
ASTEC and MODEL:

Controls Software Development at

Goddard Space Flight Center

John P. Dox_aaing, Goddard Space Flight Center
Frank H. Bauer, Goddard Space Flight Center

and

Jeffrey L. Surber, Fairchild Space Company

N94-14628

Abstract

The ASTEC (Analysis and Simulation Tools for Engineering Controls) software is under

development at the Goddard Space Flight Center (GSFC). The design goal is to provide a wide
selection of controls analysis tools at the personal computer level, as well as the capability to

upload compute-intensive jobs to a mainframe or super computer. In the last three years the
ASTEC (Analysis and Simulation Tools for Engineering Controls) software has been under

development. ASTEC is meant to be an integrated collection of controls analysis tools for use at

the desktop level. MODEL (Multi-Optimal Differential Equation Language) is a translator that

converts programs written in the MODEL language to FORTRAN. An upgraded version of the

MODEL program will be merged into ASTEC. MODEL has not been modified since 1981 and

has not kept pace with changes in computers or user interface techniques. This paper describes the

changes made to MODEL in order to make it useful in the 90's, and how it relates to ASTE.C.

Introduction

Several programs have been devcioped at NASA's Goddard Space Flight Center (GSFC) in

recent years. These include the Interactive Controls Analysis (INCA) program [1] starting in
1981, and the Windowed Observation of Relative Motion (WORM) program [2] starting in 1986.

An important earlier effort is MODEL (Multi-Optimal Differential Equation Language) [3]

developed in the 1960's and 1970's. In the last three years the ASTEC (Analysis and Simulation
Tools for Engineering Controls) [4]software has been under development. ASTEC is planned to be

an integrated collection of controls analysis tools for use at the desktop level. Planned conversions
of INCA and WORM to PC/Macintosh programs will be part of the ASTEC system. MODEL is

a translator that converts programs written in the MODEL language to FORTRAN. An upgraded

version of the MODEL program will be merged into ASTEC. MODEL has not been modified

since 1981 and has not kept pace with changes in computers or user interface techniques. This

paper describes the changes made to MODEL in order to make it useful in the 90's, and how it
relates to ASTEC.

ASTEC

ASTEC is being writtcn to satisfy the requirements of the GSFC Guidance and Control

131

https://ntrs.nasa.gov/search.jsp?R=19940010155 2020-06-16T19:43:36+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42790854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Branch.As such, it must run on the computerequipmentusedin the branch. Currently

desktop units consist of PC's, Macintoshes, and an occasional Tektronix or X-Windows terminal.
Mainframe capabilities consist of VAX 8830 and IBM RS6000 computers.

ASTEC is designed to meet the continuing needs of GSFC engineers, where high order and

complex systems are the rule and not tile exception, and where tried and true classical methods

predominate. Because spacecraft repair is very expensive if not impossible, it is important that

analysis methods be exhaustive rather than quick, and that algorithms contain no shortcuts which

may compromise analysis results. There is also a high demand for a modern, friendly user

interface, since man), of the engineers use the Macintosh or Microsoft Windows environment.

It has long bcen planned to port INCA and WORM from the VAX/VMS to a desktop

computer. Since PC's and Macintoshes predominate in our branch, they were chosen despite

rclatively poor performance in floating point operations. It is hoped that there will be performance

improvements in the filturc and that some computations can be done on the VAX and the results
downloaded later.

ASTEC Architecture

ASTEC will consist of several modules. Many of the currently implemented or planned

modules are described below. The capabilities of ASTEC include classical control methods,

simulation both linear and non-linear, multi-variable controls and matrix methods, and new

experimental capabilities -- including dynamic locus and three dimensional frequency response.

The following modules arc tinder some state of development, and more may be added. It is hoped

that by the timc of this conference MODEL will be available from COSMIC in VAX, PC, and
Macintosh versions, and that WORM will be available in a PC version. Note that the old VAX

versions of WORM and MODEL have been available for some time.

ASTEC

(PUEBLO?)
MODEL

INCA

WORM

Manage files and launch other jobs.

Block diagram editing (Prototyping Utilities Emphasis is Block LayOut).

Build systems and launch analyses.

Transfer function and state space analysis.
Plot results.

