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Stochastic modeling of turbulent reacting nows

By R. O. Fox 1, J. C. Hill 2, F. Gao 3, R. D. Moser 4, AND M. M. Rogers 4

Direct numerical simulations of a single-step irreversible chemical reaction with

non-premixed reactants in forced isotropic turbulence at Rx = 63, Da = 4.0, and
Sc = 0.7 were made using 1283 Fourier modes to obtain joint pdfs and other statis-

tical information to parameterize and test a Fokker-Planck turbulent mixing model.

Preliminary results indicate that the modeled gradient stretching term for an inert

scalar is independent of the initial conditions of the scalar field. The conditional

pdf of scalar gradient magnitudes is found to be a function of the scalar until the re-

action is largely completed. Alignment of concentration gradients with local strain
rate and other features of the flow were also investigated.

1. Introduction

Modern treatments of the theory of chemically reacting turbulent flows are often

based on the probability density function (pdf) method, since in the pdf equations
for the concentrations of the chemical species, the chemical reaction terms are closed

in the statistical sense (O'Brien 1980, Pope, 1985). However, the mixing terms

involving molecular diffusion are not closed, so statistical models are needed for
these terms. The shortcomings of the commonly used coalescence-dispersion models
and LMSE closures have been well-documented (Kos_ly & Givi, 1987, Leonard &

Hill, 1991), and more recent closures such as the mapping closure (Chen et al.

1989, Pope 1991, Gao 1991) and the linear-eddy model (Kerstein 1991) are being

investigated.
In the present study, the Fokker-Planck (FP) closure is applied to the joint scalar-

scalar gradient pdf for a two-species, single-step, irreversible chemical reaction

A + B ---*Products (1)

of non-premixed reactants in forced, homogeneous isotropic turbulence. The mass

conservation equation for the concentration of reactant A (¢A) is

OCA OCA _ 02¢A
+ = - (2)
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where SA = --kCACB in the work described here (a similar equation described the

concentration of species B). In the current development, it is assumed that the
scalar diffusivity D is the same for both reactants and the product of reaction and

that all physical properties are constant, including the finite reaction rate constant,

k. The joint pdf's of the reactant concentrations and their gr_lients are used in the
model discussed here to avoid problems common with closures based on pdfs of the
reactant concentrations alone.

The joint pdf equation for the scalars CA and _bB and their gradients CA and CB

may be written

OP(_bA, CB) = _
0t

O [SAP]- (9 [SBP]

02

- D0---_A [(¢_[_A, CB)P] -

_2
-2D

OCAOCB

C_2

D'_B [(¢_I+A,¢B)P]

[(¢AiCeilCa, $B)P]

(3)

OP(fA, ¢B,¢A, ¢B) C9 [SAP] -- 0 [SBP]
= -

0 [OSA, ,p] 0 OSe

- Molecular mixing terms (4)

0

0_3Ai [(dijlCa, ¢O, CA, CB)¢AiP]

0

C9¢Bi [(d01¢A, ¢a, CA, CB)¢mP]

where P( ) is the probability density function of its arguments and the arguments

to P on the right hand side of each equation are the same as those appearing on the

left, SA and SB are the reaction source terms (both equal to --kCACB in this work),
dii = Oui/cgxi is the velocity derivative tensor, and the summation convention

applies to repeated indices. Clearly, the reaction terms in the above equations

are closed. In the traditional scalar pdf formulation involving only concentrations

¢, the three mixing terms in (3) must be modeled. In the joint pdf formulation

studied here, the modeling is postponed to the gradient pdf equation (4), wherein

the three molecular mixing terms (not shown) must be modeled as well as the

scalar gradient magnification terms, the last two terms in (4). In the development
to follow, the FP model studied here is further simplified by considering only a

passive progress variable ¢ rather than both reactant concentrations and by treating

the diffusion/reaction zones between the two reactants as locally one-dimensional.

Among other things, this allows us to consider the magnitude of the scalar gradient

I¢1 rather than the full gradient vector.

In this work, we compare the results of stochastic simulations with results from
direct numerical simulations (DNS) and sample the DNS results to evaluate various
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quantities that appear in the pdf equations. Also, the computed fields were probed

for physical insights suggested from previous simulations at lower Reynolds number

(Leonard et al. 1988 and Leonard & Hill 1988, 1990, 1992).

