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Some Experiences with Krylov Vectors and
Lanczos Vectors

Roy R. Craig, Jr.', Tzu-Jeng Su t, and Hyoung M. Kim _

This paper illustrates the use of Krylov vectors and Lanczos vectors

for reduced-order modeling in structural dynamics and for control of flex-

ible structures. Krylov vectors and Lanczos vectors are defined and illus-

trated, and several applications that have been under study at The Univer-

sity of Texas at Austin are reviewed: model reduction for undamped struc-

tural dynamics systems, component mode synthesis using Krylov vectors,

model reduction of damped structural dynamics systems, and one-sided

and two-sided unsymmetric block-Lanczos model-reduction algorithms.

1. Introduction

In recent years extensive research has been carried out on Lanczos eigensolution

algorithms (see, for example, Refs. [1, 2]). Nour-Omid and Clough [3] demonstrated the

usefulness of Lanczos vectors in the analysis of the dynamic response of structures, and

Frisch [4] included Lanczos vectors among the sets of Ritz vectors that are available

in the DISCOS multibody code. Research has involved single-vector and block-vector

methods, algorithms based on first-order equations of motion and algorithms based

on second-order equations, and algorithms for unsymmetric matrices as well as for

symmetric matrices.

Following a brief introduction to the physical meaning of Krylov vectors and

Lanczos vectors, this paper summarizes several applications that have been under

study recently at The University of Texas at Austin.

Structural dynamicists are all familiar with the fact that the modes of free

vibration of an undamped structure (modeled, for example, as an n-degree-of-freedom

finite element model) satisfy the algebraic eigenproblem

K¢, = A,M¢, r = 1,2,...,n (1)
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where K, M, .k,, and Cr are, respectively, the stiffness matrix, mass matrix, r-th

eigenvalue, and r-th eigenvector. However, Krylov vectors and Lanczos vectors are

not as well known as are eigenvectors. Note that Eq. (1) is basically an equilibrium

equation relating elastic restoring forces, KCr, to inertia forces JM¢,, and recall

that a modification of Eq. (1), namely

K¢ (j+l) = Me (j) (2)

is the basis for the inverse iteration method for computing eigenvalues and eigenvec-

tots [5]. The vector ¢ in Eq. (2) converges to the fundamental mode (eigenvector) or,

with suitable orthogonalization with respect to tower-frequency modes, to a higher-

frequency mode. Equation (2) states that, given a vector ¢0), a new vector ¢0+,)

may be generated by solving for the static deflection produced by the inertia forces

associated with ¢O), that is,

¢(J+') = If-' [Me (j)] (3)

(assuming that K is nonsingular). Equation (3) provides a basis for defining a Krylov

subspace.

Given a starting vector ¢_), the vectors ¢_) are said to form a Krylov subspace

of order p, 1 < p < n, given by

07)_= [¢_), [K-'MI¢_ ), [K-'M]2¢_ }, ..., [K-'MI('-')¢_ )] (4)

Lanczos vectors differ from the Krylov vectors defined in Eq. (4) in that each Lanczos

vector is made orthogonal to the previous two Lanczos vectors, and it can be shown

that this makes the present Lanczos vector (theoretically) orthogonal to all prior

vectors.

The following algorithm may be used to compute Lanczos vectors for an un-

damped system. Let ¢_01 = 0, and select a starting vector ¢_0. The algorithm to
0+,)

compute the Lanczos vector ¢L may be expressed by the following equations:

_(J) = K-'M¢O}

= _ _

where

% = ¢?)VM_./j)

_+_)_ 1 ¢(j)
flj+,

(5)

_J
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and
1

Note that the only step in the algorithm, Eq. (5), that distinguishes Lanczos

vectors from Krylov vectors is the orthogonalization step, and note that the mass

matrix M is used in the orthonormalization step above.

Figure 1. A 4-DOF Cantilever Beam Finite Element Model.

Figure 1 shows a four degree-of-freedom (4-DOF) finite element model for a

cantilever beam that is used to illustrate Krylov vectors and Lanczos vectors. Figure 2

shows the four Krylov vectors generated from a starting vector that is the static

deflection due to a unit force at the tip. Figure 3 shows the four Lanczos vectors for

the cantilever beam of Fig. 1. The starting vector, ¢(L11, is the same static deflection

due to a unit tip force which was used as the starting Krylov vector in Fig. 2. Because

the starting vector produces a shape that resembles closely the fundamental mode of

the cantilever beam, the subsequent Lanczos vectors in Fig. 3 resemble the second
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Figure 2. The Four I(rylov Vectors for the 4-DOF Cantilever Beam.
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the 4-DOF Cantilever Beam.

through fourth normal modes (eigenvectors).

