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Cleveland, Ohio 44135

and

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061

and

Hyung C. Lee
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ABSTRACT. An optimizationproblem isformulatedmotivatedby the de-

sireto remove temperaturepeaks,i.e.,_notspots",alongthe bounding

surfacesof containersof fluidflows.The heat equationof the solidcon-

taineriscoupledto the energyequationsforthe fluid.Heat"SOurCescan

be locatedinthesolidbody, thefluid,orboth. Controlisei_ectedby ad-

justmentsto the temperatureof the fluidat the inflowboundary. Both

mathematicalanalysesand computationalexperimentsare given.

1. INTRODUCTION

We suppose that the regularbounded domain f_in R 2 ismade up of fwo sub-

domains f_ and F_2separatedby an interfacer,, with the resultthat f_= f_1uf_2U

I',(seeFigure I).The solidmaterialoccupiesa sub-doma£u f_1having a boundary

rlu r2 u r3 u r, and the fluidflow occupies a domain f_ having a boundary

r= u ro u r_,u r4. We have am inflowboundary r=, am outflow boundary to, and

a solidwall r_,.The geometry of alltheseboundary segments isprescribed,as are

the inflowvelocityuc and temperature 7'=.At the outflow,one cam impose one's

favoriteoutflow boundary conditions.On the walls,we have the no slipboundary

conditionsfor the velocity.Control isto be effectedthrough heating and cooling

along the boundary r=.

The temperature isspecifiedalong the boundary rc and the heat-fluxisspecified

along the boundary rlu r._ur3 u r4 u to. We assume thatthe flowisincompressible

and convection drivenso thatbuoyancy effectscan be neglected,and thus tempera-

tureeffectson the mechanical propertiesofthe flow,i.e.,the velocityand pressure,

axenegligible.We are interestedin controlssuch thatwe get a desiredtemperature
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equations

(1.1) - uAu + (u- V)u + Vp = f

the incompressibility constraint

(1.2) div u = 0 in f_2,

and, for simplicity, the boundary condition

(1.3) u = h

(1.4) u=0

Ou
(1.2) o_ = o

and the energy equations

(1.6) -_IAT=Q1 infll,

on r'e,

on r_ U 1"4,

on to,

(1.7)

in _2,

-_=AT+(u.V)T=Q2+2_(Vu+Vu T):(Vu+Vu T) inf_=,

along r_, or a portion r. c r., and thus we assume that the flow is stationary.

Other combinations of control and controlled surfaces are also possible.

As a result of our assumptions about the flow, the state variables, i.e., the velocity

u, pressure p, temperature T, and control g are required to satisfy the Navier-Stokes
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with the boundary conditions

(1.8) T=g onre,

_T
(1.9) c9--n= 0 on rl u r2 u F3 u r4 u to.

The data functionsf,h, (_iand (_ areassumed to be known. The constantv isthe

kinematic viscositycoefficientof the fluid,and the constants,%, _= and/_ depend

on the thermal conductivitycoefficient,density,specificheat at constant volume,

and viscositycoefficientof the fluid;see [17]fordetails.

Note thatasa resultofour assumptionsabout the flow,the mechanical equations

(1.1)-(1.5)uncouple from the thermal equations(1.6)-(1.9).Indeed,(1.6)-(1.9)may

be solvedfor u and p without regard of the temperature T. Thus, in the present

context,the velocityfieldu, which isdetermined by solving(1.1)-(1.5),merely acts

as a coefficientfunctionand in the sourceterm in (1.7).

We now definethe optimal controlproblem to obtainour objective.For example,

given a velocityfieldu, we would seek a temperature fieldT and a controlg such

that the functional

(1.10) J(T,g) = _ IT - Td[ _ dr + _ (Igl 2 + Iv,g[ 2) dr
w c

is minimized subject to (1.6)-(1.9), where V, denotes the surface gradient operator

and Tg is some desired temperature distribution, e.g., something close to the average

temperature along 1e= for the uncontrolled system. The non-negative parameters 7

and 6 can be used to change the relative importance of the two terms appearing

in the definition of J as well as to act as penalty parameter. Incidentally, the

appearance of the control g in the J is necessary because we are not imposing any

a priori limits on the size of this control.

Under the realistic assumption that u • n = 0 on rw U F4 and u • n > 0 on to,

in this paper we prove the existence and uniqueness of optimal solutions and drive

an optimality system, i.e., a set of equations from which the optimal control and

state may be determined. Also, a finite element method is used to compute an

approximate solution of the optimality system. We have also developed an iterative

algorithm to compute the approximate solution.

We close this section by introducing some of the notation used in subsequent

sections. Throughout, C will denote a positive constant whose meaning and value

changes with context. Also, H'(D), s 6 R, denotes the standard Sobolev space of

order s with respect to the set 2), where 2) is either the domain f_, or its boundary
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F, or part of that boundary. Of course, //°(7)) = L:(7)). Dual spaces will be

denoted by (.)*.

Of particular interest will be the space

0S
(1.11) T/_(f_) = {S E L2(f_) : _ E L2(f_) for k -- 1,2}

and the subspace

(1.12) E_(_) = {S e T/I(_) : S = 0 on r=}.

For functions defined on re, we will use the subspace

(1.13) w(ro)={gen'(ro)lg=0 attont_}.