Input to some of the ASTEC modules can come from either the user or, more importantly,

from other modulcs. Thus, for example, as user could build a block diagram model of his system

using the PUEBLO program. ASTEC could use this data to generated a simulation in the

MODEL language, which could be translated, compiled, linked, and executed. The results could

be plotted by the WORM package.

132



(PUEBLO)
Block Diagram
Manipulation

1993?

MODEL
Simulation

Language

INCA
Transfer Function

and State Space
Analysh

1993?

WORM
Plotting

1991

......... _" Command flow

r- Data flow

Figure 1. General ASTEC Architecture

While personal computers are quite good in the fields of graphics and user interface, they
often fall short in the ficld of number crunching, especially if hardware floating point is not

installed. For this reason a capability to transfer compute intensive jobs to a mainframe computer

was deemed essential. Compute-intensive routines (such as MODEL) will be capable of dealing

with text files only, allowing input and output data to be transferred between computers.

MODEL

The Multi-Optimal Differcntial Equation Language provides a means for generating
numerical solutions to systems of differential equations using a digital computer. The notation of

this language is similar to that used to describe physical systems by differential equations. Thus

the learning process is simplified, programming becomes easier, and debugging is more readily

accomplished Programs written in the MODEL language are machine translated into FORTRAN-

77 programs.

133



I user writtenFORTRAN

file

(project.MODEL)

EL

Translator

I OLD MODEL file(project.MOD)

MODEL

Converter

\

I Simulation |

Command File I

User-written files

Output files

Q Programs

project.FORproject.CMN ]

I _r°j°c_'_×_I

__ORM control _e

• I
pie!

Figure 2. MODEL data flow diagram

134



MODEL is currently implemented on the VAX computer using VMS, on PC's under
Microsoft Windows, and on the Macintosh. The VAX version is capable of automatically

generating source files for the WORM plotting program. This feature will allow users to plot their

data using the names assigned in MODEL.

Since the MODEL program is a translator, an additional translate step is added to the normal

compile/link/run sequence. A data flow diagram is shown in Figure 2.

Language Features

A MODEL program is composed of Model statements. The basic MODEL statement is a

differential equation. Equations can be entered in any order. The quotation mark (') is used to
indicate a derivative, allowing the equations to be entered in a reasonably familiar way. Variables

with quotation marks are derivatives of state variables. State variables can also be derivatives of

other state variables. In this case multiple quotations marks are used.

Other MODEL statements include DEFINE statements to control the simulation,

OPERATOR and FUNCTION statements to create an interface to user written subroutines, and

comments to allow user documentation. MODEL uses a free-form line format. Multiple

statements on one line are separated by semicolons (;). A statement may be continued to the next

line by using ellipses (...). Two minus signs together indicate a comment--The rest of that line is

ignored.

An simple MODEL program is the damped harmonic oscillator:

x"=z*x'+(k*x)
x(0)=10

x'(0):0
z=-0. I
k =-0.2

WRITE (T,X",X',X)

DT=0.01; TFIN = 40.0 -- Time Step, Finish time
DEFINE FILE WRITE 0.1 ASCII TEST.OUT F14.6

Variables and Operators

MODEL variables must be one of seven types.

SCALARS : a single floating point number.

VECTORS : position, velocity, force, torque, magnetic fields, etc.
TENSORS : either a rotation matrix or Inertia tensors.

135



QUATERNIONS' are used to represent rotations.
CHARACTER STRINGS • are used to access external filenames.

MATRICES • an array of scalars, arranged in rows and columns.
SUBSCRIPT RANGES • used to create slices of matrices.

There is a simple relationship between the original program variables and the corresponding
FORTRAN variables. MODEL variables are first truncated to 28 significant characters. If the

variable is a state variable or derivative, an underline is appended, and then one or more 'P's to

represent the order of the derivative.
x x

x' x_p

x" x_pp

x'(IC) x_pic

x'" x_ppp

t(0) t_ic

Variables may bc manipulated by using operators. Operators may be unary or binary, and

unary operators may bc prefix or postfix. Each operator is given a priority. In complicated

expressions the rules of precedence clarify the order in which operations are performed.

