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A study of the fine scale motions of
incompressible time-developing mixing layers

By J. Soria I, M. S. Chong 2, R. Sondergaard 3,

A. E. Perry 4 AND B. J. Cantweli a

This work is an extension of a project conducted at the previous CTR summer

program and was reported by Chen et el. (1990). In that program, the geometry
and topology of the dissipating motions in a variety of shear flows was examined. All

data was produced by direct numerical simulations (DNS). The partial derivatives
of the velocity field were determined at every grid point in the flow and various
invariants and related quantities were computed from the velocity gradient tensor.

Motions characterized by high rates of kinetic energy dissipation and high enstrophy

were of particular interest. Scatter diagrams of the invariants were mapped out and
interesting and unexpected patterns were seen. Each type of shear layer produced

its own characteristic scatter plot.

In the present project, attention is focused on the incompressible plane mixing

layer, and the scatter diagrams are replaced with more useful joint probability
density contours. Comparison of the topology of the dissipating motions of flows

at different Reynolds numbers are made. Also, plane mixing layers at the same

Reynolds number but with different initial conditions are compared.

1. Method of approach

The velocity gradient tensor may be broken up into a symmetric and an antisym-

metric part Aij = Oui/Ox) = Sij + Wij where Sij = (Oui/Oxj + Ouj/Oxi)/2 and

Wij = (Oui/Oxj -OuffOxi)/2 are the rate-of-strain and rate-of-rotation tensors,

respectively. The eigenvalues of Aij satisfy the characteristic equation

A_ + pA2 + QA + R = 0 (i)

where the matrix invariants are:

P = -(All + A22 + A33) = -trace[A] = -Sii
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and

jA,, r iA,1A131IA2,A 3jQ = A21 A22 "{-[A31 A33 -k- A32 a33

1
= [p2 _ trace[A ]]

= ½[P - S isi -

All

R=- A21

Aal

A12 AI3

A22 A23

A32 a33

= - det[A]

+ 3PQ - trace[A3])

(3)

3PQ - SijSjkSk_ -- 3WijWj_S_i).

It can be shown that, in the P - Q - R space of matrix invariants, the surface
which divides characteristic equations with three real solutions for the eigenvalues

from characteristic equations with one real and two complex solutions is

27R 2 + (4P 3 - 18PQ)R + (4Q 3 - p2Q2) = 0. (5)

A detailed discussion of the properties of this surface is given in Chong, Perry &

Cantwell (1990) along with a guide to the various possible elementary flow patterns
which can occur in different domains.

Much of the discussion in this report concerns the symmetric part of the velocity

gradient tensor, the second invariant of which is proportional to the negative of the

kinetic energy dissipation. The invariants of the rate-of-strain tensor, Ps, Qs and

Rs, are generated by setting the components of Wij to zero in the above relations.
The flows considered are, with one exception, incompressible hence P = Ps = 0.

Thus the local geometry of the flow is completely described by the second and third

invariants (Q, R) and (Qs, Rs). The second invariant of the rate-of-rotation tensor,

Qw, is non-zero and is proportional to the enstrophy. The first and third invariants
of the rate-of-rotati0n tensor are identically zero.

The method for classifying the flow structure was first developed at the 1990

CTR summer program by Chen et al. (1990) and is described as follows:

(i) Evaluate the nine partial derivatives of the velocity gradient tensor at every point
in the computed field.

(ii) Evaluate Q, R, Qs, Rs and Qw at every point.

(iii) Create scatter plots of the results in the space of invariants, Q versus R, Qs
versus Rs , and -Qs versus Qw.

Figure 1 illustrates the various flow topologies which can occur in the plane P = 0.

The intersection of this plane with the surface (5) is given by

n = +2--_(-Q)3/2 (6)

(4)
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FIGURE 1. Three-dimensional topologies in the Q - R (P = 0) plane.

which divides real solutions from complex solutions as indicated.

For the case P = 0, the second invariant is

1 W_
Q = _[w,i ,i - S_is,,] (7)

where the indices have been switched to indicate explicitly that Q is formed from

the difference of two terms, each of which is a positive sum of squares. The local

topology has complex or real eigenvalues depending on whether the (Q, R) pair

evaluated at a given point in the flow lies above or below (6).

The mechanical dissipation of kinetic energy due to viscous friction is

¢ = 2vSijS_j = -4vQs. (8)
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FICURE 2. Scatter plots of (a) O vs. R, (b) Q, vs. Rs, (c) -Q, vs. Q,_, for hipairez

at tU/_o = 29.8, and (d) Q, vs. Qw for a compressible mixing layer computed by

Chen (1991) at tU/5o = 72.0.