Norms offunctionsbelongingto H'(gt),H'(r) and H'(F_) aredenoted by I1"I1,,_,

H" H,,rand H" [kro,respectively.Of particularinterestare the L2(f_)-norm II"H0,n,

the semi-norm

2 OT 2
ITI1,a = II(1.14)

and norm

(1.15) IITIl[,n= ITl_,a+ IITIl_,n

defined for functions belonging to HI(_). Also, we are interested in the semi-norm

]" Ii.ro, defined by

g2iI.r,I = Jrf, IV'gl= dro(1.16)

and norm

(1.17) Ilgll= g=1,to= I I,,ro+ Ilgllo,r,

defined for functions belonging to Hz(r:) and w(r:).

We define, for (TS) E L_(l_),

= f TS d_(T, E)a
Ja(1.18)

and,for(pq) e Ll(r),

(1.19) (P, q)r = _r pq dr.

Thus, the innerproduct in L2(_) isdenoted by (-,")n,that in L2(F)by (.,")r.The

notation of (1.18)-(1.19)willalsobe employed to denote pairingbetween Sobolev

spacesand theirduals.
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Wewill usethe bilinear forms,for i= i,2,

(1.20) a,(T, S) = _, [ VT. VS dfl VT, S E H1(_2)
JI2 i

with the result that

2

(1.21) a(T,S) = _ _, /_ VT. VSd_ = aI(T,S)+ au( T, S),

and the trilinear form

(1.22) c(u,T,S)n, = [_ (u- VT)S d_ Vu E H1(_2) andVT, S E H_(_2).
2

These forms are continuous in the sense that there exist constants ci > 0 and cc > 0

such that, for i = 1, 2

(1.23) [a,(T,S)I <_c, llTlll,n, llSll_,n, VT, S e HI(_),

(1.24)

and thus

(1.25)

Ic(u,T, S)n21_ ccllulll,_llTIl_,_=llSll_,_

Vu e H'(_2) and VT,S E H_(gt),

la(T, S)I __<lal(T, S)I ÷ ladT, S)l

_<(c_ + c_)IITII_,_IISlII,_ VT,S e H_(_).

Moreover, we have the coercivity property, for i = 1, 2, there exist constants C_ > 0

such that

(1.26)

and thus

(1.2T)

a,(T,T) >_ C, IITIl_,n, VT e H_(_)

2

a(T,T) = aI(T,T)+ a2(r,T) >_ _ C_IITII[,_, > min(C_,C2)llTI 2II,f_"

/=1
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2. THE OPTIMIZATION PROBLEM AND THE EXISTENCE OF OPTIMAL SOLUTIONS

We begin by giving a precise statement of the optimization problem we consider.

We willassume the domain _lisin lR:and consistsof two subdomains flland _:

such that 9/ = £1 U 9/:U rw. Let g E w(r_) denote the boundary controland

letT E //t(£t)denote the state,i.e.,the temperature field.The stateand control

variablesaxe constrainedto satisfythe system eqrefeq:asst1-(1.9),which we recast

intothe followingweak form: Find (T,t)E Ht(ft)x//-In(r_) such that

a(T,S) + c(u,T,S)n: - (t, S)ro = (Q, S)a VS e H'(n)

(2.4) IITIIl,n+ Iltll-ln,ro < C(llqtl-l,n + Ilgll_,ro).

Proof. For given g • W(r¢), (2.1)-(2.2) is equivalent to

(2.5) a(T,S)+ c(u,T,S)n, = (Q,S)a VS • H_(9/),

(2.6) T = g on re

and

(2.7) t = _::VT- nit o.

(2.1)

and

(2.2) (T, R)ro- (g, R)r. = 0 VR• _-i/:(ro),

where we have introduced the simplifying notation

(_1 in 9/1,Q= Q:+2#(Vu+VuT):(Vu+Vu T) in 9/:.

One may show that, in the distributional sense,

(2.3) t = a:_TT, nlr °.

In (2.1)-(2.2), we introduced the Lag'range multiplier t to enforce the boundary

condition. This will be very useful in the proof of error estimates for finite element

approximations.

First, we show that for each possible control function g, there is a unique corre-

sponding state function (T, t).

Lemma 2.1. For every g e w(rc), there exists a unique (T,t) • H_(_2)xH-11:(F¢)

such that (2.1)-(2.2) are satisfied. Moreover, there exists a constant C = C(9/) such

that
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By the virtue of the trace theorem, let T in Hl(f_) satisfy if = g on r_ and examine

the following problem: Find T in//l(f_) such that

T-T _ H_(_),

(2.8) a(T- T,S) + e(u,T- T,S)a,

=(Q,S)n-a(_,S)-c(u,2, S)n, VS _ tt_(_2).

Let If = T - if E H_(f/). From the assumption of u, i.e., u- n = 0 on rw u F4 and

u. n < 0 on Po, we have that

lf_ (...)t2 ar
(2.9) 1

[ (u. n) T_
=5 Jr. dr>0.

Thus, we have

(2.10) a(ir', if) + c(u, iP, _')n, >_ min(Ci, C2)I - 2ITlh,..

Therefore, by the Lax-Milgram theorem there is a unique 2f fi H/)(f/), i.e., T =

if + if E Hi(f/) and the estimate

(2.il) Ilrtl,,. _<C(llqll-_,. + Ibll.= r.) _<C(llOll-_. + Iblll,ro)

holds. From the trace theorem and the theory of paxtial differential equations (see

[4]), we have

(2.12) Iltll-,/_,r° < C(IITII,,.= + IIq_ll-,,.=) < C(IITIII,,_+ IIQII-I,.),

where Q= = (_ + 2U(Vu + VAT): (Vu + Vur). Then, (2.4) follows from above two

estimates. []

The admissibility set lJ_d is defined by

g4o_ = {(T,g)E Hi(f_) x w(rc) :ff(T,g) < oo, and there exists a
(2.13)

te H-,2(ro)and(2.1)-(Z2)issatisfied}.

