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The evolution equation for the flame surface

density in turbulent premixed combustion

By A. Trouv_ 1 AND T. Poinsot _

One central ingredient in flamelet models for turbulent premixed combustion is
the flame surface density. This quantity conveys most of the effects of the turbulence

on the rate of energy release and is obtained via a modeled transport equation, called

the E-equation. Past theoretical work has produced a rigorous approach that leads
to an exact, but unclosed, formulation for the turbulent E-equation (Section 1.2).

In this exact E-equation, it appears that the dynamical properties of the flame

surface density are determined by a single parameter, namely the turbulent flame
stretch. Unfortunately, the flame surface density and the turbulent flame stretch

are not available from experiments and, in the absence of experimental data, little

is known on the validity of the closure assumptions used in current flamelet models.

Direct Numerical Simulation (DNS) is the obvious, complementary approach to

get basic information on these fundamental quantities. In the present work, three-
dimensional DNS of premixed flames in isotropic turbulent flow is used to estimate

the different terms appearing in the E-equation (Section 2.1). A new methodology is

proposed to provide the source and sink terms for the flame surface density, resolved
both temporally and spatially throughout the turbulent flame brush (Section 2.2).

Using this methodology, the effects of the Lewis number on the rate of production
of flame surface area are described in great detail and meaningful comparisons with

flamelet models can be performed (Section 3). The analysis reveals in particular

the tendency of the models to overpredict flame surface dissipation as well as their

inability to reproduce variations due to thermo-diffusive phenomena. Thanks to the
detailed information produced by a DNS-based analysis, this type of comparison

not only underscores the shortcomings of current models but also suggests ways to

improve them.

_=

1. Introduction

1.1. The flameIet approach for turbulent premizcd combustion

Premixed turbulent combustion is the propagation of a chemical reaction zone

through a turbulent, molecularly mixed region of fuel and oxidizer. The turbulent
flame is characterized by the topology of the region in which reaction occurs: front,

pockets, or large volumes. Depending on the relative values of various chemical
and turbulence scales, dimensional analysis reveals a range of premixed combustion
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modes progressing from flamelets to distributed reaction zones to well-stirred reac-

tors (Barr6re 1974, Bray 1980, Borghi 1985, Peters 1986, Williams 1985, Poinsot ef

al. 1990). These modes correspond to different topologies of the reaction zone and

require different approaches for both understanding and modeling.

Experimental as well as theoretical evidence suggests that many technologically
important flows occur in the flamelet burning mode. Flamelet combustion corre-

sponds to chemical reaction occurring at fast time scales and short length scales

relative to the turbulence. In this situation, the flame is confined to relatively thin
layers within the turbulent flow field.

In the flamelet regime, it is convenient to describe the flame-flow interactions in

terms of two basic ingredients: a flame speed that characterizes the flame structure

and the flame front surface area. For instance, the mean reaction rate may be

written as the product of the mean fuel consumption rate per unit flame surface

area times the flame surface density:

(;R) = (p=YR,.(Sc)s) (1)

where &n is the mass of fuel consumed per unit time and per unit volume; p_,

and YR,,, are respectively the density and the fuel mass fraction in the unburnt

gas; Sc is the local integral of the reaction rate along the flame normal direction,

Sc = f DRdn, and characterizes the local combustion intensity; and Er is the flame

surface area per unit volume. The flame surface density is defined as the expected
value for E': _ = (_').

In Eq.(1), the flamelet speed, (Sc)s, accounts for local variations of the reaction

rate along the flame surface. Laminar flame theory indicates that the local flame

structure is modified by flow divergence, usually characterized by the hydrodynamic

strain rate acting in the flame tangent plane as well as by flame front curvature.