Large negative values of Qs correspond to large rates of dissipation of kinetic energy.

Large negative values of Q indicate regions where the strain is both large and

strongly dominant over the enstrophy. Large positive values of Q indicate the
reverse.

2. Results

We will consider in this paper the incompressible (P = 0) plane mixing layers

computed by Rogers and Moser at NASA Ames. Three direct numerical simulations

(DNS) are considered, namely, hipairez, mega , and tbl. The cases hipairez and mega
were initiated from laminar error function profiles, and tbl was initiated with two

turbulent boundary layer realizations with equal and opposite free stream velocities

placed on opposite sides of a dividing plate which was dissolved at time t = 0. The

initial turbulent boundary layers were DNS computations of Spalart (1988).
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FIGURE 3. Planar x-z average Q, vs. cross-stream direction V for hipairez at

tU/6o = 22.3, 25.3, 29.8.

,2,'

0.010

0.008-

0.006-

0.004"

0.002-

i / P(-Qs)

:4;i' _iiiiiii................._......................................................................................i............................

"* ...... " ......... Illir ..... '
0.000

0 2 4 6 8 10

-Qs

FIGURE 4. Weighted Probability Density Functions P(-Q,) and (-Q_)P(-Q,)

vs. -Q, for hipairez at at tU/6o = 29.8.
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FIGURE 5. Vorticity thickness Reynolds number R6 vs. non-dimensional time for

the incompressible mixing layers.

Table I

hipairex mega

AU = U2 - U1 2 2

Initial vortieity thickness, go 1 1

Viscosity, v 1/250 1/250

Initial Re = AU6o/2v 250 250

tbl

2

1.4

1/5oo
7OO

All cases were computed as time developing layers and Table I shows the prop-

erties of the layers. Details of the hipairez results have been reported by Moser &

Rogers (1990) and Rogers & Moser (1992). Unless otherwise stated, all results are

normalized by half the velocity difference across the layer, U, and the initial vortic-
ity thickness g0. Figures 2(a), 2(b) and 2(c) show scatter diagrams taken from Chen

et al. (1990). These diagrams are made up of the entire data set for a given time.
Figure 2(a) shows that most of the high gradient motions belong to the topology of

stable focus stretching. Figure 2(c) is most informative. Data which falls on the line

of 45 ° through the origin represents high dissipation accompanied by high enstro-

phy. It can be shown that such points come from vortex sheets where most of the
rate-of-strain is dominated by the velocity gradient within the sheet. Data which

lies along the horizontal axis represents high enstrophy with little dissipation as

would occur in solid body rotation in vortex tubes. As a matter of interest, Figure

2(d) shows a plot from a compressible mixing layer computation by Chen (1990),

and, according to the figure, the data could be described as primarily sheet-like.

The reason for this is a mystery at this stage.
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FIGURE 6. Q vs R for hipairex, tU/_ = (a) 19.3, (b) 22.3, (c) 25.3, (d) 29.8.
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FIGURE 7. Q, vs R, for hipairex, tU/_ = (a) 19.3, (b) 22.3, (c) 25.3, (d) 29.8.

Classical arguments, based on the idea that dissipation of turbulent kinetic energy
scales with productioni:lead to the following estimates:

--OU
' ' -u'v'-- (9)

e = 2uSijSij = Oy

where the S_i are fluctuating non-normalized strain rates. Results from experiment
show that for fully developed shear layers

-_--rY'/(Au)2 __.012-

w

_UeU t

4U 2 •
(10)

From (9) and (10) it can be shown that

' '-=.096U3/_ (11)e = 2uSijSij
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FIGOaE 8. -Q, vs Qw for hipairez, tU/8 = (a) 19.3, (b) 22.3, (c) 25.3, (d) 29.8.

For time tU/6o = 29.8 in hipairez where the vorticity thickness has increased by a
factor of 6.5 over the initial thickness, the Reynolds number R_ based on the current

vorticity thickness, 6, and the velocity difference across the layer is 3000. Hence

o,,ij -_ij v__________0.,, _"096 R6 = 1.704. ( 12)
U 2 - 4
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FIGURE 9. Q vs R for raega, tUl,_ = (a) 21.0, (b) 25.0, (c) 35.0, (d) 49.0•

One would expect the average value of this quantity at the midplane of the mixing
layer to be of this order.

Mean profiles of ,Qs at various times are shown in Figure 3 and are half the value

indicated by (12) which is indicative of the production of kinetic energy. This ratio of

about 2 for production to dissipation is in agreement with the fully developed value

obtained from experiments by Bradshaw & Ferriss (1967). An order of magnitude
analysis similar to (12) reported by Chen et hi. (1990) giving the value of 18.2 was
in error due to incorrect normalization of the variables.