Then, (7_, ._) E L/=_ is called an optimal solution if there exists e > 0 such that

(2.14)

J(T,_) <_ ff(T,g) V(T,g) E b/od satisfying lIT - ifll 1 + IIg - g[kro -< e.

We now show the existence and uniqueness of optimal solutions.

Theorem 2.2. There exists a unique optimal solution (if, _) E g4o_.
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Proof. We first clan that Z_ad is not empty. Let g - 0 and then let (T,g) 6

Hx(f/) x w(r_) be a solutionof (2.1)-(2.2);note that with g = 0, (2.1)-(2.2)is

equivalentto

_(_,s) + (u,_,s)_ = (Q,S)_ vs _ H/,(n),

= 0 on F_,

t = _2_7T- nlro.

By Lemma 2.1,(T,{)existsand (:_,0) 6 U_d. Now let{T("),9(")}be a sequence in

U_d such that

(2.16) a(T ("), S) + (u, T ("), S)n2 - (t ("), S)ro = (Q, S)n VS E Hl(f_),

(T(% R)ro- (a ("), R)ro= o vR _ H-1/'-(ro),

lim J(T("),g (")) = inf J(T,g),
,*--oo (T,g)E_d

for some t(") 6 R-1/=(r=). Then, using (1.10) and (2.13), we have that {llg(-)lll,ro}
is uniformly bounded which in turn yields that {[[T(")[[_} and {[[t(")[[_l/:,ro} are

uniformly bounded. We may then extract subsequences such that

g(") -- 9 in W(rc)

T (") -- T in//l(fl)

t (_) ---- t in//-1/_(r_)

T (") _ T in L2(fl)

T(")lr. -_ Tit. in L2(F,)

for some (:F,._)6 HI(_) x w(r¢). The lasttwo convergenceresultsabove follow

from the compact imbeddings HI(f/) C L2(f/)and HI/2(F_) C L2(F,). We may

then easilypass to thelimitin (2.16)-(2.17)to determinethat(T,9,_ satisfies(2.1)-

(2.2).Now, by the weak lowersemicontinuityof5(',"),we conclude that (J',9)is

an optima/solution,i.e.,

J(T,9) = inf J(T,g).
(T,g)eu._
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Thus, we have shown that an optimal solution belonging to/4ad exists. Finally, the

uniqueness of the optimal solution follows from the convexity of the functional and

the linearity of the constraint equations. [3

Let

L= _ 0 .J!, a 0 .

be a differential operator of the second order in divergence form on an open set f_

of R 2. We introduce the bi//near differentia/operator associated with L

2 OT OS _ OT

(2.18) Z(T, S)= #,_ a,# Ox---_Oz--_.+ _ c'-o_ziS"
i, '= i=1

Now, setting

(2.19) an = an =
/¢2 on _'_2,

(2.20) al_ = a_.l = 0 on gt,

0 on f/l,(2.21) c, =
Ui on _2,

where u = (Ul, u_), we have the following theorems.

Theorem 2.3. Let T be the solution of (2.5)-(2.6) and let T1 and T2 be the restric-

tions of T to _1 and _2, then Tt and T2 are solutions of a transmission problem

(2.22)

(2.23) a_(T:, S_) + c(u, T_,S=)= (Q_,S:)._ VS: e H_(_),

(2.24) T2= g on re,

(2.25) TI=T2 on r_,

OTI OT2
(2.26) _¢,_ + t¢?-_-n = 0

Proof. For the proof, see [12]. []

on r w .
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Theorem 2.4. If we suppose the restrictions of Q in (2.5)-(2.6) to _1 and ft2 are

C°°(f/, U r,_) and C°°(l_2 U F_), respectively, and g 6 C °=, then every solution

in Tl*(fl) of (2.5)-(2.6) has its restrictions T1, T2 to ftl, ft2 are C_°(fh u r,.),

COO(f_2 u F.), respectively, and therefore in particular the solutions of the transmis-

sion problem (2.22)-(2.26).

Proof.For the proof,see ([11],Proposition9,p592 ).

We definethe space H'(12)fors > i by

(2.27)

where

[]

H'(f_) = {T 6 Hl(n)lllTlli,,(.) < oo},

2

13,(.)= IITII..(.,).(2.28) IITII},.(.) IITI +
i=1

Theorem 2.5. Let T 6 H*(fl) be the solution of the problem (2.1)-(2.2). Then, we

have

(2.29) ]ITII,_.(.)+ ]]t[l_,/2(r.) < C]]Ql[uo(n).