Under certain conditions, these variations can become critical and lead to partial

or total quenching of the flame. Recent studies, however, using Direct Numerical

Simulations (DNS) suggest that quenching is a rather unlikely event for turbulent

premixed flames (Poinsot et aI. 1990). In addition, although the local combustion

intensity may exhibit large variations along the turbulent flame front, particularly

for non-unity Lewis number flames, DNS suggest that these variations always tend

to cancel in the mean (Haworth & Poinsot 1992, Rutland &_ Trouv6 1991). In the

simulations, the mean fuel consumption speed, Sc, defined as the area-weighted,

space-averaged value of Sc integrated along the turbulent flame surface, remain

within 10% to 30% from the one-dimensional, laminar flame speed value, SL.t

Thus, it appears that in the absence of quenching, the mean fuel consumption

speed, _c, is only weakly sensitive to the flow field and the principle effect of

turbulence is for the fluctuating velocity field to wrinkle the flame and greatly
increase its surface area. This phenomenon accounts for most of the increase in the

u

Note that SC is a space-averaged quantity and should not be confused with (SC)S which is

an area-weighted ensemble-average as defined in section 1.2 and, therefore, depends on location

within the turbulent flame brush (see Figure 7)
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overall burning rate due to the turbulence and is represented in Eq.(1) through the

flame surface density, _.

I._. The evolution equation for the flame surface density,

In current flamelet models, the flame surface density, E, is obtained via a modeled

transport equation. This equation was first postulated by Marble & Broadwell

(1977) based on phenomenological grounds. A more rigorous approach was later

proposed by Pope (1988) and Candel k Poinsot (1990) who derive an exact balance

equation for the flame surface-to-volume ratio, E':

E

-_-+ v.xs = (v._:- nn: v_) s',
(2)

where X is the displacement speed of the flame surface, given by the sum of the fluid
velocity and the flame propagation speed in the normal direction: :K = u -{-wn; n is

the unit vector normal to the flame surface; and where we use tensorial notations:

(nn VX) n 0g_: _ ni J azj "

The right-hand side of Eq.(2) can also be expressed in terms of flame stretch.
The flame stretch, k, is defined as the rate of change of a Lagrangian flame surface

element, ,SA:
d(SA) O(i_A)

k = dt - -_- + _.V(_A) (3)

A more useful expression for k is in terms of strain rate, flame curvature, and flame

propagation speed (see for example Candel & Poinsot 1990):

k = aT q- 2Wkm, (4)

where aT is the rate of strain acting in the flame tangent plane: aT = V.u-nn : Vu;
and km is the flame surface curvature, as given by the divergence of the flame normal

direction: 2kin = V.n. In Eq.(4), positive curvature is chosen convex towards the

reactants.
Using Eq.(4), the balance equation for the flame surface-to-volume ratio can be

re-written as:

-_- + V._r,' = k (5)

When ensemble-averaged, this equation yields an exact balance equation for the

flame surface density (Pope 1988, Cant et al. 1990):

J --&-+ v.(_,)sZ = (k)s s,
(6)

where the flame surface mean of any quantity Q is given by: (Q)s = (Q_,')/(Z') =

(Q_')/Z. Note that surface means are different from standard means; in partic-
ular, the surface mean of a quantity Q is different from the ensemble mean of Q

conditioned on being at the flame location (see section 2.2).

==
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Eq.(6) can be cast in various forms. For modeling purposes, it is useful to split the

velocity vector into a mean component and a turbulent fluctuation: u = (U) + u'.
We can then re-write Eq.(6) as follows:

0E

-_- + V.(U)E + V.(U')s_ + V.(Wn)s _ = (aT)$ _ + (AT)s E + 2(wkm)s _,, (7)

where we use the following notations:

!

(aT)S = (_7.u' -- nn : Vu )s,

(AT)s = V(U) - (nn)s : V(U)

The three convective terms on the left-hand side of Eq.(7) are transport terms

that correspond respectively to convection by the mean flow, turbulent diffusion,

and flame propagation. The terms on the right-hand side of the equation are the

source and sink terms for the flame surface density: (aT)s is the turbulent strain

rate acting in the flame tangent plane, (AT)s is the strain rate due to the mean

flow field, and 2(wkm)s is a term that accounts for the combined effects of flame

curvature and flame propagation.

The principle effect of turbulence is to increase the flame surface area, and (aT)S
is without ambiguity a source term in the equation for _. The effect of the mean

flow field as measured by (AT)s is problem dependent; depending on the flow
configuration, its sign can be positive or negative. We now focus attention on the

last term in Eq.(7), referred to as the propagation term.