A Krylov subspace of order p is a p-dimensional vector space spanned by the
columns of the matrix

(I)(p) = [¢, A¢, A2¢, ..., A(P-')¢] (6)

where A is an n x n-dimensional matrix and ¢ is any n-dimensional starting vector.

Depending on the choice of A and ¢, the basis vectors in Eq. (6) are either linearly

dependent for some p < n, or they span the entire n-dimensional space when p = n.

If the vector ¢ is replaced by a matrix with q linearly-independent columns rather

than a single column, the subspace _ is called a biock-Krylov subspace.

2. Lanczos Model Reduction for Undamped Structural Dynamics

Systems (Refs. [6,7])

Some studies have shown that Krylov/Lanczos-based reduced-order models pro-

vide an alternative to normal-mode (eigenvector) reduced-order models in application

to structural control problems. For such applications, an undamped structural dy-

namics system can be described by the input-output equations

Mk + Kx = Pu

y = vz + (7)

where x E R" is the displacement vector; u E R l is the input vector; y E R m is the

output measurement vector; M and I( are the system mass and stiffness matrices;
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P is the force distribution matrix; and V and W are the displacement and velocity

sensor distribution matrices. In most practical cases, we can assume that I and m are

much smaller than n.

Model reduction of structural dynamics systems is usually based on the Rayleigh-

Ritz method of selecting an n × r transformation matrix L such that

x = L_ (8)

where _ E R r (r < n) is the reduced-order vector of (physical or generalized) coordi-

nates. Then, the reduced system equation is

+ =

y = + (9)

where _ = LTML, 7_ = LTKL, 7_ = LTp, ]7 = VL, and "[317= WL. The projection

matrix L can be chosen arbitrarily. Here, however, we choose L to be formed by a

particular set of Krylov vectors. It is shown in Ref. [7] that the resulting reduced-order

model matches a set of parameters called low-frequency moments.

For a general linear system

= Az + Bu

y = Cz

zE F_, uER t

YE R_ (10)

the low-frequency moments are defined by CA-_B, i = 1,2,..., which are the coef-

ficient matrices in the Taylor series expansion of the system transfer function [8,9].

Applying the Fourier transform to Eq. (7a) yields the frequency response solution

X(w) = (g -w2M)-lPV(w), with X(w) and U(w) the Fourier transforms of x and

u. If the system is assumed to have no rigid-body motion, then a Taylor expansion

of the frequency response around w = 0 is possible. Thus,

oo

X(w) = (I-JK-1M)-1K-1PU(w) = _ w2i(g-lM)iK-lPg(w) (11)
i=0

Combining Eq. (7b) and Eq. (11), the system output frequency response can be

expressed as

oo

Y(w) = y_[V(K-'M)'K-1P + jwW(K-_M)'K-'P]w_'U(w) (12)
i=0

In these expressions, V(K-1M)iK-1P and W(K-IM)iK-IP play roles similar to

that of low-frequency moments in the first-order state-space formulation. To obtain

the reduced-order model of Eq. (9) let

span {L} = span {Lp nv Lw} (13)

41



where

Lp= [ K-'P (K-'M)K-'P ... (K-'M)"K-'P ]

Lv= [ K-iV T (K-'M)K-'V r "'" (K-'M)qK-'VT] (14)

Lw= [ K-'W r (K-'M)K-'W r "" (K-aM)'K-XWr ]

for p, q, s > 0. Then the reduced system matches the low frequency moments

V(K-tM)iK-IPfori = 0, 1, ..., p+q+l and W(K-_M)iK-lP, fori = O, 1, 2, ...,

p+s+l.

The Lp matrix above is the generalized controllability matrix, and the Lv and

Lw matrices are the generalized observability matrices of the dynamic system de-

scribed by Eq. (7). The vectors contained in Lp are Krylov vectors that are generated

in block form by

Q1 = K -1P

Q,+I = K-lMQ_

The first vector block, K-IP, is the system's static deflection due to the force distri-

bution P. The vector block Q,+l can be interpreted as the static deflection produced

by the inertia force associated with the Q,. If only the dynamic response simulation

is concerned, we would choose L = Lp. In this case, the reduced model matches p+ 1

low-frequency moments. As to the vectors in Lv and Lw, a physical interpretation

such as the "static deflection due to sensor distribution" may be inadequate. How-

ever, from an input-output point of view, Lv, Lw, and Lp are equally important as

far as parameter-matching of the reduced-order model is concerned.