Operations with eqt, al precedence are performed from left to right. Expressions within parentheses
are evaluated first and indcpendently of preceding or succeeding operators. The operators in model

are grouped in order of prccedence, and are listed below. Note that certain operand types may be

incompatible with certain operators.

DEGREES or RADIANS

ARCMINS or ARCSECS

.(period)
^ or ** or ^- or **-

/or\
DOT or *

CROSS or ><

+

II
//
w_

<> or != or-= or I=
<

>

<:

>=

NOT or ~

Convert scalar to angle.

Convert scalar to angle.
Vector element access.

Exponentiation.

Multiplication.
Division and left division.

Vector dot product.

Vector cross product.
Addition

Subtraction or negation.
Matrix column concatenation.

Matrix row concatenation operator.

Equivalence.

Non-equivalence
Less than.

Greater than.

Less than or equal.

Greater than or equal.

Logical negation or inverse.

136



AND or &

OR or I

:(colon)

II

Logical and.

Logical or.

Matrix subscript ranging operator.

Matrix indexing operator.

MODEL is equipped with built-in functions to support many function and non-linearities

required for ease in simulation. Many of these will be familiar to users of FORTRAN, Pascal, or

other programming languages. The basic trigonometric functions SIN, COS, and TAN are also

available. These take an argument which MUST be of angle type, and return a scalar. Inverse

trigonometric functions ASIN, ACOS and ATAN take a scalar argument and return an angle.

Other functions are used to represent various operations that are used in simulations. The

RANDOM and RANDOM12 generate random numbers. The IF function allows conditional

assignment, like the C language ? operator. The QUANT function is used to implement

quantization fimctions. The LIMIT function is used to implement limiters or limit functions.
Additional functions such as DEADZONE, BANGBANG, HYSTERESIS, BACKLASH and

TRACKSTORE arc also available.

Other Features

The MODEL preprocessor is similar to tile one in the C language. The #FOR statement is

followed by a list of character strings. Each line after a #FOR statement is scanned for the at-sign

(@), and if one is found, all at-signs in that line are replaced in turn by each character string.
Lines without any at-signs are left alone. This process continues until a #ENDFOR statement is

encountered. The INCLUDE statement is used to merge text from another file. Using the

SYNTAX commands, the user can use his ox_ routines in FORTRAN or other languages.

Run-time Command Language

The run-time command file is read by the generated simulation program to control the

simulation. There arc four types of statements in the run-time command language. The details of

using a command file are implcmcntation dependent. A simple command file is given below:

RESET
lfin : 60
RUN

PAUSE AT 30.0
k=0.3

CONTINUE
STOP

The RESET statement returns all variables to their original values. The second line is a

137



variable change command. The format consists of a variable name and one or more values. The
RUN command starts the simulation. The first line after the RUN command is a either the

keyword STOP or a PAUSE AT command. If it is a PAUSE AT [time] command, it is followed

a list of variable change commands to be given at that time. This allows the user to change

parameters in the middle of the simulation.

Changes from first version of MODEL

For those familiar with the initial version of MODEL developed by Benjamin Zimmerman, the

following describes changes made in the new version. These include:

User defined fimctions and subroutines are now available.

Certain obscurc relational operator definitions have been dropped. These are .EQ., .LT.,

.GT., .LE., .GE., .NE, */,/*, =/, =<,/=, =>, *=, and ><.

The IF statement has bccn changed to a fimction.

Elimination of conditional output_

The double comma (,,) may no longer be used to separate statements. Use the semicolon (;)
instead

New data types vector, tensor, quaternion character strings, matrices and subscript ranges.

The old t313e is now called a scalar, and is now the default.

New mathematical operators have been added. These are ^, **-, ^-, \, MOD, DOT, CROSS,

II, //, -=, !:, I=, ~, I, :, [1 and others. Note that the colon has changed meaning from

exponcntiation to matrix ranging.

Multiple PLOT statements.

Automatic generation of WORM source files.

Several commands and that used to bc abbreviated are now spelled out in full.

The END statement is no longer required.

The TAB statcmcnt and sampled variables not supported in the initial release.

Example: Pilot Ejection Study

This study has bccn used as a standard of comparison for continuous simulation languages.

This example is taken almost verbatim from the manual for the original Model program.