2. Approach

_.I. Direct numerical simulations

To provide data to check the FP model, a direct numerical simulation of station-

ary, isotropic turbulence with chemically reacting scalars was carried out using the

Rogallo (1981) method with 128 a Fourier modes and low-wavenumber negative vis-
cosity to provide the forcing. The turbulence was allowed to evolve until it reached

statistical equilibrium, at which time scalar fields for the reactant concentrations
were initialized and the simulations were Continued. Two sets of reacting scalar

initial conditions were used in the simulation. Case I was begun from "blob" initial

conditions in which the two reactants are segregated into three-dimensional "blobs"
with thin diffusion zones between them. The distribution of blobs was determined

from a passive scalar field using a method similar to that used by Eswaran & Pope

(1988). However, in this case, we follow Leonard & Hill (1991) and use a passive
scalar field that has evolved with the turbulence so that the initial blobs are corre-

lated with the velocity field. Case II uses 'slab' conditions, in which the reactants

A and B are segregated into "slabs" with two planar (x-z planes) diffusion zones

between them in the periodic domain. In both cases, the overall (average) reac-
tant concentrations were in stoichiometric proportions. The DamkShler number
or dimensionless reaction rate coefficient was set at Da - kAoq2/e = 4.0 where

q2 - (uiui) and e is the dissipation rate of the turbulent kinetic energy 2v(eijeij)

(eij is the strain rate tensor). The Schmidt number Sc was 0.7 for all species.
The simulations were carried out until te/q 2 = 0.968. Figure 1 shows the reaction

zones in the plane z = 0 at time te/q 2 = 0.968 for the two cases, showing the nearly

isotropic scalar field for the blob conditions and remnants of the initial dual reaction
zones in the slab case.

Comprehensive diagnostics of the simulated fields were generated, including

marginal, joint, and conditional pdf's of the concentrations of the reactants and
the conserved scalar ¢ = CA -- CB, the magnitudes of their gradients, velocity field

properties such as the vorticity and dissipation, and various correlations.

_._. Gradient alignment analysis

An analysis of the alignment of the reactant concentration gradients was carried

out to provide theoretical support for stochastic models and closures that assume
one-dimensionality or alignment of scalar gradients in non-premixed systems (this

includes flamelet models, conditional moment closures, and the linear eddy model

as well as the model developed here). The approach taken was to use (2) to ob-

tain an expression for the evolution of the cosine of the angle #AB between scalar

gradient vectors CA and CB, where PAB = CAiCBi/(lCAIl_bOI) • For cases in which

Dp/Dt = 0, a linear stability analysis was performed to determine the stability of
this state. General results were obtained for arbitrary reaction rate functions S(¢),
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FIGURE 1. Scalar CA_)B (reaction rate over k) in an x-y plane at te/q 2 = 0.968
for (a) blob initial conditions and (b) slab initial conditions. Contour increments

are (a) 0.05 and (b) 0.1. Shaded areas indicate large values of the gradient

amplification rate (¢AieijCBj > 3.0(¢AieijCBj)).
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FIGURE 2. PDF of the cosine of the angle between CA and eB at te/q 2 = 0.497

for the blob case (PA8 = eAieBi/([¢AIIeBD)"

including reversible reactions and the temperature-dependent kinetics. In addition,
the alignment of reactant gradients with temperature gradient, the reaction product

gradient, and the conserved scalar (¢A -- ¢B) gradient was considered. The results

pertinent to this study are summarized here:

1. If PAB(t = 0) = --1 (gradients initially aligned and opposed in the non-premixed

system) then pAB(t) remains equal to --1 (aligned), independent of the reaction
rate and of the presence of products of reaction (in the reversible case) including

temperature, independent of the diffusivities DA and DB (which may differ), and

independent of the strain rate eij, except as noted below.

2. A stability analysis of the case described in (1) above shows that in nonisothermal

systems, the reactant concentration gradients can become misaligned, depending
on the Zeldovich number and on the direction of the temperature gradient with

respect to CA.

3. If pAB(O) _ --1 (gradients initially misaligned) then the irreversible reaction (1)

tends to align the gradients of Ca and $B-

4. As the reaction rate constant k in (2) becomes large, the reactants become seg-

regated such that p = -1 on the reaction surface and undefined elsewhere.

5. The alignment of a reacting and non-reacting scalar, say ¢a and ¢, is preserved

as in (1) above and is not influenced by the reaction rate even if gradients are

initially misaligned.