Based on Eq. (13), the following algorithm may be used to generate a Krylov

basis that produces a reduced-order model with the stated parameter-matching prop-

erty.

Krylov/Lanczos Algorithm

(1) Starting block of vectors:

(a) Q0 = 0

(b) R0 = K-'/5, /5 = linearly-independent portion of[P V r W r]

(c) P_KR0 = UoEoUo r (singular-value decomposition)

(2)

(d) Q, = RoU0_;½

For j = 1, 2, ..., k - l, repeat:

(e) 7_ = li -_ MQj

(f) Rj = 7_ - Q_Aj - Q___Bj
]

A, =Q_Un,,

(normalization)

(orthogonalization )

B, =U,_,__,
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(g) RrKRj = UjEjUf (singular-value decomposition)

(h) Q./+I = RjBj -r = RjUjE_ _; (normalization)

(3) Form the k-block projection matriz L = [ Q1 Q2 "'" Qk ].

This algorithm is a Krylov algorithm, because the L matrix is generated by a Krylov

recurrence formula (Step e). It is a Lanczos algorithm because the orthogonaliza-

tion scheme is a three-term recursion scheme (Step f). Although the three-term

recursion scheme is a special feature of the Lanczos algorithm, in practice, complete

reorthogonalization or selective reorthogonalization is necessary to prevent the loss

of orthogonality [10-12].

If the projection matrix L generated by the above algorithm is employed to

perform model reduction, then the reduced-order model matches the low-frequency

moments V(K-tM)iK-1P and W(K-IM)iK-_P, for i = 0, 1, 2, ..., 2k - 1.

It can also be shown that the reduced-order model approximates the lower natural

frequencies of the full-order model.

One interesting feature of the transformed system equation in Krylov/Lanczos

coordinates is that it has a special form. Because of the special choice of start-

ing vectors, K-orthogonalization, and three-term recurrence, the transformed system

equation has a mass matrix in block-tridiagonal form, a stiffness matrix equal to the

identity matrix, and force distribution and measurement distribution matrices with

nonzero elements only in the first block. The transformed system equation has the

form
× × ×

0

0

_+_=. • u

0

X

X X

X X X

X X

(15)

v=[x 0 0 ... 0]e+[× 0 0 ... 0]}
where x denotes the location of nonzero elements. This special form reflects the

structure of a tandem system (Fig. 4), in which only subsystem 5"1 is directly con-

trolled and measured while the remaining subsystems, Si, i = 2, 3, ..., are excited

through chained dynamic coupling. In control applications, as depicted in Ref. [13],

this tandem structure of the dynamic equation eliminates the control spillover and

the observation spillover, but there is still dynamic spillover. For dynamic response

calculations, the block-tridiagonal form can lead to an efficient time-step solution and

can save storage.
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Figure 4. The Structure of a Tandem System.

3. Lanczos Model Reduction for Damped Structural Dynamics Systems

(Refs. [6,13])

The previous model-reduction strategy can be extended to damped structural

dynamics systems, which are described by the linear input-output equations

M_ + Dk + Kx = Pu

y = Vx + Wk, (16)

To arrive at an algorithm for constructing a reduced-order model that matches

low-frequency moments, it is easier to start from the first-order formulation. The

first-order differential equation equivalent to Eq. (16) can be expressed as

or

with

I= [v w]
(17)

,f/:; + Rz = Pu

y=?z (18)

, , ,  -tv ,19,
It is possible to reduce Eq. (18) to the standard first-order state-space form and to

derive a projection subspace based on this standard state space form. However, as

shown in Ref. [13], there are significant advantages in using the generalized first-order

form of Eq. (18). This leads to the following recurrence formula for the Krylov blocks:

(20)
QY+, I 0 Qy
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Superscriptsd and v denote displacement and velocity portions of the vector, respec-

tively. The matrix containing the generated vector sequence is called a Krylov matrix.

