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ABSTRACT

This research focuses on the computational dy-

namics of flexible constrmned multibody systems. At

first a recursive mapping formulation of the kinemat-

ical expressions in a minimum dimension as well as

the matrix representation of the equations of mo-

tion are presented. The method employs Kane's

equation, FEM and concepts of continuum mechan-

ics. The generalized active forces are extended to

include the et_ects of high temperature conditions,

such as creep, thermal stress and elastic-plastic de-
formation. The time variant constraint relations for

rolling/contact conditions between two flexible bod-
ies are also studied. The constraints for validation

of MBS simulation of gear meshing contact using

a modified Timoshenko beam theory are also pre-

sented. The last part d.-Ms with minimization of

vibration/deformation of the elastic.beam in multi-

body systems making use of time variant boundary

conditions. The above methodologies and computa-

tional procedures developed are being implemented

in a program calledDYAMUS.

KINEMATICS OF FLEXIBLE TREE-LIKE

SYSTEMS

reference frame of body j to element i, respectively.

N is the shape function matrix, p denote the nodal

coordinates,and _ a set of unit vector fixed in R (

see reference[I]-[2]for more detail).

The velocityof clement i of body j found by differ-

entiationof the above equation can be expressed as

_,, = {_)_{V")÷{q)T{W)+{_)T{V:)÷{/_)_'{V:')
(2)

Four arrays are identifiedin the velocity expres-

sion end found to take a special form. Note that

z represent the rigid body rotation between adjacent

bodies. The partial derivative of the element velocity

yield the following

[v"] = [w]

([s,,] + [&,])[s '°]
([s,,] + [&,])[s 2°]

([s,_] + [&_])[s '-'.°]
([s,,,] + [s,,])[s _°]

0

(3)

An explicit matrix representation of the partial

velocities and partial angular velocities fdr tree-like

structures is given below. Consider a flexible body in
a MBS discretised into P elements. Let the position

vector to an arbitrary element i of body j w.r.t, a

fixed reference frame R be given by

hrij) _(;)

= {y_{q,}'[s'-',"l + _{c,}'(s '-',°1
h=0 h=0

÷ ({T#,} T ÷ {,O.7i}T[./_T)[SiO]},[_} (I)

where S denotes the shift matrix, q, ( and r represent

the body vector, the translation vector between ad-

jacent bodies, and the position vector from the local

where W is a transformation matrix used to isolate

the generalized coordinate derivatives from the gen-

eralized speeds. Sq, S_, S. and Sj, are skew matri-

ces corresponding to q, (, r and p, respectively. The

partial velocity array associated with element defor-

mation is given by

[W'] =

0

0

[_'[S '°]

0

(4)
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Thepartial velocity array associated with q is ex-

pressed as

[v/]=

[_
(S'°)

[sJ-' ,°]

0

(5)

The bodies of the above block matrices could be

achieved through a budgeting procedure where a

mast<z block is first developed then the rest of the

arrays are formed through a partition and mapping

technique see Table 1.

EQUATIONS OF MOTION

The governing equations of motion for flexible
multibody systems can be expressed as

[M]{f}+ [C]{_}+ [_{_}= {F} (6)

where [M] denotes the generalised mass matrix com-

posed of 9 submatrices of the form

(7)

The generalized mass is symmetric and the compo-

nents of M., come directly from the kinematic bank
of partial velocities and angular velocities of ele-

ments. The other mass components have similar ex-

pressions. Similarly, we can write the dynamic damp-

ing matrix, generalized stiffness matrix and force vec-

tor in a partition form with its components expressed
as

[c,,] = _ _,{.,,,[v,'][f,,] _"+ [_ ]([I,,][_,]

and

{F,}= _ _/.j ([V]']{fj.}+[wi]{_,})ds

+ _ _ /._.j_[VJ']{b_i}dv
(9)

It is important to note at this stage how the kine-

maticed expression form the bulk of all computations.

In the above equations rn_, denotes the mass of ele-

ment i in body j, Ij, the tensor dyadic, .f_, the force

vector array acting on element i of body j, A4j, the

corresponding moment array and bj, the surface trac-
tion contribution vector.

CONSIDERATION OF HIGH TEMPERA-

TURE, CREEP AND ELASTIC-PLASTIC
DEFORMATIONS

The modeling of time-dependent forces resulting

from deformable bodies when subjected high tem-

perature conditions can be of interest in many en-
gineering applications, which include creep, thermal

stress, thermal shock, etc.. Many researchers studied

material nonlinearities, in which some problems are
solved, other still remain to be issues of concern.