The purpose of this investigation is to determine the trajectory of a pilot ejected from a fighter
aircraft and thus to asccrtain xvhcthcr he will strike the vertical stabilizer of the aircraft. Several

combinations of aircraft spccd and altitude are investigated since the drag on the pilot, which

causes his relative horizontal motion with respect to the aircraft, is a function of both air density

and velocity. The ejection system is so devised the pilot and his seat to travel along rails at a

specified velocity V E, at angle QL backward from vertical. The seat becomes disengaged from the

rails at Y = Y1.

138



Oncethepilotandseatcombinationleavestherails,it followsa ballistictrajectorywhichcan
bedetermined;however,sinceit is therelativemotionof thepilot with respectto theaircraft
(whichis assumedto fly levelwith constantspeed)that is important,we can formulatethe
equationssoastoobtainthismotiondirectly.

v

.f
E

\ _/" W

",x

L.Z--

The governing cquations are:

X

X' = V cos ®- VA
Y' = V sin ®

V'=0

V' = -D / m - g sin ®

Q'=0

Q' = -(g sin ®) / V

D'= V_rCDSV 2

0 Y Y_

Y>YI

0 Y Y I

Y>YI

Constants (for all cases)

m = 7 slugs

g = 32.2 ff/sec 2

CD= 1
S = 10ft-"
YI =4ft

139



VE = 40 _sec

QE= 15

The initial values of V and Q (pilot's initial velocity vector at moment of leaving cockpit rails)

are given by

V 0 _- [(V A - V E sin (DE)-"+ (V r cos ®E):] '/'

Qo = tanl [(VE COS®E) / (VA - VE sin ®E)]

and further

Xo = Yo = 0

The following quantities are to bc printed every 0.002 seconds:

t, V, V', ®, X, Y

............. PILOT EJECTION STUDY .............

.. ...................................................

..... EQUATIONS
x' = v*cos(th)-va

v' = v*sin(th)

clear = y>y l ly'<0

v'= IF(clca r,-d/m-g*sin(th),0)

ANGLE th' = IF(clear,(-g*cos(th)/v),0) RADIANS
d = .5*rho*cd*s*v^2

v(IC) = sqrt((va-ve*sin(thd))^2 + (ve*cos(thd))^2)

ANGLE th(lC) = atan(ve*cos(thd)/(va-ve*sin(thd)))

x(lC) = 0; y(IC) = 0
..... CONSTANTS

m =7 --slugs

g = 32.2 -- ft/sec^2
cd = 1

s = 10 --ft^2

yl =4 --ft
re=40 --fl/scc
ANGLE thd = 15 DEGREES

..... DATA

va = 900 -- £t/sec

rho = 2.3769e-3 -- slugs/fl^3
..... OUTPUT

DEFINE FILE WRITE ASCII 0.02 EJECTIONDUT 6F12.5

WRITE (t,v,v',th,x,y)
..... MODEL PARAMETERS

DT = 0.002: TFIN = 2.0

140



Conclusion

Thenew MODEL programs is an attempt to take a sixties-vintage program and updata it for

the nineties. When integrated into the other modules it of ASTEC, it should prove to be an

extremely usefid design tool. As a standalone program, it contains some features available in no

other package currently available. It will soon be submitted to COSMIC for publication.

References

.

.

.

.

Bauer, F. H. and Downing, J. P., Interactive Controls Analysis (INCA) User's Manuals (4

Volumes), Program Number GSC-12998, COSMIC, University of Georgia, Athens,

Georgia, 1985. Updated 1988.
Bauer, F. H and Downing, J. P., Windowed Observation of Relative Motion (WORM)

User's Manuals (2 Volumes), Program Number GSC-13232, COSMIC, University of

Georgia, Athens, Georgia, 1988.
Zimmernmn, B. G., Multi-Optimal Differential Equation Language (MODEL) User's

Manual, Program Number GSC-12830, COSMIC, University of Georgia, Athens,

Georgia, 1980.
Downing, J. P., Bauer, F. H., and Thorpe, C. J., ASTEC -- Controls Analysis for Personal

Computers, Proceeding of the Third Annual Conference on Aerospace Computational

Control, Oxnard, California, pp. 600-605, 1989.

141