It has the form

]O_ Q_ O_

Krylov subspaces that are generated by Eq. (20) and that have the above form produce

a projection subspace L that has the desired moment-matching property [13]. Let

Let

LP= [ Q_O Q_Q_ Q_Qd3.'"..Qp_,Q_]d (21a)

be the sequence of vectors generated by Eq. (20) with /_-1/_ the starting block of

vectors, i.e., Q_ = K-' P, Q'_ = O, and let

[ P_ P_ Pad "'" P_q ]L_. =
P_ P_ P_ ... P:_,

(21b)

be the subspace of vectors generated by Eq. (20) with /(-1V the starting block of

vectors, i.e., P_ = K-IV T, P_ = -M-IW T. If the projection matrix L is chosen
such that

span {L}=span { Qtd ... Q_ P_ ... pd p_, } (22)

then the reduced-order model of the damped structural dynamics system matches

the system parameters f'([i -137/)'K -_P, for i = 0, 1, ..., p + q- 1. Reference [13]

provides a Lanczos algorithm, similar to the above algorithm for undamped systems,

that produces the desired projection matrix L. The vectors are K-normalized.

Reference [13] contains a model-reduction impulse response example and an

example that illustrates the use of the Krylov/Lanczos reduced model for flexible

structure control. Figure 5 shows the 48-DOF plane truss structure used in the

model-reduction example, and Fig. 6 shows the impulse response based on eight

Krylov vectors versus the impulse response based on the original full-order (48-DOF)

model.

4. A Block-Krylov Component Synthesis Method for Structural Model

Reduction (Ref. [14])

The previous discussions of Krylov/Lanczos model reduction have been applied

to complete structures. Reference [14] describes a block-Krylov model reduction algo-

rithm for structural components, providing "component modes" comparable to those

that are utilized in Refs. [15-19]. The Krylov model-reduction methods described in

Ref. [14] should also be applicable to flexible multibody dynamics formulations.
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Figure 6. Impulse Response: Eight Damped Krylov Modes and Exact Solution.
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Figure 7. A Typical Component and Coupled System.

Figure 7 shows a typical component and a corresponding system of coupled

components. The equation of motion for a single undamped component can be written

in the partitioned form

Mb, Mbb _b + Kb_ Kbb z_ = fb (23)

Reference [14] describes both free-interface Krylov modes (related to the Rubin method

of Refs. [17,18]) and fixed-interface Krylov modes (related to the method of Hurty

[19] and Craig and Bampton [15]). Only the latter will be reviewed here.

A constraint mode is defined as the static deflection of a structure when a

unit displacement is applied to one coordinate of a specified set of coordinates, while

the remaining coordinates of that set are restrained and the remaining degrees of

freedom of the structure are force-free. The starting block of vectors for the fized-

interface Krvlov component synthesis method consists of constraint modes relative to

the boundary coordinates, b. That is,

Q_ ] [lbb] = [ IbbIbb ] (24)

Then, the fixed-interface recurrence formula

[ (25)

47



generates the successive blocks of fized-interface Krylov modes•

The reduced, transformed equations of motion for a component are

Mx + K._ = f (26)

where the reduced coordinates _2 are related to the original coordinates x by Eq. (8)
with

Y:b--- Xb (27)

and

L = span [Q1 Q2 "'" ] (28)

Because of the boundary coordinate identity of Eq. (27) and the form of the

Q's generated by Eqs. (24) and (25), the transformed component stiffness matrix has

the form
!

K,I 0 0

0 7 22 7(23
0 K32 K_3

, •

(29)

The uncoupling of the boundary stiffness terms from the remaining partitions of the

stiffness matrix is a result of the K-orthogonality between the initial constraint modes,

Q1, and all of the fixed-interface Krylov modes, Qj, that follow•

a. Coupled Truss Structure• b. Components.

Figure 8. A Truss Used to Evaluate Block-Krylov Component Synthesis.

Table 1, from Ref. [14] compares a fixed-interfaceblock-Krylov component-

mode solution and a Craig-Bampton component-mode solution for natural frequen-

cies of the 72 DOF plane truss shown in Fig. 8. The Craig-Bampton method

produces a slightly more accurate reduced model, but at the expense of the addi-

tional computation required to produce the fixed-interface normal modes required by

the Craig-Bampton method.
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B-K (18 DOF)
0.000000E+0
O.O00000E+O

0.000000E÷0
1.953625E-2
2.205065E-2

4.923845E-2

7.273779E-2

7.626492E-2

1.550032E-1

1.617472E-1

C-B (18 DOF)
0.000000E÷0

O.O00000E+O
O.O00000E+O
1.953688E-2

2.205225E-2
4.926930E-2

7.231061E-2

7.570881E-2

1.528360E-1

1.586785E-1

FEM (72 DOF)
0.000000E+0
0.000000E+0

0.000000E+0
1.953624E-2

2.205063E-2
4.923537E-2

7.229319E-2

7.567759E-2

1.528184E-1

1.586193E-1

Table 1. A Comparison of Block-Krylov and Craig-Bampton Component

Synthesis - Natural Frequencies.