Proo/.For the proof,see ([5],Theorem8.5.1). []

3. FIRST-ORDER NECESSARY CONDITIONS FOR THE OPTIMAL SOLUTION AND

AN OPTIMAL SYSTEM

We now proceed to derivethe first-orderoptimalityconditionsassociatedwith

problem (2.14).The optimal controlproblem (2.14)isequivalentto the following

minimization problem: Find g fiw(rc) such that/C(g):= ,I(T(g),g)isminimized

where T(g) 6 H*(f_)isdefinedas solutionof (2.1)-(2.2).By studying the Ggteaux

derivativeof the functional/C(g),we can obtainthe first-ordernecessaryconditions

for the optima/solution (7",9) in a straightforwardmanner. Let 9 be a solutionof

the minimization problem mingew(r=)/C(g),then forevery z 6 W(Fo) we have

(3.1) VA E R, /C(_ + Az) > ]C(_)

due to the definition of 9. In particular, we have,

(3.2) VA > 0,

and,

(3.3) w < 0,

x:(_+ _) - _:(_) > o

x:(9+ x_)- g(9)<_o
A
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which implies that the G£teaux derivative of K:(_)

(3.4) dK_(__.._)= d,7(T(_),_) _ O.
dg

Lemma 3.1. The mapping g --* T(g), from W(r¢) into Itl(ft), has a G6teauz

derivative (dT(a)/dg).z in e_e_ direction z E w(rc). Furthermore, (dT(g)/dg).z =

V(z) is the solution of

(3.5) a(V,s) + c(u,v, S),, - (7, s) = 0 vs e Hi(n),

(3.6) (v, R)ro= (z, R)ro VRe R-'/'(r,).

Proof. It is immediate from the linearity of (2.1)-(2.2). []

Now, we derive an optimality system from the first-order necessary condition

(3.4). For each fixed g, the derivative dIC(g)/dg, z for every direction z e W(F,)

may be easily computed

(3.7)

dE(g)

dg_ . z = _ / (Vg. Vz + gz) dr + l fr (T- T_)Y dr
c r

=_28(Vg, Vz)ro+_8(g,z)r,+l(T-T_,Y)o Vze W(I'¢),

where for each z e w(r_), v e Hl(fl)is the solution of (3.5)-(3.6).

Let (T,t) e Hl(f_) x H-1/2(F_) be the solution of (2.1)-(2.2) and let (_,r) e

_ar_(f_)x H-_/2(ro) be defined as the solution of the adjoint problem

= I(Z,T-Td)r, VZ E H_(ft),(3.8) a( Z_ ff2) + c(u, Z, ¢_)fl2 -q- (T, Z)F_

(3.9) (W, @)to = 0 WvV e H-_/2(F,).

Setting S = • in (3.5)-(3.6) and Z = Y in (3.8)-(3.9), we have that

(r,Z)r° = I(V,T- Td)r,.(3.10)

Thus, from the necessary condition (3.4), we see that the optimal value of the control

g satisfies

(3.11) (Vg, Vz)r, + (g,z)r° = l,(r,Z)ro Vz E W(I'c).

Collecting the above results, we obtain the optimal system
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(3.12) a(T, S) + c(u,T, S)n_- (t,S)r° = (Q, S)n VS E HI(f_),

(3.13) (T,R)r°- (g,R)r, = 0 VR E H-I/_(F_),

(3.14) a(Z,@)+c(u,Z,@)n,+(r,Z)ro=l(z,T-Td)r. VZ EHI(fl),

(3.15)

and

(3.16)

(w, @)r° = o vw E H-1/2(ro)

(vg, v=)r° + (g,,)r. = -_(-,Z)ro W E w(ro).

Integration by parts may be used to show that the system (3.12)-(3.16) constitutes

a weak formulation of the boundary value problem

(3.17) -xlAT = Q1 in f_l,

(3.18) -_;_AT + (u- V)T = (_2 + 2#(Vu + ruT): (Vu + Vu T) in _2_,

(3.19) T = g on re,

(3.20) --_IA_ ' = 0 in _1,

(3.21) -_2A_ - (u- V)@ = 0 in ft2,

(3.22) @ = 0 on r¢,

(3.23)

and

(3.24)

o___ 1
= ---:--(T- Td) on ro

On _;_7

- A,g + g = _V@- nit° on re.
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4. FINITE ELEMENT APPROXIMATION AND ERROR ESTIMATES

A finiteelement discretizationof the optimalitysystem (3.12)-(3.16)is defined

as follows.One may choosefamiliesoffinitedimensionalsubspaces V_ C H1(f_1),

V_ C H1(f_2) such that V_Ir. = V._hlr. These familiesare parameterized by

the parameter h thattends to zero;commonly, thisparameter ischosen to be some

measure ofthe gridsizein a subdivisionof f_intofiniteelements.Let V h = V_ U V)

and O h = Vh[r°, i.e.,O h consistsof the restriction,to the boundary re, of the

functions,belonging to V h. For allchoicesof conforming finiteelement spaces,we

then have that V h C H1(f_) and O h C //-I/2(F_).Next, letN h = Vh[r°. Again,

for allchoicesof conforming finiteelement spacesV h we have that N h C HI(F=).

Let Noh = N h N w(r=). For the subspaces V#, V_, O h and Noh, we assume the

approximation properties:thereexistan integerk and a constant C, independent

of h, 2"i,T_, tand g,such that

(4.1) inf lIT1 - T#I[I < Ch"[IT_[I,,+_,a , VTI 6 H"+_(f_l), 1 <_ m < k,
T_eV_

(4.2) inf [IT.,- T_[I_ _ Chmll_llm+1,a= VT; _ -_'_+_(f12), 1 _ m _ k,
T_eVt

(4.3)

and

(4.4)

inf II¢-thll-,.,r° < Ch'lltll..-,/_,r° W e _/_-'/-_(ro), 1 < m < k

IIg - ghll.,r° < Ch"-'+mllgll..+,/=,r°

VgEW(F_), l<rn<k, 0<s < 1.