In many situations, flame propagation effects merely counteract the wrinkling

due to the turbulence and the propagation term, 2(wkm)s, is, therefore, expected

to be negative. Consequently, this term is usually described as a sink term in

flamelet models. There are some situations, however, where this description is
clearly incorrect. Since the propagation term includes some of the effects associated

with intrinsic flame instabilitiest, this term must depend on the flame properties,

thereby allowing for situations where its sign is positive and where the net effect
corresponds to a production of flame surface.

The exact importance of laminar flame instabilities for turbulent combustion is

an open subject. Recent evidence, however, both experimental (Abdel-Gayed ctal.

1984, Wu et al. 1990, Goix &: Sheperd 1992) and numerical (Ashurst et al. 1987,
Haworth & Poinsot 1992, Rutland & Trouv6 1991), suggests that the role of the

Lewis number has been underestimated in the past. For instance, current flamelet

models fail to account for the effects of the Lewis number on the rate of production

of flame surface. The objective of the present study is to determine how present

formulations might be improved to incorporate such effects. The approach is to

analyze the source and sink terms in the equation for the flame surface density,
with particular emphasis on how the Lewis number can affect their balance. This

is accomplished using DNS, as described in the next section.

Using the terminology introduced to describe laminar flame instabilities, tile propagation term

represents the thermo-diffusive mechanism, while the strain term represents the hydrodynamic

mechanism. These two instability mechanisms are coupled together and both account for Lewis

number effects (Clavin 1985, Williams 1985)

m_
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2. Direct Numerical Simulation of turbulent premixed flames

_.I. Numerical method and configuration

We use DNS to analyze the different terms appearing in the equation for the

flame surface density. The simulations are performed using a three-dimensional,

compressible Navier-Stokes solver that fully resolves the turbulent flow field. Spa-
tial derivatives are computed with a modified Pad6 scheme that is sixth-order accu-

rate (Lele 1990). Solutions are advanced in time using a third-order Runge-Kutta

method (Wray 1990). Boundary conditions are specified using the NSCBC method

(Poinsot &: Lele 1992). Because of the otherwise prohibitive computational cost,
simulations are limited to simple but finite-rate reaction schemes. In this work, the

chemistry model is a single step, irreversible chemical reaction where the reaction

rate depends exponentially on temperature (Arrhenius kinetics):

dJR=BpYR exp (----_) , (8)

where Ta is the activation temperature and B is a constant that depends on the

flame speed. This formulation corresponds to a binary reaction in which one of the
reactants, YR, is strongly deficient as, for example, in fuel-lean combustion. Also, it

is worth emphasizing that the simulations are not limited by the constant density

assumption, and heat release effects are fully accounted for.

Following Williams (1985), we re-write the reaction rate as:

--8(1 7_0) '_ (9)doR = ApYRexp 1-a(1-O)]'

where O is the reduced temperature, 0 = (T-Tu)/(Tb -T,,); Tu is the temperature

of the fresh reactants; Tb is the adiabatic flame temperature; and the coefficients

A, a, and fl are, respectively, the reduced pre-exponential factor, the heat release

factor, and the reduced activation energy:

A = Bexp(-fl/a), a = (Tb -- Tu)/Tb, and fl = aTa/Tb (10)

In the following, we use a = 0.75 and _ = 8.
Another important feature of the simulations is that transport coefficients are

temperature dependent. These coefficients satisfy the following relations:

# = #u(T/Tu) b , Le = A/pDcp = constant, Pr = #cp/)_ = constant, (11)

where p, _, and D are the molecular diffusivities of, respectively, momentum, in-
ternal energy, and species mass, b is a constant, and Le and Pr are respectively the
Lewis number and the Prandtl number. We use b = 0.76, Pr = 0.75. Simulations

have been performed for different Lewis numbers, Le = 0.8, 1.0, and 1.2.
The selected computational configuration corresponds to a premixed flame em-

bedded in three-dimensional, decaying, isotropic turbulent flow. The left- and right-

hand sides of the computational domain are inflow and outflow boundaries while
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periodicboundary conditionsare appliedat lateralwalls.The calculationsare ini-

tializedwith freshreactantson one sideof the domain and burnt productson the

other side;the two are separatedby a plane laminar flame. Isotropicturbulence

isinitiallylocatedin the flow of freshreactants,itsvelocityfieldbeing specified

accordingto a model spectrum. The turbulenceischaracterizedby a Kolmogorov

lengthscalesmallerthan the thermal thicknessof the laminarflame,rIt/i_T= 0.1

where ¢_T = (Tb -- Tu)/(dT/dx)maz, and a turbulence intensity that is much higher
than the laminar flame speed, ut/sL = 10. The initial turbulent Reynolds number,
based on the Taylor microscale, is 50. The initial turbulent Reynolds number, based
on the integral length scale, is 70. The grid resolution is 1293.