5. Unsymmetric Lanezos Algorithm for Damped Structural Dynamics

Systems (Refs. [12,20,21])

Although most passive damping mechanisms yield a symmetric damping ma-

trix, there are cases when the damping matrix is unsymmetric. For structures, un-

symmetric damping may arise from active feedback control or from Coriolis forces. To

deal with general unsymmetric damping, the usual approach is to write the system's

dynamic equation in first-order state-space form. Then, an unsymmetric Lanczos

algorithm is used to create a basis for model reduction of the first-order differential

equations. References [12,20] describe a two-sided unsymmetric block Lanczos algo-

rithm that generates a set of left Lanczos vectors and a set of right Lanczos vectors

(analogous to sets of left eigenvectors and right eigenvectors). These two sets of

Lanczos vectors form a basis that transforms the system equation to an unsymmetric

block-tridiagonal form. The major disadvantage of a two-sided Lanczos algorithm is

that the reduced-order model that is obtained may exhibit some high-frequency spuri-

ous modes or even unstable modes, although the full-order system is stable. However,

the computational enhancements described in Ref. [12] produce a very robust two-

sided algorithm.

A one-sided Lanczos algorithm for structures with unsymmetric damping ma-

trix and/or stiffness matrix was recently described in Ref. [21]. Consider a linear,

time-invariant system described by Eq. (10). Assume that the system is stable

and completely controllable. Then, the following Lyapunov equation has a unique

positive-definite solution.

AWe + WcA T + BB T = 0 (30)

Wc is called the controllability grammian of the system. If the system's state vector is
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transformed to another setof coordinates through a nonsingular projection matrix L

z= L5

then the system equation becomes

z = A_,+ [3u

y=C2

where the system matrices in the new coordinates are

7t= L-'AL , [3= L-aB ,

In Ref. [21] the transformation matrix

L=[Q1 Q_ "'" Qk ]

is formed by a three-term Lanczos iteration formula

(31)

AQ, = Qi-l_,-1 + Q,_ - Qi+IG T

(32)

C=CL (33)

(34)

(35)

where

_i-1 = QT-IW[1AQi (36)
.r, = Qrwi-' AQ_

The Qi's are orthonormalized with respect to the inverse of the controllability gram-

mian of the system. That is

I if i = j (37)QTW_"QJ = 0 if i ¢ j

Then, fit has the almost-skew-symmetric, block-tridiagonal form

(38)

_', g,
-6r 7_ 6_

A

Reference [21] lists a complete one-sided, unsymmetric block-Lanczos algorithm

and also discusses special modifications to handle model reduction for unstable sys-

tems, to optimize the choice of starting vectors, to use A-' as the iteration matrix,

and to use the observability grammian instead of the controllability grammian. An
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Figure 9. A Plane Truss Structure.
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Figure 10. Comparison of Frequency Response Functions.

example is provided that utilizes both controllability- and observability-grammian-

based reductions. Figure 9 shows a plane truss structure (16 DOF's; 32 states), and

Figs. 10a,b show frequency response plots of 12-state models based, respectively, on

(complex) eigenvectors and based on (real) Lanczos vectors.

The advantages of the above-described one-sided method over the other exist-

ing unsymmetric Lanczos algorithms are: (1) the numerical breakdown problem that

usually occurs in applying the two-sided unsymmetric Lanczos method is not present,

(2) the Lanczos vectors that are produced lie in the controllable and observable sub-

space, (3) the reduced-order model is guaranteed to be stable, (4) a shifting scheme

can be used for unstable systems, (5) the flexibility of the choice of starting vector can

yield more accurate reduced-order models, and (6) the method is derived for general

multi-input/multi-output systems.
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6. Krylov/Lanczos Methods for Control of Flexible Structures

Space limitations prevent further discussion in this paper of the application of

Krylov/Lanczos vectors to the control of flexible structures. Several such applications

may be found in Refs. [6,13,22-24].
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