Thus, in the simple non-premixed reaction case considered here, the initial scalar

gradients are aligned (#AB = --1), and remain aligned for all time. This theoretical
result was confirmed in the direct numerical simulations by examining the pdf of

#AB, which is approximately a delta functions at -1 (see figure 2).

_.3 Fokker-Planck clo_ure

A Fokker-Planck (FP) molecular mixing closure was developed by Fox (1992a) to

describe the evolution of the joint scalar, scalar gradient pdf in a system of reacting
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one-dimensional, random-sized lamellae. Numerical (Fox, 1992b) and theoretical

(Sokolov and Blumen, 1991a, 1991b) studies of diffusion in such systems have shown

that the joint pdf evolves to a bivariate independent Ganssian pdf. However, if
the scalar and scalar gradient are initially correlated, the correlation diminishes at

a rate on the order of the scalar dissipation rate suggesting that the scalar and

scalar gradient cannot be treated as independent random variables. Fox (1992b)
has shown that the FP closure captures the form of the joint pdf and the decay
rate of the correlation function for diffusion in random-sized lamellae in the absence

of turbulent stretching, and suggested a modification to the closure to include the

effect of the latter. In the following subsections, the application and extension of

this model to the reacting system under consideration is presented.

_.3.1 A single inert scalar

In the following derivation for an inert scalar, the diffusion is assumed to be locally
one-dimensional, so that only the magnitude of the scalar gradient is relevant. In
§2.3.2, the alignment results of §2.2 will allow this treatment to be extended to the

reacting multiple scalar case. For a scalar ¢ and its gradient ¢, the modified FP

closure can be expressed in terms of a pair of stochastic differential equations:

de = n_A¢(¢, ¢)dt + nB¢(¢, ¢)dW4,(t), (5)

d_ = _2A,_(¢, ¢)dt + C_,.w*¢dt + _B,_(¢, ¢)dWe_(t), (6)

where A6, By, A_, and Bq, are functions determined as in Fox (1992a), Cw*w*_l,

is the gradient stretching term suggested by Fox (1992b), w* is the turbulence
relaxation rate defined by Pope & Chen (1990) (see (9) below), and

_z = D(¢Z)/(¢_) = 6D/_. (7)

The turbulence relaxation rate, w*, is a random variable defined in terms of the

(random) pseudo-dissipation rate,

Oui Oui
,*(z, t) = v--m, (s)

Oxi Ox i

and the (nonrandom)turbulent kinetic energy, q2)/2 = (uiui)/2, as

to*(x, t) = 2e*(x, t)/q'(t). (9)

Pope and Chen (1990) have proposed a stochastic differential equation for w* whose

coefficients are independent of ¢ and ¢, and which yields a limiting log-normal pdf
for w* . The gradient stretching constant, C,,., is assumed to be independent of the
initial conditions.

The FP model can be used to derive equations for the moments of the scalar

and its gradient. In particular for an inert scalar in isotropic turbulence, the exact
equations for the variance of the scalar is

d(¢
- 2D(¢2), (10)

dt

=

U
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and, from the model, the scalar gradient variance is

d(¢_) ,,_,,(¢_)_2C_.(o,.¢_). (11)

where C_0 is a parameter in the definition of the functions A¢, and Be, in (6). In
the absence of turbulence (w* = 0), the above equations are closed and constitute a

two-equation model for the scalar energy and its dissipation rate. For this case, Fox

(1992b) has found that C_ = 3 gives a good fit to the random-sized lamellae data
and is required by the limiting form of (¢2)/(¢2) predicted by theory (Sokolov and

Blumen, 1991a). Note that if w* and ¢ are uncorrelated, or if w* is nonrandom as is
often assumed in pdf modeling studies, then (w*¢ 2) = (w.)(¢2) and the equations

are again closed. In particular, if/w*) is time-independent, the long-time asymptotic
behavior of the variances (characterized by constant (¢2)/(¢2)) can be determined

as

d(¢ 2) 2C_.
dt ' _- I("'*)(¢_)" (12)

Note that the scalar rms decreases exponentially in the limit of large t and the rate

is independent of D. Other molecular mixing closures for the scalar pdf, such as

the LMSE model (Pope, 1985) usually take

d(¢ 2)
= -C,(w')(¢ _) (13)

dt

with C, = 2.0.
The FP closure discussed above extends standard scalar mixing models in two

ways: (1) it models the scalar dissipation rate instead of assuming that A_ is con-

stunt, and (2) it treats the turbulence relaxation rate as a random variable so that,

for example, regions in the flow with large w* will be correlated with regions of

large scalar gradient and hence with increased mixing and reaction. Direct numeri-
cal simulations indicate that these qualitative features are characteristic of turbulent

reacting flows (see Leonard and Hill, 1991 and §3).