A finite element algorithm for determining approximations of the solution of the

optimality system (3.12)-(3.16) is as follows: seek T h E V h, t h E 0 h, gh E Noa,

_h E V h and r h E 0 a such that

(4.5) a(Ta,Sh) + c(u, Th, S_)n, (ta, I,- S)r,=(Q,S _) vs h_v h,

(4.6) (T h,Rh)r"-(g_,Rh)ro=O R h60 h,

(4.7) _26(ga, Ka)ro + _2_(V,g h, V,Ka)ro = -(K a, ra)r. VK _ e N0a,

(4.8) a(Za,Oa)+c(u,Z_,Oa)n_ +(zh,ra)r°= l(z_,Th-T_)r. VZ h e V h
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and

(4.9) (W h, @h)ro = 0 _¢V h E oh(re).

The major task in this section is to obtain error estimates for the finite element

solutions. It turns out to be convenient to apply the Brezzi-Rappaz-Raviart theory,

even though our problem is linear. We introduce some spaces and operators, and

verify the requirements of that theory. In the following discussion, the constants at,

a2 and 6 will be held fixed. Thus, the system (3.12)-(3.16) and (4.5)-(4.9) depend

on the single parameter 3'.

Let X = ,_(_) × H-_/_-(ro) × W(ro) × H_(_) x H-_/_(r_), Y = (H_(_))" ×

H-1/=(ro) x (Ht(fZ))" and Z = L2(12) x z2(ro) x L2(r.). Let the operator/3 E

£.(Y,X) be defined as follows: I3(Q,e,P) = (&#,_, O, _, ?) for (_,_,/5) E Y and

(2_, _, ._, _,, ?) fi X if and only if

(4.10) a(t, s) + c(u, t, s),, - (_,S)r, = ((_,s), vs • H_(fl),

(4.11) (2, R)_° - (e, R)ro = 0 VR• H-'/_(ro),

(4.12) a26(_, K)ro + a26(V,._, V,K)ro = -(K, ?)r, VK • W(£¢),

(4.13)

and

(4.14)

a(z, _) + c(u, z, _)n, + (z, e)r° = (z,__)_ vz • H'(n)

(W, _)_° = 0 VW • H-'/:(n).

Note that this system is weakly coupled. First, one may separately solve the prob-

lems (4.10)-(4.11) for _' and t and (4.13)-(4.14) for _ and _; then, one may solve

the Laplacian problem (4.12) for g.

Analogously, the operator /3h • £(Y;X) is defined as follows: 13h(Q,O,P) =

(2#h, _,_h, @h,? t') for (0, 0, P) • Y and (_,h,_,_h, _,_h) • Z h if and only if

(4.15) a(_'_*, Sh) + c(u,_'n, Sh)., - (_,Sh)t"° = (Q,Sn)n VS_ • Vh,

(4.16) (_h Ra)ro_(O, Rh)r¢ =0 _'R h • O h ,

(4.17) a_6(#n, Ka)r, + x_5(V,# _, V, Kh)r, = --(Ka,rh)r, VK_ • No_,

(4.t8) _(z _, 6_) + _(u, z ', 6_),, + (z ', e')ro = (z ', P")_ vz ' • Y '
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and

(4.19) (w _, _h)ro = 0 vw _ e O_

The system (4.15)-(4.19) is weakly coupled in the same sense as the system (4.10)-

(4.14).

Theorem 4.1. The second order elliptic problem (4.10)-(4.14) has a unique solu-

tion belonging to X. Assume that (4.1)-(4.4) hold. Then the discrete second order el-

liptic problem (4.15)-(4.19) has a unique solution belonging to X h. Let (:2, t, _, _, e)

and (:2h,_h,_h, _h, _.h) denote the solutions of (4.10)-(4.14) and (4.15)-(4.19), re-

spectively. Then we have that

(4.20) IIe- T_II_ + IIZ- ell-_p-,ro + llg-.q_ll,,ro + II_ - _11_

+ lie- e_ll-,z_,r, - o as h -- 0

In addition, if(:2, E,j, _, e) E Ar_'(f_) x H'/2(ro) x H'(r,) x z_2(a) x R'/2(r¢), then

11:2- :2hll, + liE- PIl-,/_,ro + I1#- Ohll,,ro

(4.21) + I1_- _'_111+ lie - ehll-l/_,r°

< Ch(ll:211,_(.)+ ll'_lbm,,)).

Proof. First, it follows from Lemma 2.1 that the two second order eRiptic problems

(4.10)-(4.11) and (4.13)-(4.14) each have a unique solution (7_, t-) and (_, _) belong-

ing to Ht(f_) x H-'/=(ro), respectively. From the Babu_ka's theory, the discrete

second order elliptic problems (4.15)-(4.16) and (4.18)-(4.19) each have a unique

solution (:2h,_) and (_h,eh) belonging to V h x O h, respectively. Moreover, we

have that

11:2- :2_11,+ I1_- PIl-,/=.ro - o(4.22)

and

(4.23) I1_- _11, + lie - e_ll-,/_.r° -_ o

as h -- O,and if in _dditio_ (:2,_) e _-_(_) x H'/_(ro) and (_,e) e _(a) x
HZP(F,), we have that

(4.24) 11:2- :2_11.+ IF- ell-./_.r° < Chll:211a.(.),

(4.25) II_ - _11, + lie - ehll-,/2,r. <--Chll_lla,(,).
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Note that the problem (4.12) is a well known equation. Thus, we have that the

problems (4.12) and (4.17) both have unique solutions, that

(4.26) II#ll=,r°< Cllfll,n,r° < Cll'_llh,(,,),

(4.27) I1#- #_ll,.ro< C(II# - 9_111,ro+ lie - _ll-1/=.ro) V.#_ e tVo_.