Figure 4 shows the weighted probability density function of -Qs over the entire
volume of the mixing layer, and most of the contribution comes from -Qs between

0 and 3. Although the far flung values of -Qs on the scatter diagram tend to

follow interesting patterns, they contribute only of order 10% to the total energy

dissipation. For this reason, it was felt that scatter diagrams should be replaced

by joint probability density diagrams with contours corresponding to the logarithm

of the probability density function so that possible ridges could be seen in regions
which are highly darkened in the scatter plots•
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FIGURE 10. Oo vs Ro for mega. tU/,_ = (a) 21.0, (b) 25.0, (c) 35.0, (d) 49.0.

From (11) and (12) it can be seen that Qs normalized by the current vorticity
thickness scales with R6, and, therefore, it seems likely that Rs should scale with

R3/2 This would imply that the data should follow a curve
6 •

IR, I _ (IQ, I)_ (13)

This relationship is what one might expect purely on dimensional grounds, but

there is no rigorous proof. It is interesting to note that such a curve on the Qs

versus Rs plot represents a rate of strain geometry where the principal rates of

strain a, _ and _' are in a constant ratio to one another. For the data set hipairez,
points of high dissipation follow closely the curve corresponding to the ratio of

o: _: 3' = 3 : 1 : -4, which was observed by Ashurst et al. (1987) in studies of

forced isotropic turbulence. In addition, as noted by $ondergaard et al. (1991), the

vorticity vector tends to align itself with the second principle rate of strain _. It
should be noted that while other data sets analyzed by Sondergaard et al. (1991)

show the same vorticity alignment, the 3: 1:-4 ratio of rates of strain is not always
observed.

The result depicted in 2(b) is that motions characterized by very high rates of

dissipation (large negative Qs) clearly show a preference for the right half plane of
Figure 2(b) corresponding to a local topology of the rate of strain tensor which is
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FIGURE 11. -Qs vs Qw for mega. tU/6 = (a) 21.0, (b) 25.0, (c) 35.0, (d) 49.0.

of the type saddle-saddle-unstable node (eL Figure 1). From Figure 2(a), it can be

seen that the velocity gradient tensor admits all possible incompressible topologies

although there is, nevertheless, a great deal of structure in Figure 2(a). Not only

is the basic scaling (12) observed, but it appears that, with a modest amount of

scatter, the fine scale motions follow a relation of the form

R, -_/_ (-Q,)_. (13)

The positive quantity K is expected to be a function of the Reynolds number with
an upper limit of K = 2v_/9 corresponding to locally axisymmetric flow (of. Figure

1).

3. Comparison with high Reynolds number flows

Figure 5 shows a plot of Reynolds number based on current vorticity thickness

for the three cases mentioned earlier. Figures 6, 7, and 8 show the invariant plots
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FIGURE 12. Q vs R for tbl. tU/6 = (a) 0.0, (b) 26.25, (c) 47.5, (d) 76.25.

for hipairez in contour plot form for the joint probability density distributions.
Figures 9, 10, and 11 show the results for raega. These results are similar to the

scatter diagrams given in Figure 2 but are corrected for nonuniform grid spacing.
More structural features are apparent, and an interesting feature in Figures 6 to 8

is that velocity gradients tend to increase with time and at the latest time show

a decrease. In fully developed turbulent plane mixing layers, if dissipation scales

with production, then according to the Kolmogorov scaling, the velocity gradients
should decrease with time. According to this reasoning, hipairez is under-developed
for most if not all of the times shown. It is unclear whether, at the latest time, the

gradients are beginning to decrease because the flow is reaching a fully developed
state or because of constraining by the grid. Figures 9, 10, and 11 show the results

for mega, and there appears less pronounced sheet-like structures but more tube-like

patterns for the higher Reynolds numbers.