_.3._ Multiple reacting scalar3

In the FP closure, multiple reactive scalars are handled by first considering an

inert scalar ¢ with gradient ¢, which are governed by the stochastic differential

equations (5) and (6). Let ¢o and ¢,_, o_ = 1, ..., N, denote reactive scalars and

their gradients, respectively, all with the same molecular diffusivity as _b, and with

linearly dependent initial values; that is Co(x, y, z, t = 0) = ao¢(x, y, z, O) + b_, and

Co(z, u, z, o) = ao¢(z, u, z, 0). As discussed by Pope (1985), the molecular mixing
model to be developed below must be linear in the scalars ¢,_, so in the absence of
source terms

& = F(¢, ¢)¢0 + C,(¢, ¢)¢_ - (F(¢, ¢)¢0) - (C,(¢, ¢)¢-3, (14)
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where F and Gi are functions to be determined. Using the same arguments, it can be

shown that a similar linearity property must hold for ¢_. Moreover, when the source

term is zero, ¢,(x, y, z, t) = a,,¢(z, y, z, t) + b_, and ¢_(x, y, z, t) = a,_¢(x, y, z, t)

for all t. The scalars thus remain correlated for all time, implying that the same

two Wiener processes (W_ and W,/,) that appear in (5) and (6) must also appear
in the equations for ¢_ and ¢o (Fox, 1992a). Equivalently, the multiple reactive
scalar model can be formulated in terms of de and de as follows.

Assume that a local one-to-one differentiable mapping exists between ¢ and ¢_,
namely ¢_ = q%(¢, t). Differentiation then leads to an expression for the time-
derivative of q_o:

0q_ 2 02 q_,,

= De -_- + So(qh, ..., q_N), (15)

Given ¢ and ¢, (15) is closed; however, it cannot be conveniently solved using Monte
Carlo methods.

It is interesting that the conditional moment closure (CMC) (Bilger 1991) employs

a similar mapping equation:

9(¢21¢ )02¢ 
= -g-p- + cN), (16)

where D(¢ 21¢) is the conditional scalar dissipation rate of the inert scalar given ¢.
The CMC mapping equation is closed given ¢ and results in a joint pdf for ¢ and ¢,_

with a 1-dimensional support (it falls on a curve in (¢, ¢i)-space). However, in the
current formulation, the support will, in general, be 2-dimensional since each value

of ¢ will result in a separate curve in (¢, ¢i)-space. Mell et al. (1992) have solved

the CMC mapping equation numerically for the reaction A + B ---*P with D(¢21¢/

and the pdf of ¢ taken directly from DNS, and found good agreement with the joint

pdf of ¢ and ¢A computed from the DNS data (the curve computed by CMC falls
near the maximum of the joint pdf found by DNS). In addition, they found that the

CMC results are insensitive to the functional form used for D(t/, _ 1¢), which suggests

that the source term may dominate the diffusion term in the mapping equation. We

therefore hope that the crude model used for this term below will be adequate.

In order to apply a Monte Carlo method, d¢_ is written in terms of its partial
derivatives:

d¢_ - O_° d¢ + --g-f-at, (17)0¢

or substituting (15)

- _-_ de+De (-_-)dt+S_(¢l,...,¢N)dt. (18)

In (18) the diffusion term (premultiplied by D) is zero if the source term is zero or

linear. Also, if the source term is such that _,_ is time invariant (e.g., an infinitely

fast bimolecular reaction) the sum of the diffusion and source terms is zero. Oth-
erwise it must be closed in terms of the ¢, ¢, ¢,_ and ¢,,, and the closure must be
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linear in ¢,, and ¢,, as discussed above. The simplest closure hypothesis is to as-
sume that this term is independent of the modeled variables, leading to the simplest

model of the form (14):

d¢_ - 0¢I,_,___d¢_(-_d¢) + S_(4,1,..., 4*N)dt. (19)