Using (4.4), (4.22) and (4.23) we then have that

(4.28) ll#- #All,,,-o--*o as h -_ O,

and using (4.4), (4.24) and (4.25), we conclude that

(4.29) 119-9_ll,,r°-<Chl]_ll_=(.).

Then, (4.22), (4.23) and (4.28) yield (4.20), and (4.24), (4.25) and (4.29) yield

(4.21). []

Let A denote a compact subset of R+. We define the operator _ from A x

Z to Y as follows: _(-f,(T,t,g,{,r)) = (_,_),/3) for every (_,_),/3) 6 Y and

(7, (T, t, g, _, r)) E A x X if and only if

(_,s). = -(_l,s)., - (q=,s).. vs • HI(n),(4.30)

(4.31)

and

(4.32)

(6,R)ro = (-g,R)r° VR• H-'/=(ro)

(P,Z)n = -!(Z,T- T_)r. VZ •//l(g_),
7

where Q2 = _)_ + 2#(Vu + Vu T) : (Vu + Vur). The operator _ is obviously of

class C _°. The derivative of _ with respective to (T, t, g, _, r), which we denote by

Qx(7, (T,t,g, _, r)), can be defined as follows:

(T, t,g, _, r)) = (0, -g, -1T)(4.33) Gx('_,

for every (7,(T,t,g,{,r)) • A x X. Furthermore, 9(7,(T,t,g,{,r)) • £(X,Z).

Since A is a compact interv'd in R+ and the constant _;2 is fixed, we see that _ and

it's first and second Fr_chet derivatives and all locally bounded maps.

It is easily seen that the optimality system (3.12)-(3.16) is equivalent to

(4.34) (T, t, g, iI_,r) +/_(7, (T, t, g, {, r)) = 0

and that the discrete optimality system (4.5)-(4.9) is equivalent to

(4.35) (T h, t h, gh, _h, rh) + Bh_(7, (r h, t h, gh, {h, rh) = 0.
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Now, having verifiedthe hypothesesofthe Brezzi-Rappaz-Raviart theory,we may

use that theoryto deduce the estimate

liT- T_II_+ lit + IIg- g Ilk,r°_ thi[_l/2,ro h

(4.36) + I1_- _111 + lit - r 11-1/2,r°

<_Ch(llTlla,m) + II'_llk_m)).

We also have, from the theorem 2.5, applied to (3.12)-(3.16), the regulaxity estimates

(4.37) IITlla.m) + Iltlll/2,ro+ Ilglll,r°+ II¢ll_m) + Ilrlll/2,ro

___C(ll0110+ IIZ_llx/2,r.).

The combination of (4.36) and (4.37) results in the following error estimates.

Theorem 4.2. Let (T, t, _, r) be the solution of (3.12)-(3.16) and let (T h, t h, _h, T h)

be the solution of (4.5)-(4.9). Assume that T, _ E _2(fl); also assume that (4.1)-

(4.2) hold. Then,

][T- Thl]_ + lit- thl[__/_..ro + []g-gh]ll.ro

(4.38) + II¢'- ¢'_II_+ lit - _'hll-_/-.,ro

<__Ch(llOllo + llTdllx/2,r.),

where C is independent of h, T, _.

We note that higher oreder estimates axe possible if T is smooth in each sub-

domain f_l and f12.

5. NUMERICAL ALGORITHM

Let us consider the gradient method for the followingminimization problem:

Find g • w(rc) such that/C(g):= ,.7(T(g),g)isminimized where T(g) • H1(fl) is

definedas solutionof (2.1)-(2.2).

Tb.eclassicalSimple Gradient Algorithm proceeds as follows:

Given g(0);

(5.1) define g(_+_)=g(_)-1 dlC(g('*)) recursively.
_;26 dg

Recall from §3 that for each fixed g, the derivative dIC(g)/dg, z may be computed

(5.2) dlC(g)
d---_.z=n2,i(-A,g+g,z)+ I(T- Td, V)r, Vz • w(ro),

where for each z • w(r,), v • HX(fl) is the solution of

(5.3) _(v,s)+c(u,V,S)..=o vs • H_(_),
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(5.4)

From (3.13), we see that

(5.5)

MAX D. GUNZBURGER AND B'YUNG C. LEE

V = z on re.

0@ = I (V,T- T_)r.(-_:2_-n, Z)r o

Thus, (5.1) may be replaced by

for n = 0,1,2,...,

0@(-) \
g(°+')=g(")- (°)+g(°))- It.)set

(5.6) _;20 \ UT_ /

I0@(")

= A,g(") + _ O-_[r°,

where @(") is determined from g(") through the relations

(5.7) a(T ("),S) + c(u,T ("),S) = (Q, S) VS E//_(_),

(5.8) T (") = g(") on re,

and

@(')) + c(u, Z, _(")) = -I(Z, T <") - Td)r. VZ E H_)(gt),(5.9) dr(Z,
"7

(5.10) @(") = 0 on F¢.

Therefore, we have the gradient algorithm results in the following iteration:

Choose g(1);

for u = 1,2, 3,..., solve for T O) and _('_) from

a(T("),S) + c(u,T('O,S) = (Q,S) VS E H_(_t),

T (_) = g(") on re,

and
(5.11)

a(Z,+("))+ c(u,Z,@ (')) = 1-_(Z,T(")- T_)r. VZ E H_(ft),
7

@(") = 0 on F_,

then solve for g(,+l) from

1 O@ (")

g(.+1)= A,g(.)+ Z0___f_lr.