The simulations describe the wrinkling of the flame zone due to turbulent motions

as well as the combustion feedback due to dilatation and temperature-dependent

transport properties. Note that the turbulence is decaying in time, and conditions
are non-stationary.

_,._. Diagnostic_

All terms appearing in Eq.(7) may be obtained from the simulations. We now

briefly describe how. The velocity vector and the velocity gradient tensor are readily

obtained from the resolved flow field. To define flame-based quantities, we make use
of concepts based on a thin flame picture. First, a progress variable, c, is introduced

that is used to indicate location within the reaction zone, c = 1 - YR, where YR

is the normalized fuel mass fraction. The progress variable varies monotonically
through the flame from 0 in the reactants to 1 in the products. Constant progress
variable surfaces may conveniently be used to define the flame front location: we

use the surface c = c/= 0.8. In addition, at any location on this surface, the local
gradient of c defines the normal direction to the flame front:

Vc

n = - Ivc-- ' (12)

where n points into the fresh reactants.

The propagation speed of the flame surface, w, is obtained from an expression

analog to the well-known field equation (also called the G-equation). Let us first

consider a point on the flame surface, c = %,. The velocity, X, at which this point
must move to remain on the surface is given by:

0c

+ X.Vc = 0, (13)

which, using Eq.(12), implies that:

X.n- 1 Oc
Iv¢l0t'

and which yields the following expression for the flame propagation speed:

1 Dc
W = X.n- u.n -

IVclDt'

(14)

(15)

L

=

r
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where quantities are estimated at the surface c = cI. Since in the simulations
we solve for a conservation equation for the fuel mass fraction, YR, and since by

definition c = 1 - Yn, the expression above can be readily obtained from the DNS

data base.
The flame surface density, E, is a more subtle quantity. It includes both geomet-

rical and statistical information. Following Pope (1990), the flame surface density

is computed as the product of the expected value for the magnitude of the gradient
of c, conditioned on being on the flame surface, times the probability of being on

that surface:

_' = IVcl _(c- c,), and _ = (_') = (IVcl I c = c,) p(_,), (16)

where p(c l) is the probability of c = cI.
We now turn to the averaging problem. In the simulations, the flame brush

propagates along the x direction, and the problem remains homogeneous in the

y - z planes. Therefore, averaged quantities depend on x and time t only, and

ensemble-averaging can be performed in the y - z planes:

1/(Q)(x,t)- L_L_ Q(x,y,z,t)dydz,
(17)

where Ly and Lz are the y and z dimensions of the computation domain. The
accuracy of this expression depends on the size of the computational domain with

respect to the turbulent length scales. In the simulations, the integral length scale
of the turbulent flow field grows as the kinetic energy decays; this growth, how-

ever, is rather slow, and it was determined that the integral length scale remains
at least 8 times smaller than Ly and Lz. Typically, in every y - z plane within the

turbulent flame brush, the statistical sample consists of approximately 10 fully inde-

pendent flame events, and, although we recognize that the statistics are somewhat
undersampled, reasonable accuracy is expected when estimating the first moments.