The terms involving 0¢_/0¢ are closed in terms of ¢_ (see below).
To obtain a similar expression for d¢=_, note that our assumed form for ¢_ implies

that
0¢. 0¢. (20)

= ox--7=

The total derivative of Cai is thus

02¢I,a 0¢I'_, 02¢,,
deal = _¢i de + _ d¢i + -_-_ ¢i dr. (21)

The time derivative term can be evaluated by differentiating (15) with respect to

xi to obtain

02¢° _ _ 02¢_ 0¢ 2 OS_ 0¢_
¢i_--_- = D 0¢ _ ¢2¢i + D _- _ + E _-_-_--_--¢i (22)

which when substituted into (21) yields

02¢I,_
de + a¢,

(23)

D 0_¢_ 0¢_ dt + E 0¢_ 0¢+ D ¢2¢idt + -_ Oxi Z

Terms involving more than one derivative of ,I,o are not closed with respect to _b_,

and 0_. The first term is modeled as zero, which is exact if Si is zero or linear and

the diffusion terms are modeled as in (19) yielding

= --_ d¢i - ('-'_" d¢i) + E 0¢_ 0¢ _bidt (24)

The functional form of ¢_i in (20) implies that all the scalar gradients are aligned

with the gradient of the inert scalar ¢, in agreement with the analysis in §2.2.
Therefore, it is not necessary to treat ¢_ and ¢ as vectors. Without loss of generality

we can let Ca = ¢_i¢i/1¢1 (the projection of ¢_, onto the ¢ direction) and ¢ = [¢1.
This is also consistent with the one-dimensional nature of the FP model for the

inert scalar (equations (5) and (6)). It is also clear that OeIa/O_b = ¢_/¢. With

these simplifications the final model equations for the evolution of ¢_ and ¢_ are

¢o a,/, a¢
7 = ¢ 0t (_--_) + S_(¢,,...,¢N) (25)
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FIGURE 3. Evolution of the model constmats (a) Cq, and (b) Co. in the direct
numerical simulation for _ blob initial conditions and .... slab initial condi-
tions.

0¢o 1 0¢,¢o _ {¢_ 0¢, os_
--5- = (_ -T_ -_ + _ N-;_¢_' (26)

which in the absence of source terms are linear as required.

Since the marginal pdfs of ¢ and Ca are both symmetric about zero, the expected

value of ¢ obtained from (26) should be zero for all time. The FP closure for ¢,_

is similar to the LMSE closure since, in the absence of source terms, 0 In lea I/Or =
01n I¢l/Ot. But since 01n I¢l/0t is not constant, the two closures are not identical;

in particular, with the FP closure the joint pdf of ¢ and ¢ evolves to a bivariate
Gaussian (Fox, 1992a).

The FP closure can be extended to scalars with nonequal molecular diffusivities

by including a separate inert scalar with the same molecular diffusivity as each
corresponding reactive scalar. The stochastic differential equations for the new

inert scalars have the same form as Eqs. (5) and (6) except with _2 modified to

include the correct molecular diffusivity. The same Wiener processes (W e and We)
must appear in each pair of stochastic differential equations as discussed by Fox
(1992a).

2._ Evaluation of model constants

The FP closure has two "universal" constants C_ and Co, whose values can

be determined using DNS data. The exact equations for an inert scalar and the
magnitude of its gradient in a three-dimensional flow are

De _ DV2¢ ' (27)
Dt

De 2 02¢,

Dt - 2D¢i oxjOxj 2¢ieiiCj, (28)

where eij is the strain rate tensor. By comparing the expected value of (28) with
(11) derived from the FP model, the model constants can be evaluated as

(w,¢_) , (29)
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and

(¢'v2¢i)(¢2) (30)
C¢. = -- (_2)2

The model constants,evaluatedfrom the directnumerical simulationsusing (29)

and (30),are shown as functionsof time in figure3. Itisclearfrom figure3a that

the gradientmixing constant,C,_,depends stronglyon initialconditions.For the

anisotropicslabinitialconditions,C_ decreasessteadilywith time afteran initial

jump. On the other hand, for the isotropicblob initialconditions,C,_ _ 6.7 for

alltime. This differenceismost likelydue the differencein integrallengthscales

of the scalarfieldsin the two cases.Integrallengthscaleeffectshave not yet been

incorporatedintothe FP closure,but have been shown to have a significanteffect

on the scalardissipationrate (Eswaran and Pope, 1988; Eswaran and O'Brien,

1989; Kos_ly, 1989; Jiang and O'Bricn, 1991). For the slabcase,scalarintegral

lengthscalesare initiallyinfinitein two directionsand decreaseas the turbulent

advection createsa more isotropicfield.For the blob case,the integrallength

scaleisapproximately constantfor alltime. In contrast,the gradientstretching

constant,Cw-, shown in figure3b appears to be independent of initialconditions

and approximatelyequalto 4.7 foralltime.