The convergence of the algorithm (5.11) is a direct consequence of the following

lemma.
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Lemma 5.1. Let IC be a real-valued functional on a Hilbert space X with norm

t1" ]Ix and scalar product (., ")x. Suppose that there ezist two constants rn and M

such that

i) K: has a local minimum at a point _ is of class C 2 in an open ball B centered

at _.,

ii) vueB, v(x,y)eSxZ, _"(u).(x,y)<Mllxllxllyllx,
m) V,_eB, v=eX, _"(,_)'(x,=)>mll_ll_-.

Let R denote the Riesz map, i.e. < f,z >= (Rf, z)x for all z e X and all f e X'.

Choose z (°) E B and choose a sequence {p_ } such that 0 < p, < p,_ < p" < 2m/M 2.

Then, the sequence {z(")} defined by

(5.12) z (_) = z ('-1) -- p, ILIC'(z (_-1)) for n = 1, 2,...,

converges to _,. Furthermore, if B = X and _ is a global minimum, then the gradient

algorithm converges to "2 for any initial value z (°).

Proof. see, e.g., [8] []

Theorem 5.2. Let (T("), _(_),g(")) be the solution of (5.11) and (T, _,g) the solu-

tion of (3.12)-(3.16). Then, if 76 is sufficiently large, g(") --,, g and thus, T (_) --* T

in Hl(f_) and f#(") -- ¢# in Hb(fl ) as n -- oo.

Proof. In (5.11), we have the fixed parameter p = 1/(_;e6). For each g e w(r¢),

the second Fr_chet-derivative IC"(g). (z, w) may be computed by

(5.13) IC"(g). (z, w) = _¢26(Vw, Vz)r= + tc26(w, Z)ro + I(U, V)r.,

where U E Ht(ft) and V E Hl(f_) are the solution of

(5.14) a(U,S)+c(_,U,S)=O vs e H_(_),

(5.15)

and of

(5.16)

U = w Oll re,

a(V,S) + c(u, v, S) = o vs • H}(a),

(5.17) U = z on re.
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One can easily have that ]lUll1 __ Cl[wlll,r. and IIV]]I __ C]lzlli,r., where the value

of the constant C depends only on _. Then,

;C"(g)- (z, w) _< _2611w]]l,ro[]zl]l,r= + C][w]ll,r°]]zl]l,ro

(5.18)
!

= (_:_ + C_)ll_ll__o11_11__°

and

(5.19)
_"(g).(z,z) = _]izll_.rc+ _ . IVl2 dr

Setting M = _6÷C/'7 and m = _:26, we have, if_,6 > C/((V_- 1)_:), 2m/M 2 >

p = 1/(_:._6). The other hypotheses of Lemma 5.1 are easily shown to be valid.

Hence, from that lemma, we obtain that

(5.20) g(") _ g in w(r_) as n -- oo.

The desired convergence results follow from the a priori estimate (2.4). []

Of course, the _adient algorithm (5.11) is applied to the discrete equations.

Then, we have two contribution to the errors in the computational solution, the

discretization error T - T h and the iteration error T _ - T h("). In a practical point

of view, it is difficult to calculate A,g(,O in the last equation of (5.11). By using

(3.24), we can substitute (5.11) by the following iteration:

(5.21)

Choose g(1) and @(0);

for n = 1, 2, 3,..., solve for T (') and @(") from

a(T('_),S)+c(u,T("),S)=(Q,S) VS E H_)(fl),

T (") = g(") on re,

and

1

(2(Z, @(")) + c(u, Z, @(")) = _(Z, T (") - Td)r.

@('_) = 0 on r_,

then solve for g(,+l) from

1 (0_ ('_-11g(,+l) = g(,_) _ 6 cOn

vz e H_(_),

cO@(")
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6. NUMERICAL EXPERIMENTS

Test 1 : We consider that the domain fl is the unit square (0, 1) x (0, 1) C R 2,

sub-domain Fit = (0, 1) × (0.75, 1) and sub-domain _2 = (0, 1) x (0,0.75). Let

re = (0.075,1)× {0.75}c r, = (0,1)× {0.75}and ro = {0) × (0,0.75)(s_ Figure
1 without the bump on the bottom boundary).

The finite element spaces V# and V_ ate chosen to be piecewise quadratic ele-

ments on a triangle mesh such that V# = V_ on r_. We use the mesh size h = 1/12

for all computation. Of course, calculations with varying mesh sizes were performed.

In this paper, not being interested in the convergence history with varying mesh

sizes, we do not report them.

Now, we consider the following problem

(6.1) - AT = 6.0 on £lt,

(6.2) - 2AT+ (u-V)T = 0 on _2,

(6.3) T = 1 +g on Fo,

OT

(6.4) 0--_= 0 on on\re,

where the velocity u is the solution of the Navier-Stokes equations

(6.5)

the incompressibility constraint

(6.6)

and the boundary condition

(6.7)

(6.8)

(6.9)

- Au+ (u.V)u+Vp= 0 in_2,

divu=0 in_2,

u = h on re,

u=0

Out
m = 0 and
On

where u = (ut,u2) and h = (1.5y- 2y_,0). To get approximate solutions for the

Navier-Stokes solutions, we use the Taylor-Hood finite element on the domain _2.