The effects of temperature, creep and thermal
stress and thermal shock can be included in the third

term of the generalised force (see reference [2])

{F,} = / (IV; ]0%} + [J']{_.})ds
Jjl

(lo)

where the last part {F_} brings in the contribution
from the effects of temperatures and material nonlin-
earities

+a" {To})] + a[N]T[D]{T'}}dv (II)
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The nonlinearities including geometric nonlinearity

and material nonlinearity can be considered in the

stiffness matrix. So does the elastic-plastic deforma-

tion. The material property matrix is given by

[D].= [D,] + [Dp]

where [m,] denotes the elastic part. The second part

[Dp] is the contribution from the plastic deformation

IDol= [D_]-

[D.H_FH_F_qD_](A OF T OF 1+ {_-a} [D,]{_-_-})-oa o_
02)

TIME VARIANT BOUNDARY

•CONSTRAINT CONDITIONS

For the time variant boundary conditions, finite

difference method can be used to account for the rate

of change of mode shape. Consider the modal trans-
formation

{_}= [el{p} (is)

Differentiation of the above equation yields

{,_}= [a]{p}+ [e]{_} (14)

When substituting the nodal displacement with the
nodal coordinates and taking into consideration the

effects of [_], then at t = t, the new terms coming

from the previous and newly computed mode shapes

at t = t, are seen in [C] and [K] as[2] ,[31

[c,_]= [c,_]+ _[M_]([_,]- [e,-,]) (15)

and

]

- 2[_,_,]+ [_,-_])+ _[c_]([_,] [_,-_])(16)

The method developed above has a wide range of

applications for which one can easily see and analyse

itsdynamics.

While the time variant contact conditions can be

considered as a set of constraintswhich can be holo-

nomic or nonholonomic. Some constraint equations

which do not contain prescribedmotion terms can be

factorizedto minimize the dimension of the equations

of the system. For the caseof two flexiblebodies with

one rollingwithout slippingon the other as shown in

Figure 1, we can write in R the following position

vector[2}

(17)

where

_ = _._,,.+ _-,,c- (_.o+ _) (is)

Differentiationof equation (17) yieldsthe constraint

equations at the velocitylevel

where

[j]{_}={g} (19)

and

{_}= [_ d" _ p_]_ (2o)

{g}= [s"-'."][n"-''"]({,.}+ [N.]{p_o})(21)

[J] is a Jacobi matrix and a function of generalized

coordinates and velocities.

In the dynamics of MBS for the case when one
flexible body is rolling on another, equations (19) and

(6) extended with A.I T are solved together. The time

historyof the system allows us to systematicallyup-

date the contact positionand the reevaluation of the

Jacobi matrix ./.

DYNAMICS OF GEAR MESHING TEETH

For validation of the results obtained by multib ody

dynamics code which utilize FEM, a modified Timo-

shenko beam theory is presented to analyse the dy-

namics of gear meshing teeth in rotorcraft systems.

The acting position, direction and magnitude of the
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external forces are assumed to time variant. The

meshing tooth is'_0nsideredas a cantileverbeam, as

shown in Figure 2, where the inertiaforce due to

the large rotation of the tooth base, as well as the

external equivalent axial force and moment are all

included in the equation of motion. {21

@2 @2w 1 - @2zo

{El(.){ a. _ kA_.)_[eA(.)TT * f(., t)8z 2

b2w _.. @4w

eI(z) O2- : .02w .02w.

d kA(z_G @-_yLeA(z)-_- + f(z,t) + P(z,t)_-_z2J

02w .02w

+ eA(z)-a-ty + f(z,t) + P(z,t)-ff_-_x 2 =0 (22)

For the assumed model, the boundary conditionsare

given by:

At the fixed end z = 0,

¢(o, t) = _(o, t) = o (23)

At the free end z = 1,

v(l,t)= kA(1)G[0_-_t) ¢(l,t)]= 0 (24)

M(t,t)= [E1(1)_ + re(Z,t)]= o (25)

A solution to the above proposed modei Will result

in prediction of contact forces or dynamic loading on

gear teeth.

MINIMIZATION OF VIBRATION IN

ELASTIC BEAMS

The minimization of vibration (deformation) of

flexiblebodies in mechanical systems isa major con-

cern in dynamics and control. What followsare pro-

cedures used to minimize vibration in elasticbeams.

The elasticbeam is modeled in two ways: one has a

movable support not to exceed the lower tip,whereas

the other treats the body as a hollow beam with a

moving mass.

Equation of motion for the model used to minimize

vibration of the flexiblebeam, as shown in Figure 3,

is given by [2}

EI 04y m" O_
o_--_+ _Tir - _/_'+ g_sO+ _'o+ _0)

Laplace transform gives

=0 (26)

Y = :-: c,e"_ + m-m_{L(z,s) + m[sf_(z) + f2(z)]}

i=l

(27)

The functional used to minimize vibration of the

beam is

/0 t
J(Zo) = F(z, re, t)dt (28)

Euler-Lagrange equation

OF d(OF.

is used to solvefor the problem at hand.

The solution for optimum positioning conditions

is time wriant and yieldsminimum deflectionat the

proposed location of the beam.
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Table 1: Mapping technique used in MBS
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Figure 1: Model for time variant contact condi-
tions
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Figure 2: Model for gear meshing teeth

Figure 3: Models for vibration minimization
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