Conditional means are computed by integrating along the c = c! contour:

(Q [c= cl)(_,t) =
f¢=_1Q dl (_s)

fc=cs dl

Surface means are then obtained using the following relations:

(Q)s(z,O -
(Q_') _ (OlVcl I c - el) _ f_--¢, OlWl dI (19)

(IWll _- ¢I) - L=_, IV¢I at(_')

Clearly, surface means differ from conditional means.
The relations above provide a methodology to estimate the different means needed

in our analysis. As shown in Eq.(16), the flanm surface density, E, also requires
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FIGURE 1. A test case for flame stretch: the problem of a cylindrical, freely-
expanding, premixed laminar flame: a) temperature contours; b) flame stretch:
solid line based on Eq.(4); symbols based on Eq.(22).

an estimate of the probability p(cf). Simple geometrical considerations lead to the
following relation:

p(c_)= L -o, v/(0_)2+(0_)2, (20)

and finally,Eqs.(16),(18)and (20)yieldthe followingexpressionforZ:

1 [ dl L=c, IVcl dl
E- L_-_ jc=_, V/(_)2 +(oc)2_ f¢=_ dl (21)

Before applying thesediagnosticsto the turbulentflame simulations,we check

the accuracy of our estimatesforflame stretchand flame propagationspeed using
a model laminar flame problem as describedin the next section.

_.5. Validation of DNS-based estimates for flame stretch

As seen in Eqs.(5) and (6), the flame stretch, k, is the single relevant parameter
that determines the growth rate of flame surface area. Since this growth rate is

locally exponential, it is important to obtain accurate estimates for k. In our analy-

sis, the flame stretch is obtained using Eq.(4). The overall accuracy of our analysis

thus depends on our ability to predict correctly strain rate, flame curvature, and

flame propagation speed. To check the accuracy of our estimates, we performed

simulations of a cylindrical, premixed laminar flame expanding freely into an ini-
tially quiescent medium (Figure la). In this model problem, the flame stretch can
be directly measured from the growth of the flame radius:

k= 1 dr!
r/ dr' (22)

where r/designates the radius of the flame contour, c = c/. Results based on this

expression are compared with our DNS-based estimates in Figure lb. The very
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a) b)

FIGURE 2. DNS of turbulent premixed flames in isotropic flow. Snapshots of the

flame surface after 3.5 turbulent eddy turn-over time: a) Le = 0.8; b) Le = 1.2.

The flow is from top-left (reactants) to bottom-right (products).

good agreement seen in Figure lb demonstrates that the flame stretch as well as

the flame propagation speed can be accurately monitored with our diagnostics.

3. Results and discussion

As described in the previous section, the present study uses three-dimensional,

direct numerical simulations of turbulent premixed flames in isotropic flow. Three

different cases have been studied that correspond to turbulent flames characterized

by the same laminar thermal thickness, _ST, the same laminar flame speed, SL,
embedded in the same initial turbulent flow field, but with different Lewis number,

Le = 0.8, 1.0 and 1.2 (Figure 2).

3.1. The overall effect of the Lewis number

Figure 3 shows that the three cases exhibit large differences in the time history

of the total reaction rate (space-averaged over the computational domain). After 4

turbulent eddy turn-over time, t = 4r, the Le = 0.8 flame burns more than twice as

=
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FIGURE 3. Lewis number effects on the overall combustion intensity. The total

reaction rate is made non-dimensional by its initial value corresponding to a strain-
free, plane laminar flame. Time is made non-dimensional by the initial, turbulent
eddy turn-over time r.

_ 1.5-

J !
I I I I t'_ "1 .......... !

0 l 2 4 5 63
time

FIGURE 4. Lewis number effects on the relative increase of total flame surface

area. Time is made non-dimensional by the turbulent eddy turn-over time, r.

1. '--t=lJ _ i:iii:ii
_I l.O_l--t=6 _

o._t...........i..................i...........................
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I_ • -

-6 -4. -2 0 2 4
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FIGURE 5. Time evolution of the flame surface density, E;, through the turbulent

flame brush (reactants on the left; products on the right). Le = 0.8. E and x are
made non-dimensional by the laminar thermal thickness, tiT. Time is measured in

units of the turbulent eddy turn-over time, r.
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much as the Le = 1.2 flame. In agreement with the findings from previous studies

(Ashurst et al. 1987, Haworth & Poinsot 1992, Rutland & Trouv6 1991), the mean
fuel consumption speed, _e, irrespective of the value of the Lewis number, is found

to be only a weak function of the turbulence: at all times, departures of Sc from
the laminar value, 8L, remain within 20%. Thus, the principal effect of the Lewis

number is to promote or inhibit the production of flame surface area.
The drastic effect of the Lewis number on flame surface production is displayed

in Figure 4. For Le = 1.0 and Le = 1.2, the flame surface area initially increases,
reaches a maximum, and then decreases in time. The increase occurs as the turbu-

lence wrinkles the initially fiat flame surface. The flame then adapts to its turbulent

environment, and, as the turbulence decays, the flame surface becomes smoother
and relaxes to its initial state. The Le = 0.8 flame exhibits a strikingly different
behavior: the flame surface area keeps increasing in time without saturation. Al-

though saturation might be expected at later times, our simulations are limited by
the size of the computational domain and this subsequent phase cannot be observed.

