.Circlesrepresentexperimentaldata

and the solid line is the best fit sech2 pulse shapewasassumedfor fitting. The pulsewidth-

bandwidthproductAxpAv= 0.33,indicatednearlytransformlimited pulses.

Furtheroptimizationof thecavity(optimizethepositionof theforsteritecrystalwith respect

to the two folding mirrors and the distancebetweenthe two folding mirrors) resulted in a

significant reductionof pulsewidth,to lessthan 100fs, with a spectralwidth of theorder of 20

nm.An autocorrelationtraceandthecorrespondingspectrumof atypicalpulseareshownin figure

3 (a) and (b). The pulsewidth shownis 90 fs and the bandwidth is 19 nm. The pulsewidth-

bandwidthproduct AxpAV= 0.32, indicating transform-limited pulsesfor a sech2 pulse.The

optimumdistancebetweenthetwo prismswhenstable90-fspulseswereobtained,wasdetermined

to be35 cm. Shorterpulseswereobservedafter long hoursof cavity optimization andonly for

brief times. The autocorrelationtracepresentedin figure 4 showsa pulse of less than 60 fs

FWHM.
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Fig. 2. An autocorrelation trace (a) and spectrum (b) of the 900 fs pulses. Circles

represent experimental data and the solid line is the best fit. sech 2 pulse shape

was assumed for fitting. The pulsewidth-bandwidth product is AxpAv = 0.33.
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Fig. 3. An autocorrelation trace (a) and spectrum (b) of 90-fs pulses. Circles represent

experimental data and the solid line is the best fit. sech 2 pulse shape was

assumed for fitting. The pulsewidth-bandwidth product AxpAv = 0.32.
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Fig. 4. An autocorrelation trace of 60-fs pulses (assuming sech 2 pulse shape). Circles

represent experimental data and the solid line is the best fit.

The reduction of the pulsewidth from 900 fs to 90 fs indicated that another mechanism

besides active modulation is responsible for the shortening of the pulses. It was suspected that the

self mode-locking mechanism was responsible for the generation of the 90 fs pulses. To

investigate this possibility the RF power from the acousto-optic modulator was disconnected while

stable sub-100-fs pulses were monitored. Within the first 30 seconds no change in the output was

observed, i. e. stable sub-100-fs pulses were generated without any external modulation. The

mode-locked operation usually ceased after this initial period, most likely due to some mechanical

disturbances (Self mode-locking will be discussed in subsequent sections). This is an indication

that the Cr:forsterite laser actually operated, similar to Ti:sapphire lasers in a self-mode locked

regime, where active mode-locking only sets the conditions necessary for self-mode-locked

operation by producing intense optical fields in the cavity. Intensity-induced Kerr nonlinearities in

the gain medium, combined with negative group velocity dispersion introduced by the prisms are
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responsible for production of the shortest pulses.

The actively mode-locked forsterite laser was tuned using an intracavity single-crystal

quartz birefringent plate as shown in figure 1. With only one combination of laser mirrors the laser

output was continuously tuned between 1230 - 1280 nm. The power output of 50 mW was

measured, for 1.9 W of absorbed pump power. The pulsewidth and output power did not change

significantly over the tuning range.

The dependence of the pulsewidth on the pump power was measured. As described above,

when pumped by the maximum available power of 4.7 W incident on the crystal, stable sub-100-fs

pulses were generated. As the pump power was lowered, the pulsewidth increased to above 1 ps at

3.9 W pump power incident on the forsterite crystal. The tendency of pulse shortening with

increasing power suggests that, if more pump power were available, even shorter pulses may be

obtained.
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