An expressionrelatingC,p and C,_. can be found from the limitingvalue of

A_ = 6(¢2)/(¢2).From Eqs. (10)and (11)forthe FP model, the followingrelation

is found for A_:

= (w*tb2)A2 (31)12D(c -1)-2c .

For statisticallystationaryw*, (31)has a singlestablelimitingsolution:

A /6 (¢_) _ D(C@ - 1)(¢ 2)=
(32)
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Thus, if the model has asymptotic behavior consistent with the DNS, we should
find that

D(C_ - I)<¢2)_
1 (33)

for large t. The left side of (33) is plotted as a function of time in figure 4 for both

the slab and blob cases. For both cases this quantity does indeed approach 1.

Mantel and Borghi (1991) have proposed a two-equation model for scalar en-

ergy, scalar dissipation similar in form to (10) and (11) but with (w*)(¢ _) in place

of (w*¢2). In their model, the coefficients are defined in terms of a turbulence

Reynolds number Ret = _lt/u so that, for large Ret, C,/, =/30v/_t/2, and

C,_. = a0 Rv/_t/2, with a0 = 0.9 and/30 = 1.25 found by DNS (Borghi et al., 1992).

For Ret = 194 of the present DNS simulations, these expressions yield C¢ = 8.7

and C,,. = 6.3. These estimates are both 30% larger than the values given above,

implying that the ratio Cto/C,o. is similar. Since Ct0 = 3 in the limit where Ret = 0

(Fox, 1992b), the Reynolds number dependence embodied in these large-Ret rela-

tions may not be valid for these relatively low Reynolds number DNS computations.

(Although the Ret values for the DNS runs used to determine c_0 and/30 have not

yet appeared in the literature (Borghi et al., 1992), they must be small due to the

limitations of DNS.) This fact may explain some of the discrepancies between the
two sets of values for the model constants.

_.5 Application to the single-step reaction

The FP closure described above has been used to generate joint pdfs of the

reactant concentrations and their gradients for the 2-component, single-step reaction

scheme (1) using a Monte Carlo simulation. For this reaction (25) and (26) yield:

and

CA d' CA

d¢a = T ¢p -- <T tic) -- kCaCudt,

= ¢ , -- kCACBdt,

d_3 A = -_d_) -(_d¢)- k_)A_.Bdt- kCB_'Adt,

= -- (Td¢) - kfACBdt -- kCBCAdt.

(34)

(35)

(36)

(37)

The Monte Carlo algorithm uses fractional time-stepping to split the mixing and

reaction steps into separate processes (Pope, 1985; Fox, 1992a). The expected

values appearing in (34)-(37) are computed during the mixing step so that the

mean values of the scalars and scalar gradients are constant during mixing. A

constant turbulence relaxation rate, w* = (w*) was used in (6). The resulting joint
pdf's are compared to the DNS results below.

z

=
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FIGURE 5. Conditional PDF of ln(14'l) given _b (P(In(IVI) I d)) for the direct nu-

merical simulation with (a, b) slab initial conditions and (c,d) blob initial conditions

at (a,c) t_/q 2 = 0.497 and (b,d) te/q 2 = 0.968. At these times _b,ms/_r,,,s(t = 0)

is (a) 0.846, (b) 0.645, (c) 0.426, and (d) 0.172.

3. Results

3.I Statistics of the inert scalar field

The DNS data have been used to compute a wide range of statistics involving the

inert and reactive scalars and the magnitudes of their gradients. The marginal pdf

P(_b) for the inert scalar is nearly identical in shape, at a given rms value, to those
reported in previous DNS studies. The marginal pdf of the log of the magnitude

of the inert scalar gradient, P(ln 1_]), approaches a nearly Gaussian form, but with

a slightly longer negative tail, in agreement with the DNS results of Eswaran and

Pope (1988).
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FIGURE 6. PDF of V2¢ for the DNS with blob initial conditions at te/q 2 = 0.968.