Actually, we have simple solutions u = (1.5y - 2y 2, 0) of the above Navier-Stokes

problems.
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-),= i,_i= 1

3'--0.01,6 --0.003

liT- 1.2110,r"
2.88669 x 10-_

1.93423 x 10 -s

Ilgllro J(T,g)
15.63322 15.64765
78.80300 0.333120

TABLE 1. The numerical results for Test 1.

Note that since all data in (6.1)-(6.9) are sufficiently smooth in each domain _

for i = 1, 2, we may assume that T E/]r,(_), s > 3 from the theorem 2.4. Thus we

may use piecewise quadratic elements for the finite element approximation for the

fast convergence with respect to h.

When g = 0 in (6.3), we say that the problem (6.1)-(6.9) is an uncontrolled

problem. The numerical solution of the uncontrolled problem is shown in Figure 2

and Figure 3 in which one can see that the temperature is above 2.0 on (0.3, 1) x

{0.75} and even higher in the domain (0.3,1) x (0.75,1).

Now, we try to get the desired temperature distribution along to. One can choose

any reasonable desired temperature Td on r_, but we choose the parameter Ta = 1.2

on ro, thus we have

1 Ir - 1.21dr+ (Igl+ Iv.gl(6.10) J(T,g) = _ , o

For the various choices of the parameters _/and 6 appearing in the functional (6.10),

the computations were performed. In this paper, we report the numerical results

for the cases

(1) _ = 6 = 1,

(2) _/= 0.01 and 6 = 0.003.

The costs are shown in the Table 6.

In Figure 4-7, we plot the surfaces of the temperature T and adjoint state _ for

each case. If one chooses the relatively small 76, then one can have the relatively

small value of liT- 1.2110,r ..

Further reinforcement of our conclusions can be obtained from Figure 8 and 9 in

which are found contour plots of the temperature T and adjoint state _.

In Figure 10, we plot the approximate optimal control gh on the boundary re. In

Figure 11, we compare the temperature distribution on ro in the uncontrolled case

with the optimal temperature distributions in the controlled cases.

Test 2 : We solve the problem (6.1)-(6.9) with h = (1.5y-2y 2, 0) on the domain

which has a bumped boundary (see Figure 1 and 12). We assume that all parameters
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FIGURE 2. The temperature surface plot for the uncontrolled problem.

FIGURE 3. The temperature contour plot for the uncontrolled problem.



24 MAX D. GUNZBURGERANDHYUNGC. LEE

FIGURE4. The surfaceplot for the temperatureT (T = _f = 1).

C5

°c

FIGURE 5. The surface plot for the adjoint state ¢ (7 = _f = 1).
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FIGUItZ 6. The surface plot for the temperature T (7 = 0.01, _f = 0.003).

FIGURE 7. The surfaceplotforthe adjointstate(_(V --0.01,_ = 0.003).
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FIGtJ RE 8. The contour plots for the temperature T(left) and adjoint

state _(right) (7 = 6 = 1).
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FIGtl RE 9. The contour plots for the temperature T(left) and adjoint

state ¢(right) (_f = 0.01, _i = 0.003).
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FIGURE 10. The optimal controls on Ft.
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FIGURE 11. The temperature distributions on F,_.
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7=1,/_=1

7 = 0.01,/_ = 0.002

lit- 1.2[10,r¢
3.77877 x 10 -2

3.13342 × 10 -a

IIgllrc fl(T,g)
18.65837 18.67727

117.14224 0.390956

TABLE 2. The numerical results for Test 2.

and data are the same as in Test 1. To get the approximate solutions for the Navier-

Stokes equations, we also use the Taylor-Hood finite element on the domain f_2.

We report the numerical results for the cases

(I) 7=_=i,

(2) 7 = 0.01 and/_ = 0.002.

The costs are shown in the Table 6. We get the almost same results as in Test

1 except that we need a little more control g on F_. Thus, even though the fluid

flow is moderately complicated, given any ¢ > 0, we can have 7 and $ such that

lIT - Tall0,r. < e when 7/_ is sufficiently small.

In Figure 12, we plot the temperature contour for the uncontrolled problem. In

Figure 13-14, we have the contour plots of the temperature T and adjoint state @

for each cases. Finally, Figure 15-16 display the approximate optimal control gh

along F¢ and the temperature distributions on I'o, respectively.

Remarks : For the case 7 = /5 = 1, it was found that 10- 15 iterations were

sufficient to get the optimal control g. Since v = 1 and maximum velocity is 1,

the control g affects the temperature distribution on I', very weakly. For the case

that 7/5 is small, for example 7/5 < 0.1, our gradient method does not converge.

Thus, we need to adjust the iteration step size. In such case, we need a significant

number of iterations. Thus, one may look for an efficient iteration algorithm. But

the good news is that the iteration algorithm requires only one LU factorization and

the same number of back and forward substitution as the iteration number, i.e., a

comparable number of floating point operations relative to that required for solving

the full coupled system (4.5)-(4.9). Of course we assume that h is sufficiently small.
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FIGURE 12. The temperature contour plot for the uncontrolled problem.
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FIGURE 13. The contour plots for the temperature T(left) and ad-

joint state {(right) (3' = _f = 1).
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FIGURE 14. The contour plots for the temperature T(left) and ad-

joint state _b(right) (7 = 0.01, _ = 0.002).

2
k:

3 o

-I

o -2

-3

-4

Uncontrolled

---*-- 6=1,7=1

---e-- 6=0.01,7=0.002

I , I , I , I _ I , I _ I _ I

0.0 0.1

Solid Part

I , 1 k I

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Y

FIGURE 15. The optimal controls on re.
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