In any ease, the simulations indicate that saturation will not occur on a time scale
characteristic of the turbulence, and, in that sense, the flame can be said to be

unstable.
The differences between the Le = 0.8 and Le = 1.2 flames are in fact so pro-

nouneed that they can easily be observed by comparing instantaneous snapshots of

the flame surface (Figure 2). For instance, for Le = 0.8, fingers of burnt products

are seen to propagate at a fast rate into the fresh reactants (Figure 2a). We believe

this "fingering" is an important ingredient of the flame instability process. The

"fingering" is not observed in the Le = 1.0 or Le = 1.2 flames (Figure 2b).

3.,_. The source and sink terms in the equation for E

The effects of the Lewis number are now further studied by analyzing the structure

of the terms appearing on the right-hand side of the equation for the flame surface

density, E. As described in section 2.2, the analysis takes advantage of the fact that

the problem is statistically one-dimensional and provides the source and sink terms
for ]E as a function of time t and position x within the turbulent flame brush.

Figure 5 compares several E-profiles through the turbulent flame brush taken at
different instants in the simulations. The Lewis number is 0.8. At t = 0, E is a

delta function located at x = 0. As time evolves, the turbulent flame brush gets

thicker and propagates deeper into the reactants. Accordingly, the E-profile spreads
out and shifts towards negative values of x. In the simulations, this shift is rather
weak but can clearly be seen at the latest times (t = 6r in Figure 5). Note that

the integral of E through the flame brush gives the relative increase of total flame

surface area: Sv(t)

f (23)E(x,t) dx - LyL_'

where Sv(t) is the flame surface area within the computational domain of size V.
The main advantage of the present analysis is to distinguish between the leading

edge and the rear edge of the turbulent flame brush. The geometry as well as the

dynamics of the flame differ quite significantly from one end of the reaction zone
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mean progress variable, <c>

FIGURE 6. Variations of the mean flame curvature, (kin)s, through the turbulent

flame brush. Le = 0.8, t = 4 _'. Flame curvature is made non-dimensional by the
laminar thermal thickness, 6T.
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FIGURE 7. Variations of the mean fuel consumption speed, (ScIs, through the

turbulent flame brush. Le = 0.8, t = 4 7". Sc is made non-dimensional by the
laminar flame speed, SL.
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FIGURE 8. Variations of the mean flame propagation speed, (w)s, through the

turbulent flame brush. Le = 0.8, t = 4 r. w is made non-dimensional by its value

corresponding to a strain-free, plane laminar flame, w = sLp(c = O)/p(c = cl).
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to the other as shown in Figures 6 to 12. For convenience, in Figures 6 to 12,

x-location within the turbulent flame brush is indicated by the local mean progress

variable, (c).
Figure 6 shows an instantaneous plot of the spatial variations of the mean flame

curvature, (kin)s, through the turbulent flame. The mean curvature goes from

positive at the leading edge to negative at the rear edge of the turbulent flame. Since
in non-unity Lewis number flames, the local combustion intensity, as measured by

the reactant comsumption speed So, depends strongly on the flame curvature, and

since the dependence is quasi-linear (Itaworth & Poinsot 1992, Rutland & Trouv_

1991), it might be inferred from Figure 6 that the statistical distribution of Sc is
non-homogeneous as well. Figure 7 shows that this is indeed the case. For Le < 1,

(Sc)s is a decreasing function of the mean progress variable, (c): the combustion
intensity is higher at the leading edge than at the rear edge of the turbulent flame.
For Le > 1, the trends are opposite: the combustion intensity is lower at the leading

edge, close to (c) = 0, than at the rear edge, close to (c) = 1. For Le = 1, (Sc)s

remains approximately constant and equal to the laminar flame speed, sL.
In the flamelet regime, a flame element can be characterized by two speeds: So,

which is a chemical rate, and w, which is a kinematic quantity and gives the velocity

of the flame front with respect to the flow field (Eq.(15)). For a strain-free, plane
laminar flame these two speeds are the same and equal to st,. As pointed out by