Of greater interest is the joint pdf of the inert or conserved scalar, ¢, and its

gradient, ¢, which has been the subject of both theory (Bilger, 1976; Fox, 1992a,

1992b; Gao and O'Brien, 1991; Meyers and O'Brien, 1981; Valifio and Dopazo, 1991)

and experiments (Anselmet and Antonia, 1985). In most reactive mixing closures
(e.g., the flamelet model), ¢ and ¢ are assumed to be independent so that the joint

pdf is separable, P(¢,¢; t) = P(¢; t)P(¢; t). In order to check for independence

using the DNS data, the conditional pdf of ¢ given ¢, defined by P(¢[¢;t) =

P(¢,¢;t)/P(¢;t), has been computed. Note that if ¢ and ¢ are independent,

then P(¢l¢;t) = P(¢;t) and will thus be independent of ¢. Examples of the

computed conditional pdf are shown in figure 5. From figure 5a (¢rms/¢rms(t =

0) = 0.846) it can be seen that near the start of the molecular mixing process,

the scalar and scalar gradient are correlated. The correlation decays slowly so

that in figure 5b (¢rms/¢rms(0) = 0.645) the conditional pdf continues to show a

important C-dependence. Not until the molecular mixing process is farther along
(¢rms/¢rms(0) = 0.172) as shown in figure 5d does the conditional pdf appear to be

independent of ¢.

Another interesting pdf is that of the Laplacian of ¢ shown in figure 6 on a log-

linear plot for Crms/_rms(0) : 0.172. As is clear from the form of the pdf, it is

non-Gaussian with nearly exponential tails over 4 decades.

3._ Stati_tic_ for inert scalar mixing

Statistics involving the scalar or scalar gradient and various turbulence quanti-

ties have been computed using the DNS data. For example, the scalar gradient-
turbulence relaxation rate correlation function, defined by

1, (38)

was found to be approximately time independent with values of 0.06 for the blob

case and 0.15 for the slab case, indicating that w* and ¢2 have a slight tendency

to be simultaneously larger than their mean value. This tendency can bc seen
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conditions at te/q 2 = 0.968.

more clearly by examining the conditional pdf of ln(l_l) given In(w*) shown in

figure 7 (slab case with _)rms/(_rms(0) = 0.645). From this figure it can be seen

that the conditional pdf has a nearly constant shape but shifts upward as In(w*)
increases. This behavior is consistent with the FP closure (6) wherein w* appears

as a stretching (positive) term in the drift coefficient.
Similar conclusions can be drawn from the conditional pdf of q_given In(w*) shown

in figure 8 for the blob case at _rms/_rms(0) = 0.172. There it can be seen that

larger values of In(w*) lead to smaller conditional variances for _b. This is consistent

with the model equations in that large In(w*) leads to large gradients and hence
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faster scalar dissipation.

Finally, as noted by Pope and Chen (1990), the DNS simulations confirm that

the log of the pseudo-dissipation rate of the turbulence, In e* is more nearly Gaus-

sian than is the log of the true turbulence dissipation rate, In _. For example, the

skewness and flatness of In e* are -0.06 and 3.05, respectively, compared to -0.29
and 3.24 for In e at te/q _ = 0.968

S.S Statistics of reacting scalars

Some statistical quantities evaluated in previous simulations in decaying turbu-
lence at lower Reynolds numbers (Leonard et al. 1988, Leonard & Hill 1988, 1990,

1992) and in a similar study for a non-reacting system (Nomura & Elgobashi 1992)

were examined in order to determine the extent to which the present system exhibits

the same physical behavior. For example, pdf's of the cosine between the directions
of the reactant scalar gradients and the eigenvectors of the strain rate tensor, and

plots of the eigenvectors superposed on reaction rate contours, show that there is

considerable tendency for the most compressive eigenvector to align with the scalar

gradients and to lie across the reaction zone. Furthermore, there is a similar but

less pronounced tendency for the intermediate strain rate eigenvector to lie tangent
to the reaction zones and isoscalar surfaces.