Figures 12, 13, and 14 show similar results for tbl. which started out as two



114 J. Soria, M. S. Chong, R. Sondergaard, A. E. Perry, _ B. J. Cantwell

Q$ Qs

Q$ Qs

FIGURE 13. Q, vs R, for tbl. tU/_f = (a) 0.0, (b) 26.25, (c) 47.5, (d) 76.25.

turbulent boundary layers and then developed to a much higher Reynolds number

than hipairex. Figure 12 is most interesting. It shows that all data points for

the turbulent boundary layer cluster near the origin of the Q versus R plot and

suddenly explode to much higher gradients in the plane mixing layer. These pictures

graphically illustrate how much greater velocity gradients become when the wall
constraint of a turbulent boundary layer is removed. It should be noted that near the

wall, the Q and R of a turbulent boundary layer are small even when the gradients

aren't. A better measure of the relative magnitudes of the velocity gradients can

be inferred from figure 14. Again, the gradients tend to grow and then diminish

at late times. The Qs versus Rs plot shows that the strain rates tend to follow a

different curve, closer to the real-imaginary dividing surface (6). Hence, this aspect

of the fine scale motion appears to be Reynolds number dependent. The plots in
Figure 14 show that the turbulent boundary layer structures at t t = 0 are sheet-like,

but, in contrast to hipairez, there are no preferred structures revealed by the -Qs

versus Qw plot for later times (cf. Figure 8). As with hipairex the Q versus R plot
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FIGURE 15. Vortex lines for tbl at tUI6 = 0.0.
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FIGURE 16. Vortex lines for tbl at tU/_ = 76.3.

FIGURE 17. Streamlines for tbl at tU/$ = 76.3.

shows that most of the gradients belong to the topology of stable focus stretching.

The highly organized patterns seen in Chen et al. (1990) for hipairex are replaced

by most complex structures in tbl. Vortex lines for tbl are shown in Figures 15 and

16. Shown in Figure 15 is the initial turbulent boundary layer, and the attached

eddies which lean approximately 45 ° to the mean flow direction are apparent. In

Figure 16 are shown vortex lines of the plane mixing layer after some development.

Although no clear spanwise rollups are apparent from this vorticity plot, Figure 17
shows instantaneous stI:eamline patterns which indicate possible large scale spanwise

roll-ups.

4. Comparison of two initial conditions at the same Reynolds number

From Figure 5, it can be seen that there is an overlap of Reynolds nmnt)ers for

mega and tbl. In fact, they both share a Reynolds number of 5000 as indicated ill the
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Rescaled Q vs. R plots for (a) mega at tU/_ = 49.0, (b) tbI at
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Rescaled Q, vs. R, plots for (a) mega at tU/6 = 49.0, (b) tbl at
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FIGURE 20. Rescaled -Q_ vs. Qw plots for (a) mega at tU/6 = 49.0, (b) tbl at

tU/_ = 61.0.

figure. Figures 18(a) and (b) show Q versus R plots of tbI and mega, each scaled with
the current vorticity thickness and appropriate velocity U. The joint probability

density contours have been rescaled to account for the different population density

of points. Figures 19 (a) and (b) show the corresponding -Qs versus Qw plots for

comparison. Although the shape of the plots are roughly the same, there appears
to be a major difference in the scaling, indicating that the velocity gradients in tbl

are considerably lower than in mega for the same Reynolds number. The reasons

for this difference need to be pursued in future work.

5. Conclusions

In all flow cases considered here, motions with the highest dissipation of ki-

netic energy per unit volume were of the topological classification stable focus with

stretching as found from Q - R plots.
In the case designated as hipairex, the flow was initiated from a laminar layer with

an error function profile and the maximum Reynolds number R6 to which the flow

evolved was 3000. Here, the highly dissipative motions were usually accompanied

by a high enstrophy indicating a vortex sheet-like structure. From Qs versus Rs

plots, the rate of stain tensor for dissipating points had a topology of unstable node
saddle-saddle with the rate of strains being of a given ratio and with the vorticity
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vector tending to align with the intermediate strain/3.

In the case of tbl, which was initiated from two turbulent boundary layers placed

back to back, the highest local Reynolds number considered was R6 = 9000. Here,

the -Qs versus Qw plots indicated no preferred structure for the highly dissipating
motions although the Q - R plots indicated a strong preference for stable focus

stretching. Also, the Qs versus Rs plots showed that the highly dissipating motions

tend toward _:/3: 3' = 1 : 1 : -2. No vortieity alignment checks were made, but it is

expected that the vorticity vectors will tend to align with the 13axis (of. Sondergaard
et al., 1991).

Comparison of two flows at the same local Reynolds number but with two entirely

different initial conditions was made using flow cases designated mega and tbl. Plots

of Q versus R and -Qs versus Qw when nondimensionalized appropriately show

essentially the same topological structure and scaling from R_ = 5000 even though
mega was initiated from a laminar error function profile layer and tbl from turbulent

boundary layers. Although the shape of the plots are roughly the same, there

appears to be a major difference in the scaling, indicating that the velocity gradients

in tbl are considerably lower than in mega for the same Reynolds number. The
reasons for this difference need to be pursued in future work.
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