Poinsot et al. (1992), in the context of highly stretched flames, Sc and w can be

significantly different. Figure 8 shows the variations of the mean flame propagation

speed, (w)s, through the turbulent flame. (w)s is an increasing function of the mean

progress variable, (c). Comparison of Figures 7 and 8 indicate that, for Le = 0.8,
the leading edge of the turbulent flame burns faster but propagates more slowly

than the rear edge of the flame, which burns more slowly but propagates faster into

the reactants.
It is worth emphasizing that the dynamical properties of the turbulent flame are

not completely described by the knowledge of the distribution of the propagation

speed, w, along the flame. To determine whether the flame surface will actually

grow or contract, some information about the hydrodynamic flow field has to be
included.t In other words, one needs to solve for the E-equation.

We now turn to the terms appearing on the right-hand side of the equation
for E. While the strain term, (aT)s, remains approximately constant through

the turbulent flame (Figure 9), the propagation term, 2(wkm_s, exhibits strong
variations and decreases from positive values on the unburnt side, close to (c) = 0,

to negative values on the burnt side, close to (c) = 1 (Figure 10). The net effect on

the surface growth rate is given by the flame stretch, (k)s = (arts + 2 (wkm)s.

Figures 9 and 10 indicate that both contributions to stretch have the same order of

magnitude.

This is best seen in the context of laminar flame instabilities, where the classical linear theory
shows that the stability problem is not solved at the level of determining the Markstein length but

also requires solving for a dispersion relation, which includes hydrodynamic effects (Clavin 1985,

Williams 1985)
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FIGURE 9. Variations of the mean strain rate, {aT)S, through the turbulent flame

brush. Le --- 0.8, t = 4 r. Strain rate is made non-dimensional by the characteristic
flame time, _T / 8 L .
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FIGURE 10. Variations of the mean propagation term, 2{wkm)s, through the

turbulent flame brush. Le = 0.8, t = 4 r. wkm is made non-dimensional by the
characteristic flame time, _T/.qL.
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FIGURE 11. Variations of the mean flame stretch, (k)s, through the turbulent

flame brush. Le = 0.8, t = 4 r. k is made non-dimensional by the characteristic
flame time, ¢_T/SL.
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FIGURE 12. Lewis number effects on the variations of the mean flame stretch,

(k)s, through the turbulent flame brush, and comparison with flamelet models.
t = 4 r. k is made non-dimensional by the laminar flame time, _T/SL.

Figure 11 presents the mean flame stretch profile through the turbulent reaction
zone. At the leading edge, strain rate and flame propagation effects are locally

cumulative and the overall balance is strongly positive. The leading edge of the
turbulent flame is a region of strong production of flame surface area. On the

contrary, the propagation term takes large negative values on the burnt side. In

that region, strain rate and flame propagation effects are locally opposite, and the
overall balance is negative. The rear edge of the turbulent flame thus appears as a

region where flame surface area gets strongly dissipated.
Figure 11 spatially resolves the balance between production and dissipation of

flame surface area. The net effect is given by defining a mean stretch, k, space-

averaged throughout the flame brush:

d _Sv(t)_ = /
(24)

gives the instantaneous rate of change of the flame surface area in the compu-
tational domain. If k is positive, the flame surface grows; if negative, the flame

surface contracts. The next section further discusses the effect of the Lewis number

on the spatially-resolved flame stretch profile, as well as the resulting impact on the
net mean flame stretch, k, and presents some comparison with flamelet models.

3.3. Comparison of DNS results with flamelet models

Figure 12 compares the mean flame stretch profiles, (k)s, plotted for different
Lewis numbers. In all cases, stretch takes large negative values on the burnt side,

close to (c) = 1. The effect of the Lewis number is not visible in that region. On
the contrary, at the leading edge of the flame, there are large differences between
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the different Lewis number cases. This suggests that the turbulent flame is most

sensitive to Lewis number effects on the unburnt side, whereas it remains unaffected

on the burnt side. Using Eq. (24), we can quantify the overall differences previously
observed in Figure 4; we find (in units of the laminar flame time): k = 2.6 for
Le = 0.8, and the flame surface area is quickly growing; k _ 0.0 for Le = 1.0 and

Le = 1.2, and the flame surface area remains roughly constant.