Figures 9 and 10 show the effect of certain kinematic quantities on the reaction

rate, and vice versa, at t=0.92. In figure 9, for reaction rate conditioned on levels of

strain and enstrophy, (_ba_bB I e2) and (q_Aq_B I w2/2) where eU=eoeij, it is seen that

strain has a marked effect on reaction rate, but the effect of vorticity is considerably
less. The converse plot, figure 10 for strain and enstrophy conditioned on reaction

rate, confirms the previous observation of Leonard & Hill (1990) that conditional

averages of e2 and w2/2 are near their volume averages and each other, except for

the regions of most intense reaction rate where the straining is very high and the

enstrophy is appreciably less than the volume averaged value.

Regions where the gradient amplification term, (_ba,eij_bBj), is greater than
3.0(_bnieotbBj) are shaded in figure lb. Clearly the largest values of this term

are associated with peak values in the reaction rate, supporting earlier claims by
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Leonard & Hill (1990, 1992) and underlining the importance of the modeled gradient

amplification term in the FP model. Although not shown, the gradient amplifica-
tion term seldom takes on negative values and since CA and ¢0 tend to be aligned

and opposing in the reaction zone, the compressive part of eij must dominate this

term as expected.

Finally, various scalar gradient-strain rate correlation coefficients important in
mixing studies were evaluated. One such quantity, (_Aieij CBj)/(¢AiCBi) V_, ap-

proaches the value -0,45 for the slab case and -0.40 for the blob case; the same
values are obtained for the conserved or inert scalar ¢ in these two cases. These

values differ somewhat from the values -0.56 and -0.45 (-0.52 and -0.43 for the

nonreaeting scalars) found in decaying turbulence by Leonard & Hill (1990) and

the value -0.5 found by Kerr (1985) for a nonreacting scalar in forced turbulence.

The joint pdf of the reacting scalars, CA and CB have also been computed using
the DNS data and can be compared to the joint pdf found from the FP closure. For

example, the joint pdf at Crms/¢rms(0) = 0.426 is shown in figure 11 and that found

using the FP closure for the same value of ¢rms/¢rms(0) in figure 12a. It can be seen

that, despite the closure approximations needed to derive (19) and (24), the general

shape of the pdf predicted by the FP closure corresponds closely to that found by
DNS. In particular, the width of the curved region of significant probability is about
the same in the DNS and the model, t

The comparisons between the pdfs of the modeled and DNS gradients (figures

ll(b-d) and 12(b-d)) are not nearly as good, though the modeled gradients do have
the correct order of magnitude. The strange bimodal structure of the gradient-

gradient pdf (figure 12d) is presumably caused by one of the modeling assumptions

used to derive equation (24).

t This can also be compared to the CMC model which predicts no scatter about tile curve (Riley,

|992).
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FIGURE 11. Joint pdf's of reactant concentrations and gradients from the DNS

for blob initial conditions at te/q 2 = 0.497.

4. Conclusions

Direct numerical simulations of a single-step chemical reaction between non-

premixed reactants in forced isotropic turbulence were made for both "slab" and

"blob" initial scalar reactant configurations. As found in previous simulations at

lower Reynolds number, the amplification of concentration gradients in the reaction

zone by the strain field was seen to be an important feature of these flows, in that

regions of large local reaction rate are coincident with regions of large values of tile

gradient amplification factor.

An analysis of the alignment of various scalar gradients with each other pro-

vides some justification for treating the mixing process as locally one-dimensional

as assumed in the Fokker-Planck model studied here and other closures.

Comparisons were made between predictions of the FP closure and results of
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turbulence simulations. The closure's treatment of gradient stretching as a bilinear

term in the model equation is generally supported by the DNS data. For example,

the gradient stretching constant was found to be independent of initial conditions,
and the DNS results for the joint pdf of the scalar gradient and the turbulence
relaxation rate were found to be consistent with the model. Likewise, the closure's

prediction for the joint pdf of the reactive scalars is very similar in shape to the DNS
result. However, it was also found that for the non-isotropic initial scalar field the

gradient mixing constant appearing in the closure is not constant as assumed, and
that the closure's prediction for the form of the joint reactive scalar gradient pdf

differs significantly from the DNS result. The former can most likely be accounted
for in the closure by incorporating scalar integral length scale information, and the

latter by modifying the closure assumptions used in deriving (24) from (23). In any
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case, since it can be easily incorporated into existing Monte-Carlo simulation codes

(Pope, 1985), the formulation of the FP closure in terms of a stochastic process

offers a significant computational advantage over other closures that require the
solution of a reaction-diffusion equation.
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