Also plotted in Figure 12 is a comparison with flamelet models. Many current

flamelet models use a transport equation for the flame surface density. Different for-

mulations of this equation have been proposed in the literature (Marble & Broadwell

1977, Candel et al. 1990, Cant et al. 1990, Borghi 1990). For the sake of compari-
son, we use a closure assumption similar to the one proposed in the Coherent Flame

Model by Marble & Broadwell (1977) and Candel et al. (1990). In this formulation,
the turbulent flame stretch is written as:

]¢ ---_ -_ -- 8L (YR) ' (25)

where k, is the turbulent kinetic energy and e its dissipation; (YR) is the ensemble-

averaged fuel mass fraction. The first term on the right-hand side of Eq.(25) rep-

resents straining due to the flow motions and is assumed to scale with the integral
time scale of the turbulence; the second term is a disparition term associated with

flame propagation and is assumed to scale with the laminar flame speed, SL, and
the flame surface density, E.

Figure 12 shows that this model is indeed able to reproduce qualitatively the

spatial structure of the balance between production and dissipation of E, going
from production at the leading edge of the turbulent flame to dissipation at the
rear edge. However, the 1/(YR) behavior of the disparition term leads to numerical

difficulties on the burnt side of the flame. The model, therefore, overpredicts the
dissipation of E, near (c) = 1, and gives a negative mean flame stretch, k = -3.6,

in strong disagreement with the values reported above. In addition, the disparition
term in Eq.(25) is always and everywhere negative and cannot account for the
possible transition to unstable flame conditions as observed in the simulations.

4. Conclusion

Flamelet models constitute one of the most common approach for turbulent pre-

mixed combustion. In these models, the flame surface density is a central ingredient

that conveys most of the effects of the turbulence on the rate of energy release. The
flame surface density is usually obtained via a modeled transport equation, called

the E-equation, first postulated by Marble & Broadwell (1977). Recent theoretical
work, based on conservation equations for surfaces and volumes in a turbulent flow

field, has produced a more rigorous approach that leads to an exact, but unclosed,

formulation for the turbulent T-equation (Pope 1988, Candel & Poinsot 1990). In
this exact T-equation, it appears that the dynamical properties of the flame sur-

face density are determined by a single parameter, namely the turbulent flame

stretch. Unfortunately, the flame surface density and the turbulent flame stretch
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are extremely difficult to measure and are simply not available from experiments.

Therefore, little is known on the validity of the closure assumptions used in current

formulations of flamelet models.
Direct Numerical Simulation (DNS) is the obvious, complementary approach to

get basic information on these fundamental quantities. In the present work, three-
dimensional DNS of premixed flames propagating in isotropic turbulent flow have

been used to estimate the different terms appearing in the E-equation. A new

methodology has been proposed to provide the source and sink terms for the fame
surface density, estimated as a function of time and position within the turbulent

flame brush. Using this methodology, the effects of the Lewis number on the rate

of production of flame surface area are described in great detail. Principal findings

are that: (1) the balance between production and dissipation of flame surface area
is strongly non-homogeneous: the leading edge of the turbulent flame is a region

of production of flame surface area, whereas the rear edge is a region where flame

surface gets strongly dissipated; (2) the turbulent flame is most sensitive to Lewis
number effects at the leading edge, whereas it remains unaffected on the burnt side.

These results suggest that most of the important dynamical features of turbulent

flames take place at the leading edge of the reaction zone.
Detailed comparisons with flamelet models were also performed. The analysis re-

veals the tendency of the models to overpredict flame surface dissipation as well as

their inability to reproduce variations due to thermo-diffusive phenomena. Thanks
to the detailed information produced by a DNS-based analysis, this type of compar-

ison not only underscores the shortcomings of current models but also suggests ways

to improve them. Future work will focus on the development of a new formulation
of the E-equation that would incorporate thermo-diffusive mechanisms.
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